
Edgar Miguel Felício Oliveira da Silva

Mestre em Engenharia Electrotécnica e de Computadores

A Multi-Criteria Framework to Assist on the
Design of Internet-of-Things Systems

Dissertação para obtenção do Grau de Doutor em

Engenharia Electrotécnica e de Computadores

Orientador: Ricardo Luís Rosa Jardim Gonçalves, Professor Cate-
drático, Faculdade de Ciências e Tecnologia da Univer-
sidade Nova de Lisboa

Júri

Presidente: Prof. Doutor João Carlos da Palma Goes
Arguentes: Prof. Doutor Ioan-Stefan Sacala

Prof. Doutora Teresa Cristina de Freitas Gonçalves
Vogais: Prof. Doutor Ricardo Luís Rosa Jardim Gonçalves

Prof. Doutor João Francisco Alves Martins
Prof. Doutor Manuel Martins Barata
Prof. Doutor João Pedro Mendonça de Assunção da Silva
Prof. Doutor Carlos Manuel Melo Agostinho

January, 2020

A Multi-Criteria Framework to Assist on the Design of Internet-of-Things Sys-
tems

Copyright © Edgar Miguel Felício Oliveira da Silva, Faculdade de Ciências e Tecnologia,

Universidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

I’ll never forget you ...

Acknowledgements

First of all I have to thank all my Family, especially to my uncles Carlos and Maria Jóse

Felício, for the unending support, strength in the most difficult times, and for never ever

had doubted that I could successfully accomplish this work.

I want to thank my supervisor, Professor Ricardo Jardim Gonçalves, for the opportu-

nity he gave me, to work with him and join his research team. With a constant support,

believing in skills and let me freely explore it accordingly with my motivations and in-

stincts.

A special acknowledgement to Manuela Fernandes, for her knowledge and experi-

ence to this work, motivation, comments and questions have encouraged, supported and

enlightened me to do a better work. Also a special acknowledgement to João, Ricardo,

Maria, Paulo and more recently Vanessa for their support and companionship. I wish to

acknowledge Fábio Oliveira, Luís Paiva and João Eusébio for their support.

A special thank goes also for the master students to whom I collaborated or had the

pleasure of co-supervising, namely João Rodrigues, José Gonçalves, Fernando Rosado,

João Ralo and Igor Fernandes.

Then, I would like to thank my colleagues at Group for Research in Interoperability of

Systems (GRIS) and Energy Efficiency Research Group for their advices, encouragement

and productive discussions that really contributed to this research work.

Finally, my great thanks to Faculdade de Ciências e Tecnologia da Universidade Nova

de Lisboa (FCT NOVA) and to Instituto de Desenvolvimento de Novas Tecnologias (UNI-

NOVA) for hosting this research.

vii

Abstract

The Internet-of-Things (IoT), considered as Internet first real evolution, has become

immensely important to society due to revolutionary business models with the potential

to radically improve Human life. Manufacturers are engaged in developing embedded

systems (IoT Systems) for different purposes to address this new variety of application

domains and services. With the capability to agilely respond to a very dynamic market

offer of IoT Systems, the design phase of IoT ecosystems can be enhanced. However,

select the more suitable IoT System for a certain task is currently based on stakeholder’s

knowledge, normally from lived experience or intuition, although it does not mean that

a proper decision is being made. Furthermore, the lack of methods to formally describe

IoT Systems characteristics, capable of being automatically used by methods is also an

issue, reinforced by the growth of available information directly connected to Internet

spread.

Contributing to improve IoT Ecosystems design phase, this PhD work proposes a

framework capable of fully characterise an IoT System and assist stakeholder’s on the de-

cision of which is the proper IoT System for a specific task. This enables decision-makers

to perform a better reasoning and more aware analysis of diverse and very often contra-

dicting criteria. It is also intended to provide methods to integrate energy consumption-

simulation tools and address interoperability with standards, methods or systems within

the IoT scope. This is addressed using a model-driven based framework supporting a

high openness level to use different software languages and decision methods, but also

for interoperability with other systems, tools and methods.

Keywords: Internet-of-Things, Resource-Constrained Systems, Model-Driven Engineer-

ing, Interoperability, Multi-Criteria Decision, IoT Systems Assessment.

ix

Resumo

A Internet das Coisas (IdC), considerada a primeira evolução real da Internet, tornou-

se imensamente importante para a sociedade devido a modelos de negócios revolucio-

nários com o potencial de melhorar radicalmente a vida humana. Os fabricantes estão

focados no desenvolvimento de sistemas embutidos (Sistemas IdC) para diversas finali-

dades, de modo a responder à nova variedade de aplicações para diferentes domínios e

serviços. Com a ágil capacidade para responder a um mercado muito dinâmico na oferta

de Sistemas IdC, a fase de desenvolvimento dos ecossistemas da IdC pode ser melhorado.

No entanto, a escolha do Sistema IdC mais adequado para uma determinada tarefa ac-

tualmente é assenta no conhecimento das partes envolvidas, normalmente baseada na

experiência ou na intuição, embora não signifique que a decisão mais adequada esteja a

ser realizada. Além disso, a falta de métodos para descrever formalmente as característi-

cas dos Sistema IdC, capazes de serem usados automaticamente por sistemas, também é

um problema, reforçado pelo constante crescimento de informações disponíveis, directa-

mente ligado à propagação pela Internet.

Contribuindo para melhorar a fase de projecto dos ecossistemas da IdC, este trabalho

de doutoramento propõe uma estrutura capaz de caracterizar completamente um Sistema

IdC e auxiliar as partes interessadas na decisão sobre qual é o Sistema IdC mais adequado

para uma tarefa específica. Isto permite que os responsáveis pela decisão executem um

melhor raciocínio e uma análise mais consciente dos diversos critérios e muitas vezes con-

traditórios. Também se destina a fornecer métodos para a integração de ferramentas de

simulação do consumo de energia, tal como para estabelecer interoperabilidade com pa-

drões, métodos ou sistemas no âmbito da IdC. Isto será conseguido usando uma framework
baseada em modelos fornecendo um grande nível de abertura para o uso de diferentes

linguagens de programação e métodos de decisão, mas também para a interoperabilidade

com outros sistemas, ferramentas e métodos.

Palavras-chave: Internet das Coisas, Sistemas de Recursos Limitados, Engenharia Ori-

entada a Modelos, Interoperabilidade, Decisão Multicritério, Avaliação de Sistemas da

Internet das Coisas.

xi

xii

Contents

List of Figures xvii

List of Tables xxi

Glossary xxiii

Acronyms xxv

1 Introduction 1

1.1 Motivation . 2

1.2 Vision and Research Approach . 3

1.3 Adopted Research Method . 4

1.4 Research Problem and Hypothesis . 7

1.4.1 Research Question . 7

1.4.2 Hypothesis . 8

1.5 Thesis Plan Outline . 8

1.5.1 Core Block I: Introduction . 9

1.5.2 Core Block II: Background . 9

1.5.3 Core Block III: Contributions . 10

1.5.4 Core Block IV: Validation . 11

1.5.5 Core Block V: Conclusions . 11

2 Internet-of-Things (IoT) 13

2.1 Challenges, Barriers and Trends . 14

2.2 Wireless Sensor Networks . 15

2.2.1 WSN Specific Issues . 16

2.2.2 Resource-Constrained Systems (RCS) 17

2.3 Standards . 19

2.3.1 Organisations & Alliances . 20

2.3.2 Protocols . 22

2.3.3 Platforms . 31

2.3.4 Embedded Operating Systems (OS) 34

2.3.5 Security . 40

xiii

CONTENTS

2.4 Topic Discussion . 40

3 Model-Driven Approaches 43

3.1 A First Attempt: Computer-Aided Software Engineering 43

3.1.1 CASE Risk Factors . 44

3.2 Model-Driven Engineering . 44

3.2.1 Models and Meta-Models . 45

3.2.2 Model-Driven Architecture . 47

3.2.3 MDA Models and Viewpoints . 47

3.2.4 MDA and Model Transformations 49

3.2.5 Horizontal and Vertical Transformations 49

3.3 Modelling and Transformation Languages 50

3.3.1 Modelling Languages . 51

3.3.2 Transformation Languages . 53

3.4 Topic Discussion . 55

4 Decision-Making Methodologies 57

4.1 Decision-Making Process . 58

4.2 Methods for Multi-Criteria Decision-Making 59

4.2.1 Analytic Hierarchy Process (AHP) 59

4.2.2 PROMETHEE . 62

4.2.3 ELECTRE . 64

4.3 Topic Discussion . 65

5 Framework to Formally Describe an IoT System 69

5.1 Models, Methods for IoT Systems Specification 69

5.1.1 Hardware Representations . 70

5.2 Framework for IoT System Formal Description 71

5.3 Specification of IoT System Generic Features 73

5.4 IoT System Specification . 75

5.4.1 IoT System: Hardware Specification 76

5.4.2 IoT System: Software Formalisation 80

5.4.3 IoT System: Energy Profile Formalisation 82

5.5 Model-Driven Harmonisation Framework 86

5.6 Topic Discussion . 89

6 Assessment Framework for IoT Systems 91

6.1 Decision-Making in IoT . 91

6.2 Framework for IoT Systems Assessment 92

6.3 Multi-Criteria Assessment Specification 95

6.4 MCDM Methods Specification . 98

6.4.1 Analytic Hierarchy Process (AHP) Specification 99

xiv

CONTENTS

6.4.2 ELECTRE Specification . 101

6.5 IoT Systems: Multi-Criteria Assessment Methodology 102

6.6 Topic Discussion . 108

7 Framework for Design Support of IoT Systems 111

7.1 Conceptual Approach for Design Support of IoT Systems 111

7.2 Framework for Design Support of IoT Systems 113

7.3 Design of IoT Systems: Specification Models 116

7.4 Harmonisation Layer & Interoperability Engine 120

7.5 Topic Discussion . 124

8 Implementation and Hypothesis Validation 127

8.1 Proof-of-Concept Implementations . 127

8.1.1 Application Scenario 1: Smart Building Design 128

8.1.2 Application Scenario 2: SensorML Standard 134

8.2 Technical Implementations . 136

8.2.1 Implementation of Scenario 1: Smart Building Design 136

8.2.2 Implementation of Scenario 2: SensorML Standard 146

8.3 Acceptance by Scientific Community & Industry 148

8.3.1 Acceptance by Scientific Community 148

8.3.2 Acceptance by Industry . 150

8.4 Hypothesis Validation . 161

9 Conclusions 163

9.1 The Path from Background Research up to PhD Thesis 163

9.1.1 Background Observation . 164

9.1.2 Research Work . 166

9.2 Scientific and Technical Contributions . 168

9.2.1 From a Research Question to Validation 168

9.2.2 Publications Summary . 169

9.3 Future Work . 171

Bibliography 173

A Appendix: IoTSAG Ecore Representation 195

B Appendix: RCSM Ecore Representation 199

C Appendix: RCSH Ecore Representation 201

D Appendix: MCAM Ecore Representation 205

E Appendix: AHP Ecore Representation 209

xv

CONTENTS

F Appendix: ELECTRE Ecore Representation 211

G Appendix: IoTSAC Ecore Representation 213

H Appendix: C Language Ecore Representation 215

I Appendix: nesC Language Ecore Representation 219

J Appendix: XML File of a SensorML Example 225

xvi

List of Figures

1.1 Research Approach: The Path to Select a More Suitable IoT System. 3

1.2 Adopted Research Method. 5

1.3 Research Question and Hypothesis. 9

1.4 Thesis Plan Outline . 10

2.1 Overview of an Internet-of-Things (IoT) Ecosystem. 14

2.2 Example of a Wireless Sensor Network (WSN). 16

2.3 Typical Sensor Node Architecture. 18

2.4 IoT Standardisation. 19

2.5 IoT Protocols: Radio Frequency and Network Areas. 23

2.6 Connectivity Space of MOM Protocols. 29

2.7 MOM Protocols vs Open Source Message Brokers. 30

2.8 Articles Percentage related to each Operating System. 37

3.1 MDA, MDD and MDE initiatives. 45

3.2 Model and Meta-Models Relationship. 46

3.3 MDA’s Abstraction Layers (viewpoints). 48

3.4 MDA’s Abstraction Layers and Transformations. 50

3.5 Relations between QVT Meta-Models (based on [173]). 54

3.6 A Generic ATL Transformation. 55

4.1 Simplified Vision of Decision-Making Process. 58

4.2 Analytic Hierarchy Process (AHP) original Methodology. 60

4.3 Example of a criteria and solutions hierarchy. 60

4.4 PROMETHEE Methodology. 62

4.5 PROMETHEE: Example of an Outranking Valued Digraph. 64

5.1 Hardware Components of a Sensor Node. 71

5.2 A Framework to Formally Describe an IoT System. 73

5.3 IoT Systems Analysis Generic (IoTSAG) Specification Model. 74

5.4 Property Domains and Units Relation: Graphical Example. 74

5.5 Resource-Constrained System (RCS) Specification Model. 75

5.6 Components Considered for the Hardware Specification Model. 77

xvii

List of Figures

5.7 Resource-Constrained System Hardware (RCSH) Specification Model. 78

5.8 Hardware Platform: A RCSH Formal Representation Example. 80

5.9 Software Language Specification: A Generic Example. 81

5.10 IoT System’ Energy Consumption Analysis Activity Detail. 83

5.11 Energy Profile Specification: An Example. 84

5.12 Energy Profile: A Practical Example. 85

5.13 IoT System: Model and Meta-Models Relationship. 86

5.14 Model-Driven Harmonisation Framework. 87

5.15 Harmonisation Layer: Mapping Examples. 88

6.1 A Framework for IoT Systems Assessment. 93

6.2 Multi-Criteria Analysis Specification Model. 95

6.3 Analytic Hierarchy Process (AHP) Meta-Model. 99

6.4 AHP Meta-Model: Example of a Pairwise Comparison Matrix. 100

6.5 Elimination and Choice Expressing the Reality (ELECTRE) Meta-Model. . . 102

6.6 Procedure to Process Assessment Constraints. 105

6.7 MCDM Method Procedure Activity Detail. 106

7.1 Proposed Concept for the Design Support of IoT Systems. 112

7.2 Multi-Criteria Framework for Design Support of IoT Systems. 114

7.3 IoT Systems Assessment Core Specification Model. 117

7.4 Design Support of IoT Systems: High Level Packages Structure. 118

7.5 Design Support of IoT Systems: Main Specification Models. 119

7.6 Harmonisation Layer & Interoperability Engine: Merge/Transformation Ex-

amples. 121

7.7 Harmonisation Layer & Interoperability Engine: Interoperability with Stan-

dards. 123

7.8 Harmonisation Layer & Interoperability Engine: Integration of Energy Simu-

lations. 124

8.1 Design Support of IoT Systems: Proof-of-Concept Application Scenario(s). . 128

8.2 Proof-of-Concept Scenario 1: Smart Building Design. 129

8.3 From Scattered Hardware to Formal IoT Systems Specification (Hardware). . 131

8.4 C Language Specification Model (version C1.0 adapted from [208].) 132

8.5 nesC Specification Model (adapted from [209]). 133

8.6 IoT Systems Assessment: Two Objectives of Smart Building Design Scenario. 134

8.7 SensorML Main Internal Packages Dependencies (retrieved from [21]). 135

8.8 Proof-of-Concept Scenario 2: Temperature Sensor with Online Data Observa-

tion (SensorML Example). 136

8.9 IoT Systems Formal Descriptions Based on Web-Pages Information. 138

8.10 Harmonisation Layer: IoT System Physical Components Instantiation. 139

xviii

List of Figures

8.11 Harmonisation Layer: From Software Languages Specification to Applications

Code (Text Files). 140

8.12 From nesC Models to Application Code (Text Files). 142

8.13 MCAM Specification Model: Instantiation of Objective 1 — Power-Saving

Through Light-Control. 143

8.14 MCAM Specification Model: Instantiation of Objective 2 — HVAC Control

Using Motion Sensors. 144

8.15 MCAM Methods: Instantiation for both Objectives. 145

8.16 Harmonisation Layer: From Proposed Specifications to SensorML Specifica-

tion (Internet of Things — Simple Sensor). 147

8.17 Acceptance by Scientific Community: Publications Timeline. 149

8.18 Industrial Scenario: C2Net’s Metalworking Process Design. 151

8.19 Industrial Scenario: Considered IoT Systems (Hardware part). 155

8.20 Industrial Scenario: Criteria Values (Radar Chart). 156

8.21 High-Level View of vf-OS Architecture (retrieved from [217]). 160

9.1 The Path from Background Research up to PhD Thesis. 164

xix

List of Tables

2.1 IoT Protocols: Transmission Rate. 25

2.2 Message-Oriented Middleware (MOM) Protocols Summary. 28

2.3 Summary of WSN OSs Features. 38

2.4 List of supported Hardware platforms. 39

4.1 Random Consistency Index values, RI , from 2 to 10 criteria. 61

4.2 AHP, PROMETHEE and ELECTRE: Main Advantages and Disadvantages. . . 66

8.1 Harmonisation Layer: Structural, Specification Mapping to SensorML (Inter-

net of Things — Simple Sensor). 148

8.2 C2Net Scenario: Criteria Preference Relation. 153

8.3 C2Net Scenario: Criteria Values. 155

8.4 C2Net Scenario: Conversion of criterion “Implementation Difficulty”. 157

8.5 C2Net Scenario: IoT Systems Final Ordered Ranking. 159

9.1 Relation Between Research Sub-Questions and Contributions. 169

9.2 Accomplished Publications in Conferences. 170

9.3 Accomplished Publications in Journals. 171

xxi

Glossary

Internet-of-Things Internet-of-Things is a worldwide network of physical objects using

