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Abstract—This paper presents a study on the uni-
form second moment stability for a class of stochastic
control system. The main result states that the exis-
tence of the long-run average cost under a stationary
policy is equivalent to the uniform secondmoment sta-
bility of the corresponding stochastic control system.
To illustrate the result, a numerical example is devel-
oped to verify the uniform second moment stability
of a simultaneous state-feedback control system.

Index Terms—average cost problems, second mo-
ment stability, stochastic control, Markov processes.

I. Introduction

Consider a time-varying discrete-time stochastic lin-
ear system defined in a filtered probability space
(Ω,F,{Fk},P) as follows.

xk+1 =Akxk+Ekwk, yk =Ckxk, ∀k≥ 0, x0 ∈R
n, (1)

where xk, yk, and wk,k = 0,1, . . . are processes taking
values respectively, in R

n, Rp and R
q, which represent the

system state, output, and additive noisy input, respec-
tively. The noisy input {wk} forms an iid process with
zero mean and covariance matrix equal to the identity
for all k ≥ 0. The matrices Ak, Ck, and Ek are given, and
they have dimensions n×n, p×n and n×q, respectively.
Let us associate the time-varying system (1) with the
long-run average cost

J = lim sup
N→∞

1

N

N−1

∑
k=0

E[‖yk‖
2], (2)

where E[·]≡E[·|x0] denotes the mathematical expectation
and ‖ · ‖ the usual Euclidean norm.
The main contribution of this paper can be seen as an

advance with respect to [1] regarding the characterization
of uniform second moment stability for the system (1).
Indeed, the authors in [1] show that, if J is finite, then
the time-varying system (1) is asymptotically stable in
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the mean, i.e., E[xk]→ 0 as k → ∞ [1, Cor. 3.1], provided
that the pairs (Ak,Ek) and (Ak,Ck) are controllable and
observable, respectively. However, the stronger concept
of stability, known as uniform second moment stability,
is not studied in details in [1]. By considering this gap in
the literature, our approach aims to complement the in-
vestigation by providing conditions to assure the second
moment stability of (2). Namely, from the existence of
the average cost J in (2), we particularize the matrices
Ak and Ck to assure the second moment stability for (2).
In this paper, the matrices Ak and Ck are made up

according to a particular rule of construction, as follows.
Let us consider a prescribed set G, which is called con-

trol set, and let the variable gk ∈ G, at the k-th stage,
represents the control action. We now assume that A :

G 7→ R
n×n represents a continuous operator, possibly a

nonlinear one; and Q : G 7→ S
n
+ represents an arbitrary

operator, where S
n
+ denotes the space of nonnegative

symmetric matrices of dimension n× n. In (1) and (2),
the specialization is obtained by setting

Ak ≡ A(gk) and C′
kCk ≡ Q(gk). (3)

Let us define the second moment of the system state
xk as

Xk = E[xkx′k], ∀k ≥ 0. (4)

The control action gk ∈ G applied in (1)-(3) is assumed
to be a function of the second moment only, i.e., it takes
the deterministic feedback form gk = fk(Xk) for each k ≥ 0.
This special form suggests simplicity of solutions, since
it turns valid the identity

E[x′kQ(gk)xk] = 〈Q(gk),Xk〉,

where 〈·, ·〉 represents the usual Frobenius inner product.
The control action in the form gk = fk(Xk) is useful (see
[2], [3], and [4]), specially when gk is a gain matrix, see
Section II-A for an application in the control problem of
the simultaneous state-feedback system.
We focus our investigation on the second moment

stability of the system (1) and (3) with control actions
in the form gk = f (Xk), k ≥ 0, or equivalently under a
stationary policy fs = { f , f , . . .}. The main result shows
that the system (1) and (3) is uniformly second moment
stable under a stationary policy fs = { f , f , . . .} if and only
if the corresponding long-run average cost in (2) is finite,
see Theorem 2.1 in connection.

