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Cooperative Robots to Observe Moving Targets: A Review
Asif Khan, Bernhard Rinner, and Andrea Cavallaro

Abstract—The deployment of multiple robots for achieving a
common goal helps to improve the performance, efficiency and/or
robustness in a variety of tasks. In particular, the observation of
moving targets is an important multi-robot application that still
exhibits numerous open challenges, including the effective coor-
dination of the robots. This paper reviews control techniques for
cooperative mobile robots monitoring multiple targets. The simul-
taneous movement of robots and targets makes this problem par-
ticularly interesting, and our review systematically addresses this
cooperative multi-robot problem for the first time. We classify
and critically discuss the control techniques: Cooperative Multi-
robot Observation of Multiple Moving Targets (CMOMMT),
Cooperative Search, Acquisition, and Track (CSAT), Cooperative
Tracking (CT) and Multi-robot Pursuit Evasion (MPE). We also
identify the five major elements that characterize this problem,
namely the coordination method, the environment, the target, the
robot and its sensor(s). These elements are used to systematically
analyze the control techniques. The majority of the studied work
is based on simulation and lab studies, which may not accurately
reflect real-world operational conditions. Importantly, while our
systematic analysis is focused on multi-target observation, our
proposed classification is useful also for related multi-robot
applications.

Index Terms—Multi-robot system, cooperative mobile robots,
cooperative observation, surveillance, motion planning.

I. INTRODUCTION

Cooperative mobile robots for observing multiple moving
targets are desirable for a wide range of applications, including
search operations [1], sports coverage [2], crowd and social
movement monitoring [3], [4], surveillance [5] and wildlife
research [6], [7]. Robots, generally equipped with sensors with
limited fields of view (FOV), and targets move simultaneously
thus creating very challenging dynamic environments for target
observation (Fig. 1). A key research task is visibility maxi-
mization, i.e. planning the motion of the robots to maximize
the number of moving targets under observation [8].

Examples of robotic platforms include Unmanned Ground
Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs) and
Unmanned Underwater Vehicles (UUVs), which are equipped
with sensing, processing, and communication capabilities
(Fig. 2). The developments in UGVs and wireless mobile
sensor nodes motivate the use of cooperative mobile robots
for observing moving targets [9], [10]. Limitations of UGVs
include a smaller FOV and movements restricted on a 2D
surface. Recent advancements in UAVs [11], [12] have made
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Fig. 1: Illustrative example of cooperative mobile robots for
observing multiple mobile targets. Three robots are observing
six out of eight targets in a given environment. The coordi-
nation may be centralized on the ground station or distributed
on the autonomous robots.

it possible to develop approaches for aerial observation of
ground moving targets [13], [14]. UAVs, and in particular
micro-UAVs with rotors, can fly at low altitudes, hover at a
specific point in the environment and move with agility at high
speeds [15]. However, the small size of micro-UAVs limits
their payload capabilities. The use of UUVs is more difficult
due to the additional challenges including underwater trans-
mission of signals (GPS, radio, acoustic) and water currents
affecting mobility [16]–[18]. While deployment of UUVs for
data gathering is progressing considerably, only few works
exist on underwater cooperative UUVs for observing multiple
mobile underwater targets [19].

Certain applications of observing multiple moving targets
require a team of heterogeneous robots, such as UGVs and
UAVs that work together to complete a mission [20], [21],
[22]. In such applications, UAVs may act as supervisory agents
that detect evading targets but cannot capture them. UGVs then
use the information from the UAVs to approach the evading
targets and closely observe/capture them.

While a number of reviews on related topics have been
published [21], [23]–[32], to the best of our knowledge, our
paper is the first overview on multi-robot systems where the
robots as well as the targets move in a given environment.
Review papers on mobile robots [25]–[27] have focused on the
classification and explanation of motion planning approaches
for a single robot to explore a region. A system of cooperative
mobile robots requires approaches that combine coordination
and motion planning [28]–[31]. Existing reviews on cooper-
ative mobile robots encompass tasks without targets, such as
collision avoidance, area coverage, map making and marching
[31], or with static targets, such as foraging and landmine
detection [29]–[31]. Farinelli et al. [23] presented a taxonomy
of multi-robot system approaches that classifies them based on
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Fig. 2: Information flow and processing steps for cooperative mobile robots. A robot Ri observes the targets in the environment
and derives local information about the environment and the targets. This local information is exchanged with other robots
to derive global information, which serves as key input for the decision-making to plan robot movements. The coordination
(information exchange and/or motion planning) can be either centralized or distributed.

coordination and system dimensions. Chen et al. [21] classified
approaches for coordination between UAVs and UGVs from an
optimization perspective. Only coordination aspects of multi-
robot systems were covered in [23], [24], whereas the use and
benefits of a cloud infrastructure to support the operations of
coordinating robots (cloud robotics) were discussed in [24]. A
recent and closely related review [32] covers the broad topic of
target detection and tracking. So far no review has covered in
detail the approaches for cooperative mobile robots equipped
with sensing, processing and communication capabilities for
observing multiple moving targets. This review fills this gap
and narrows the scope of [32]. Note, however, that this review
does not include multi-robot systems for observing a single
moving target [33]–[37] or multi-target tracking on image
sequences [38], [39].

