574 research outputs found

    Efficient Distributed Task Allocation based on Autonomous Organizational Formation using Cooperative and Reciprocal Relationships

    Get PDF
    æ—©ć€§ć­Šäœèš˜ç•Șć·:新7797早çšČ田性

    Multi-objective Decentralised Coordination for Teams of Robotic Agents

    No full text
    This thesis introduces two novel coordination mechanisms for a team of multiple autonomous decision makers, represented as autonomous robotic agents. Such techniques aim to improve the capabilities of robotic agents, such as unmanned aerial or ground vehicles (UAVs and UGVs), when deployed in real world operations. In particular, the work reported in this thesis focuses on improving the decision making of teams of such robotic agents when deployed in an unknown, and dynamically changing, environment to perform search and rescue operations for lost targets. This problem is well known and studied within both academia and industry and coordination mechanisms for controlling such teams have been studied in both the robotics and the multi-agent systems communities. Within this setting, our first contribution aims at solves a canonical target search problem, in which a team of UAVs is deployed in an environment to search for a lost target. Specifically, we present a novel decentralised coordination approach for teams of UAVs, based on the max-sum algorithm. In more detail, we represent each agent as a UAV, and study the applicability of the max-sum algorithm, a decentralised approximate message passing algorithm, to coordinate a team of multiple UAVs for target search. We benchmark our approach against three state-of-the-art approaches within a simulation environment. The results show that coordination with the max-sum algorithm out-performs a best response algorithm, which represents the state of the art in the coordination of UAVs for search, by up to 26%, an implicitly coordinated approach, where the coordination arises from the agents making decisions based on a common belief, by up to 34% and finally a non-coordinated approach by up to 68%. These results indicate that the max-sum algorithm has the potential to be applied in complex systems operating in dynamic environments. We then move on to tackle coordination in which the team has more than one objective to achieve (e.g. maximise the covered space of the search area, whilst minimising the amount of energy consumed by each UAV). To achieve this shortcoming, we present, as our second contribution, an extension of the max-sum algorithm to compute bounded solutions for problems involving multiple objectives. More precisely, we develop the bounded multi-objective max-sum algorithm (B-MOMS), a novel decentralised coordination algorithm able to solve problems involving multiple objectives while providing guarantees on the solution it recovers. B-MOMS extends the standard max-sum algorithm to compute bounded approximate solutions to multi-objective decentralised constraint optimisation problems (MO-DCOPs). Moreover, we prove the optimality of B-MOMS in acyclic constraint graphs, and derive problem dependent bounds on its approximation ratio when these graphs contain cycles. Finally, we empirically evaluate its performance on a multi-objective extension of the canonical graph colouring problem. In so doing, we demonstrate that, for the settings we consider, the approximation ratio never exceeds 22, and is typically less than 1.51.5 for less-constrained graphs. Moreover, the runtime required by B-MOMS on the problem instances we considered never exceeds 3030 minutes, even for maximally constrained graphs with one hundred agents

    Managing distributed situation awareness in a team of agents

    Get PDF
    The research presented in this thesis investigates the best ways to manage Distributed Situation Awareness (DSA) for a team of agents tasked to conduct search activity with limited resources (battery life, memory use, computational power, etc.). In the first part of the thesis, an algorithm to coordinate agents (e.g., UAVs) is developed. This is based on Delaunay triangulation with the aim of supporting efficient, adaptable, scalable, and predictable search. Results from simulation and physical experiments with UAVs show good performance in terms of resources utilisation, adaptability, scalability, and predictability of the developed method in comparison with the existing fixed-pattern, pseudorandom, and hybrid methods. The second aspect of the thesis employs Bayesian Belief Networks (BBNs) to define and manage DSA based on the information obtained from the agents' search activity. Algorithms and methods were developed to describe how agents update the BBN to model the system’s DSA, predict plausible future states of the agents’ search area, handle uncertainties, manage agents’ beliefs (based on sensor differences), monitor agents’ interactions, and maintains adaptable BBN for DSA management using structural learning. The evaluation uses environment situation information obtained from agents’ sensors during search activity, and the results proved superior performance over well-known alternative methods in terms of situation prediction accuracy, uncertainty handling, and adaptability. Therefore, the thesis’s main contributions are (i) the development of a simple search planning algorithm that combines the strength of fixed-pattern and pseudorandom methods with resources utilisation, scalability, adaptability, and predictability features; (ii) a formal model of DSA using BBN that can be updated and learnt during the mission; (iii) investigation of the relationship between agents search coordination and DSA management

    A generic holonic control architecture for heterogeneous multi-scale and multi-objective smart microgrids

