82 research outputs found

    UAV Optimal Cooperative Obstacle Avoidance and Target Tracking in Dynamic Stochastic Environments

    Get PDF
    Cette thèse propose une stratégie de contrôle avancée pour guider une flotte d'aéronefs sans pilote (UAV) dans un environnement à la fois stochastique et dynamique. Pour ce faire, un simulateur de vol 3D a été développé avec MATLAB® pour tester les algorithmes de la stratégie de guidage en fonctions de différents scénarios. L'objectif des missions simulées est de s'assurer que chaque UAV intercepte une cible ellipsoïdale mobile tout en évitant une panoplie d'obstacles ellipsoïdaux mobiles détectés en route. Les UAVs situés à l'intérieur des limites de communication peuvent coopérer afin d'améliorer leurs performances au cours de la mission. Le simulateur a été conçu de façon à ce que les UAV soient dotés de capteurs et d'appareils de communication de portée limitée. De plus, chaque UAV possède un pilote automatique qui stabilise l'aéronef en vol et un planificateur de trajectoires qui génère les commandes à envoyer au pilote automatique. Au coeur du planificateur de trajectoires se trouve un contrôleur prédictif à horizon fuyant qui détermine les commandes à envoyer à l'UAV. Ces commandes optimisent un critère de performance assujetti à des contraintes. Le critère de performance est conçu de sorte que les UAV atteignent les objectifs de la mission, alors que les contraintes assurent que les commandes générées adhèrent aux limites de manoeuvrabilité de l'aéronef. La planification de trajectoires pour UAV opérant dans un environnement dynamique et stochastique dépend fortement des déplacements anticipés des objets (obstacle, cible). Un filtre de Kalman étendu est donc utilisé pour prédire les trajectoires les plus probables des objets à partir de leurs états estimés. Des stratégies de poursuite et d'évitement ont aussi été développées en fonction des trajectoires prédites des objets détectés. Pour des raisons de sécurité, la conception de stratégies d'évitement de collision à la fois efficaces et robustes est primordiale au guidage d'UAV. Une nouvelle stratégie d'évitement d'obstacles par approche probabiliste a donc été développée. La méthode cherche à minimiser la probabilité de collision entre l'UAV et tous ses obstacles détectés sur l'horizon de prédiction, tout en s'assurant que, à chaque pas de prédiction, la probabilité de collision entre l'UAV et chacun de ses obstacles détectés ne surpasse pas un seuil prescrit. Des simulations sont présentées au cours de cette thèse pour démontrer l'efficacité des algorithmes proposés

    Fixed-wing UAV tracking of evasive targets in 3-dimensional space

    Get PDF
    In this thesis, we explore the development of autonomous tracking and interception strategies for single and multiple fixed-wing Unmanned Aerial Vehicles (UAVs) pursuing single or multiple evasive targets in 3-dimensional (3D) space. We considered a scenario where we intend to protect high-value facilities from adversarial groups employing ground-based vehicles and quadrotor swarms and focused on solving the target tracking problem. Accordingly, we refined a min-max optimal control algorithm for fixed-wing UAVs tracking ground-based targets, by introducing constraints on bank angles and turn rates to enhance actuator reliability when pursuing agile and evasive targets. An intelligent and persistent evasive control strategy for the target was also devised to ensure robust performance testing and optimisation. These strategies were extended to 3D space, incorporating three altitude control algorithms to facilitate flexible UAV altitude control, leveraging various parameters such as desired UAV altitude and image size on the tracking camera lens. A novel evasive quadrotor algorithm was introduced, systematically testing UAV tracking efficacy against various evasive scenarios while implementing anti-collision measures to ensure UAV safety and adaptive optimisation improve the achieved performance. Using decentralised control strategies, cooperative tracking by multiple UAVs of single evasive quadrotor-type and dynamic target clusters was developed along with a new altitude control strategy and task assignment logic for efficient target interception. Lastly, a countermeasure strategy for tracking and neutralising non-cooperative adversarial targets within restricted airspace was implemented, using both Nonlinear Model Predictive Control (NMPC) and optimal controllers. The major contributions of this thesis include optimal control strategies, evasive target control, 3D target tracking, altitude control, cooperative multi-UAV tracking, adaptive optimisation, high-precision projectile algorithms, and countermeasures. We envision practical applications of the findings from this research in surveillance, security, search and rescue, agriculture, environmental monitoring, drone defence, and autonomous delivery systems. Future efforts to extend this research could explore adaptive evasion, enhanced collaborative UAV swarms, machine learning integration, sensor technologies, and real-world testing