The functionality of cooperative mobile robots depends on
five main factors, namely the environment, the target, the robot
itself, the sensor(s) onboard the robot and the robot coordina-
tion method. We study the main characteristics and effects
of these factors on the functionality of cooperative robots and
their objectives of observing moving targets. We further group
existing approaches based on four major control techniques,
namely Cooperative Tracking (CT), where the objective is
to persistently track moving targets; Cooperative Multi-robot
Observation of Multiple Moving Targets (CMOMMT) [9],
which aims to increase the collective time of observation for
all targets; Cooperative Search, Acquisition, and Track (CSAT)
[13], which alternates search and track of moving targets; and
Multi-robot Pursuit Evasion (MPE) [20], whose objective is
to capture evasive targets. Table I summarizes these factors
as well as the control techniques for observation of moving
targets that we discuss in this paper.

The rest of the paper is organized as follows. Section II
formulates the problem of cooperative mobile robots observing
moving targets. Section III discusses the five key factors
affecting the problem. Next, Section IV presents and compares
the four major control techniques of observing moving targets
using multiple mobile robots. Finally, Section V concludes the
paper and presents directions of future research.

II. PROBLEM FORMULATION

Let a set of N targets T = {T1, T2, ..., TN}, whose initial
locations and number may be unknown, move independently
in a given environment. The state of the jth target Tj at time
t is

xt
j = (xj , yj , zj)

t, (1)

where (xj , yj , zj)
t denotes the coordinates in the 3D space.

In order to observe the moving targets, a set of M robots
R = {R1, R2, ..., RM} moves in a given environment Ω. The
state of robot Ri at time t is

yti = (xi, yi, zi)
t, (2)

where (xi, yi, zi)
t denotes the position of Ri in the environ-

ment, which is known to the robot Ri. In addition to location
coordinates, the state vectors of targets and robots may also
include information about their velocity, acceleration and
orientation. In particular, knowing the orientation is important
for robots with directional sensors.

The problem is to decide the motion plans for the robots in
order to increase the number of targets under observation by at
least one robot. The knowledge of the total number of targets
N moving in the environment at a given time influences the
cooperative observation process. If N is given and constant for
the whole mission, the robots can decide whether to search for
unobserved targets or to continue observing already detected
targets. If N is unknown, it is not possible to determine
when all targets are under observation. Thus, motion planning
needs to consider searching unobserved targets throughout the
mission. The problem becomes more challenging when the
total number of targets N dynamically changes because new
targets appear in the environment, some of the existing targets
disappear or targets re-enter the environment [7]. In decentral-
ized and distributed multi-robot systems the information about
the total and the current number of targets under observation
might vary among the robots. Such an inconsistency may be
generated by the limitations in local sensing and processing
as well as communication, and makes motion planning even
more challenging.
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TABLE I: Summary of related work for cooperative observation of multiple moving targets. C: Centralized, Ca: Camera, Co:
Cooperative, Cmb: Combination of UAV and UGV, D: Distributed, Dc: Decentralized, DE: Detection Error (False detection
and miss detection), Di: Directional, Dt: Deterministic, E: Evasive, Err.: Error, Idt.: Identification, K: Known, M: Number
of robots, Mod.: Model, N: Number of targets, Nc: Non-cooperative, Ns: Noise, Om: Omnidirectional, Pr: Probabilistic, Ra:
Range, S: Structured, Spc.: Space, Str.: Structure, U: Unstructured, Un: Unknown.

Ref. Environment Target Robot Sensor Coordination
Str. Spc. M/N N Idt. Type Type Err. Mod. FOV Algorithm Type

C
T

[40] S

3D
< 1

Un

No
Nc UAV

Ca No Det

Om

Clustering C
[41]

U

K

Moving Gaussian peaks

D
[42]

> 1
DE Pr Data fusion

[43], [44]

Ra

No Dt Region partitioning
[45], [46] S 2D

< 1
Region partitioning

[47] U Co UGV

Ns Pr

Kalman filter
[48], [49] 3D UAV Algorithmic

C[50] S >= 1 Yes Nc UGV Adaptive sampling
[51] U 2D < 1 Ca Di Triangulation

[52], [53] S 3D >> 1

No

Cmb
No Det Om

Geometric optimization D
[54], [55] 2D < 1 Co UGV Ra Flocking algorithm De

[56] U 3D
> 1 Nc UAV Ca Gradient approximation D[57], [58] 2D UGV Ra Ns Di Data fusion

C
M

O
M

M
T

[9]

U 3D < 1
K

No

Nc
UGV

Ra No Dt Om

Force vectors

D

[59]–[61] Weighted force vectors
[62], [63]

Yes
Force vectors and help calls

[10] Force vectors
[8] Neural network

[64]
No

Robot formation
[65] Model-predictive control C
[66] Clustering Dc
[67] Integer linear program C