the Internet as a communication media. Interconnected objects, services, people,

and devices that can communicate, share data, and information to achieve common

goals in different areas and applications.

IoT Ecosystem IoT Ecosystem is based on an Internet-of-Things network with sensors

and actuators, providing services such as data storage, analysis, using IoT cloud

services built upon IoT cloud platforms, within a diverse context of application

scenarios (e.g.: Smart Cities, Intelligent Transportation Systems, Domotics (Smart

Buildings), Industry 4.0, among others).

IoT System IoT System defines a “thing”, a device executing a task for the Internet-

of-Things (IoT), as a whole. It is considered that an IoT System is composed by

two core parts and a third one if available. The two core parts are the hardware

components and the software (Operating System (OS) and application). The third

part is an energy profile, built upon, from the two mandatory IoT System parts. An

IoT System is by its nature a Resource-Constrained System (RCS).

Resource-Constrained Systems Resource-Constrained System is a device that has small

size, low-power operations, limited processing and storage capabilities, and that

often runs on batteries. They also present other particular features such sensing the

environment and wireless communication.

System Accordingly to online dictionaries and author point of view, a system can be

defined as a “group of items forming a unified whole”[1], “a set of connected things

or devices that operate together”, or “a set of computer equipment and programs

used together for a particular purpose”[2].

xxiii

Acronyms

ADC Analog-to-Digital Converter.

AHP Analytic Hierarchy Process.

AMQP Advanced Message Queuing Protocol.

API Application Programming Interface.

ATL Atlas Transformation Language.

AWS Amazon Web Services.

CASE Computer-Aided Software Engineering.

CIM Computation Independent Model.

CoAP Constrained Application Protocol.

CPS Cyber-Physical System.

DDS Data Distribution Service.

DiY Do it yourself.

ELECTRE Elimination and Choice Expressing the Reality.

EMF Eclipse Modeling Framework.

ETSI European Telecommunications Standards Institute.

GPS Global Positioning System.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

ICT Information and Communication Technology.

xxv

ACRONYMS

IEC International Electrotechnical Commission.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

IoT Internet-of-Things.

IoTSAC IoT Systems Assessment Core.

IoTSAG IoT Systems Analysis Generic.

ISA International Society of Automation.

ISM Industrial, Scientific, and Medical.

ISO International Organization for Standardization.

IT Information Technology.

ITU International Telecommunication Union.

ITU-T ITU Telecommunication Standardization Sector.

JMS Java Message Service.

LoRa Long-Range.

LTE Long-Term Evolution.

M2M Machine-to-Machine.

MCAM Multi-Criteria Analysis Meta-Model.

MCDM Multi-Criteria Decision-Making.

MDA Model-Driven Architecture.

MDD Model-Driven Development.

MDE Model-Driven Engineering.

MEMS Micro-Electro Mechanical System.

MOF Meta-Object Facility.

MOM Message-Oriented Middleware.

MQTT Message Queuing Telemetry Transport.

NB-IoT Narrowband IoT.

xxvi

ACRONYMS

nesC Network Embedded Systems C.

NFC Near-field communication.

OASIS Organization for the Advancement of Structured Information Standards.

OGC Open Geospatial Consortium.

OMG Object Management Group.

OS Operating System.

OSS Open-Source Software.

PIM Platform Independent Model.

POC Proof-of-Concept.

PROMETHEE Preference Ranking Organization Method for Enrichment Evaluation.

PSM Platform Specific Model.

PtoP Point-to-Point.

QoS Quality-of-Service.

QVT Query/Views/Transformations.

RAM Random-Access Memory.

RCS Resource-Constrained System.

RCSH Resource-Constrained System Hardware.

RCSM Resource-Constrained System Meta-Model.

REST Representational State Transfer.

RFID Radio-Frequency identification.

SensorML Sensor Model Language.

SMTP Simple Mail Transfer Protocol.

SPI Serial Peripheral Interface.

SRAM Static Random-Access Memory.

SSN Semantic Sensor Network.

STOMP Streaming Text Oriented Messaging Protocol.

xxvii

ACRONYMS

SUS System Under Study.

SysML Systems Modeling Language.

TCP Transmission Control Protocol.

TCP/IP Transmission Control Protocol / Internet Protocol.

UART Universal Asynchronous Receiver/Transmitter.

UDP User Datagram Protocol.

UML Unified Modelling Language.

USB Universal Serial Bus.

W3C World Wide Web Consortium.

WLAN Wireless Local Area Network.

WMAN Wireless Metropolitan Area Network.

WPAN Wireless Personal Area Network.

WSN Wireless Sensor Network.

WWAN Wireless Wide Area Network.

XMI XML Metadata Interchange.

XML Extensible Markup Language.

XMPP Extensible Messaging and Presence Protocol.

xxviii

C
h
a
p
t
e
r

1
Introduction

A System can be defined as a “group of items forming a unified whole” [1] “set of con-

nected things or devices that operate together”, or “a set of computer equipment and

programs used together for a particular purpose” [2]. Consequently, an IoT deployment

is an IoT System, considering that each device interacting in a deployment is a thing/item,

and this is the common meaning used in the IoT scope literature. Taking into considera-

tion a single device, it is by its own a system, composed by different hardware components

interacting among them and running one or more programs/firmware.

Hereupon, IoT complete system is referred as IoT Ecosystem, IoT Deployment or

System of IoT Systems, and an IoT device as IoT System or RCS.

The Internet-of-Things (IoT) today is a reality. It is a highly heterogeneous environ-

ment [3], composed by a vast number of “things” (devices, sensors, smart objects, etc.)

and sometimes called “Internet of Objects”, which refers to uniquely identifiable objects

and their representation in an Internet-like structure. Some studies, predict that there

will be around 30 Billion devices wireless connected to the IoT in the next years [4, 5].

The emerging IoT-related technologies have been creating an idea of a global, dynamic

network infrastructure where physical and virtual “things” communicate and share in-

formation among each other. Powered by advances in microelectronic technologies, that

led to smaller and cheaper devices, capable of performing major tasks than before.

However, IoT is still in an early stage and many challenging issues still need to be

addressed, both at technological, as well as, at social level. With the potential to slowdown

IoT development, they need to be solved before IoT paradigm becomes widely accepted.

For instance, from a technological point of view, questions have been raised on how to

fully establish devices interoperability (adaptation and autonomous behaviour), as well

as, new problems concerning network aspects (unique IP addresses, scalability, etc.).

Regarding social aspects it is important to guaranty trust, privacy and security to the user.

1

CHAPTER 1. INTRODUCTION

It should be assured that personal information is used accordingly and that there is no

unauthorized disclosure of information [6–9].

1.1 Motivation

The Internet-of-Things (IoT) technology is becoming more and more important to society,

with diverse and novel business models giving to people a more truly interaction with the

surrounding world. IoT has applicability in many areas, such as Smart Cities, Intelligent

Transportation Systems, Domotics (Smart Buildings), Industry 4.0, among others [3].

These “smart systems”, i.e.: IoT deployments, IoT Ecosystems, are normally built

upon devices with a very specific characteristic — Resource-Constrained. These “things”,

“objects”, are devices characterised with high resources constraints mainly due to low

power, small processing and storage capabilities.

Manufacturers are engaged in developing new embedded systems for different pur-

poses, addressing the variety of application domains and services. This diversity unlocks

the use of a wide set of hardware platforms and software solutions (OS as implementation

techniques). IoT Systems perform different tasks, such as, sensing, radio messages, math-

ematical computation, etc. each one with a distinct influence on energy consumption.

Changing the device/hardware even more uncertainties arises. Not only will the energy

consumption, but also with execution time as well as development time. Cost, size and

weight factors will also be different when an implementation platform is change.

Consequently some scenarios can then be established: which are the more suitable

devices (hardware platforms) to accomplish a certain task, or is it possible/feasible to

build a new hardware through the integration of distinct components available on other

devices, or which is the best way to programme the execution of a task. Researchers,

domain practitioners, engineers are developing OSs to get more performance for less

energy consumption. Computation requirements, flexibility, fault tolerance, high sensing

fidelity, low-cost and rapid deployment are other characteristics expected when thinking

in deploying IoT Systems [10–12]. Combining or fulfil several requirements is not an

easy task. Applications differ from each other making the selection of a perfect solution

hard to come by.

Therefore, engineers are facing a difficult task, i.e.: to choose a solution between all

available ones that best fulfil their intentions. Select a solution normally involves the

analyses of criteria. In this case, such criteria could be performance, storage, energy

consumption, cost, size, weight, available resources, among others. The importance of

a requisite/feature change from task to task. Make a correct, accurate decision depends

many times on multiple criteria, which is a tough challenge for human beings [13]. Be-

sides, the lack of formal descriptions to describe IoT Systems characteristics/features,

capable of being used by applications in an automatic way, is also an issue. Some manu-

facturers provide in their websites ways to select a product from a set of choices. Products

2

1.2. VISION AND RESEARCH APPROACH

are displayed with some detailed (number of features), but limited to hardware charac-

teristics. Interaction is completely handmade, with no way to apply user’s preferences

between criteria. Information data, when possible, can be collected only by user’s action

and change depending on the performed query. Two examples can be found in [14, 15].

1.2 Vision and Research Approach

The research work envisions the proposal of a framework capable of fully characterise an

IoT System and assist stakeholder’s on the decision of which is the proper IoT System for

a specific task. The framework also intends to provide methods for energy consumption-

simulation tools integration and address interoperability with standards, methods or

systems within the IoT scope.

Literature has been more focus on study functional, behaviour aspects and on activ-

ities, interactions within an IoT Deployment [16–18], rather than on IoT Systems itself.

Stakeholders have been selecting an IoT System to perform a certain task based on their

knowledge, normally from lived experience or intuition, although, it does not mean that

a proper decision is being made. This task, selection, identification of the more suitable

IoT System is being somehow neglected during the design phase of an IoT Ecosystem.

In a highly diversified market-offer (manufacturers are providing numerous device

solutions), engineers could use a multi-criteria framework to simulate and analyse hard-

ware and software solutions for small parts of a global system. It will allow IoT-related

technologies and solutions to be proven, tested before deployment into real world. That

enables engineers to perform a more suitable design of their IoT Ecosystems.

Figure 1.1 depicts the research work approach, displaying literature themes used as

groundwork and in which way these help to achieve the expected outcomes. To better

understand and respond to the identified research questions (presented in Section 1.4),

the work research was split into three objectives: Formally describe an IoT System; char-

acterise/analyse possible IoT System solutions; and properly make a decision regarding

which is the more suitable solution(s).

Multi-Criteria
Decision Methods:

Problem / Objective
Parameterisation:

Model-Driven
Engineering:

IoT Systems:

On response to
IoT System

On analysis of
IoT Systems

Decision of
suitable IoT System(s)

Formal Description
of an IoT System

(Hardware,
Software, Energy)

Definition of
Criteria,

Constraints,
Priorities,

Decision Methods

IoT Systems
Multi-Criteria
Assessment

Figure 1.1: Research Approach: The Path to Select a More Suitable IoT System.

3

CHAPTER 1. INTRODUCTION

First, “on response to IoT System”, the heterogeneity nature of IoT deployments is

addressed. Markets are offering a wide device diversity, with a very specific characteris-

tic — Resource-Constrained. Methods to formally describe these imperative pieces (IoT

Systems) are needed, independent of hardware platforms, as well as independent from

programming languages — Platform Independent. In this way, Resource-Constrained Sys-

tems (RCS) should be study carefully and Model-Driven Engineering (MDE) techniques

study and applied, since model driven approaches revealed to be a common ground in

literature [19–23].

Second, “on analysis of IoT Systems”, addresses the characterisation of the problem

that needs to be solved. As a result from the previous point, IoT Systems features are

formally defined, allowing a smooth integration with other systems/tools. The prob-

lem parameterisation consists on defining the objective, criteria, constraints, etc. Once

more, MDE gains here an important role. MDE tackles systems complexity through sim-

plification and formalisation techniques during system life cycle (i.e. from design to

deployment, passing by construction, operation, modification, etc.) [23], and facilitates

the interoperability among tools.

Third point addresses the “decision of suitable IoT System(s)”. Thematic studied

focus on Multi-Criteria Decision-Making (MCDM), one of the most widely used deci-

sion methodologies in sciences, business, governmental and engineering worlds. MCDM

methods improve decisions quality, by making the decision-making process more explicit,

rational, and efficient [24, 25].

1.3 Adopted Research Method

Merriam-Webster dictionary [26] defines the scientific method as “the principles and pro-
cedures for the systematic pursuit of knowledge involving the recognition and formulation of a
problem, the collection of data through observation and experiment, and the formulation and
testing of hypotheses”. Scientists use the scientific method as a logical scheme to search

answers to questions posed within science. Being able to yield scientific theories, includ-

ing both scientific meta-theories (theories about theories), as well as, the theories used to

design tools for producing theories (instruments, algorithms, etc.) [27].

There are more than one recognise scientific method. There is no universal, no formal

“scientific method” to follow, each one has its own variants. The process of investigation

is often referred in many textbooks and science courses, as a linear set of steps through

which a scientist moves from observation through experimentation to a conclusion. It is

important that researchers keep in mind that a new piece of information (i.e. idea, test

results, etc.), might cause a scientist to rethink the investigation process and repeat steps

at any point. Also, it is not always required to start with a question, and sometimes it is

not needed to have experiments. Instead, the scientific method is a more dynamic and

robust process [28, 29].