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms

    Get PDF
    This book is a reprint of the Special Issue “Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms”,which was published in Applied Sciences

    Multi-agent Collision Avoidance Using Interval Analysis and Symbolic Modelling with its Application to the Novel Polycopter

    Get PDF
    Coordination is fundamental component of autonomy when a system is defined by multiple mobile agents. For unmanned aerial systems (UAS), challenges originate from their low-level systems, such as their flight dynamics, which are often complex. The thesis begins by examining these low-level dynamics in an analysis of several well known UAS using a novel symbolic component-based framework. It is shown how this approach is used effectively to define key model and performance properties necessary of UAS trajectory control. This is demonstrated initially under the context of linear quadratic regulation (LQR) and model predictive control (MPC) of a quadcopter. The symbolic framework is later extended in the proposal of a novel UAS platform, referred to as the ``Polycopter" for its morphing nature. This dual-tilt axis system has unique authority over is thrust vector, in addition to an ability to actively augment its stability and aerodynamic characteristics. This presents several opportunities in exploitative control design. With an approach to low-level UAS modelling and control proposed, the focus of the thesis shifts to investigate the challenges associated with local trajectory generation for the purpose of multi-agent collision avoidance. This begins with a novel survey of the state-of-the-art geometric approaches with respect to performance, scalability and tolerance to uncertainty. From this survey, the interval avoidance (IA) method is proposed, to incorporate trajectory uncertainty in the geometric derivation of escape trajectories. The method is shown to be more effective in ensuring safe separation in several of the presented conditions, however performance is shown to deteriorate in denser conflicts. Finally, it is shown how by re-framing the IA problem, three dimensional (3D) collision avoidance is achieved. The novel 3D IA method is shown to out perform the original method in three conflict cases by maintaining separation under the effects of uncertainty and in scenarios with multiple obstacles. The performance, scalability and uncertainty tolerance of each presented method is then examined in a set of scenarios resembling typical coordinated UAS operations in an exhaustive Monte-Carlo analysis

    Bio-inspired, Varying Manifold Based Method With Enhanced Initial Guess Strategies For Single Vehicle\u27s Optimal Trajectory Planning

    Get PDF
    Trajectory planning is important in many applications involving unmanned aerial vehicles, underwater vehicles, spacecraft, and industrial manipulators. It is still a challenging task to rapidly find an optimal trajectory while taking into account dynamic and environmental constraints. In this dissertation, a unified, varying manifold based optimal trajectory planning method inspired by several predator-prey relationships is investigated to tackle this challenging problem. Biological species, such as hoverflies, ants, and bats, have developed many efficient hunting strategies. It is hypothesized that these types of predators only move along paths in a carefully selected manifold based on the prey’s motion in some of their hunting activities. Inspired by these studies, the predator-prey relationships are organized into a unified form and incorporated into the trajectory optimization formulation, which can reduce the computational cost in solving nonlinear constrained optimal trajectory planning problems. Specifically, three motion strategies are studied in this dissertation: motion camouflage, constant absolute target direction, and local pursuit. Necessary conditions based on the speed and obstacle avoidance constraints are derived. Strategies to tune initial guesses are proposed based on these necessary conditions to enhance the convergence rate and reduce the computational cost of the motion camouflage inspired strategy. The following simulations have been conducted to show the advantages of the proposed methods: a supersonic aircraft minimum-time-to-climb problem, a ground robot obstacle avoidance problem, and a micro air vehicle minimum time trajectory problem. The results show that the proposed methods can find the optimal solution with higher success rate and faster iv convergent speed as compared with some other popular methods. Among these three motion strategies, the method based on the local pursuit strategy has a relatively higher success rate when compared to the other two. In addition, the optimal trajectory planning method is embedded into a receding horizon framework with unknown parameters updated in each planning horizon using an Extended Kalman Filte
    • …
    corecore