[68], [69] Un Yes UAV Gaussian Mixture Model D

C
SA

T

[1]

U 3D
< 1 K Yes

Nc UAV
Ca

Ns Dt Om

Task assignment C
[70] Task assignment D[13] > 1 Un No Ra Recursive Bayesian

[14], [71] << 1 Optimization C

M
PE

[72] S
2D > 1

Un Yes

Ev

UGV Ra No Dt Om Region clearing

D

[73] U

K

No
Negotiation

[74] = 1

Ca

DE Pr Di Greedy pursuit
[20]

S 3D
> 1

Cmb

Om

Game theory
[75]

Yes

UGV

No Dt

Force vectors
[76] UAV Differential game
[77]

< 1 UGV Task-scheduling C
[78] Negotiation and auctions D

In case of platforms with local processing power, each robot
iteratively executes four actions (Fig. 2): taking observations
and processing the data locally; exchanging information with
other robots (and the ground station); planning its motion;
and generating control actions to execute its physical motion
according to the plan. Once the robots have moved, the current
location information and the new observation from the sensor
initiate a new iteration of this processing cycle. Note that
this process is different from traditional motion planning and
coordination where the robots typically compute shortest paths
from their known initial locations to known goal locations
[27]. In our problem, the goal locations are the positions of
the targets, which are unknown and dynamic.

Although the initial attributes of the multi-robot system may
be known, the changing positions of both the targets to be
observed and the robots make it difficult to determine the goal
representation. Therefore, motion planning and coordination
strategies that consider task execution as the transition of the
system attributes from an initial representation to the goal
representation [79] do not address in their original form the
multi-target observation problem addressed in this survey.

III. COOPERATIVE MOBILE ROBOTS: FIVE FACTORS

The problem of observing moving targets with cooperative
mobile robots can be characterized by five factors: the environ-
ment, the targets, the robots, the sensors and the coordination
method. The observation of moving targets also depends on
what targets the robots need to observe and for how long they
need to observe them. In the following sections, we describe
these five factors.

A. Environment

Robots can operate on the ground, in the air or underwater,
and even the observation of an environment without targets
is a challenging multi-robot control task [80], [81]. In this
section, we identify key characteristics of the environment (its
representation, structure and evolution) and their effects on our
problem. Table II classifies related work based on these key
characteristics.

The environment confines the movement of both robots and
targets, and affects observations by potentially restricting a
sensor’s FOV. The environment, which is usually bounded,
is represented as a continuous [1], [9], [44], [60] or discrete
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TABLE II: Classification of related work based on key charac-
teristics of the environment (U: Unstructured, S: Structured).

Structure Evolution Representation
2D 3D

U
Static

[57], [58] [9], [10], [20], [83], [84]
[47], [51] [8], [41], [48]
[75], [82] [56], [59]–[66], [85], [86]

Dynamic [74] [43], [49], [68]–[71]

S Static [54], [55] [45], [46], [50], [52], [53]
[72], [87] [76]–[78]

Dynamic - [40], [88]

[82], [83] 2D plane or 3D space. A ground robot may also
move on a 2D surface embedded in a 3D space [60]. A 3D
Euclidean space environment facilitates operations of an aerial
robot [1], [13], [14], [40], [44], [57], [58], [83]. A region
with a regular-shaped boundary such as a circle [60], [65]
or rectangle [74] are mostly used for the 2D movement of
robots and targets in simulations. Limited research has been
conducted using irregular shapes to represent the boundaries
of the environment as they introduce extra challenges [68].
Moreover, the terrain of the environment (e.g., planar, irregular
or cluttered surface) may limit the mobility of robots.

The structure of an environment may restrict the sensor’s
observation as well as the movement of targets and robots. This
structure is usually represented with a suitable data-structure,
such as an occupancy grid map [1], [89] or a Voronoi diagram
[77]. A structured environment may consist of a well-defined
floor plan known to the robots [40]. Examples of navigation
in structured environments include road-following approaches
where the aim is to detect movable paths and to navigate
them [25]. In structured environments [45], [46], [50], [52],
[53], [76]–[78], the location and size of potential obstacles
are usually assumed to be known, and allowed and forbidden
regions for the movement of targets and robots are explicitly
specified. Unstructured environments provide no information
about defined paths, boundaries or locations of obstacles [43],
[71] and usually represent outdoor environments without a
defined map or information about obstacles.

The environment can be static or can evolve dynamically
throughout the mission. A static environment consists of
unchanging surroundings [9], [47], [57], [62]. In dynamic
environments, the movement of obstacles [68], [69], variations
in geometry of the environment [40] and variation in terrain
[70] continuously change the surroundings of the robots.
Operations in dynamic environments require the robots to
adapt to changing situations, thus introducing an additional
challenge.

B. Target

Moving targets are typically described by the following
three characteristics: type, mobility and representation.

As for type, we can identify cooperative, non-cooperative
and evasive targets (Table III). Cooperative targets [5] continu-
ously or occasionally transmit to the robots some information,
such as their GPS coordinates or other positional data, thus
making localization and observation easier. In most applica-
tions, targets are non-cooperative, i.e. they neither send their

TABLE III: Classification of related work based on three
different target types and the variability of the number of
targets.

