1,773 research outputs found

    Sensor Scheduling for Optimal Observability Using Estimation Entropy

    Full text link
    We consider sensor scheduling as the optimal observability problem for partially observable Markov decision processes (POMDP). This model fits to the cases where a Markov process is observed by a single sensor which needs to be dynamically adjusted or by a set of sensors which are selected one at a time in a way that maximizes the information acquisition from the process. Similar to conventional POMDP problems, in this model the control action is based on all past measurements; however here this action is not for the control of state process, which is autonomous, but it is for influencing the measurement of that process. This POMDP is a controlled version of the hidden Markov process, and we show that its optimal observability problem can be formulated as an average cost Markov decision process (MDP) scheduling problem. In this problem, a policy is a rule for selecting sensors or adjusting the measuring device based on the measurement history. Given a policy, we can evaluate the estimation entropy for the joint state-measurement processes which inversely measures the observability of state process for that policy. Considering estimation entropy as the cost of a policy, we show that the problem of finding optimal policy is equivalent to an average cost MDP scheduling problem where the cost function is the entropy function over the belief space. This allows the application of the policy iteration algorithm for finding the policy achieving minimum estimation entropy, thus optimum observability.Comment: 5 pages, submitted to 2007 IEEE PerCom/PerSeNS conferenc

    System-theoretic trends in econometrics

    Get PDF
    Economics;Estimation;econometrics

    Introduction to Online Nonstochastic Control

    Full text link
    This text presents an introduction to an emerging paradigm in control of dynamical systems and differentiable reinforcement learning called online nonstochastic control. The new approach applies techniques from online convex optimization and convex relaxations to obtain new methods with provable guarantees for classical settings in optimal and robust control. The primary distinction between online nonstochastic control and other frameworks is the objective. In optimal control, robust control, and other control methodologies that assume stochastic noise, the goal is to perform comparably to an offline optimal strategy. In online nonstochastic control, both the cost functions as well as the perturbations from the assumed dynamical model are chosen by an adversary. Thus the optimal policy is not defined a priori. Rather, the target is to attain low regret against the best policy in hindsight from a benchmark class of policies. This objective suggests the use of the decision making framework of online convex optimization as an algorithmic methodology. The resulting methods are based on iterative mathematical optimization algorithms, and are accompanied by finite-time regret and computational complexity guarantees.Comment: Draft; comments/suggestions welcome at [email protected]

    System-theoretic trends in econometrics

    Get PDF

    Stationary policies for the second moment stability in a class of stochastic systems

    Get PDF
    This paper presents a study on the uniform second moment stability for a class of stochastic control system. The main result states that the existence of the long-run average cost under a stationary policy is equivalent to the uniform second moment stability of the corresponding stochastic control system. To illustrate the result, a numerical example is developed to verify the uniform second moment stability of a simultaneous state-feedback control system
    corecore