21 research outputs found

    A Convenient Category of Domains

    Get PDF
    We motivate and define a category of "topological domains", whose objects are certain topological spaces, generalising the usual omegaomega-continuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also supports the construction of free algebras for (in)equational theories, provides a model of parametric polymorphism, and can be used as the basis for a theory of computability. This answers a question of Gordon Plotkin, who asked whether it was possible to construct a category of domains combining such properties

    A rich hierarchy of functionals of finite types

    Full text link
    We are considering typed hierarchies of total, continuous functionals using complete, separable metric spaces at the base types. We pay special attention to the so called Urysohn space constructed by P. Urysohn. One of the properties of the Urysohn space is that every other separable metric space can be isometrically embedded into it. We discuss why the Urysohn space may be considered as the universal model of possibly infinitary outputs of algorithms. The main result is that all our typed hierarchies may be topologically embedded, type by type, into the corresponding hierarchy over the Urysohn space. As a preparation for this, we prove an effective density theorem that is also of independent interest.Comment: 21 page

    Computable de Finetti measures

    Full text link
    We prove a computable version of de Finetti's theorem on exchangeable sequences of real random variables. As a consequence, exchangeable stochastic processes expressed in probabilistic functional programming languages can be automatically rewritten as procedures that do not modify non-local state. Along the way, we prove that a distribution on the unit interval is computable if and only if its moments are uniformly computable.Comment: 32 pages. Final journal version; expanded somewhat, with minor corrections. To appear in Annals of Pure and Applied Logic. Extended abstract appeared in Proceedings of CiE '09, LNCS 5635, pp. 218-23

    The extensional realizability model of continuous functionals and three weakly non-constructive classical theorems

    Full text link
    We investigate wether three statements in analysis, that can be proved classically, are realizable in the realizability model of extensional continuous functionals induced by Kleene's second model K2K_2. We prove that a formulation of the Riemann Permutation Theorem as well as the statement that all partially Cauchy sequences are Cauchy cannot be realized in this model, while the statement that the product of two anti-Specker spaces is anti-Specker can be realized

    On the commutativity of the powerspace constructions

    Full text link
    We investigate powerspace constructions on topological spaces, with a particular focus on the category of quasi-Polish spaces. We show that the upper and lower powerspaces commute on all quasi-Polish spaces, and show more generally that this commutativity is equivalent to the topological property of consonance. We then investigate powerspace constructions on the open set lattices of quasi-Polish spaces, and provide a complete characterization of how the upper and lower powerspaces distribute over the open set lattice construction

    Exhaustible sets in higher-type computation

    Full text link
    We say that a set is exhaustible if it admits algorithmic universal quantification for continuous predicates in finite time, and searchable if there is an algorithm that, given any continuous predicate, either selects an element for which the predicate holds or else tells there is no example. The Cantor space of infinite sequences of binary digits is known to be searchable. Searchable sets are exhaustible, and we show that the converse also holds for sets of hereditarily total elements in the hierarchy of continuous functionals; moreover, a selection functional can be constructed uniformly from a quantification functional. We prove that searchable sets are closed under intersections with decidable sets, and under the formation of computable images and of finite and countably infinite products. This is related to the fact, established here, that exhaustible sets are topologically compact. We obtain a complete description of exhaustible total sets by developing a computational version of a topological Arzela--Ascoli type characterization of compact subsets of function spaces. We also show that, in the non-empty case, they are precisely the computable images of the Cantor space. The emphasis of this paper is on the theory of exhaustible and searchable sets, but we also briefly sketch applications

    A computable type theory for control systems

    Get PDF
    In this paper, we develop a theory of computable types suitable for the study of control systems. The theory uses type-two effectivity as the underlying computational model, but we quickly develop a type system which can be manipulated abstractly, but for which all allowable operations are guaranteed to be computable. We apply the theory to the study of hybrid systems, reachability analysis, and control synthesis

    Domain Representable Spaces Defined by Strictly Positive Induction

    Full text link
    Recursive domain equations have natural solutions. In particular there are domains defined by strictly positive induction. The class of countably based domains gives a computability theory for possibly non-countably based topological spaces. A qcb0 qcb_{0} space is a topological space characterized by its strong representability over domains. In this paper, we study strictly positive inductive definitions for qcb0 qcb_{0} spaces by means of domain representations, i.e. we show that there exists a canonical fixed point of every strictly positive operation on qcb0qcb_{0} spaces.Comment: 48 pages. Accepted for publication in Logical Methods in Computer Scienc

    Healthiness Conditions for Predicate Transformers

    Get PDF
    AbstractThe behavior of a program can be modeled by describing how it transforms input states to output states, the state transformer semantics. Alternatively, for verification purposes one is interested in a 'predicate transformer semantics' which, for every condition on the output, yields the weakest precondition on the input that guarantees the desired property for the output.In the presence of computational effects like nondeterministic or probabilistic choice, a computation will be modeled by a map t:X→TY, where T is an appropriate computational monad. The corresponding predicate transformer assigns predicates on Y to predicates on X. One looks for necessary and, if possible, sufficient conditions (healthiness conditions) on predicate transformers that correspond to state transformers t:X→TY.In this paper we propose a framework for establishing healthiness conditions for predicate transformers. As far as the author knows, it fits to almost all situations in which healthiness conditions for predicate transformers have been worked out. It may serve as a guideline for finding new results; but it also shows quite narrow limitations
    corecore