An additional motivation for the current investigation
is that stationary policies producing a finite long-run
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average cost is an important topic in optimal control
systems, see [2], [3], [4]. Thus, our result can be used
to guarantee the second moment stability of the optimal
solution for control problems that can be rewritten in the
form (1)-(3).
The paper is organized as follows. Section II presents

the necessary notation, definitions, assumptions, and the
main result. The main result concerning the uniform
second moment stability is presented in Theorem 2.1. To
illustrate the result, we introduce an application to the
simultaneous state-feedback control systems in Section
II-A.

II. Preliminaries, notations, and main results

The real and natural numbers are denoted by R and
N, respectively. The set of nonnegative real numbers is
denoted by R+, and R

n,m is used to represent the space
of all n×m real matrices. The superscript ′ indicates the
transpose of a matrix. Let Sn

+ be the closed convex cone
{U ∈ R

n,n : U = U ′ ≥ 0}; 〈·, ·〉 will stand the Frobenius
inner product in S

n
+, and ‖ · ‖ will denote either the

standard Euclidean norm in R
n or the Frobenius norm

for matrices. Let tr{·} be the trace operator. We recall
that ‖U‖2 = tr{U2} ≤ tr{U}2 whenever U ∈ S

n
+, see [5].

We say that a matrix sequence {Uk;k ≥ 0} is bounded if
supk∈N ‖Uk‖< ∞.
For sake of simplicity, let us rewrite the system (1)-(3)

equivalently as

xk+1 = A(gk)xk + Ekwk, gk ∈ G, ∀k, x0 ∈ R
n, (5)

and the corresponding long-run average cost as

J = lim sup
N→∞

1

N

N−1

∑
k=0

E[x′kQ(gk)xk]. (6)

The following definitions and conventions will apply
throughout this paper.

(i) X and G are given sets referred to as state space and
control space, respectively. In particular, we assume
that X is a subset of Sn

+ and G is a given Borel set.
(ii) Let Q : G→ S

n
+ be a given continuous function such

that Q(g) > 0 for each g ∈ G. The one-stage cost
functional C : X×G 7→ R+ is defined as follows:

C(X ,g) = 〈X ,Q(g)〉, ∀X ∈ X, ∀g ∈ G. (7)

(iii) (inf-compactness [6, p.28]). For each X ∈X and λ ∈
R+, the set of control actions {g ∈ G : C(X ,g)≤ λ}
is compact.

(iv) The measurable function f : X→ G is called control

law whenever f (X) ∈ G for each X ∈ X. A policy

f= { f0, f1, . . .} is a sequence of control laws fk, k≥ 0,
and the set of all policies is denoted by F. Elements
of F of the form fs = { f , f , . . .} are referred to as
stationary policies.

From the assumption on the process {wk}, k ≥ 0, and
for a given policy f= { fk} ∈F, the second moment matrix

Xk ∈ X from (4) satisfies the recurrence (c.f. [7, Ch.2])

Xk+1 = A(gk)XkA(gk)
′+Σk, ∀k ≥ 0, ∀X0 = X ∈ X, (8)

with Σk := EkE ′
k, where the control obeys the rule

gk = fk(Xk), ∀k ≥ 0. (9)

Sometimes we use the notation X
(f)
k to stress that the

recurrence (8) depends on a specific f ∈ F. Moreover, we
represent the k-th stage cost by

C
(f,X)
k := C(X

(f)
k ,gk) = 〈X

(f)
k ,Q(gk)〉, ∀k ≥ 0, (10)

and so the corresponding long-run average cost is given
by

J(f,X) := lim sup
N→∞

1

N

N−1

∑
k=0

C
(f,X)
k , ∀f ∈ F, ∀X ∈ X. (11)

Given f = { fk} ∈ F, let us define a family of discrete
evolution operators associated with (8) and (9) as

Φ(k,m) = A(gk−1)A(gk−2) · · ·A(gm), ∀k > m ≥ 0, (12)

with Φ(m,m) = I and gk ∈ G, k ≥ 0, as in (9). These
evolution operators allow us to write

Xk = Φ(k,m)XmΦ(k,m)′+
k−1

∑
j=m

Φ(k, j+1)Σ jΦ(k, j+1)′,

(13)
for each 0 ≤ m ≤ k, with Xm ∈ S

n
+.

