415 research outputs found

    Cooperative Robots to Observe Moving Targets: Review

    Get PDF

    Market-Based Approach to Mobile Surveillance Systems

    Get PDF
    The active surveillance of public and private sites is increasingly becoming a very important and critical issue. It is, therefore, imperative to develop mobile surveillance systems to protect these sites. Modern surveillance systems encompass spatially distributed mobile and static sensors in order to provide effective monitoring of persistent and transient objects and events in a given area of interest (AOI). The realization of the potential of mobile surveillance requires the solution of different challenging problems such as task allocation, mobile sensor deployment, multisensor management, cooperative object detection and tracking, decentralized data fusion, and interoperability and accessibility of system nodes. This paper proposes a market-based approach that can be used to handle different problems of mobile surveillance systems. Task allocation and cooperative target tracking are studied using the proposed approach as two challenging problems of mobile surveillance systems. These challenges are addressed individually and collectively

    Re-establishing communication in teams of mobile robots

    Get PDF
    As communication is important for cooperation, teams of mobile robots need a way to re-establish a wireless connection if they get separated. We develop a method for mobile robots to maintain a belief of each other's positions using locally available information. They can use their belief to plan paths with high probabilities of reconnection. This approach also works for subteams cooperatively searching for a robot or group of robots that they would like to reconnect with. The problem is formulated as a constrained optimization problem which is solved using a branch-and-bound approach. We present simulation results showing the effectiveness of this strategy at reconnecting teams of up to five robots and compare the results to two other strategies

    Multirobot Systems: A Classification Focused on Coordination

    Full text link

    Decentralized Risk-Aware Tracking of Multiple Targets

    Full text link
    We consider the setting where a team of robots is tasked with tracking multiple targets with the following property: approaching the targets enables more accurate target position estimation, but also increases the risk of sensor failures. Therefore, it is essential to address the trade-off between tracking quality maximization and risk minimization. In our previous work, a centralized controller is developed to plan motions for all the robots -- however, this is not a scalable approach. Here, we present a decentralized and risk-aware multi-target tracking framework, in which each robot plans its motion trading off tracking accuracy maximization and aversion to risk, while only relying on its own information and information exchanged with its neighbors. We use the control barrier function to guarantee network connectivity throughout the tracking process. Extensive numerical experiments demonstrate that our system can achieve similar tracking accuracy and risk-awareness to its centralized counterpart.Comment: DARS2022 submission preprin

    Solar-powered aquaponics prototype as sustainable approach for food production

    Get PDF
    This paper presents the establishment of a solar-powered aquaponics prototype as a sustainable, cost effective and environmentally sound approach for food production. In this study, a prototype bench top aquaponics rig with an integrated 20 W solar panel were fabricated for the cultivation of red Hybrid Tilapia (Oreochromis spp.) and leaf mustard (Brassica juncea). The size of the fish tank is about 29.5L and serves as the base for the setup. Additionally, the hydroponic grower compartment (0.45 m (L) � 0.32 m (W) � 0.13 m (H)) was stacked on top of the fish tank and was filled with LECA media bed for the plant growth. Two important operating parameters were studied. First, the amount of energy produced by the solar panel and the energy consumption by the water pump used in the setup. Secondly, the resultant effects from fish cultivation and plants growth on the water qualities and nitrification effi�ciency of the aquaponics unit. The aquaponics unit was operated for a month and the values of pH, tem�perature, and ammonia level were measured to be within the range of 6.4–7.2, 27.1–31.7 �C, and 1 mg�L�1 , respectively. Survival rate for fish was about 75% with specific growth rate (SGR) of 3.75% per day and food conversion ratio of about 1.15. A slight nutrient deficiency was evident and plants showed a healthy growth with height gain as high as 5 cm was achieved. Despite raining season, our data shows that the energy produced via 20 W solar panel enabled the unit to run at night without depending on local electricity for nearly two hours. Clearly, a larger solar panel is needed for longer operation. Nevertheless, the study has proven the potential of operating a low cost aquaponics setup using renew�able energy for a sustainable food production method

    Swarm Robotics: An Extensive Research Review

    Get PDF
    corecore