397 research outputs found

    Infrastructure robotics: Research challenges and opportunities

    Full text link
    Infrastructure robotics is about research on and development of methodologies that enable robotic systems to be used in civil infrastructure inspection, maintenance and rehabilitation. This paper briefly discusses the current research challenges and opportunities in infrastructure robotics, and presents a review of the research activities and projects in this field at the Centre for Autonomous Systems, University of Technology Sydney

    Dynamic Optimized Bandwidth Management for Teleoperation of Collaborative Robots

    Get PDF
    A real-time dynamic and optimized bandwidth management algorithm is proposed and used in teleoperated collaborative swarms of robots. This method is effective in complex teleoperation tasks, where several robots rather than one are utilized and where an extensive amount of exchanged information between operators and robots is inevitable. The importance of the proposed algorithm is that it accounts for Interesting Events (IEs) occurring in the system\u27s environment and for the change in the Quality of Collaboration (QoC) of the swarm of robots in order to allocate communication bandwidth in an optimized manner. A general dynamic optimized bandwidth management system for teleoperation of collaborative robots is formulated in this paper. The suggested algorithm is evaluated against two static algorithms applied to a swarm of two humanoid robots. The results demonstrate the advantages of dynamic optimization algorithm in terms of task and network performance. The developed algorithm outperforms two static bandwidth management algorithms, against which it was tested, for all performance parameters in 80% of the performed trials. Accordingly, it was demonstrated that the proposed dynamic bandwidth optimization and allocation algorithm forms the basis of a framework for algorithms applied to real-time highly complex systems

    Trust-Based Control of (Semi)Autonomous Mobile Robotic Systems

    Get PDF
    Despite great achievements made in (semi)autonomous robotic systems, human participa-tion is still an essential part, especially for decision-making about the autonomy allocation of robots in complex and uncertain environments. However, human decisions may not be optimal due to limited cognitive capacities and subjective human factors. In human-robot interaction (HRI), trust is a major factor that determines humans use of autonomy. Over/under trust may lead to dispro-portionate autonomy allocation, resulting in decreased task performance and/or increased human workload. In this work, we develop automated decision-making aids utilizing computational trust models to help human operators achieve a more effective and unbiased allocation. Our proposed decision aids resemble the way that humans make an autonomy allocation decision, however, are unbiased and aim to reduce human workload, improve the overall performance, and result in higher acceptance by a human. We consider two types of autonomy control schemes for (semi)autonomous mobile robotic systems. The first type is a two-level control scheme which includes switches between either manual or autonomous control modes. For this type, we propose automated decision aids via a computational trust and self-confidence model. We provide analytical tools to investigate the steady-state effects of the proposed autonomy allocation scheme on robot performance and human workload. We also develop an autonomous decision pattern correction algorithm using a nonlinear model predictive control to help the human gradually adapt to a better allocation pattern. The second type is a mixed-initiative bilateral teleoperation control scheme which requires mixing of autonomous and manual control. For this type, we utilize computational two-way trust models. Here, mixed-initiative is enabled by scaling the manual and autonomous control inputs with a function of computational human-to-robot trust. The haptic force feedback cue sent by the robot is dynamically scaled with a function of computational robot-to-human trust to reduce humans physical workload. Using the proposed control schemes, our human-in-the-loop tests show that the trust-based automated decision aids generally improve the overall robot performance and reduce the operator workload compared to a manual allocation scheme. The proposed decision aids are also generally preferred and trusted by the participants. Finally, the trust-based control schemes are extended to the single-operator-multi-robot applications. A theoretical control framework is developed for these applications and the stability and convergence issues under the switching scheme between different robots are addressed via passivity based measures

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    Special purpose vehicles for sustainable finance of innovation in Romania - the case of intelligent robotic systems

    Get PDF
    The intelligent robotic systems IRS integrates artificial intelligence (AI) and intelligent autonomous control based on special features like: decision making, multispectral sensorial information, advanced monitoring and execution capabilities. There is an impressive rate of success of IRS projects that benefits from the Industry 4.0. The design of strategies for IRS financing is very important for Romania, because the governmental funding is far from the critical mass and the access to capital market is insufficient. In this contribution the interest is to design special purpose vehicles (SPV) for sustainable finance of innovation in the case of IRS, adapted to Romanian emerging market, like venture capital financing (VCF) or thematic exchanged traded funds (ETF)

    Sharing and Trading in a Human-Robot System

    Get PDF

    Internet of Robotic Things Intelligent Connectivity and Platforms

    Get PDF
    The Internet of Things (IoT) and Industrial IoT (IIoT) have developed rapidly in the past few years, as both the Internet and “things” have evolved significantly. “Things” now range from simple Radio Frequency Identification (RFID) devices to smart wireless sensors, intelligent wireless sensors and actuators, robotic things, and autonomous vehicles operating in consumer, business, and industrial environments. The emergence of “intelligent things” (static or mobile) in collaborative autonomous fleets requires new architectures, connectivity paradigms, trustworthiness frameworks, and platforms for the integration of applications across different business and industrial domains. These new applications accelerate the development of autonomous system design paradigms and the proliferation of the Internet of Robotic Things (IoRT). In IoRT, collaborative robotic things can communicate with other things, learn autonomously, interact safely with the environment, humans and other things, and gain qualities like self-maintenance, self-awareness, self-healing, and fail-operational behavior. IoRT applications can make use of the individual, collaborative, and collective intelligence of robotic things, as well as information from the infrastructure and operating context to plan, implement and accomplish tasks under different environmental conditions and uncertainties. The continuous, real-time interaction with the environment makes perception, location, communication, cognition, computation, connectivity, propulsion, and integration of federated IoRT and digital platforms important components of new-generation IoRT applications. This paper reviews the taxonomy of the IoRT, emphasizing the IoRT intelligent connectivity, architectures, interoperability, and trustworthiness framework, and surveys the technologies that enable the application of the IoRT across different domains to perform missions more efficiently, productively, and completely. The aim is to provide a novel perspective on the IoRT that involves communication among robotic things and humans and highlights the convergence of several technologies and interactions between different taxonomies used in the literature.publishedVersio

    The classification and new trends of shared control strategies in telerobotic systems: A survey

    Get PDF
    Shared control, which permits a human operator and an autonomous controller to share the control of a telerobotic system, can reduce the operator's workload and/or improve performances during the execution of tasks. Due to the great benefits of combining the human intelligence with the higher power/precision abilities of robots, the shared control architecture occupies a wide spectrum among telerobotic systems. Although various shared control strategies have been proposed, a systematic overview to tease out the relation among different strategies is still absent. This survey, therefore, aims to provide a big picture for existing shared control strategies. To achieve this, we propose a categorization method and classify the shared control strategies into 3 categories: Semi-Autonomous control (SAC), State-Guidance Shared Control (SGSC), and State-Fusion Shared Control (SFSC), according to the different sharing ways between human operators and autonomous controllers. The typical scenarios in using each category are listed and the advantages/disadvantages and open issues of each category are discussed. Then, based on the overview of the existing strategies, new trends in shared control strategies, including the “autonomy from learning” and the “autonomy-levels adaptation,” are summarized and discussed
    corecore