The next definition introduces a notion of observability
for the system (5)-(6).
Definition 2.1: The system (5)-(6) is uniformly ob-

servable under f = { fk} ∈ F if there exist To ≥ 1 and β > 0

such that, for each k ≥ 0,

To−1

∑
i=0

Φ(k+ i,k)′Q(gk+i)Φ(k+ i,k)≥ β I,

where gk ∈ G, k ≥ 0, satisfies (9).
Proposition 2.1: ([1, Lem. 2.3]). If the system (5)-(6)

is uniformly observable under f = { fk} ∈ F, then there
exist To ≥ 1 and µ > 0 such that

n+To

∑
i=k

C
(f,X)
i ≥ µ

n

∑
i=k

tr{Xi}, ∀n ≥ k ∈ N, (14)

where Xk, k ≥ 0, satisfies (8)-(9) with X0 = X ∈ X.
Now, we introduce the definition of uniform second

moment stability for the system (5).
Definition 2.2: [8, p.97-98]. The stochastic system (5)

is called uniformly second moment stable under f =
{ fk} ∈ F if there exists a constant c > 0 such that

E[‖xk‖
2]≤ c, ∀k ≥ 0,

where xk ∈ R
n satisfies (5) with gk ∈ G as in (9).

Remark 2.1: From the definition in (4), we get the
identity [7, Ch.2]

E[‖xk‖
2] = tr{Xk}, ∀k ≥ 0,
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where Xk, k ≥ 0, satisfies (8)-(9). Since the inequality
tr{Xk} ≥ ‖Xk‖ is valid for each k ≥ 0, one can see that
the system (5) is uniformly second moment stable under
f = { fk} ∈ F if and only if the matrix sequence {Xk} is
bounded.

Hereafter, we restrict our analysis to stationary poli-
cies, i.e., those of the form fs = { f , f , . . .} in order to
characterize the second moment stability of (5).

The next theorem presents the main result of this
paper.

Theorem 2.1: Let f be some control function such that
(5)-(6) is uniformly observable under the stationary pol-
icy fs = { f , f , . . .}. If the sequences {A(gk)} and {Q(gk)}
are bounded, with gk = f (Xk) and Xk satisfying (8), then
the following two assertions are equivalent:

(i) The system (5) is uniformly second moment stable
under the stationary policy fs = { f , f , . . .}.

(ii) There exists a constant ρ > 0 such that J(fs,X)≤ ρ
for all X ∈ X.

Proof: [(i)⇒(ii)]. The uniform second moment sta-
bility implies that the matrix sequence {Xk} is bounded
(see Remark 2.1), and from the assumption that {Q(gk)}
is bounded, we have that there is a constant ρ > 0 such
that

C
(fs,X)
k = 〈Xk,Q(gk)〉 ≤ ρ , k ≥ 0.

Hence, J(fs,X)≤ ρ for all X ∈ X.

[(i)⇐(ii)]. Recall that tr{U} ≥ ‖U‖ whenever U ∈ S
n
+.

Combining this inequality and Proposition 2.1, we have
that there are constants To ≥ 1 and µ > 0 such that

n+To

∑
i=k

C
(fs,X)
i ≥ µ

n

∑
i=k

tr{Xi} ≥ µ
n

∑
i=k

‖Xi‖, ∀n ≥ k ∈ N. (15)

We now prove that the matrix sequence {Xk} does not
diverge to infinity. Using a contradiction argument, let
us assume that {Xk} diverges to infinity. In this case

1

N +To

N+To−1

∑
k=0

C
(fs,X)
k ≥

µ

N +To

N−1

∑
k=0

‖Xk‖→ ∞ as N → ∞,

which yields J(fs,X) = ∞ and so the contradiction arises.