Target type Number of targets
Constant Variable

Cooperative [5], [47], [49], [54], [55] -

Non-cooperative

[77], [83], [84] [68], [69]
[1], [8]–[10], [41]–[46] [13], [87], [88]

[59]–[66], [85], [86] [40]
[48], [50], [52], [53], [56], [70] [14], [71]

Evasive [20], [74]–[78] [72]

location information to robots nor hide from observation [9],
[10], [13], [14], [62], [63]. Evasive targets can sense the robots
and avoid being observed, which makes their observation more
difficult [20], [72], [74]–[78].

The mobility of a target depends on its capabilities and is
also constrained by the environment. The movements of targets
are usually unforeseen and mostly independent of each other.
Therefore observing one target does not generally provide
useful information about the location or behaviors of other
targets. Random walks [47] and linear motion models [14]
are the dominant mobility models used in simulation studies.
The maximum speed of the target is usually smaller than that
of the robots. Most works on cooperative mobile robots for
observing moving targets focus on ground targets moving on
2D plane and assume some prior knowledge about the target’s
mobility. There is only limited research on targets moving in
3D space available, such as aerial targets [49], [85], [90] or
underwater targets [19], [86]. Targets moving on an uneven
(ground) surface [91] also exhibit 3D movement. However, to
the best of our knowledge, 3D movement has not yet been
explored for cooperative target observation.

A target can be represented as a point, whose coordinates
are determined by the sensor as 2D planar or 3D space
coordinates on a pre-defined grid of known size [42], [82]. In
addition to the position, the representation of a target can also
include constant [13], [57], [60], [62] or variable [68], [69]
velocity components. Some approaches combine position and
target density information to represent a target [40], [46]. A
target can also be represented using a combination of position,
velocity and uncertainty/noise components [14], [58], [71].

Most approaches are applicable only for observing a known
and constant number of targets moving in the environment
[1], [8], [9], [20], [50]–[58], [61]–[63], [74]–[78]. Only few
approaches consider the movement of a variable number of
targets [68], [72] and account that a target may appear or
disappear for certain duration of time [92]. Targets may leave
or enter the environment [68] at (usually) known entry or
exit points [9], [60]. The lack of prior knowledge (number
and location) about the entry/exit points in the environment
introduces challenges when observing multiple moving targets
[69].

C. Robot

A cooperative mobile robot has four main capabilities:
sensing, processing, communication, and mobility.
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Robots sense the environment to capture observations and
then process these local observations to determine a local
perception of the environment and the targets. The processing
capability depends on the available resources of the robot.
Based on their local perception of the environment, the robots
exchange with team members information (e.g. location in-
formation, the state of the environment and sensor data) to
compute a global perception of the environment. Moreover,
to improve their future movement decisions robots may com-
municate to share their intentions, goals and actions. The
movement decisions generate a path for the mobility of the
robot, which produces control actions for moving to a new
location according to this planned path. The perception of the
environment and the movement plan depend on the specific
application objective(s). Objectives may include searching the
locations of unknown targets and maximizing the localization
accuracy of already found targets.

Traditional applications of multi-robot systems are based
on homogeneous robots with similar capabilities. Recent de-
velopments in robotic applications benefit from a team of
heterogeneous robots with different capabilities that increase
the performance of the multi-robot system. For example,
coordinating UGVs could increase the observation of a region
occluded by tall buildings or trees that may not be observed
by UAVs only [14], [20], [88]. The operating environment
may also demand for heterogeneous robots with different
capabilities to explore different parts of the environments [20],
[52], [53]. The heterogeneity in robotic platforms introduces
the challenge of how to effectively deal with information
exchanges and decision making. Moreover, performance guar-
antees on whether such heterogeneity improve or degrade
system performance are needed.

D. Sensing

The aggregated area of all the sensors’ FOVs is generally
much smaller than the area to be monitored. Physical con-
straints of the robot and the environment may influence the
observation and detection capabilities of the sensor the robot
is equipped with [51], [74]. Typical sensor types for target
observation and detection include vision sensors [40], [76] and
range sensors (e.g., radar, sonar, laser scanner) [10], [62], [63],
[65] (Table IV).

The observation of a target depends on the type of sensor
and its FOV. Let us define the observation of Tj at time t by
Ri with the sensor’s FOV Fi as

Ot
ij =

{
1 if yti ∈ Fi

0 otherwise.
(3)

A robot can observe more than one target at a time and
multiple robots can simultaneously observe the same target.
If Ot

ij = 0, then the state of Tj is unknown to Ri at time t.
However, robots can coordinate with each other by exchanging
not only information about themselves but also about the
targets under their observation.