4

1.3. ADOPTED RESEARCH METHOD

The choice of which research method (instantiation of the scientific method) to use

is personal and depends on the scientist and the nature of the question addressed. It is

also important to choose a research method which is within the limits of time, money,

feasibility, ethics and the availability of the chosen scientific measurements to get a correct

conclusion [30]. To address this PhD work, the selected research method is based on

a 9 step method that, as suggested in [27], considers being important the continuous

re-examination and self-correction, by testing the hypothesis that has is origins in the

researcher’s background knowledge. Next, the adopted method, presented in Figure 1.2,

is described in more detail:

Background
Research/
Problem

Choose a
Research

Topic

1

Research
Question(s)

2

Formulate
Hypothesis

Prototype
Design &

Implementat
ion

Test
Hypothesis

Result
Analysis

Publish Findings

3 4 5 6 7

8

Reformulate
Prototype

Unsatisfactory
Results

Feedback Tuning of Research Question/ Hypothesis

Industry Acceptance & Implementation 9

Figure 1.2: Adopted Research Method.

1. “Choose a Research Topic”: Since the student has his own research area, i.e.: his

concern area, the fundamental is to set the topic of interest where the research will

focus. In fact this can be seen as a preliminary step towards the real method.

2. “Background Research/Problem”: A background research provides means to prop-

erly formalise the problem, as well as, gather solid bases regarding previous and

similar work. This can be reach through literature review, informal discussions in

conferences and/or workshops, etc. Also, any study will allow assemble of informa-

tion concerning similar approaches, and so, point out the differences to what will

be done [31].

3. “Research Question(s)”: This is one of the most important steps, if not the most

important one. This step describes what the researcher is interested in, what he/she

have/wants to know, by posing the question(s) in the context of the existing knowl-

edge. Also, it will scope the entire work, and will never be revisited in the same

research loop until a conclusion can be obtained from the results analysis [31]. The

Research Question can be split in secondary questions, to tighten the focus of the

5

CHAPTER 1. INTRODUCTION

study, but always keeping in mind that all questions have to be about something that

can be measure. Consequently, to be confirmed or denied, i.e.: answered. Section

1.4.1 addresses this step.

4. “Formulate Hypothesis”: A scientific hypothesis is an educated guess about how

things work: “If____[I do this] ____, then ____[this] ____ will happen.”. The hypoth-

esis must be stated in a declarative format, in a way that can be easily measure, and

of course, the hypothesis should be constructed in such way that helps answering

the original question. Additionally, the hypothesis should be simple, specific and

conceptually clear, since ambiguity would make verification almost impossible. It

also should be capable of verification through the use of methods and techniques for

data collection and analysis [31]. Other aspect, as illustrated in Figure 1.2, is that

the hypothesis can be revisited and reformulated in case of unsatisfactory results

during further stages of the scientific method. Section 1.4.2 presents the hypothesis

of this work.

5. “Prototype Design & Implementation”: Once the hypothesis is defined, it is re-

quired to design a prototype to prove whether it is true or false. This includes

planning in detail all steps of the experimental stage, and the design of the system

architecture (the prototype itself), often related to engineering research. A com-

plete validation of the hypothesis is achieved by running more than once the same

experiment in order to prove that results are consistent. Therefore, this step relates

directly to the design of an experiment in a controlled environment. However, at

this stage is important the prototype design, but also the thesis validation method.

Namely, scenarios and/or use cases definition (presented in Chapter 8). This can

lead to definition of intermediate milestones, not forgetting that the plan must be

feasible.

6. “Test Hypothesis”: This step is where the researcher actually puts to test the exper-

iment, to either prove or disprove the hypothesis. It includes the implementation of

a prototype, data gathering and execution of tests according to the pre-established

validation method. Remarks concerning implementation must be induce, since the

research may find evidence that the prototype needs rectifications, forcing the jump

to the previous step.

7. “Results Analysis”: Once the testing phase is finished, is time to evaluate by means

of qualitative and quantitative data analysis the factual results. It is important to

have a critical spirit and promote discussions regarding literature, research objec-

tives and research questions [31]. At this moment conclusions should be drawn, in

order to be decided the next step. In case, hypothesis fails, it must be rejected and

either abandoned or modified by jumping to step 4. Whether, it just needs to be

re-tested, the next step should be the previous one.

6

1.4. RESEARCH PROBLEM AND HYPOTHESIS

8. “Publish Findings”: To be a contribution, the research results must be published.

Results are published and shared with peers from the scientific community, al-

lowing verification of findings and enabling others to continue research into other

areas. Despite of appearing as one of the final steps, publications should cover not

only the final findings but also the intermediated ones. Section 9.2.2 reports the

accomplished publications.

9. “Industry Acceptance & Implementation”: Besides sharing the work developed

with peers from the scientific community through accomplished publications, each

research work should also be validated by Industry. Developed methodologies and

prototypes should be transferred, accepted, and at the end applied to Industry. In

this sense, the proposed work application in Industry will be presented in Section

8.3.2.

1.4 Research Problem and Hypothesis

1.4.1 Research Question

Every day that passes we find ourselves more and more living surrounded by systems

sensing the environment. Our daily life (e.g.: at our homes, neighbourhood, workplaces,

restaurants, transportation utilities) are increasingly being fulfil with sensing devices

capable of providing additional information about who/what surrounds us or even what

we can expect in the next corner.

Advances in microelectronic technologies have brought small and cheap devices. Man-

ufacturers want to address different application domains and services to target different

IoT deployments, in these sense they are developing devices for different purposes. Al-

though, these devices are resource constrained, for example in terms of low power, small

processing and storage capabilities [32].

The diversity of possible solutions for a single application/service, brings up the lack

of a methodology to analyse different solutions, taking into account distinct criteria, as

well as, the capability to propose a more suitable solution regarding a set of prerequisites.

Considering the chosen topic, the main research question that gives motto for this

research work is:

“How can Internet-of-Things Systems be designed to optimise the matching with the
operating environment?”

To assure the research focus and targeted results, the major question is split according

to three major incognita:

• On response to IoT System

7

CHAPTER 1. INTRODUCTION

– Q1.1: “Which methods could be applied or develop to formally describe an

IoT System (hardware, software, energy)?”

• On analysis of IoT System solutions

– Q1.2: “Which methods could be applied or develop to assist in IoT System

assessment?”

• Decision of suitable solution

– Q1.3: “Which multi-criteria decision framework would provide a suitable de-

cision support for the design of IoT Systems?”

1.4.2 Hypothesis

The previous subsection pointed out a question which comes from the identified problem:

in a world with a diversity of possible solutions, engineers are facing the difficulty to

choose in a more conscious way, a more suitable solution on how to implement and/or

improve a certain task.

The main reason why it is important to have a multi-criteria framework, capable

of simulate and analyse different hardware and software solutions is mainly to assist

developers, in a way that they can improve their own or verify other available solutions,

by examining the performance according to a set of features. Engineers have in their

hands many different devices, each one built with a very specific purpose. This diversity

is basically due to different hardware components (e.g.: microcontrollers, radio, sensing)

and programming. Confronted with extremely heterogeneous environments, created

from numerous distinct devices, engineers should use modelling techniques to assist

in hardware and software formalisation, so it can be then used by tools/methods for

simulation and analysis of possible solutions.

The adopted hypothesis for this work is:

“If in an Internet-of-Things system design, engineers could use a multi-criteria framework
to simulate and analyse hardware and software solutions, then proper solutions could be
selected and applied, leading to a more suitable design of an Internet-of-Things System.”

Figure 1.3 displays the presented research question and its derived sub-research ques-

tions, to allow a better understand and solidify the main research question. Question

which leads to the proposed hypothesis, in response to the introduced problem.

1.5 Thesis Plan Outline

This dissertation document is organised in five core blocks arranged along nine sections,

as depicted in Figure 1.4, including also sections for references and appendixes. The

8

1.5. THESIS PLAN OUTLINE

How can Internet-of-Things Systems be designed to optimize the matching with the
operating environment?

On response to IoT System: On analysis of IoT System
solutions:

Decision of suitable
solution:

Which methods could be
applied or develop to formally

describe an IoT System
(hardware, software,

energy)?

Which methods could be
applied or develop to assist in

IoT System assessment?

Which multi-criteria decision
framework would provide a
suitable decision support for
the design of IoT Systems?

If in an Internet-of-Things system design, engineers could use a multi-criteria framework
to simulate and analyse hardware and software solutions, then proper solutions

could be selected and applied, leading to a more suitable
design of Internet-of-Things Systems.

R
es

ea
rc

h
 Q

u
es

ti
o

n
H

yp
o

th
es

is

Figure 1.3: Research Question and Hypothesis.

first core block, Core Block I: Introduction, gives an initial elucidation regarding the

nature of the work presented in this document. The second core block — Core Block II:

Background, focus on background studies regarding this research work scope, but also

on background thematics that gives support to the work developed. The third core block,

Core Block III: Contributions, presents the work contributions. Then, Core Block IV:

Validation, describes application scenarios and respective outcomes and exploitation of

the results. Finally, Core Block V: Conclusions presents final considerations and point

out future contributions that could improve the work developed.

1.5.1 Core Block I: Introduction

This core block is Chapter 1 — “Introduction”, i.e. the current chapter. Begins with a

contextualisation to Internet-of-Things (IoT) theme, highlighting some identified prob-

lems as part of the author’s motivation and consequent vision and research approach for

this work’ contributions. It is also presented the research method used by the author,

followed by the main research question that had risen from the identified problem, from

which derives three sub-research topics to allow a more assertive response to the overall

problem. A hypothesis is proposed to address the main research question.

1.5.2 Core Block II: Background

The core block, Background, composed by three chapters serves as basis for this research

work, and in this sense, is of major importance. Chapter 2, Internet-of-Things (IoT),

will address IoT challenges, barriers and trends focus on IoT resource-constrained nature,

9

CHAPTER 1. INTRODUCTION

1

Description of
IoT Systems

Multi-Criteria
Assessment

of IoT Systems

Interoperability
Framework

2 3 4

B
a

ck
g

ro
u

n
d

C
o

n
tr

ib
u

ti
o

n
s

5 6

7

8

9

Conclusions
V

a
lid

a
ti

o
n

Industry & Scientific Community Acceptance

Figure 1.4: Thesis Plan Outline

devices diversity and standards. Followed by Chapter 3, Model-Driven Approaches, a

solid-ground concept and has revealed to be a common ground in literature [19, 21–23].

Chapter 4, Decision-Making Methodologies, focus on MCDM, a thematic considered by

governmental, business, engineering and sciences worlds as one of the most important

decision methodologies.

1.5.3 Core Block III: Contributions

This core block, Contributions, is also composed by three Chapters which are described

next:

• Framework to Formally Describe an IoT System: is the first chapter (Chapter 5)

of this core block. It starts by presenting a literature review on “what” and “how”

descriptions, specifications are made regarding IoT deployments thematics, focus

mainly on devices hardware representations. Then, the proposed framework to

formally describe an IoT System is presented. This framework uses a model-driven

approach to formally specify IoT Systems;

• Assessment Framework for IoT Systems: is Chapter 6, presenting the framework

to perform IoT Systems assessment. First, a literature review is presented showing

how MCDM methodologies have being applied to IoT independently of the area

10

1.5. THESIS PLAN OUTLINE

(e.g.: security, communications, platforms, etc.), since the proposed framework

is a novel-framework focused on an existing problem not yet addressed — IoT

Systems multi-criteria assessment. Specification models are presented, as well as,

the proposed assessment methodology for a multi-criteria analysis of IoT Systems.

The framework enables the use of different MCDM methods, even new or user-

defined within the proposed assessment methodology;

• Framework for Design Support of IoT Systems: is the final chapter (Chapter 7)

of this core block. It presents the conceptual approach for design support of IoT

Systems. To materialise the conceptual approach is proposed a framework that

embraces, aggregates the two previous contributions providing a mechanisms to

assist stakeholders on the decision of IoT Systems, enabling conscious and justifi-

able decisions upon more suitable IoT System(s), strengthened with modules that

enable integration, interoperability with systems and tools (e.g. Standards, energy-

assessment tools).

1.5.4 Core Block IV: Validation

This core block, Validation, correspond to Chapter 8 “Implementation and Hypothesis Vali-
dation”. In this Chapter, scenarios were described that allow to demonstrate the proposed

contributions functionality and to test the design idea of the conceptual approach for

design support of IoT Systems. It follows technical implementations addressing each

test-case, with IoT Systems formal representation, multi-criteria assessment and the iden-

tification of the more suitable IoT System during a Smart Building Ecosystem design. It is

also presented a test-case to validate the interoperable nature of the proposed framework,

but also evidence that this work contributes with a very useful tool to assist in the design

of IoT Systems with the capability to be integrated with IoT Ecosystems management

systems. Providing a set of structure data (IoT System information) needed to define

observations, behaviours, functional aspects and processes. It is also addressed the ac-

ceptance of the work presented, both by peer researchers and also industrials. During

this research work the author has published in a number of international conferences and

scientific journals, and adds his work put-to-test in an industrial scenario.

1.5.5 Core Block V: Conclusions

This core block is Chapter 9 — “Conclusions”, in which the main conclusions of the

developed work are presented, enhancing the novelty of this research. Then, it is point

out future contributions that could improve the work developed and to promote further

developments.

This is followed by an extensive list of bibliography and some appendixes.

11

C
h
a
p
t
e
r

2
Internet-of-Things (IoT)

The Internet-of-Things (IoT) is today a reality. IoT has become immensely important

because it is the first real evolution of the Internet, leading to revolutionary applications

with the potential to radically improve humankind. It has brought to Internet sensing

capabilities allowing us to become more proactive and less reactive. IoT will change

everything — including ourselves [7].

IoT deployments are flourishing everyday all over the world and in many application

areas. The constant creation of new technologies and innovation of existing ones, has

been leading us to a new world — a “Smart World”. This is based on systems such as

Smart Cities, Intelligent Transportation Systems, Domotics (Smart Buildings), Industry

4.0, etc., often call Smart Systems. Systems that consist in the integration of computation

units, networking and physical systems [33], built over Wireless Sensor Network (WSN)

which are formed by actuators, gateways and distinct autonomous sensors to monitor

physical or environmental conditions, such as temperature, sound, pressure, etc.

IoT is considered to be a dynamic global network infrastructure where physical and

virtual “things” communicate and share information among each other (see Figure 2.1).

A highly heterogeneous environment, composed by a vast number of “things” (devices,

sensors, smart objects, etc.), that are conceived by an even more number of manufacturers,

and designed for much different purposes [6].

Sometimes it is also called the Internet of Objects, referring to a uniquely identifiable

objects and their representation in an Internet-like structure. Some studies have predicted

the amount of devices connected to the IoT by 2020. Gartner, Inc. states than there will be

almost 26 billion devices [4] and ABI Research defends that will be more than 30 billion

devices wireless connected to the IoT [5].

13

CHAPTER 2. INTERNET-OF-THINGS (IOT)

Physical
World

Cyber
World

Networks

Services

Actions

Physical
Sensing

Figure 2.1: Overview of an IoT Ecosystem.