Hence {Xk} does not diverge to infinity, or equivalently
the sequence {‖Xk‖} has at least one subsequence which
is bounded by a sufficiently large constant M. Namely,
there is a sequence {tk} from N such that

‖Xtk‖ ≤ M, ∀k ≥ 0. (16)

For sake of convenience in the proof of the next argument,
we assume that M > (ρ +1)/µ .

We claim that there is a constant δ ≥ 1 such that

sk := tk+1 − tk ≤ δ . (17)

The result of this claim is crucial, since it assures that
the trajectory {Xk} is bounded. Indeed, notice from (13)

that

Xtk+m =Φ(tk +m, tk)Xtk Φ(tk +m, tk)
′

+
tk+m−1

∑
j=tk

Φ(tk +m, j+1)Σ jΦ(tk +m, j+1)′

≤ a2mM+λ
m

∑
j=0

a2 j, m = 0,1, . . . ,δ ,

where a := supk∈N ‖A(gk)‖ and λ := supk∈N ‖Σk‖. Under
the claim that δ is finite, the upper bound a2δ M +
λ ∑δ

j=0 a2 j is also finite and so the sequence {‖Xk‖} is
bounded. This argument proves the result under the
assumption that δ is finite.
In order to prove that δ is finite, we use a contradiction

argument as follows. Let us consider sk as in (17) with a
subsequence {tkn

} from {tk} such that skn
→ ∞ as n → ∞.

Note that (16) assures the inequality ‖Xm‖ > M when
m 6= tk, ∀k ≥ 0. Hence we can use (15) to write

To+skn−1

∑
i=0

C
(fs,Xtkn

)

i =
To+skn−1

∑
i=0

C
(fs,X)
tkn+i

=
To+skn−1

∑
i=0

〈Xtkn+i,Q(gtkn+i)〉

≥
skn−1

∑
i=1

µ‖Xtkn+i‖> (skn
−1)µM. (18)

Dividing both sides of (18) by (To + skn
), and recalling

that M > (ρ +1)/µ , we obtain

1

To + skn

To+skn−1

∑
i=0

C
(fs,Xtkn

)

i

>
(skn

−1)

To + skn

(ρ +1) =

(

1− 1
skn

)

To
skn

+1
(ρ +1).

Since skn
→∞ as n→∞, we can conclude that there exists

a sufficiently large number n0 ∈ N such that

n ≥ n0 ⇒
1

To + skn

To+skn−1

∑
i=0

C
(fs,Xtkn

)

i > ρ ≥ J(fs,Xtkn
),

which is an absurd. This argument shows that δ in (17) is
finite and so we have just proved that there is a constant
c > 0, which may depend on ρ , such that ‖Xk‖ ≤ c for all
k ≥ 0. The argument in Remark 2.1 then guarantees that
the system (5) is uniformly second moment stable under
fs = { f , f , . . .}.

A. Application to the simultaneous state-feedback prob-

lem

The simultaneous state-feedback control system can be
represented as (see [9], [10], [11], [12], [13], and [14] for a
small account)

ϕi(k+1) = (Ai +Big(k))ϕi(k)+Hiωi(k), ϕi(0) ∈ R
n,

i = 1, . . . ,σ , (19)
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where g(k) is a design gain matrix that does not depend
on the mode i, and ϕi(·) and ωi(·) represent the simulta-
neous system state and additive noise input for the i-th
mode, respectively. The long-run average cost associated
with (19) is given by

J(ϕ(0)) = lim sup
N→∞

1

N

N−1

∑
k=0

( σ

∑
i=1

E[ϕi(k)
′(Qi

+g(k)′Rig(k))ϕi(k))]
)

, (20)

where the matrices Qi = Q′
i ≥ 0 and Ri = R′

i > 0 are given.
We claim that (19)-(20) is a particular case of (5)-(6).