In addition to the limited FOV, challenges in sensing include
limited sensor performance (e.g. detection errors, noise) and
limited observability (e.g. due to occlusions). A deterministic

model of a sensor represents a sensor with no errors in
reporting the location of a target. In this case, the observation
follows the model in Eq. 3. Sensing errors can be modeled
with target location uncertainties represented with probabil-
ity distributions. A probabilistic model includes two types
of sensing errors: measurement noise and detection errors.
Measurement noise is represented as a probability distribution
in the sensor output and models inaccurate estimations of
the coordinates of the target location (and its size). Detection
errors model false positive detections and miss-detections.

Let p, q, 1−p and 1−q denote the probability of detection,
the probability of producing a false positive detection, the
probability of a miss detection and that of correctly not de-
tecting a target where there are none, respectively. Depending
on the target’s true presence, X = 1, or absence, X = 0, in
the FOV Fi, the detection error based on the observation is
one of the following four probabilities, P (.) [82]:

P (Ot
ij = 1|X = 1) = p, P (Ot

ij = 0|X = 1) = 1− p

P (Ot
ij = 1|X = 0) = q, P (Ot

ij = 0|X = 0) = 1− q.
(4)

Combining the information from multiple sensors mounted
either on the same robot or on different robots is desirable
for improving the perception of the environment [93], [94].
Information fusion can be employed to improve the robot (self-
) state estimation with respect to the environment, the targets
and the other robots. Information fusion can also improve
camera calibration and sensor movement in single-robot appli-
cations [95]. Finally, information fusion from heterogeneous
sensors, such as a vision sensor and a laser scanner or a vision
and a GPS sensor, helps to increase accuracy and robustness
against sensing errors as shown for a static sensor network
[96]. New techniques are desirable to enhance sensor fusion
in both distributed and non-distributed systems.

E. Coordination

The functionality of cooperative robots [97] depends greatly
on their networking capabilities. Coordination among robots
is achieved by sharing information to improve the perception
of the environment and by jointly performing decision-making
for motion planning [98]. This coordination can be centralized,
decentralized or distributed (Table V).

Coordination needs reliable networks with guaranteed qual-
ity of service (e.g. bandwidth, delay) to cope with connectivity
and time-varying network latency of highly mobile and co-
operative robots. Wireless communication among the robots
is limited and may hinder the information exchange among
the robots because of limited bandwidth or temporary loss of
connectivity. Moreover, the communication requirements of
robots moving in 3D environments [99], [100] are different
from those of ground robots.

With a centralized coordination robots exchange informa-
tion with a central node or ground station that computes and
assigns globally optimal plans using task assignment [1], op-
timization techniques [14], [71], clustering [40], triangulation
[51] or scheduling [77]. However, the central node is a single
point of failure and might not receive complete and updated
information due to sensing and communication limitations.
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TABLE IV: Classification of related work based on sensor type and model (Om: Omni-directional, Di: Directional).

Sensor model
Probabilistic Deterministic

Noise Detection errors Noise No error

Sensor type
Vision Om - [20], [42] [13], [70] [40], [41], [54], [55], [75]–[78]

Di [51] [74], [84] - [87], [88]

Range Om [48], [50] - [1], [14], [71] [8]–[10], [43], [45], [56], [59]–[66], [68], [69], [72]
Di - - [49], [57], [58] [85], [86]

TABLE V: Classification of related work based on three types
of coordination.

Centralized [1], [3], [14], [40], [65], [77], [83]
[44], [48]–[51], [71], [84]–[87]

Decentralized [54], [55], [66], [88]

Distributed
[8]–[10], [13], [20], [56]–[60]

[43], [45], [46], [52], [53], [68], [74], [76], [78]
[41], [42], [47], [61]–[64], [69], [70], [75]

In fact, communication problems severely affect centrally
coordinated robots by isolating (permanently or temporarily)
one or more robots from the available global information and
decisions.

With decentralized coordination there are multiple leader
robots that act as central nodes for smaller groups of
robots [54], [55], [66]. Each leader then coordinates with other
leaders.

Finally, robots with a sufficient amount of memory and
processing power can coordinate in a distributed manner.
In distributed coordination each robot decides independently,
even with limited available information. Examples for such
distributed decision making are based on artificial force vectors
[10], [59]–[63], auctions [8], consensus [88], region partition-
ing [45], [46], data fusion [57], [58] and game theory [20],
[76]. Distributed algorithms enable individual robots to operate
with partially available information and are therefore only
marginally affected by communication problems.

IV. CONTROL TECHNIQUES

In this section we discuss four major control techniques
for observing moving targets with multiple mobile robots and
identify tasks for which these control techniques are suitable.
Table VI summarizes the tasks relevant to the four control
techniques, namely Cooperative Tracking; Cooperative Multi-
robot Observation of Multiple Moving Targets; Cooperative
Search, Acquisition and Track; and Multi-robot Pursuit Eva-
sion.

A. Cooperative Tracking (CT)

Increasing the frequency of target state updates by using
sensor observations reduces the uncertainty in target tracking.
For this reason, CT aims to minimize the time duration
between two consecutive observations of each target [49],
[85], [87]. This increase in frequency of sensor observations
minimizes the uncertainty over moving target locations and
increases the observation of multiple moving targets. The
estimated locations of targets are assumed to be known to
the robots, which do not search for unknown targets. CT
is not matching sensor measurements to target tracks (data

association [101]), which is an important problem in radar-
based/image-based multi-target tracking. CT is suitable when
the number of targets does not considerably exceed the number
of robots and there might be the need of close observation of
some specific targets, e.g. using security robots [102].