2.1 Challenges, Barriers and Trends

As stated, it is predicted that the number of digitally identifiable, potentially linked, elec-

tronic devices will increase rapidly. This encourages new commercial IoT deployments,

disruptive opportunities and new services to emerge. Consequently the amount of data

created by the IoT will grow exponentially and will continuously rising into IoT Big Data

[6].

The existence of several “things” providing different types of information (tempera-

ture, humidity, light, noise, Location GPS, pressure, etc.), requires new ways to capture,

storage, analyse, visualise, etc. It also brings large and heterogeneous amount of struc-

tured or unstructured data.

The IoT is also based on a dynamic network infrastructure, with a highly hetero-

geneous environment, multi-manufactures and multi-service [3]. These aspects bring

together good ingredients for interoperability problems. A high level of interoperability

needs to be reached at the communication level, as well as, at service and information

levels. Crossing different platforms, but established on a common ground [34].

In [8], the identified open issues in the IoT are standardisation, communication, scal-

ability, security and privacy. In all mentioned topics a remark is made — the energy

consumption. Devices have low energy capabilities to perform exhaustive computations.

The white paper [7] refers as challenges to IoT development, the deployment of Inter-

net Protocol version 6 (IPv6), energy consumption and standards especially for security,

privacy, architectures and communications. The research work presented in [33] distin-

guishes some needs for future IoT Ecosystems. These are scalability, energy consumption,

standards, architectures, big data, privacy, security, trust and real time-based solutions.

In [9] the authors point out some key features that IoT must support in the future. These

features are: heterogeneity; scalability; data exchange; energy consumption; tracking and

localisation; self-organisation; semantic interoperability and data management; security

14

2.2. WIRELESS SENSOR NETWORKS

and privacy. It is also discussed what are the main limiting factors to the IoT develop-

ment. These factors were identified as being the heterogeneous devices nature, the energy

efficiency and devices dimension.

Through this small review, it is then possible to infer that mainly the IoT development

issues are: scalability; standardisation, specifically to security and privacy; and energy

consumption.

One of the main drivers of the IoT investigation is the European Commission, through

its new research programme call Horizon 2020 (H2020) — The EU Framework Pro-

gramme for Research and Innovation (R&I). In which the Information and Commu-

nication Technology (ICT) Cross-Cutting Activities embraced in 2015 the topic ICT 30

— 2015 Internet of Things and Platforms for Connected Smart Objects. It was intended

that this topic cut across several LEIT-ICT challenges (smart systems integration, Cyber-

Physical System (CPS), smart networks, big data) and brings together different generic

ICT technologies, such as, wireless networks, low-power computing, adaptive and cog-

nitive systems [35]. For 2016 and 2017 the Cross-cutting activities had a special call for

the Internet-of-Things with focus for Large Scale Pilots, IoT Horizontal activities, and

R&I action on IoT integration and platforms [36]. From 2018 to 2020, under ICT scope

was proposed a specific call for IoT (ICT-27-2018-2020). Although, IoT concept is re-

ferred in other calls, involving big data and large-scale test-beds (ICT-11-2018-2019),

digital innovation and interoperability for industry and services (DT-ICT-10-2018-19),

and cyber-security (SU-ICT-02-2020). It was also proposed joint calls with other world

countries. A call with Japan focused on advanced technologies combining Security, Cloud,

IoT, Big Data for a hyper-connected society. With Korea focus on Cloud, IoT and Artificial

Intelligence technologies [37].

IoT is a relevant part in the new generation of information technology, covering an

extremely wide scope. IoT potential is great, but it is also an important challenge to

society due to the vast range of issues that still need to be addressed.

2.2 Wireless Sensor Networks

In the recent past, Internet-of-Things (IoT) deployments were confined to small implemen-

tations in personal houses or in laboratories; each individual creates their own Wireless

Sensor Networks (WSN). Today IoT deployments are all over the world and in many

application areas, such as Smart Cities, Intelligent Transportation Systems, Industry 4.0,

etc.

These deployments are composed by WSN which are distributed systems formed by

many battery-powered devices (called sensor nodes or motes), which can be actuators,

gateways or distinct autonomous sensors that monitor physical or environmental condi-

tions, such as temperature, sound, pressure, etc. (see Figure 2.2).

15

CHAPTER 2. INTERNET-OF-THINGS (IOT)

Sink/
L3 Gateway

Mote/
Node

Figure 2.2: Example of a Wireless Sensor Network (WSN).

2.2.1 WSN Specific Issues

Sensor nodes (motes) present features from both embedded and general-purpose systems

[38]. Due to their small size, limited resources, and other aspects, restrictions still per-

sistent regarding computation, communication, power, etc. They are normally deployed

in areas (e.g. a city, an office) using an ad-hoc fashion way (a need to-do base), which in

some cases could result in situations where it is difficult to perform human interventions,

such as, the constant replacement of node’s batteries [39].

IoT Systems (motes) carry out simple and small applications which are developed

using a specific sensor node Operating System (OS). In a sensor network, motes execute

tasks such as sensing the environment (e.g. through temperature, humidity, CO2 emis-

sions sensors), converting the analogical data into digital, send and receive data from/to

the network using wireless links. The OS thematic will be addressed in Section 2.3.4.

Wireless Sensor Networks (WSN) presents some specific design and resource con-

straints, not seen in traditional networks. The resource constraints include the amount

of available energy, short communication range, low bandwidth, limited processing and

memory (storage) in each sensor node. Design constraints of a WSN are mainly the en-

ergy efficiency, cost and application requirements. An optimization at both hardware and

software levels are needed to make a WSN more efficient [11].

IoT Systems operate typically in different cycles, namely snoozing (low power mode),

processing, and transmitting data [39], since they are normally battery-powered devices,

an efficient energy consumption policy is mandatory to increase their lifetime. Actually,

the radio transmission is the operation that consumes more energy. The transmission of

a single bit consumes about as much energy as executing 800 to 1000 instructions [40].

Nevertheless, the total energy consumption of a node is given by the addition of the

energy spent by each physical component. Components, such as: radio, processor, sensor,

leds and external memory. Each component consumes a specific amount of current to

operate. Also the current spent by a component, depends from the state is operating

(generally supplied by the manufacturer) [39]. Therefore, the total energy consumed by a

physical component is given by the sum of the current spent at each one of the operating

16

2.2. WIRELESS SENSOR NETWORKS

states.

Unfortunately, there is no standard benchmark for WSN although some research

groups have proposed some ideas as in [41] and [42]. This is mostly due to the fact

that, without running the same application on each system is difficult, if not impossible,

to compare fairly the performance of different systems. For example, a common used met-

ric to compare different systems is the energy per instruction, but has being questioned

because the notion of an instruction is lost when referring to architectures like Charm or

Harvard Event-Driven (accelerator-based architectures). Therefore, the analysis through

this metric could actually lead to completely misleading conclusions [10].

2.2.2 Resource-Constrained Systems (RCS)

With the growing interest of major technology players on Internet-of-Things (IoT), it has

been seen a constant evolution of micro-electronic technologies, bringing to this domain

a series of devices which enable the realisation of the IoT concept. Markets are offering a

wide device diversity, with a very specific characteristic — Resource-Constrained. Man-

ufacturers are engaged in developing new embedded systems for different purposes to

address the variety of application domains and services. This factor enhances even more

the established heterogeneous nature of IoT Deployments, and unlocks the use of a wide

set of hardware platforms and software solutions (OS as implementation techniques).

Devices, also known as motes or sensor nodes, are categorised as Resource-Constrained

Systems (RCS) as result of their particular features, such as small size, low-power, low

processing and storage capabilities, sensing and wireless communication. However, an-

other particularity emerges from such characteristics — devices Operating Systems (OS).

IoT Systems tend to execute embedded applications such as sensing/monitoring the en-

vironment, act, along with some computation and communication tasks. Applications

running on top of limited resources which needs specific OSs to be properly managed.

These characteristics allow Wireless Sensor Networks (WSN) to differ from other

wireless technologies. It is a network of spatially disperse, distinct, autonomous and

dedicated sensors, sensing physical or environmental conditions, with capability to collect

and transmit data to a central unit.

Manufacturers are being able to offer reasonably cheap sensors, and still maintain

accurateness/preciseness and reliability. A single device, it is by its own a system, com-

posed by different hardware components interacting among them and running one or

more programs/firmware, i.e. an IoT System. The most popular OSs for WSN will be

addressed in Section 2.3.4.4.

2.2.2.1 Hardware Technology

Hardware technology applied in sensor nodes manufacturing is experiencing many changes

due to the advances in Micro-Electro Mechanical System (MEMS), wireless communica-

tions and digital electronics that have led to small and cheap sensor nodes [11, 12]. A

17

CHAPTER 2. INTERNET-OF-THINGS (IOT)

wireless sensor node is composed by a micro-controller, memory, timer, transceiver, bat-

tery, sensing unit and Analog-to-Digital Converter (ADC) [43].

Figure 2.3 presents a block diagram of a typical architecture for a sensor node, which

is composed by a set of hardware components, described as follows: A low frequency

micro-controller when compared to traditional processing units (e.g. Personal Computers,

Smart-Phones); with internal Random-Access Memory and Read-Only Memory modules;

Several clocks to local synchronisation; External memory (flash memory) with better

capacities than the internal memories; A transceiver enables wireless communication and

supports WSN specific communication properties, such as low energy, low data rate and

short distance communication; A battery providing energy; and finally an ADC to convert

analogue data from the sensing unit (e.g. temperature, light sensor) to digital data.

Battery

Micro-
Controller

Ex
te

rn
a

l
M

em
o

ry A
D

C

Sensing
Unit

Transceiver

Figure 2.3: Typical Sensor Node Architecture.

Sensor nodes are typically design around its core module, the micro-controller. Some

examples of micro-controllers are the Atmel ATMega 128L [44] and the Texas Instruments

(TI) MSP430 [45], which are designed for low-power operations and general-purpose

application. Although, these processor units support low-power idle states (consuming

less than 5 µA in the case of the MSP430) that implies disabling the entire processor and

waking it up on the next interrupt [10].

In a WSN is mandatory that sensor nodes own a transceiver (radio component) unit

to connect them to the rest of the wireless network. The most commonly used radio

component for motes is the TI-Chipcon CC2420 (Single-Chip 2.4 GHz IEEE 802.15.4

Compliant and ZigBeeTM Ready RF Transceiver) [46].

Motes are limited battery-powered devices, making the power unit one of the most

important components in the sensor node architecture. There is significant research focus

around making an energy-efficient management of these devices, namely harvesting and

minimizing the energy consumption.

Energy harvesting (energy scavenging) is the process of retrieving energy from an ex-

ternal source. Known external energy sources are solar cells [47], vibration [48], fuel cells,

acoustic noise, and a thermal diffusion [49]. Minimize the energy consumption can be

achieved through significantly, by improving the energy performance of the applications.

18

2.3. STANDARDS

2.3 Standards

The Internet-of-Things IoT is becoming an enormous success in terms of connecting

people and all kind of objects. Objects have their own identifiers, with the ability to

address other objects and verify their identities. Although, the lack of accepted standards

and the huge fragmentation of the IoT market [50], makes the need for standardisation a

key aspect in IoT. Many international organizations are working on define standards at

different levels for the IoT (see Figure 2.4).

Data

Protocols

Embedded
Operating
Systems

Embedded
Specific

Software
Open

Source

Platforms

By
Companies

Communication

Figure 2.4: IoT Standardisation.

Standardisation initiatives face a wide group of available standards, each one stat-

ing that they are the solution to the problem in hand in their working area. Looking to

IoT protocols, diversified standards are ready to use, such as Zigbee (802.15.4) or Blue-

tooth among others, from a communication point of view. The same happens at data

interchange level. Standards like Advanced Message Queuing Protocol (AMQP) or Mes-

sage Queuing Telemetry Transport (MQTT) are not unique but widely used by different

platforms/middleware. Different platforms bring different OSs and software.

The following sections point out the more important organisations and alliances work-

ing to grasp and solve this issue in IoT, that is “standardisation”. The large scope of

protocols, platforms and consequently software is also addressed.

19

CHAPTER 2. INTERNET-OF-THINGS (IOT)

2.3.1 Organisations & Alliances

The European Telecommunications Standards Institute (ETSI)2 is a leading standardis-

ation organisation, that produces high quality, innovative and globally applicable stan-

dards for the ICT. Committed to standardise fixed, mobile, radio, converged, broadcast

and internet technologies, protocol testing and methodology and they also offer forum-

hosting services. ETSI is an independent, not-for-profit organisation with more than 700

member organisations over 62 countries across 5 continents world-wide, and is officially

recognized by the European Union as a European Standards Organization.

The Internet-of-Things (IoT) is becoming an enormous success in terms of connecting

people and all kind of objects, since in a not too distant future, objects will have its own

identifier, the ability to address other objects and verify their identities. According to

ETSI, “An increasing number of everyday machines and objects are now embedded with

sensors or actuators and have the ability to communicate over the Internet. Collectively

they make up the Internet-of-Things (IoT)”.

ETSI is committed to standardise various technologies, such as Radio-Frequency iden-

tification (RFID), Machine-to-Machine (M2M) and WSN to integrate these ’smart objects’

into a communication network and guarantee its openness and interoperability. ETSI is

one of the members of oneM2M, a global partnership initiative to provide a standard

M2M interface, to enable different devices to connect, independently of the network, to

the IoT.

International Organization for Standardization (ISO)3 is a non-governmental, inde-

pendent international organisation focus on sharing knowledge and develop international

standards, relevant to the market, that supports innovation and bring solutions to world-

wide challenges. Together with International Electrotechnical Commission (IEC) they

have been providing standards in IoT scope, such as: an interoperability framework for

information exchange between IoT Ecosystems and use that information in an efficient

way; design of a standard reference-architecture for IoT; description of concepts, char-

acteristics, and technologies for edge computing; as many other. At this moment, ISO

and IEC are working together to present standards for Cybersecurity — IoT security and

privacy.

The Institute of Electrical and Electronics Engineers (IEEE)4 created an initiative call

IEEE IoT Initiative with the objective of bring the IoT global technical community to-

gether, providing a platform for professionals where they can learn and share knowledge,

collaborate on technologies, applications and markets surrounding the IoT. The IEEE IoT

is one of IEEE’s important, multi-disciplinary, cross-platform Initiatives.

The Internet Engineering Task Force (IETF)5 is a large open international community

2https://www.etsi.org/
3https://www.iso.org/
4https://www.ieee.org/

20

2.3. STANDARDS

concerned with the evolution of the Internet architecture and its Internet smooth oper-

ation. To do so, IETF, focus in produce relevant, high quality technical documents that

can influence people on their design, use and manage of the Internet.

IETF working groups, in multiple areas, develop standards that are directly relevant

to the IoT. Some working groups are: the Constrained RESTful Environments (CoRE)

Link Format which aims to extend the Web architecture to most constrained networks

(e.g., IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) [RFC4919])

and embedded devices (e.g., 8-bit microcontrollers with limited memory); the 6LoWPAN

group which defined mechanisms to encapsulate and compress IPv6 packets headers, so

they could be used over IEEE 802.15.4 based networks, i.e. in constrained radio links;

The International Telecommunication Union (ITU)6, founded in 1865, is the oldest

specialized agency in United Nations (UN). It is responsible for information and commu-

nication technologies issues. Namely, coordinate the use of radio spectrum globally; re-

sponsible for international cooperation regarding satellite orbits; improve world telecom-

munication infrastructure; and assist in the development and coordination of technical

standards worldwide. ITU includes three sectors, besides ITU Telecom, which are the

Radio communication (ITU-R), Development (ITU-D) and Standardization (ITU-T).