    Get PDF
    Designing the control infrastructure of future “smart” power grids is a challenging task. Future grids will integrate a wide variety of heterogeneous producers and consumers that are unpredictable and operate at various scales. Information and Communication Technology (ICT) solutions will have to control these in order to attain global objectives at the macrolevel, while also considering private interests at the microlevel. This article proposes a generic holonic architecture to help the development of ICT control systems that meet these requirements. We show how this architecture can integrate heterogeneous control designs, including state-of-the-art smart grid solutions. To illustrate the applicability and utility of this generic architecture, we exemplify its use via a concrete proof-of-concept implementation for a holonic controller, which integrates two types of control solutions and manages a multiscale, multiobjective grid simulator in several scenarios. We believe that the proposed contribution is essential for helping to understand, to reason about, and to develop the “smart” side of future power grids

    A feedback-based decentralised coordination model for distributed open real-time systems

    Get PDF
    Moving towards autonomous operation and management of increasingly complex open distributed real-time systems poses very significant challenges. This is particularly true when reaction to events must be done in a timely and predictable manner while guaranteeing Quality of Service (QoS) constraints imposed by users, the environment, or applications. In these scenarios, the system should be able to maintain a global feasible QoS level while allowing individual nodes to autonomously adapt under different constraints of resource availability and input quality. This paper shows how decentralised coordination of a group of autonomous interdependent nodes can emerge with little communication, based on the robust self-organising principles of feedback. Positive feedback is used to reinforce the selection of the new desired global service solution, while negative feedback discourages nodes to act in a greedy fashion as this adversely impacts on the provided service levels at neighbouring nodes. The proposed protocol is general enough to be used in a wide range of scenarios characterised by a high degree of openness and dynamism where coordination tasks need to be time dependent. As the reported results demonstrate, it requires less messages to be exchanged and it is faster to achieve a globally acceptable near-optimal solution than other available approaches

    A Multi-Criteria Framework to Assist on the Design of Internet-of-Things Systems

    Get PDF
    The Internet-of-Things (IoT), considered as Internet first real evolution, has become immensely important to society due to revolutionary business models with the potential to radically improve Human life. Manufacturers are engaged in developing embedded systems (IoT Systems) for different purposes to address this new variety of application domains and services. With the capability to agilely respond to a very dynamic market offer of IoT Systems, the design phase of IoT ecosystems can be enhanced. However, select the more suitable IoT System for a certain task is currently based on stakeholder’s knowledge, normally from lived experience or intuition, although it does not mean that a proper decision is being made. Furthermore, the lack of methods to formally describe IoT Systems characteristics, capable of being automatically used by methods is also an issue, reinforced by the growth of available information directly connected to Internet spread. Contributing to improve IoT Ecosystems design phase, this PhD work proposes a framework capable of fully characterise an IoT System and assist stakeholder’s on the decision of which is the proper IoT System for a specific task. This enables decision-makers to perform a better reasoning and more aware analysis of diverse and very often contradicting criteria. It is also intended to provide methods to integrate energy consumptionsimulation tools and address interoperability with standards, methods or systems within the IoT scope. This is addressed using a model-driven based framework supporting a high openness level to use different software languages and decision methods, but also for interoperability with other systems, tools and methods

    Efficient resource allocation for automotive active vision systems

    Get PDF
    Individual mobility on roads has a noticeable impact upon peoples' lives, including traffic accidents resulting in severe, or even lethal injuries. Therefore the main goal when operating a vehicle is to safely participate in road-traffic while minimising the adverse effects on our environment. This goal is pursued by road safety measures ranging from safety-oriented road design to driver assistance systems. The latter require exteroceptive sensors to acquire information about the vehicle's current environment. In this thesis an efficient resource allocation for automotive vision systems is proposed. The notion of allocating resources implies the presence of processes that observe the whole environment and that are able to effeciently direct attentive processes. Directing attention constitutes a decision making process dependent upon the environment it operates in, the goal it pursues, and the sensor resources and computational resources it allocates. The sensor resources considered in this thesis are a subset of the multi-modal sensor system on a test vehicle provided by Audi AG, which is also used to evaluate our proposed resource allocation system. This thesis presents an original contribution in three respects. First, a system architecture designed to efficiently allocate both high-resolution sensor resources and computational expensive processes based upon low-resolution sensor data is proposed. Second, a novel method to estimate 3-D range motion, e cient scan-patterns for spin image based classifiers, and an evaluation of track-to-track fusion algorithms present contributions in the field of data processing methods. Third, a Pareto efficient multi-objective resource allocation method is formalised, implemented, and evaluated using road traffic test sequences

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunitĂ  per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneitĂ , e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacitĂ  autonomiche Ăš un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. PerciĂČ, traendo ispirazione e partendo dall'attivitĂ  di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare piĂč stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attivitĂ  decisionali e di regolazione in ambienti dinamici
    • 

    corecore