In CT, cooperative paths can be defined for fixed-wing,
minimum turn-angle UAVs to increase the frequency of in-
dividual observations of a moving target in an uncluttered,
outdoor environment [56], [103]. Optimal circular paths can
also be designed for fixed-wing, high altitude UAVs to increase
the observations of targets in densely populated urban areas
[40]. The targets may be partitioned into as many groups as
UAVs and the center of each UAV’s circular path is updated to
maintain the best view of the corresponding group of targets.

When target paths are predefined, a simple strategy of
revisiting paths can be designed using moving Gaussian peaks
[41]. To best observe targets with known locations, multiple
views of the targets may be desirable and can be obtained by
observing the target with multiple robots from different view
angles [47]. Triangulation-based location estimation consists
in moving targets being constantly observed by multiple
moving robots [51]. Cooperative paths for the movement of
robots can be designed not only to accurately observe and
localize the target but also to minimize the energy consumption
for the robot movement [104].

Several works track moving targets in outdoor, unstructured,
uncluttered and bounded environments. Clustering of robots
and a distributed mechanism for coordination are used in
[57], [58] to track cooperative targets that transmit signals
to the robots. The robots use directional antennas, time-
of-arrival and direction-of-arrival measurements to generate
(noisy) estimation of the target location that are predicted
using a Kalman filter. Multiple moving small ground robots
can be used to observe animals using range sensors and binary
decisions to indicate the presence/absence of a target [7].
The location of a target is corrected locally by using binary
decisions collected from a wireless sensor network. Tracking
is based on a penalized maximum likelihood framework to
address the problem of a variable number of targets as animals
enter (appear) and exit (disappear from) the environment.
Multiple moving targets can be observed in a multi-region
structured environment [43], with the assumption of prior
knowledge on the densities of the locations of both targets
and robots. Coordination of robots in the same region can be
avoided, because they have the same information about the
region and the targets within that region. This approach was
extended to outdoor environments [45] for tracking multiple
targets in regions with a high target-to-robot density ratio.

Using a flocking control algorithm, swarms of ground
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TABLE VI: Tasks relevant to the four control techniques. CT:
Cooperative Tracking; CMOMMT: Cooperative Multi-robot
Observation of Multiple Moving Targets; CSAT: Cooperative
Search, Acquisition and Track; MPE: Multi-robot Pursuit
Evasion.

Control technique Tasks
CT surveillance

CMOMMT patrolling and monitoring
CSAT situational awareness, search and rescue
MPE guarding, rescue in disaster areas, games

robots with omnidirectional range sensors have been used to
track targets that avoid obstacles in a structured and cluttered
environment [54], [55]. Flocks of robots split and merge into
multiple smaller flocks that track a single target. Each robot is
assumed to know the location of other robots and targets. A
combination of UAV and UGV [52] has also been proposed for
tracking mobile targets, where ground robots move in a struc-
tured and cluttered environment. They used range sensors with
omnidirectional circular FOVs in a rectangular environment.
Each new observation triggers an exchange of information
between robots and causes a change in the behavior of the
robot. The work was further extended to include detection
errors in sensing and by minimizing energy consumption for
sensor path-planning [50], [53].

B. Cooperative Multi-robot Observation of Multiple Moving
Targets (CMOMMT)

The goal of CMOMMT is to dynamically position robots
to maximize the collective time during which targets are
observed, when the number of moving targets is larger than
the number of robots. CMOMMT is used for monitoring,
reconnaissance and patrolling tasks. The number of non-
cooperative targets with unknown locations is constant, and the
environment is uncluttered and with regular shape. A target is
assumed to be under observation when it is within the FOV of
a robot. The problem is to maximize not only the number of
targets under observation but also the duration of observation
for each target.

CMOMMT is an NP-hard problem and was first proposed
by Parker and Emmons [9]. To maximize the collective time
of observation, robots operate in search or track mode. Mode
switching is decided based on the presence of targets in the
FOV of each robot. In the search mode, the robot aims at
detecting targets. When targets are found the robot changes to
the track mode and moves toward the center of mass of all the
moving targets under its observation. When there are no more
targets in its FOV, the robot switches back to search mode.
Coordination is achieved by local force vectors that attract or
repel robots [9], [60]: a robot is attracted by the targets to stay
close enough for observing them and repelled by neighboring
robots to avoid observation overlap.

Approximate CMOMMT (A-CMOMMT) includes
weighted local force-vectors [59], [60] to reduce observation
overlap of a single target by multiple robots to help increase
the collective time of observation. Personality CMOMMT
(P-CMOMMT) [61] addresses the problem that some targets

may be observed for most of the time, while others could
be completely unobserved. To make sure that all targets are
observed, P-CMOMMT uses information entropy for the
evaluation of the target observation diversity. To minimize
the problem of losing a target from observation, Weighted
CMOMMT (W-CMOMMT) assigns different priority weights
to targets based on Broadcast of Local Eligibility (BLA) [63].