The ITU Telecommunication Standardization Sector (ITU-T) are study groups formed

by experts around the world, with the goal of develop international standards to be used

by the global infrastructure of ICTs. These standards are known as ITU-T Recommenda-

tions. One example of ITU-T study groups is the “SG20 - IoT, smart cities & communities”.

The Object Management Group (OMG)7 is an international, open membership, not-

for-profit technology standards consortium, founded in 1989. Its work is focused on the

development of integration standards for technologies and industries. OMG provides

modelling standards, such as Unified Modelling Language (UML) and Model-Driven Ar-

chitecture (MDA), which facilitates software design through visual blocks integration,

as well as, development and maintenance of software and other process. OMG presents

also a middleware standard specifically for real-time and embedded systems called OMG

Data Distribution Service (DDS) for Real Time Systems, using publish-subscribe commu-

nications.

The World Wide Web Consortium (W3C)8 is an international community working

together to develop Web standards. W3C goal is to join different interested Information

Technology (IT) parties to work on web issues: “The objective of the W3C is to bring the
web to its full potential”. As the primary international standards organisation for the web,

the consortium includes well know standards like Hypertext Transfer Protocol (HTTP),

Hypertext Markup Language (HTML) and Extensible Markup Language (XML).

W3C created the Web of Things Community Group to easy the adoption and devel-

opment of standards for the Web of Things, counter the fragmentation of IoT, enabling

5https://www.ietf.org/
6https://www.itu.int
7http://omg.org/

21

CHAPTER 2. INTERNET-OF-THINGS (IOT)

services and devices for the IoT. One W3C Recommendations published regarding the

IoT is the Semantic Sensor Network (SSN) ontology, intended to describe/model sensors,

systems, processes and observations.

The Organization for the Advancement of Structured Information Standards (OASIS)9

is a global not-for-profit consortium originally founded in 1993 under the name “Stan-

dard Generalized Markup Language (SGML) Open”, changed in 1998. OASIS focus on

the development, convergence and adoption of open standards in many areas, like IoT,

security, energy, cloud computing, etc. Some of the well-known standards proposed by

OASIS are for example AMQP and MQTT.

As stated previously, oneM2M10 is a global partnership initiative to provide a stan-

dard M2M interface, to enable different devices to connect, independently of the network,

to the IoT. It was launched at July 24, 2012 by seven of the world’s leading ICT Standards

Development Organizations (SDOs) to ensure the most efficient deployment of M2M

communication systems. oneM2M members are working in technical specifications to

provide a common platform to support services and applications in different areas, such

as, smart grid, connected car, eHealth, etc. Ultimately, the work developed will drive mul-

tiple industries to a lower operating and capital expenses, shorter time-to-market, expand

and accelerate global business opportunities, and avoiding standardisation overlap.

Dozens of organisation and coalitions have been formed with the objective of unify

the fragmented, fractured and organic IoT landscape, although others could be point

out. Namely, the Open Geospatial Consortium (OGC)11, an international voluntary con-

sensus standards organization that is also a member of the ITU-T; International Society

of Automation (ISA)12 a not-for-profit professional association that sets engineering and

technological standards in management, safety and cybersecurity areas; International

Electrotechnical Commission (IEC)13 an international standards organisation working

for all electrical, electronic and related technologies; etc.

2.3.2 Protocols

When it comes to IoT protocols, developers encounter dozens of competing communica-

tion protocols. Next, is given an overview of IoT protocols divided in two main topics:

Wireless Communication Protocols; and Data Protocols. The first, focus on physical

transmission, while the second on how messages are built and exchange.

8https://www.w3.org/
9https://www.oasis-open.org/

10http://www.onem2m.org/
11http://www.opengeospatial.org/
12https://www.isa.org
13https://www.iec.ch/

22

2.3. STANDARDS

2.3.2.1 Wireless Communication Protocols

Wireless communication protocols can be divided in groups, either by transmission range,

frequency or by the amount of data transmitted (bit rate). The standard list is immense,

therefore, only a few are addressed in detail. Protocols are organised by transmission

range. The selected protocols are RFID, Near-field communication (NFC), Zigbee, Z-

Wave, Bluetooth, Wi-Fi, WirelessHart, SigFox, Long-Range (LoRa), Narrowband IoT (NB-

IoT) and Global Positioning System (GPS). Although, there are others such as WiMax,

EnOcean, ANT, etc.

Usually the communication protocols in IoT are divided into 3, 4 main groups regard-

ing transmission range. For very close transmission is designated the Wireless Personal

Area Network (WPAN), that includes transmissions up to 10 meters long. The Wire-

less Local Area Network (WLAN) covers transmission areas up to 1 kilometre. Wireless

Metropolitan Area Network (WMAN) that goes up to 50 kilometres. Last one, Wireless

Wide Area Network (WWAN), that in some literatures aggregates WMAN, covers all

higher transmission ranges. See Figure 2.5.

60GHz

2,4GHz

1,57GHz

1,22GHz

915MHz

868MHz

784MHz

Bluetooth ZigBee

ZigBee

WirelessHART

Z-Wave SigFox

GPS

450MHz

13,56MHz

10GHz

RFID

130KHz

Wi-Fi

NB-IoT

NFC

WPAN WLAN WMAN WWAN

LoRa

LoRa

Figure 2.5: IoT Protocols: Radio Frequency and Network Areas.

WPAN - Wireless Personal Area Network

Radio-Frequency identification (RFID) is the process where items are identified using

radio waves. At a minimum it is formed by a two nodes network, a passive device (e.g.:

a tag) and one active device (powered). Tags contain electronically-stored information

which retrieves power from radio waves emitted from a near active device, making it

readable. Data exchange between two nodes is also possible if both devices are powered.

RFID is used in different frequencies, that can go from 120 KHz (e.g.: animal identifica-

tion) to 3.1 − 10 GHz (needs active tags). Lower frequencies allow transmission ranges

around 10 centimetres going up to 200 meters with higher frequencies [51].

23

CHAPTER 2. INTERNET-OF-THINGS (IOT)

The NFC is a communication protocol that uses electromagnetic induction between

two antennas (two devices) [52], based on the RFID standard. NFC operates on 13.56

MHz radio frequency, which is globally available but unlicensed [53]. Works on a very

low distance between devices, normally 4 centimetres, with a transmission rate from 106

to 424 kilobit per second (kbit/s). A active-passive network is used to identify objects or

retrieved PINs (e.g.: for payments).

Zigbee is a wireless communication based on the IEEE 802.15.4 specification for

WPAN. Zigbee works on the 2.4GHz radio band, i.e. Industrial, Scientific, and Medical

(ISM) band. Although, in some countries it can operate at different frequencies, like in

China at 784 MHz, 868 MHz in Europe and at 915 in USA and Australia. Data transmis-

sion can go from 10− 20 meters indoor, up to 1500 meters outdoor depending on power

output and environmental characteristics [54]. Regarding transmission rate, in the 868

MHz band it is 20 kilobit per second (kbit/s), and 250 kbit/s in the 2.4 GHz band.

Z-wave had its physical and media access control layers included as an option in

the ITU G.9959 standard for wireless devices under 1 GHz. Designed for low-latency

transmission of small packets with a data rate up to 100 kbit/s [55]. It operates at 908.42

MHz in North America and at 868.42 MHz in Europe. Communications range between

two nodes it of 30− 40 meters with capability to hop between four nodes.

Bluetooth is built mostly for point-to-point wireless communication, exchanging data

over short distances. Although, it works also in broadcast and mesh topologies. Bluetooth

Class 3 can send data up to 1 metre, Class 2 the more common can go up to 10 meters,

and Class 1 used in industrial scenarios can go up to 100 meters [56]. Operates in 2.4 to

2.485 GHz ISM radio band, with data rates that can go from 125 kbit/s to 2 megabit per

second (Mbit/s) for the Bluetooth Low-Energy (LE), and up to 3 Mbit/s with Enhanced

Data Rate (EDR).

WLAN - Wireless Local Area Network

Wi-Fi is the wireless communication technology more used in the entire World [57].

Its technology is based on the IEEE 802.11 standards, with different radio bands, in which

2.4 GHz and 5 GHz are most common. Transmission rates can go up to 600 megabits per

second (Mbit/s), 6.9 gigabit per second (Gbit/s) or 9.6 Gbit/s with versions 4 (802.11n),

version 5 (802.11ac) and version 6 (802.11ax) respectively. Transmission ranges can

vary depending on environmental conditions: indoor/outdoor conditions; clear sight; no

reflecting objects.

WirelessHART is a wireless protocol based on the Highway Addressable Remote

Transducer Protocol (HART). Operates in the license-free ISM radio band of 2.4− 2.483

GHz, like IEEE 802.15.4. It was developed as an open industrial standard to tackle the

need for wireless communication at field level in industrial process [58]. WirelessHART

transmission rate can go up to 250 kbit/s, with a range around one hundred meters.

WMAN - Wireless Metropolitan Area Network

Sigfox, like other communication protocols already presented, uses two frequencies

from the ISM radio bands, 868 MHz for Europe and 902 MHz for United States. Sigfox

24

2.3. STANDARDS

radio messages are small, less than 26 bytes, but with a limited number of messages per

day. Cells are deployed in 30− 50 kilometres average range in rural areas, while in urban

areas it is 3−10 kilometres apart. Transmission goes from 100 to 600 bits per second [59].

LoRa (Long-Range) uses license-free frequency bands depending on the place it is

used. In Europe, South Africa, Asia and Australia it is used 433 MHz. 868 MHz frequency

is used in Europe. United States and Australia use a 915 MHz band. LoRa end nodes can

transmit over 5− 10 kilometres range. LoRa data rates goes from 290 bit/s to 50 kbit/s

depending on the frequency band used [60, 61].

The NB-IoT is a cellular IoT technology working in a licensed spectrum (Long-Term

Evolution (LTE), GSM and UMTS bands). Also known as LTE Cat NB1, NB-IoT is a part of

the 3GPP Release 13 standard. NB-IoT can operate in three modes: inband, guardband,

or standalone. Due to NB-IoT small bandwidth size, 200 KHz, it can be deployed in

side LTE band — inband, between two continuous LTE bands — guardband, or it can be

deployed between two GSM channels — standalone. NB-IoT provides a communication

range up to 15 kilometres with a peak rate up to 250 kbit/s for downlink and uplink

transmissions [62–64].

WWAN - Wireless Wide Area Network

The Global Positioning System GPS is a satellite system owned by the United States

government, than transmit radio signals for position, navigation and time services. With

a network of at least 24 operational satellites, messages are continuously broadcast to

GPS receivers on two different frequencies. One at 1.57542 GHz and the second at 1.2276

GHz with a 50 bit/s transmission rate. Satellites fly in medium Earth orbit at an altitude

of approximately 20.200 kilometres [65].

Table 2.1 shows the wireless protocols mentioned previously organised by transmis-

sion rate.

Table 2.1: IoT Protocols: Transmission Rate.

50
bps

100
bps

290
bps

600
bps

50
Kbps

100
Kbps

125
Kbps

250
Kbps

424
Kbps

2
Mbps

3
Mbps

600
Mbps

6.9
Gbps

9.6
Gbps

Sigfox
GPS

LoRa

Z-
Wave

Bluetooth
(BT)

Class 1

NB-IoT;
WirelessHart;

Zigbee
NFC BT

Class 2
BT

Class 3 Wi-Fi

2.3.2.2 Data Protocols

Data elements are exchange between components to trigger a certain procedure or just to

transfer data. The use of asynchronous communication makes the relationship between

components less narrow when comparing to the common synchronous method [66, 67].

25

CHAPTER 2. INTERNET-OF-THINGS (IOT)

Asynchronous communication allow systems to work more freely, individual subsys-

tems communicate with no restraints on tasks execution speed, clock rates or network

delays. Independently, subsystems continue with their functions/tasks. There is no

blocking stage waiting for another subsystem response [68]. In this sense, the use of

asynchronous communication provides scalability and extensibility to systems [67]. Sub-

systems can go to sleep, wake up or new ones can be added to the global system that it

will not break. Also, global systems can take advantage by including other subsystems,

capabilities and functionalities can be removed, increased or create new ones.

Asynchronous communication is present in our daily life, for example when a email

is sent, is used a send-and-forget approach. Or when visiting a web site, the browsers will

not freeze waiting for a response allowing users to perform other tasks. However, not

always an asynchronous solution can be applied, for example, a real-time communication

between two persons. In these cases, a synchronous communication must be used.

Message exchange, i.e. interaction, between nodes/components is based in mecha-

nisms often called Message-Oriented Middleware (MOM). MOM is a specific software

class that gives support for message exchange among a distributed environment of soft-

ware and hardware systems [69]. Based on this approach, several application layer pro-

tocols were developed, for example: AMQP, MQTT, Constrained Application Protocol

(CoAP), Streaming Text Oriented Messaging Protocol (STOMP), DDS, Extensible Messag-

ing and Presence Protocol (XMPP) and Java Message Service (JMS).

AMQP was born in 2003 by the hand of Jonh O’Hara to tackle the development of

front- and back-office processing systems for investment banks. AMQP is built upon

two main models, the transport and queuing model [70]. The transport model is based

in a binary protocol that uses network byte ordering, to address high performance and

flexibility, and therefore is more hardware friendly than human friendly. Queuing model

deals with services semantics to achieve interoperability among entities as well as storage.

Queues reside on final destinations or intermediate components.

To support message delivery, AMQP provides the use of Point-to-Point (PtoP) and

store-and-forward message exchange. Also, messages size can go up to several gigabytes.

Due to demand and general use, several known AMQP implementations have emerged.

From proprietary: IBM WebSphere MQ or Microsoft Message Queuing (MSMQ); to Open-

Source Software (OSS): RabbitMQ14, Qpid15, or ActiveMQ16; to mention some examples.

Another application layer protocol is the Message Queuing Telemetry Transport (MQTT)

[71], which is an OASIS Standard (currently at version 3.1.1) for message transport. De-

veloped by Dr Andy Stanford-Clark and Arlen Nipper of Arcom in 1999, MQTT stands

for MQ Telemetry Transport. It is a M2M (or Client Server) publish-subscribe message

protocol, built to be simple, open, lightweight and easy to implement a connection pro-

tocol for the IoT. Consequently, ideal for constrained environments where small size,

14http://www.rabbitmq.com/
15http://qpid.apache.org/
16http://activemq.apache.org/

26

2.3. STANDARDS

low power, small number of data packets, and small code footprint are important re-

quirements. MQTT protocol runs over a network protocol that provides ordered, lossless,

bidirectional connections, for example: Transmission Control Protocol / Internet Protocol

(TCP/IP).

Another application layer protocol is the Constrained Application Protocol (CoAP)

[72], specified as RFC 7252 in the Standards-Track by IETF. CoAP was designed for

M2M applications, in which the application interaction follows the request/response

model and with capability to discover services and resources. The main objective of

CoAP protocol is to be a generic web protocol focus on the specific characteristics of a

constrained environment (nodes and networks). These characteristics includes low-power,

low memory (ROM and RAM), multicast support, very low overhead. It also presents an

easily interface with HTTP, for integration with the Internet.