Indeed, by considering the matrix dimensions

dim(Ai) = n×n, dim(Bi) = n× r, and dim(Hi) = n×q,

and by setting G≡ R
r×n, we can define the operators

A(g) = diag(A1 +B1g, . . . ,Aσ +Bσ g), ∀g ∈ G,

Q(g) = diag(Q1 +g′R1g, . . . ,Qσ +g′Rσ g), ∀g ∈ G. (21)

Moreover, take Ek ≡ diag(H1, . . . ,Hσ ) in (5). Thus, the
correspondence between (5)-(6) and (19)-(20) follows by
stacking both the state and the additive noise input of
the simultaneous system, respectively, in the format

xk =







ϕ1(k)
...

ϕσ (k)






∈ R

σn, and wk =







ω1(k)
...

ωσ (k)






∈ R

σq. (22)

We can conclude from the above discussion that the
simultaneous system (19)-(20) is a particular case of (5)-
(6). This fact enables us to apply the stability result of
Theorem 2.1 for the simultaneous system as follows.
We are interested in determining a control law f , or

equivalently a stationary policy fs = { f , f , . . .}, such that
the simultaneous system (19)-(20) is uniformly second
moment stable under fs = { f , f , . . .}. For this purpose, let
us define

Ψi(k) := E[ϕi(k)ϕi(k)
′], ∀k ≥ 0, i = 1, . . . ,σ .

The following recurrence is valid [7, Ch.2]:

Ψi(k+1) = (Ai +Big(k))Ψi(k)(Ai +Big(k))
′+HiH

′
i ,

∀k ≥ 0, i = 1, . . . ,σ . (23)

Let Li ∈ S
n
+, i = 1, . . . ,σ , be the solution of the Riccati

equation

Li = Qi +A′
iLiAi −A′

iLiBi(Ri +B′
iLiBi)

−1B′
iLiAi, i = 1, . . . ,σ ,

and let Ki ∈ R
r×n, i = 1, . . . ,σ , be the corresponding

Kalman gain

Ki = (Ri +B′
iLiBi)

−1B′
iLiAi, i = 1, . . . ,σ .

For a given U = (U1, . . . ,Uσ ), where each Ui, i = 1, . . . ,σ ,
belongs to S

n
+, we define

i∗(U) = arg max
i=1,...,σ

〈Li,U
2
i 〉. (24)
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Fig. 1. The norm of the trajectory Ψ(k), k ≥ 0, with initial condition
ϕi(0) = [0.48 0.89 0.76]′, i = 1, . . . ,4, according to the numerical
example of Section II-A.

By setting Ψ(k) = (Ψ1(k), . . . ,Ψσ (k)) for each k ≥ 0, we
can define the control function

f (Ψ(k)) = Ki∗(Ψ(k)), ∀k ≥ 0, (25)

and also the corresponding control action g(k), k ≥ 0,
within (19)-(20) as follows:

g(k) = f (Ψ(k)), ∀k ≥ 0. (26)

Note that f defined in (25) sets the stationary policy
fs = { f , f , . . .}.
Now, we present a numerical example to illustrate the

result of Theorem 2.1. Let us consider the simultaneous
system in (19) with four different operating points

Ai =





ai
11 ai

12 ai
13

ai
21 ai

22 ai
23

0 0 0.2231



 , Bi =





bi
1

bi
2

0.7769



 , i = 1, . . . ,4,

where the parameters ai
i j and bi

i are as listed in [15]. We
adopt Hi = 0.5I, Qi = 0.1I, and Ri = 1 for each i= 1,2,3,4.

From the numerical simulation, we obtain the long-run
average cost

J(ϕ(0)) = 448.95. (27)

We observe in the numerical simulation that the value
in (27) remains unchanged under many different initial
conditions ϕ(0). This is a strong indication that (27)
holds for all ϕi(0)∈R

n, i= 1, . . . ,4, so that we can employ
Theorem 2.1 to conclude that the simultaneous control
system (19) is uniformly second moment stable under
fs = { f , f , . . .}. Equivalently, Theorem 2.1 assures that the
trajectory Ψ(k), k ≥ 0, is bounded and this behavior is
corroborated by the simulation depicted in Fig. 1.
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