Behavioral CMOMMT (B-CMOMMT) [10], [62] includes
a third mode of operation, the help mode. When a robot is
loosing a target from its FOV, it broadcasts a help request to
the other robots. The robots in search mode respond to these
help requests by approaching the robot that is in need of help.
B-CMOMMT also introduces targets tags in the coordination
process to reduce overlap in target observation. B-CMOMMT
can be improved with an extended Kohonen map for each
robot to reach the target and an auction-based algorithm for
cooperation [8].

Instead of using local force vectors and help calls,
Formation-CMOMMT (F-CMOMMT) uses a flexible forma-
tion of robots [64]. Model-predictive control strategies [65] can
also be used for CMOMMT but at the cost of a high compu-
tational complexity. The effects of degree of decentralization,
speed of targets, and sensing range on collective observation
of targets are analyzed in [66]. The work compares K-means
clustering and hill-climbing algorithms, which are scalable
in degree of decentralization, for achieving the objective of
CMOMMT. The expected motion patterns of the targets can
be exploited to observe each target for an equal amount of
time [67].

The CMOMMT framework has been used for iceberg
observation [68], [69]. The number of targets in the iceberg
observation problem varies with time and the entry/exit points
of these targets are unknown. The objective in such a problem
is to minimize the time of initial contact with the newly
generated targets.

The strengths of CMOMMT are its capability of switch-
ing between modes of operation (search and track) and
of working under limited communication ranges. However,
most CMOMMT approaches are based on uniform FOVs,
observations with constant resolution and assume a sensor
without errors. Moreover, as soon as a robot finds one or more
targets in its FOV it starts its tracking mode, thus restricting
the search of the remaining regions that may contain more
targets. In addition to this, there is no situational awareness,
as robots do not share their perceptions of the environment. For
example, in search mode, robots work independently without
any cooperation. For these reasons, CMOMMT is not suitable
for real-world applications where the assumption of perfect
sensors is unrealistic and situational awareness is needed.

C. Cooperative Search, Acquisition and Track (CSAT)

In CSAT, the problem is to continuously search for unknown
targets and to track already located targets. CSAT integrates
search and track modes, and these two modes alternate with
respect to time or the level of uncertainty about the target lo-
cation. CSAT assumes non-cooperative targets with unknown
locations and uncluttered environment. Task assignment is
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used for the team of robots to search and track (observe)
as many targets as possible. Each robot in CSAT purposely
switches its mode repeatedly between search and track. Mode
switching is decided using the uncertainty level in the location
of a target. The robot tries to keep the location uncertainty of
a detected target under a given bound throughout the mission.

Most of the work in CSAT uses aerial robots with a down-
ward pointing camera for observation [1], [13], [14]. Unlike
CMOMMT, in CSAT noisy sensors and measurement noise
can be handled. A robot tracks only one target at a time and
can switch to search mode even if it is successfully tracking a
target. In CSAT, mode changes are frequent and a robot does
not lock its operation in a given mode thus facilitating keeping
a balance between search and track operations [14].

Targets are tracked only for a specified amount of time or
until their states are adequately determined. Once a target is
located accurately, its location is recorded and the target is
temporarily left unobserved. The robot then starts searching for
more targets thus causing a gradual increase in the uncertainty
about the location of already located target. To keep this
uncertainty under a given bound the robot quits the search
mode, approaches the previously located target, and switches
back to track mode. The motivation for a robot to switch its
mode from tracking to search is the assumption that there is
always at least one unknown target.

CSAT is used for search and rescue operations and sit-
uational awareness, i.e. the perception of the environment,
the robots and the targets with respect to time, space or a
predetermined event. Situational awareness may be in the form
of search map that is updated by all the robots to aid the search
process.

The first CSAT approach used a recursive Bayesian frame-
work and a 2D grid containing a probability density function
(PDF) of a target that guides the robot movement for search
and maintains the information about the environment and
target [1]. The robots use the PDF to share their perceptions
of the environment and to decide on the mode switching. A
tracking metric based on the covariance matrix of the target
state [13] incorporates the growth of uncertainty on the target
locations. Besides the covariance matrix, a multi-agent task
assignment algorithm is used for mode switching [14], [71].
To integrate the conflicting objectives of target-search and
target-track, an objective function is used that is based on
the average value of information gained by the mission and
that represents the number of targets detected and how well
each detected target is tracked [70]. Different terms in the
objective function control the importance given to detection
and tracking. This approach depends on prior information
about target distributions and lacks on-line path generation.

Existing CSAT approaches face the same problem as
CMOMMT: a small number of targets may capture the atten-
tion of a robot (i.e. a robot frequently switches mode only for a
small subset of targets in a specific region of the environment).