Streaming (or Simple) Text Oriented Messaging Protocol (STOMP)17, is a wire format

interoperable protocol design for asynchronous message exchange. Similar to HTTP, it

distinguishes itself from others by using only a few message operations rather than pro-

vide a complete messaging Application Programming Interface (API). It has been used for

many years, supported in several message brokers and client libraries (as demonstrated

previously), STOMP is an alternative protocol to others, like AMQP and JMS brokers spe-

cific implementations (e.g. OpenWire). STOMP allows servers to define what semantics

they want to use, changing from server to server, as well as, from client to client, making

it a more flexible protocol [73].

Data Distribution Service (DDS) [74, 75], is a data communication standard for

publish-subscribe systems managed by the OMG6. DDS specification provides a dis-

tributed application communication and integration, using a Data-Centric Publish-Subscribe

model. This model is based on the principle of a “global data space”, in which data is also

available between time-decoupled publishers and consumers.

OMG DDS M2M middleware intends to be scalable, secure and with a high-performance.

It is a complete decentralised architecture, providing a dynamic discovery service, Quality-

of-Service (QoS), security, web integration, among others characteristics. DDS is inde-

pendent of language and OS, and has been implemented in C, C++, Java, JavaScript,

etc.

Extensible Messaging and Presence Protocol (XMPP)18 [83] is a communication pro-

tocol to exchange messages and presence information using XML streams. Originally

known as Jabber (created by Jeremie Miller in 1998), it was developed mainly for instant

messaging, chats, voice and video calls, collaboration, etc. The Jabber open source com-

munity wanted to provide an open and decentralized alternative to the existent closed

instant messaging. In 2004 the XMPP core functionality was published as RFC 3920 and

RFC 3921 by the IETF. Jabber Software Foundation renames itself to XMPP Standards

17http://stomp.github.io/

27

CHAPTER 2. INTERNET-OF-THINGS (IOT)
Table

2.2:M
essage-O

riented
M

id
d

lew
are

(M
O

M
)P

rotocols
Su

m
m

ary.

M
O

M
P

rotocol:
Parad

igm
:

Im
p

lem
en

tation
A

rch
itectu

re:
D

iscovery:
Tran

sp
ort:

Q
u

ality
of

Service:
Secu

rity:
E

n
cod

in
g:

O
p

en
-

sou
rces:

R
eferen

ces:

A
M

Q
P

P
toP

or
P

u
blish-

Su
bscribe

B
roker

N
o

T
C

P
/IP

U
p

to
3

p
a-

ram
eters

SA
SL

and
/or

T
L

S
B

inary

A
ctiveM

Q
,

R
abbitM

Q
,

O
p

enA
M

Q
,

A
p

ache’s
Q

p
id

[69][70]
[76][77]

M
Q

T
T

P
u

blish-
Su

bscribe
B

roker
N

o
T

C
P

/IP
U

p
to

3
p

a-
ram

eters
T

L
S

B
inary

A
ctiveM

Q
,

R
abbitM

Q
,

M
osqu

itto

[69][71]
[76][77]

C
oA

P

R
equ

est-
R

ep
ly

(R
ep

resenta-
tionalState

Transfer
(R

E
ST

))

B
roker

or
B

roker
(Server)

Yes
U

D
P

/IP
U

p
to

2
p

a-
ram

eters
D

T
L

S
and

IP
Sec

B
inary

R
abbitM

Q
[78][79]
[80][81]

ST
O

M
P

P
toP

or
P

u
blish-

Su
bscribe

B
roker

(Server)
N

o
T

C
P

/IP
A

p
p

lication
D

ep
end

ent
A

p
p

lication
D

ep
end

ent

Text-
based

or
B

inary

A
ctiveM

Q
,

R
abbitM

Q
,

H
ornetQ

[73][76]

D
D

S

P
u

blish-
Su

bscribe
or

R
equ

est-
R

ep
ly

G
lobalD

ata
Sp

ace
Yes

U
D

P
/IP

or
T

C
P

/IP

U
p

to
22

p
aram

e-
ters

T
L

S,D
T

L
S,

D
D

S
Secu

rity
B

inary
O

p
enD

D
S,

V
ortex

O
p

enSp
lice

[74][75]
[77][82]

X
M

P
P

P
toP

or
P

u
blish-

Su
bscribe

B
roker

(Server)
Yes

T
C

P
/IP

N
one

T
L

S
and

SA
SL

P
lain

Text
A

ctiveM
Q

[83][76]
[77]

JM
S

P
toP

or
P

u
blish-

Su
bscribe

B
roker

(Server)
N

o
T

C
P

/IP
U

p
to

3
p

a-
ram

eters
SSL

or
T

L
S

B
inary

A
ctiveM

Q
,

H
ornetQ

,
O

p
en

M
Q

,
A

p
ache’s

Q
p

id

[84][85]
[76][77]

28

2.3. STANDARDS

Foundation — XSF in 2007, and starts focusing on the development of XMPP specifica-

tion, instead of open source software development.

XMPP is an open standard protocol, with a decentralised architecture capable of

providing secure, extensible and flexible message exchange. It is platform independent

with support for Windows, Linux, Android, OSX, etc. with a variety of programming

languages implementations like C, C++, Java, JavaScript, PHP, Erlang, Perl, etc. XMPP is

used by well-known companies such as: Google, Whatsapp and Apple.

Finally, Java Message Service (JMS) [84], currently at version 2.0 of its specification, is

used by Java applications to send, receive and read messages. JMS supports both PtoP and

Publish-Subscribe messaging allowing components communication to be loosely coupled,

reliable and asynchronous. However, applications in a JMS communication must connect

to a JMS server. A few known MOM implementations, which support JMS specifications

are: ActiveMQ, HornetQ, and Apache Qpid (a JMS client API).

Previously were presented, for the application layer, well known and more relevant

protocols. Namely, the AMQP [70], MQTT [71], CoAP [72], STOMP [73], DDS [74],

XMPP [83] and JMS [84]. Table 2.2 shows an analysis of the mentioned MOM standard

protocols, considering some key criteria. On the other hand, Figure 2.6 presents each

protocol accordingly to the connectivity space it addresses.

AMQP
STOMP
XMPP
JMS

MQTT
DDS

Sink/
Gateway

Sink/
Gateway

Ethernet LAN

Internet

CoAP
Physical
World

Cyber
World

Networks

Figure 2.6: Connectivity Space of MOM Protocols.

Analysing the MOM protocols presented here in terms of open source implementation,

stands out three open source message brokers. These open source middleware implemen-

tations are the RabbitMQ, Apache Qpid and ActiveMQ (see Figure 2.7). RabbitMQ [86]

had become one of the most popular implementation of AMQP. It is an open source,

lightweight, reliable, scalable and portable message broker, written in Erlang, easy to

use and suitable for a cloud scale. It accepts connections through multiple platforms

(e.g.: Windows Servers, Linux, Mac OS X), capable of using different message protocols,

such as MQTT, Simple Mail Transfer Protocol (SMTP), STOMP or HTTP [87]. RabbitMQ

provides client libraries in other programming environments, like Java, Python, C/C++,

18http://xmpp.org/

29

CHAPTER 2. INTERNET-OF-THINGS (IOT)

etc. Its major drawbacks are a poor server’s clustering, no scalability support for more

than 250.000 clients and queues, and it does not react well to DNS/DHCP failures.

RabbitMQ

HornetQ

Apache Qpid

ActiveMQ

SMTP

XMPP

openDDS

DDS

CoAP

MQTT

STOMP

AMQP

JMS

Open
Wire

Figure 2.7: MOM Protocols vs Open Source Message Brokers.

Apache Qpid is a distributed priority queue algorithm for messages passing. Items

are inserted in a logical distributed queue, to be later on removed and processed using

a priority method [88]. Qpid is composed by two types of components, the messaging

API and messaging servers. APIs are a tool used for high-level communication, and to

manage messages acknowledges. They are implemented using for example Java, C/C++,

Perl, Python, among others. Messaging servers, implemented using Java and C++, are

messages brokers working as store-and-forward entities, ensuring messages delivery even

if destination is disconnected. Working environment includes Linux, Windows and Java

Virtual Machine.

ActiveMQ is an open source message broker, which belongs to the Apache Software

Foundation. It is built using Java and uses a full JMS client implementation. Messages

are sent asynchronous or synchronous by a producer to the message broker, which will

transmit the message to the destination (consumer). Consumer confirms the message

reception to the broker [89]. ActiveMQ has been tested in the Windows, Mac OS X and

Linux platforms. It supports several message protocols for a maximum interoperability,

such as: AMQP, OpenWire (binary format), STOMP, MQTT, XMPP, etc., which enables

the use of clients implemented in C, C++, Python, PHP, etc.

Another aspect regarding IoT data is data semantic. Data semantics is associated

to what the data means, to what it concerns for humans rather than to machines inter-

pretation. In a data exchange, within a WSN, there must be a common understanding

between “things” of the meaning of the content (information) being exchanged. The use

30

2.3. STANDARDS

of semantic technologies, in particular ontologies, for domain modelling and knowledge

representation has been seen as a promising approach to address the distributed and het-

erogeneous nature of the IoT, in a way that can facilitate automated machine processing

[6].

Semantic web based standards from W3C, like DAML (DARPA Agent Markup Lan-

guage), RDF (Resource Description Framework) and OWL (Ontology Working Language),

are useful in providing semantic foundations for dynamic situations involving dynamic

discovery of devices and services, and to encompass all contexts of information, so that

devices can interpret information from other devices.

2.3.3 Platforms

Execute an IoT deployment from tail to head is a slow and complex work. Any assistance

is welcome and IoT data platforms already have the necessary tools for connectivity and

data communication with devices, as well as, services management. Next is presented

some IoT data platforms examples covering 3rd party companies, open source and Do it

yourself (DiY) enablers.

2.3.3.1 Supported by Companies

The first example of an IoT data platform provided by 3rd party companies is the Au-

todesk19 Fusion Connect. Fusion Connect is a cloud based IoT application platform focus

on two topics, scalable and applications building. Collects data from physical devices

thorough a cloud native connection interface, called Device Adapter Layer, independently

of message protocols (e.g.: MQTT, CoAP, HTTP). Messages are parsed using a large stan-

dard library and custom device adapters. Applications building (develop an IoT App) is

provided by a no-coding development environment with all necessary tools to construct

a fully functional application [90].

Amazon Web Services (AWS)20 IoT is a platform that provides secure and bi-directional

communication between devices (e.g.: sensors, embedded micro-controllers), smart ap-

pliances and AWS cloud. With capability to connect billions of devices, transport trillions

of messages and applications can track devices all the time, even when they are dis-

connected. Connectivity is supported by HTTP, WebSockets and MQTT. Also, other

industry-standards and custom protocols are supported. Services include gathering, pro-

cess, analysis, as well as, act upon the generated data retrieved from devices, without the

need to manage any infrastructure [91].

The General Electric’s (GE)21 Predix platform is a distributed application and ser-

vices platform to build and run digital industrial solutions. Predix platform was built to

tackle connectivity and security issues in data exchange with remote assets, common in

industrial severe environments. Based on a cloud and edge approach, Predix platform

19https://www.autodesk.com/
20https://aws.amazon.com/

31

CHAPTER 2. INTERNET-OF-THINGS (IOT)

technology enables data processing, storage and data analysis closer to machines leading

to a tight union between machines, control systems, and modern applications, as well

as, smaller amount of data that needs to travel to Predix services. Connectivity between

assets is achieved through a bi-directional communication over OPC-UA, Modbus, or

MQTT protocols [92].

Another example of an IoT data platform provided by 3rd party companies is the

Google Cloud IoT. Similar to the GE Predix platform, Google Cloud IoT provides tools

to connect, process, store and analyse data in the cloud as at the edge (Cloud IoT Edge).

Google is responsible for the infrastructure, meaning that Google Cloud IoT services are

fully manage and do not need user’s local storage. Devices and gateways are connected

using MQTT and HTTP standard protocols, from which all data captured is published,

using a publish/subscribe service, to be consumed by analytic services [93, 94].

Microsoft Azure IoT Suite is a platform composed by services that enables users to

interact (connect, monitor, and control) with billions of IoT devices. Azure IoT services

include management of industrial equipment, healthcare tracking assets, and monitoring

building usage. Connections with IoT devices are made through IoT Hub, a managed

service hosted in the cloud, scalable to millions of simultaneously connected devices and

millions of events. Communication takes place using standard protocol such as Hypertext

Transfer Protocol Secure (HTTPS), AMQP and MQTT. In case, the devices are not able to

implement such protocols, native connections can be established to the hub using HTTPS

v1.1, AMQP v1.0 or MQTT v3.1.1 [95, 96].

A sixth example is the IBM Watson IoT platform. A fully managed platform, where

services are hosted in the cloud, to make it more easy to generate value from IoT devices.

Features such as device registration, secure connectivity, control, fast visualisation and

data storage enables organisations to explore new services and perform better decision-

making. Devices connectivity is achieved by open standards-based communications like

MQTT and HTTPS [97, 98].

Nevertheless, there are other 3rd party companies’ platforms that could be mentioned.

With the grouth of IoT market, companies are committed to create their own solutions

focus on their point of view as on key aspects. Other IoT platform examples are Thing-

Worx22 by PTC, Salesforce IoT Cloud23 or WebNMS Platform24, to mention a few.

2.3.3.2 Open Source Platforms

Kaa’s open source IoT platform goes by the name of Kaa Community Edition. It is the first

generation of the Kaa IoT Platform. Kaa Community Edition provides device manage-

ment, data collection, configuration management, messaging, and more. Open source Kaa

platform needs third-party components to work. Among these components stands out,

21https://www.ge.com/
22https://developer.thingworx.com/en/platform
23https://www.salesforce.com/products/salesforce-iot/overview/
24https://www.webnms.com/

32

2.3. STANDARDS

PostgreSQL for object-relational database management; the MariaDB as database server;

Zookeeper for services managing; and MongoDB or Cassandra as a NoSQL database [99].

Kaa Community Edition platform uses HTTP communication, while Kaa IoT Platform

supports MQTT and CoAP protocols [100].

Another IoT open source platform is the SiteWhere Platform25. SiteWhere provides a

platform for industrial open source IoT applications, with a variety of micro-services that

scale independently and a easy platform integration. SiteWhere infrastructure is built

upon Kubernetes26, an open source container orchestration engine to manage workloads

and services, allowing a local deployment or in any cloud provider. Available micro-

services included assets or events management, big-data storage among others through

a modern, scalable architecture [101]. Communication uses MQTT, by default, with the

possibility of multiple encodings to allow interaction with different device types [102].

The last open source platform example to be presented is the ThingSpeak Platform27.

ThingSpeak is a free service for non-commercial small projects, whit less than 3 million

messages per year or around 8200 messages per day. ThingSpeak Platform provides

services to aggregate, visualize and analyse instant data streams in the cloud posted by

devices. ThingSpeak has the possibility to use MATLAB to perform online analysis and

consequently make sense of the incoming IoT data. Communication between devices and

ThingSpeak is made using TCP/IP, HTTP or MQTT protocols [103, 104].

Many other open source platforms could be point out, such as Macchina Platform28

that offers the possibility of a free account with up to five devices.

2.3.3.3 Friendly Platforms for devices DiY

This section will describe IoT platforms that are focus on the use of well-known DiY

hardware platforms, such as Arduino, Raspberry, etc. The use of such platforms smooths

device integration, in deployment time as well in difficulty.

Altair SmartWorks29 is a cloud-native platform to implement easy-to-use, reliable

and highly-scalable IoT projects. A solution to lead to innovation based on advance edge-

to-cloud IoT applications and augmented data analytics using machine learning. Altair

SmartWorks presents as main features its flexibility, high compatibility with 3rd party

hardware, communication technologies and applications. Communication is achieved

using REST API and MQTT brokers.

Another example is the Ubidots Platform30, an IoT data analytics and visualization

company, focus in connect hardware and software solutions to remotely monitor, control,

and automate processes delivering agile solutions that improve company’s key perfor-

mance indicators and/or services. Point-and-click tools are provided for self-building

25https://sitewhere.io/
26https://www.kubernetes.io/
27https://www.thingspeak.com/
28https://macchina.io/
29https://www.altairsmartworks.com/

33

CHAPTER 2. INTERNET-OF-THINGS (IOT)

applications, enabling developers to create applications that best fit their needs. Ubidots

Platform has a time-series infrastructure optimised to deal with millions of data points

per second across the globe.

Several examples, tutorials are available for both hardware and software implementa-

tion/integration to the Ubidots platform. Engineers encounter wide hardware solutions

such as Arduino, Electrical Imp, Microchip, Raspberry Pi and many others. Communica-

tion is done over HTTP, Transmission Control Protocol (TCP), User Datagram Protocol

(UDP) with MQTT or REST API. Parsing industrial/custom protocols is also possible

[105].

There are other examples, such as: the Initial State Platform31, that presents tutori-

als in how to use the Raspberry Pi, Arduino and Electric Imp hardware; the MyDevices

Cayenne Platform32 with Raspberry Pi, Arduino devices and other hardware platforms;

and Temboo Platform33 that offers solutions with Arduino and Arduino-compatible de-

vices, Samsung ARTIK boards, and with Texas Instruments microcontrollers.

2.3.4 Embedded Operating Systems (OS)

Several Operating Systems (OSs) have being specifically design to meet the requirements

of Wireless Sensor Network (WSN) applications. The main challenge is to efficiently man-

age the sensor nodes scarce hardware resources (memory, processor and power), but also

allow multiple applications to use simultaneous the system resources (e.g.: communica-

tion, computation, memory) [106].

By being of very different nature, WSN OSs presents one of two execution models

types, event-based or thread-based [39]. According to the authors in [43, 107] the most

popular WSN OSs are: TinyOS, Contiki and MANTIS. Next an overview of each one will

be presented.

2.3.4.1 TinyOS

The TinyOS [108] is a multi-platform, flexible, component based and open source WSN

operating system. This OS presents a footprint of about 400 bytes. TinyOS can support

concurrent programs, with low memory requirements and it falls under a monolithic

architecture class. Its execution model is event-based.

TinyOS is written in Network Embedded Systems C (nesC) [109]. nesC is a component-

based programming language based on C, that allows programming interfaces and com-

ponents. TinyOS uses components as independent computational entities that expose

one more interfaces. Components present three computational abstractions: commands,

events and tasks. Commands and events are mechanisms for inter-component communi-

cation, while tasks are used to express intra-component concurrency.
30https://ubidots.com/
31https://www.initialstate.com/
32https://www.mydevices.com/
33https://www.temboo.com/

34

2.3. STANDARDS

The earlier versions do not provide multithreading and the programming was done

following an event driven model. Version 2.1 of the TinyOS introduce multithreading,

called TOSThreads [110], coupled with an efficient event driven kernel. TOSThreads

context switches and system calls introduce an overhead of 0.92% or less to computation

(clock cycles) [108].

Previously it supported a non-pre-emptive First-In-First-Out (FIFO) scheduling algo-

rithm, causing the unavailability for real-time applications. Consequently, TinyOS shared

the disadvantages associated to the FIFO scheduling (waiting time depend of tasks execu-

tion time). Although, in [108] authors claim the additional support for Earliest Deadline

First (EDF) scheduling. Nevertheless, EDF algorithm does not produce a feasible schedule

when tasks concur for resources. Therefore, TinyOS does not provide a solid real-time

scheduling algorithm.

TinyOS version 2.1.1 provides communication support for 6lowpan [111], an IPv6 net-

working layer within a TinyOS network, reserving the earlier versions protocols, Dynamic

MANET On-demand (DYMO) and DIssemination Protocol (DIP) [112]. At the MAC layer,

it provides implementation for the following protocols: a single hop TDMA protocol; a

TDMA/CSMA hybrid protocol which implements Z-MAC’s slot stealing optimization;

B-MAC; and an optional implementation of an IEEE 802.15.4 complaint MAC.

To accomplish resource sharing, TinyOS uses two management mechanisms: the

Virtualization where a resource is virtualize to provide independent instances of that

resource; and the Completion Events to handle resources that are not possible to be

virtualized. It also gives support to other features, such as, database support through

the form of TinyDB [113], security for communications in the form of TinySec [114]

and simulation through TOSSIM [115] (simulation code is written in nesC which can be

directly deployed to nodes). Another important characteristic of TinyOS is that it is very

well documented. Extensive documentation can be found at http://www.tinyos.net, the

TinyOS home page.

2.3.4.2 Contiki

Contiki [116] is a lightweight and flexible OS for tiny networked sensors. It was developed

in the Swedish Institute of Computer Science (SICS) by Adam Dunkels as project leader in

2003. Contiki is an open source OS, written in C [117] and a typical installation consumes

2 kilobytes of RAM and 40 kilobytes of ROM. Contiki OS follows a modular architecture.

At the kernel level it uses a lightweight event scheduler or polling mechanism to trigger

processes. The events can be of two types: asynchronous or synchronous events.

On top of the event-driven kernel, Contiki supports the implementation of pre-

emptive multithreading using protothreads [118], which are design for high memory

constraints. Since events run to completion, and Contiki does not allow interrupt han-

dlers to post new events, no process synchronization is provided [43]. Also being an

event-driven OS, it does not provide any sophisticated scheduling algorithm, as well as,

35

CHAPTER 2. INTERNET-OF-THINGS (IOT)

no implementation for real-time applications.

Contiki provide dynamic memory management and dynamic linking of programs.

Against memory fragmentation, it is used a set of mechanisms: memory block alloca-

tion; managed memory allocation; as well as, the standard C memory allocator (malloc)

[119]. Although, it is worth notice that Contiki does not provide any memory protection

mechanism between different applications [43].

Communication support is available for both IPv4 and IPv6, contains a uIP implemen-

tation (a TCP/IP protocol stack for small 8 bit micro-controllers) supporting TCP, UDP,

ICMP and IP protocols. Contiki also supports single hop unicast, single hop broadcast,

and multi-hop communication. But it does not support multicast. Contiki provides an

implementation of IPv6 Routing Protocol for Low power and Lossy networks (RPL) [120],

named ContikiRPL [121]. ContikiRPL operates over low power wireless links and lossy

power line links.

Regarding the way to access data, the Contiki OS, uses a file system called Coffee

[122]. Coffee is a flash-based file system, that uses a small and constant footprint for

each file, based on the concept of micro logs to handle file modifications without using

spanning log structure. The Contiki also gives support to other features, such as sensor

network simulations through Cooja [123], security for communications using ContikiSec

[124] and documentation can be found at http://www.contiki-os.org/, the Contiki official

page.

2.3.4.3 MANTIS

MANTIS, the MultimodAl system for NeTworks of In-situ wireless Sensors [125], provides

a lightweight, multithreaded and energy efficient operating system. With a footprint of

less than 500 bytes RAM, 14KB flash, which includes kernel, scheduler and network

stack. The MANTIS Operating System (MOS) main feature is that is portable across

multiple platforms, and supports sensor nodes remote management through dynamic

programming. MOS is written in C.

MOS follows a layered architecture. Supports pre-emptive multitasking due to the

facts presented in [126] i.e.: “A thread driven system can achieve the high performance of
event based systems for concurrency intensive applications, with appropriate modification to
the threading package”. MOS maintains two logically distinct sections of RAM. One for

global variables (allocated at compilation time) and another managed as a pile. Data

concurrence conditions are avoided using binary multiplexers and semaphores.

MOS uses pre-emptive priority-based scheduling through the use of a UNIX-like

scheduler, with multiple priority classes and round robin approach within each class.

The energy efficiency is obtained by the scheduler by switching the microcontroller to

sleep mode when the threads are in idle mode. MOS uses priority scheduling (that may

achieve better results that the TinyOS or Contiki schedulers). However, it is still required

the use of real-time schedulers, such as Rate Monotonic and Earliest Deadline First (EDF).

36

2.3. STANDARDS

For this reason it is stated that, also MANTIS does not provide support for real-time

applications.

MANTIS allows dynamic memory management, but it does not recommend it, because

its use incurs in lots of overhead. Also, MANTIS does not provide any mechanism for

memory protection. Resource sharing is achieved through the help of semaphores.

Regarding communication protocols, MOS provides an implementation through lay-

ers. Network stack at a higher level (at the same level that users applications), and MAC

and PHY at a lower level layer (at kernel level) call COMM layer. MOS does not provide

support for multicast applications or group management protocols. Although, it provides

the capability to implement custom routing and transport layer protocols.

MANTIS OS also provides support for wireless sensor network simulation through

Avrora [127], an implementation of a Unix-like shell that runs on sensor nodes. MANTIS

documentation can be found at https://sourceforge.net/projects/mantisos.

2.3.4.4 WSN OSs Summary and Comparative Analysis

Previous sections presented the three most popular Operating Systems (OS) for Wire-

less Sensor Networks (WSN) [42, 43]. These OSs are TinyOS [108], Contiki [116] and

MANTIS [125]. Also, a work in [128], presents a study regarding the number of publi-

cations/articles related to each OS (see Figure 2.8). The main scientific and engineering

online databases analysed were IEEE Xplore, ACM Digital Library and Science Direct.

It is possible to observe that TinyOS is much more used by the scientific community in

comparison with the other OSs.

TinyOS
81%

Contiki
9%

MANTIS
8%

Others
2%

Figure 2.8: Articles Percentage related to each Operating System.

Next is presented a summary of some analysed features (see Table 2.3), and is per-

formed a comparative analyse of the mentioned OSs. Furthermore, in Table 2.4, is pre-

sented a short list of hardware platforms and the correspondent OSs which supports

them.

In Table 2.3 is shown a column, ’Year’, in which first is specified the date of the first

known version and then when was the last known OS change. It is possible that MANTIS

OS is already forgotten, and therefore not a viable solution, since there may no longer

exist development support.

37

CHAPTER 2. INTERNET-OF-THINGS (IOT)

Table 2.3: Summary of WSN OSs Features.

OS: TinyOS Contiki MANTIS

Year: 1999 (vs. 0.43);
2012 (vs. 2.1.2)

2002;
2013 (vs. 2.7)

2003;
2007 (vs. 1.0 beta)

Architecture: Monolithic Modular Layered

Execution
Model:

Event-based;
Multithread

(TOSThread add
in vs. 2.1)

Event-driven
Kernel;

Multithread
(Protothreads)

Multithread

Program
Language:

nesC C C

Footprint: Bytes Order KB Order KB Order

Scheduling: FIFO and EDF

Events run to
completion;

Interrupt
handlers to post

new events

Priority-based
scheduling

Memory
Management

and Protection:

Memory
Protection; Static

Memory
Management

Dynamic linking
and memory

management; No
memory

protection

Dynamic memory
management but it
not recommend; No
memory protection

Resource
Sharing:

Virtualisation
and Completion

events
Serialized access Binary mutexes and

semaphores

Real-time
Applications:

No No No

Communication
Support:

6lowpan; IPv6;
DYMO; DIP;

IEEE 802.15.4

IPv4, IPv6, uIP,
RPL, ContikiRPL

Layered support;
Networking at high
level layer, MAC and
PHY in a lower layer

Communication
Security:

TinySec ContikiSec Not Available

File System: Single level file
system

Coffee file system Not Available

Simulation:

TOSSIM/ Power-
TOSSIM[129,
130], Avrora

[127]

Cooja [123] Avrora [127]

The OSs uses two types of execution models. The early ones (TinyOS and Contiki)

apply an event-based execution and MANTIS apply a thread-based execution model.

Nevertheless, TinyOS and Contiki have already added multithread support to their sys-

tems. The main difference identified in Table 2.3, is the footprint size of each one of the

considered OSs, where the TinyOS stands out by its small size (400 bytes).

TinyOS has memory protection, while the others do not. On the other hand, Contiki

38

2.3. STANDARDS

have the capability to perform dynamic memory management (MANTIS also present

support, but do not recommend its use). Resource sharing is a functionality presented by

all, in one way or another.

TinyOS and Contiki provide abstractions to access data in the shape of file systems.

They use a single level file and Coffee file respectively. The advantage in using this kind of

approach is that users are able to manage entities, identified through file names in order

to access data. It facilitates programming and prevent possible errors, since the user do

not need to be aware about low-level details (e.g. the number of pages to be read/write).

Simulation support is available for all presented OSs.

Table 2.4 displays a list of hardware platforms supported by each one of the presented

operating systems. The author would like to point out that the content of this table was

produced based on several articles from the scientific community, from the OSs home

pages and from hardware platforms manufactures. This is valid up to the date of the

document elaboration.

Table 2.4: List of supported Hardware platforms.

TinyOS: Contiki: MANTIS: References:
Mica X [43, 109, 131]

Mica2 X X [43, 131–133]
Mica2Dot X X [131, 134]

MicaZ X X X [43, 119, 131, 133,
135, 136]

TelosA X X [43, 131, 133, 135]
TelosB X X X [131, 133]

Tmote Sky X X X [43, 131]
AVR series MCU X [43, 119, 137]

BTnode3 X [131]
Rene X [131]
Eyes X [131]

Imote X [131, 135]
Imote2 X [131, 133]
Cricket X [131]

TinyNode 584 X [131, 133]
Mulle X [131, 133]

SenseNode X [131]
Iris X X [119, 131, 133]

MANTIS nymph X [131]
JCreate X [131]

Atmel Raven X [131]
MSB X [131]
ESB X [131]

39

CHAPTER 2. INTERNET-OF-THINGS (IOT)

2.3.5 Security

Security is a vital aspect in any situation and in IoT is not different. IoT security and

privacy are critical themes, that must be addressed with a careful attention so IoT services

can be safe and reliable. Methods must be applied taking into consideration the Resource-

Constrained nature of IoT Systems, since cryptography approaches normally need high

level of computation skills and this leads to a higher consumption of energy.

Many publications [138–141] highlight three security dimensions as more important:

• Authentication and Confidentiality: systems and data is secure and can only be

access by legal, authorised users. A user can be human but also machines and

services;

• Integrity: with data exchange being a top aspect in IoT, is crucial to ensure that

data, information is not tampered. Ensure data accuracy;

• Availability: systems, data should always be available whenever it is needed.

The increasing number of available IoT Systems connected to the network, providing,

working also to provide a large number of services has been putting an extra pressure to

service providers with the increasing risk involving users. To address this, and the weak-

nesses of traditional security policy (a high cost in computation and energy), approaches

have been focus on an emerging and promising new technique to address wireless com-

munication security — Physical-Layer Security (PLS) technologies [142].

An overview regarding the other levels of standardisation, presented in the previous

sections, gives a small idea how security is been addressed and which approaches are

been applied for the different IoT levels. Organisations such as OASIS and ISA are focus

on developing security solutions. MOM protocols use different approaches such as SASL,

SSL, TLS, DTLS, IPsec, application dependent, etc. Two of the three addressed OSs

presented communication security, the TinyOS with TinySec [114] a link layer security,

and Contiki with ContikiSec [124] a network layer.