D. Multi-robot Pursuit Evasion (MPE)

Unlike in CT, CMOMMT and CSAT, in MPE targets can be
evasive and can move faster than the robots. MPE approaches

aim to observe (i.e. capture) targets only once. Therefore the
problem in MPE is to minimize the time required to capture
one or more evasive targets. Examples of MPE applications
include monitoring exhibition areas [72], rescue operations in
disaster areas [105] and mobile gaming [76], [106], [107].
Moreover, evading targets moving underwater in 3D can be
captured using cooperative UUVs [19], [108], [109].

A distinguishing feature of pursuit-evasion (also known as
adversarial search or hunting of targets [19], [108]) is the intel-
ligence of the target that has full knowledge of the environment
and is aware of the robot location and intent [110]. The robot
and target motions are therefore inter-dependent as robots and
targets compete with each other [31]. For this reason, motion-
planning problems that arise in adversarial settings are related
to a probabilistic game theoretical framework.

While single-target pursuit-evasion has been an active topic
of research for the last two decades (see review in [110]), only
a few works consider observation of multiple moving targets
by multiple moving robots, i.e. the Multi-robot Pursuit Evasion
(MPE) problem [20], [111]. Two main MPE variations exist
[110]. In the first variation, a robot associates itself with a
captured target and maintains this association until the mission
ends [75] (target tracking for only M targets). In the second
variation, a target is removed from the mission as soon as it is
detected/captured [74], [108] and the robot that captured this
target continues looking for other targets.

Several works assume unstructured environments. A dis-
tributed approach based on hierarchical decomposition algo-
rithm for differential game theory was used for UAVs [76].
The deterministic model of the sensor (with no sensing errors)
makes the approach less attractive and applicable. Targets can
be captured using a centralized MPE algorithm with task-
scheduling heuristics that assign robots to different parts of the
environment, which was partitioned using Voronoi diagrams
[77]. Economics-based negotiation and auction mechanisms
were used to assign multiple robots to the targets [78], with
the objective of maximizing the probability of capture while
minimizing the time to capture. In order to achieve this
objective, the robots used dynamic coalition formation for
planning their paths.

Other MPE works consider irregularly shaped, structured
and planar environments with obstacles for area coverage
using range sensors with conical FOVs [72]. These works use
a team of mobile ground robots and a deterministic error-free
sensor model to guarantee the capture of the targets. A greedy
decentralized approach that employs a heterogeneous team of
UAVs and UGVs was used to minimize the capture time of
targets in [20]. A distinctive characteristic of this approach is
the modeling of detection errors in the sensing process.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this review, we organized, critically discussed and com-
pared works from the last 20 years in the area of cooperative
mobile robots for observing multiple moving targets. We
identified five factors that affect the design and performance of
cooperative mobile robots. It is important to notice that most
related works on the topic are based on simulation and lab



IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YEAR 9

studies, which may sometimes not consider constraints and
challenges from real-life applications.

We conclude the paper with a list of important future
directions of research and development in this area, which
include dealing with the limitations of wireless networks, the
coordination with human operators, safety and privacy issues.

The development of protocols, algorithms and applications
that can deal with various network limitations will advance the
applications of mobile robots. Delay tolerant networks must
be designed to degrade gracefully when the communication is
slow, unavailable and intermittent. Moreover, interoperability
is desirable to enable mobile robots to communicate with
internet-based services in the cloud and to other interconnected
devices. This will enhance the maintenance, operations, and
updates of mobile robot systems [24].

The level of cognition and autonomy, i.e., the ability to plan
and execute tasks in response to the high level commands, is
increasing rapidly and there is great potential for cooperative
mobile robots observing moving targets. The potential impact
of mobile robots will depend not only on the coordination
among robots themselves but also on their joint coordination
with human operators. Existing works are limited in investi-
gating such collaboration. While automated systems without
the interaction with humans may be faster and more efficient
in dynamic and time-critical environments, human operators
can assist with their knowledge-based reasoning [71] and to
dynamically assign different targets or roles to robots. Studies
should examine how an operator interacts with decentralized
robots to help develop novel human computer/automation
interaction methods to assist human operators in control tasks
with multiple robots.

The emergence of autonomous robotics also introduces ethi-
cal, legal and societal issues. Autonomous and networked mo-
bile robots in unknown environments may (will) malfunction
thus leading to safety issues. While safety was traditionally
implemented by isolating the robot’s operating space with
physical barriers, the use of cooperative mobile robots outside
a manufacturing plant in a shared robots-human space creates
new safety challenges. Safety must be designed for a multi-
robot system and tested according to well-defined standards
that have to be developed. Also, methods to verify and certify
safety in applications where humans and robots interact or
share the same physical space are needed.

Robots can capture sensitive private data and may pose a
privacy threat. The protection of sensitive data must be guar-
anteed with appropriate access rights to potentially sensitive
data held by robots. Moreover, the use of networking for robot
coordination facilitates unauthorized access to information and
attacks that can cause physical disruptions in services provided
by the robots, which can be physically attacked or hacked
[112]. IT-security mechanisms should therefore prevent cyber-
attacks. Moreover, functionalities able to detect physically
damaged or hacked robots autonomously during runtime shall
be provided.
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