2.4 Topic Discussion

Internet-of-Things (IoT) is considered to be a highly heterogeneous environment, com-

posed by a vast number of “things” (devices, sensors, smart objects, etc.), sometimes

called the Internet of Objects. IoT is referred as an Internet evolution, a new stage of

the Internet [143]. It is a network of objects, things, systems, applications and people.

The Micro-Electro Mechanical Systems MEMS had a great influence in such evolution,

contributing to smaller and cheaper sensor nodes with capability to communicate and

share information among each other [3, 11].

This section started by presenting the importance which Resource-Constrained Sys-

tems (RCS) have on IoT. They have become increasingly important to society, with strong

40

2.4. TOPIC DISCUSSION

capabilities to give people a more truly environmental awareness and interaction with the

surrounding world. However, as the name implies, these devices (IoT Systems) present

some constraints regarding available resources, such as low power, small processing and

storage capabilities.

It was also identified that the main constraints for IoT development are: scalability;

standardisation, specifically to security and privacy; and energy consumption. The author

would like to enhance the energy efficiency and the diversity of IoT Systems available.

Although, usually challenges related with cost and design robustness are also considered

important aspects.

Identified as one of the IoT main issues, standardisation was addressed covering dif-

ferent areas like communication and data protocols, platforms, embedded OSs, security

aspects and organisations that are focus on standards development and its general use.

With the standards small review (a complete standards survey is a very long theme,

time expensive and complex), is possible to state that the number of solutions is wide

independently of the aspect we intend to address. Section 2.3.2.1 presented a narrow

set of possible wireless communication protocols (e.g.: NFC, Wi-Fi, LoRa, GPS, etc.).

Section 2.3.2.2 addressed data protocols focusing on MOM protocols (e.g: AMQP, MQTT,

CoAP). Section 2.3.4 present only three OSs used to build applications for RCS. These

are relevant, sometimes contradictory features when thinking in the design of one IoT

System.

All pushing in one direction, a vast number of possibilities that put together create an

infinity number of possible solutions. The number of possibilities of each theme goes far

beyond what it was presented in this section. Powered with the diversity, heterogeneous

devices’ nature, is clear that to complete define an IoT System is needed formalisms

capable of digitally describe a hardware platform, application code (that will impose for

example the definition of communication and data protocols) and if available information

regarding energy consumption is very welcome.

From such descriptions will be possible to build, define tools, methods that could

assist on decisions regarding the more suitable IoT System for a specific purpose, or as

input for simulation tools, to better predict devices lifetime in real deployments as well

to serve as diagnostic tool for a more energy-efficient applications.

41

C
h
a
p
t
e
r

3
Model-Driven Approaches

Over the past six decades, researchers and developers have been trying to create high level

software abstractions for applications development and for systems design-phase. These

abstractions focus on language as in platform technologies [144]. Programming language

evolved from machine code, passing through assembly and Fortran, to today’s more

common programming language — object oriented. The same happened with platform

technologies, developers left behind the complexity of having to program directly the

hardware. The evolution of Operating Systems (OS) is a good example.

From the efforts made in past, to increase abstraction levels in software development,

is important to emphasize in 1980s the Computer-Aided Software Engineering (CASE)

and 2000s the Model Driven Engineering (MDE). The next sections will focus on these

two topics.

3.1 A First Attempt: Computer-Aided Software Engineering

In early computers, programmers create their own systems by literally coding instructions

in 1s and 0s. Then an important software innovation arise — the assembly language,

followed by other programming languages with different levels of abstraction. However,

it was highly inefficient, expensive and timeless. Other types of solutions were needed.

Computer-Aided Software Engineering (CASE) focuses on developing software meth-

ods and tools, to automate different activities in systems development life cycle phases.

It is a computer-assisted method to organise, control software development on large and

complex projects, which can also involve many people and project parts. For example,

developers can express their ideas at the design phase, through graphical programming

43

CHAPTER 3. MODEL-DRIVEN APPROACHES

representations, such as dataflow diagrams, state machines or structure diagrams. Pro-

grammers then could use automated code generators to convert the graphical representa-

tions into code [144, 145].

One of CASE goals is to enable a more accurate and better analysis of software pro-

grams. But it can also identify memory leaks and corruption associated to programming

languages. It is able to perform identification of repeated implementation parts, from the

graphical representations, reducing code effort and debugging [144].

In sum, CASE enables the implementation of automated development tools, to in-

crease organisations productivity, decrease costs, improve project controls, and improve

products quality.

3.1.1 CASE Risk Factors

CASE attracted considerable attention in research community and trade literature. Al-

though, it was not widely adopted, since graphical representation languages were mapped

poorly to languages and main platforms. The lack of Quality-of-Service (QoS) properties

(e.g. fault tolerance and security), lead to large amounts of code to compensate. Making

it hard to debug and improve tools, with CASE tools [144].

CASE presents common risks associated to the use of automated technologies to de-

velop/improve systems. First an inadequate standardisation, CASE tools from different

vendors use different code structures and data classifications, which make it difficult

to systems interoperate. File formats can be converted, but usually it is not economi-

cally viable. Second point, is the unrealistic expectations. Implementing CASE strategies

usually involves an early investment, with a long-term payback. Another point is quick

implementation. Organisations should not use CASE tools for the first time on critical

projects or projects with short deadlines. Implementation of CASE tools involves signifi-

cant change to the traditional development environments [146].

3.2 Model-Driven Engineering

Nowadays, IT managers, entrepreneurs and software developers use models for almost

anything. The constant increase of systems complexity, shorter development cycles and

high quality expectations, has push forward, the use of model driven techniques on

modelling/design critical stages of systems development. With the use of model driven

approaches, models have become primary artefacts in software development [147].

This trend, Model Driven, has been followed by academia and industry regarding

not only automatic software development, but also enterprises integration and interoper-

ability. It emerged from efforts such as Model-Driven Architecture (MDA) [148], Model

Driven Development (MDD) [149] and Model Driven Engineering (MDE) [144]. Fig-

ure 3.1 overviews the relations and evolution of these three initiatives. The presented

44

3.2. MODEL-DRIVEN ENGINEERING

dates refers to the first journal publication, as mentioned in [150], and not to the first

appearance.

MDE is defined in [144] as: “Model-driven engineering technologies offer a promising ap-
proach to address the inability of third-generation languages to alleviate the complexity of plat-
forms and express domain concepts effectively”. MDE, in some cases, called Model-Driven

Development (MDD), is an approach to tackle systems complexity through simplification

and formalisation techniques during system life cycle (i.e. from design to deployment,

passing by construction, operation, modification, etc.) [23].

MDA
(2000)

MDD
(2003)

MDE
(2006)

Figure 3.1: MDA, MDD and MDE initiatives.

3.2.1 Models and Meta-Models

With the promising software engineering approach, Model Driven Engineering (MDE),

comes the buzz words — Model and Meta-Model. A basic principle that was very helpful

in engineering along the years, and still is, states that “everything is an object”. This

generalisation has pushed forward to simplicity and systems integration. In MDE, there

is a similar principle, which states that “everything is a model” (i.e. entities, software,

services, platforms, etc.) [151]. Next is presented some notions and definitions regarding

what is a Model, what is a Meta-Model and their relationship.

A model in software engineering is traditionally referred as an artefact, represent-

ed/described using a modelling language. Usually, model descriptions are graph based,

using tools such as the UML [152]. Models in software engineering are divided in two

types: descriptive, which are used to gather knowledge, e.g. requirements, analysis, etc.;

and prescriptive, models used as blueprints for systems design, implementations, etc.

[153].

According to the work presented in [152], a model contains information of some-

thing (content, meaning), created by someone (source), for somebody (target), with some

purpose (usage, context). Among many other descriptions concerning what is a model,

Webster’s new encyclopaedic dictionary [154], states that “A model is a description of some-
thing”. Within MDD scope, models are linguistic by nature, since they are expressed by

some language. The author will adopt this characterization from now on.

45

CHAPTER 3. MODEL-DRIVEN APPROACHES

Another definition of a Model is that it captures a portion of reality that is being

observed and interpreted. A Model uses relationships, abstract elements and properties

from a variety of languages, concepts and formalism levels to represent real-world entities

and its relationships and properties [155].

A model can also be seen as a set of statements/specifications regarding a System

Under Study (SUS) or a class of the SUS. A model interpretation is the recognition in

which ways it could be mapped to SUS or to partial elements of SUS [156].

What is a Meta-Model? Examining the “Meta-Model” word, the prefix “meta” means

literally “after” in Greek; and is used whenever an operation is applied twice (in this case

— to Model). Several Meta-Model definitions can be found, such as “A Meta-Model is a
model of models” [148] and “A Model is an instance of a Meta-Model” [157].

Meta-Model is a specification model for a modelling language, where SUS classes

are expressed. Those classes are the SUS model itself. In sum, a Meta-Model specifies,

through the modelling language, what statements can be made within the Model, to

describe a system. As stated, a Meta-Model is by its’ own a Model. Consequently, must

be also written in a coherent modelling language — Meta Language. This Meta Language

is responsible for the specifications, in which a Meta-Model is expressed. Accordingly, a

Meta-Model describing the Meta-modelling language must also exist, in the same way as

in the Meta-Model/Model relation [158].

Established the notion of what is a model and what is a meta-model, now it is im-

portant to consider the rules which they have to obey. Models must be written in a

well-defined modelling language, and its relationships, classes, attributes that form a

SUS should support/follow the unification principle, as described in Figure 3.2. The SUS

should be described in a coherent way, syntactic as well as semantically.

describes

Language
written in

written in

Meta
Language

describes

SUS
Meta-model

SUS
Model System

Under Study
(SUS)

Figure 3.2: Model and Meta-Models Relationship.

As stated before, modelling languages are described by Meta-Models. A Meta-Model

it is nothing more than a model specifying constructs and relationships used in a given

46

3.2. MODEL-DRIVEN ENGINEERING

modelling language. Meta-Models define solid statements about what can be expressed

in a valid model. Another imperative condition is that a model must be in conformance

with its meta-model. It must not violate any statement and construct rules inherent or

deductible from the meta-model [158].

3.2.2 Model-Driven Architecture

Several approaches have been made available which follows MDD/MDE principles. Among

these can be found: Agile Model Driven Development [159], Domain-oriented Program-

ming [160], Microsoft’s Software Factories [161] and Model-Driven Architecture [162].

MDA is considered to be the more prevailing approach to this moment [23].

MDA, an OMG initiative, was proposed in November 2000 [163] to address inter-

operability issues, based on the MDD principles. Object Management Group (OMG)

is an international, open membership, not-for-profit technology standards consortium,

founded in 1989.

MDA is one example of the broader MDE vision, covering many popular, current

research trends related to generative and transformational techniques in software en-

gineering, system engineering, or data engineering [164, 165]. It uses a well-known

and long established idea of keeping apart the systems operation specification, from the

details of how systems use their own platform capabilities.

MDA provides an approach for, as well as, it enables tools to provide:

• system specification independently of the platform that supports it;

• platforms specification;

• choosing a particular platform for the system;

• and transforming the system specification into one for a particular platform.

The three primary goals of MDA are portability, interoperability and reusability

through the separation of architectural systems parts [148].

3.2.3 MDA Models and Viewpoints

The Model-Driven Architecture (MDA) considers three viewpoints: the computation

independent viewpoint; the platform independent viewpoint; and the platform specific

viewpoint. For each one of the viewpoints, MDA considers a different model.

MDA specifies a standard-based architecture for models, providing a set of guide-

lines to structure specifications, organised around three different abstraction levels (view-

points) [148, 166, 167]: Computation Independent Model (CIM); Platform Independent

Model (PIM); and Platform Specific Model (PSM). The three abstraction levels organisa-

tion is depicted in Figure 3.3.

47

CHAPTER 3. MODEL-DRIVEN APPROACHES

The computation independent viewpoint focuses on the environment in which the

system will operate, and on system requirements. The Computation Independent Model

(CIM) is a system view from the computation independent viewpoint. The structure and

processing system details are hidden or even not determined at this level. It is also called

a domain model or business model, since it is meant for the domain practitioners and

it is based on the specific target domain vocabulary. In this sense, it is useful, not only

as an aid to understand a problem, but also it plays an important role in bridging the

gap between domain experts and development experts, that will build systems and/or

services [148].

System

A
b

st
ra

ct
io

n
Le

ve
l 2

A
b

st
ra

ct
io

n
Le

ve
l 3

A
b

st
ra

ct
io

n
Le

ve
l 1

Figure 3.3: MDA’s Abstraction Layers (viewpoints).

The primary user of CIM (a domain expert), is not familiarize with models or arte-

facts, that further on will accomplish the functionality for which the requirements are

being articulated by the practitioner at CIM level. Therefore, typically such a model is

independent of how the system is implemented.

In a MDA system specification, the CIM requirements should be traceable to PIM and

PSM level constructs, which will implement them, and vice versa. A system CIM might

be a view of one or several viewpoints, each one including one or several models for those

viewpoints. Some can provide more detail than others, or focus on particular concerns of

a viewpoint.

Platform independent viewpoint focuses on operation details, while it hides specific

details of any particular platform, so its use can be suitable to several different platforms.

The Platform Independent Model (PIM) is a view of a system, from the platform inde-

pendent viewpoint. It presents a certain degree of platform independence, so it can be

applied to different platforms of similar type.

The PIM describes part of a complete specification, the part that does not change from

one implementation platform to another implementation platform. It is used to build

formal specifications for structure and functionality of a system, abstracting technical

details. PIM uses a general purpose modelling language or a specific language to the area

in which the system will be applied.

48

3.2. MODEL-DRIVEN ENGINEERING

A platform specific viewpoint combines the platform independent viewpoint with

details that specify how the system uses a particular type of platform. The Platform

Specific Model (PSM) is a system view from the platform specific viewpoint.

A PSM can provide more or less detail depending on its purpose. It can add to

PIM, technical details and implementation constructs that are available in a specific

implementation platform, including middleware, operating systems and programming

languages (e.g. Java, C, C++, VHDL, nesC, etc.). Or, it can be used as a refinement to the

PIM, to further on produce a PSM that can be implemented directly. The PSM is a model

of the same system specified by the PIM, but it also specifies how that system makes use

of the chosen platform.

3.2.4 MDA and Model Transformations

Model-Driven Architecture (MDA) is a software design approach, built to shorten soft-

ware development life cycle, as well as, enhance systems readability for its stakeholders.

It presents a standard-based architecture for models, providing a set of guidelines to

structure specifications, which are organized around three different abstraction levels

[148, 166, 168].

To maintain the relationship between the different abstraction levels and different

systems, two kinds of transformations were defined: horizontal and vertical transforma-

tions (see Figure 3.4). It is important to notice that a system can be or include anything: a

program, a single computer system, some combination of parts of different systems, etc.

Model transformation, i.e., the process of converting one model to another model, is

an important activity in MDE/MDA. Transformations are realised through mappings,

from a source model to a target model, using a specification description, transformation

rules, or other type of information. Each transformation type (horizontal or vertical)

can be accomplished using different approaches: marking, meta-model transformation,

model transformation, pattern application or model merging.

3.2.5 Horizontal and Vertical Transformations

Horizontal transformations (see Figure 3.4) do not affect the abstraction level of the model.

When performing a horizontal model transformation (e.g. refactoring of individual mod-

els, language translation, or even joining different models), an explicit or an implicit

mapping of the “meta-model” has to be performed. This type of transformations is nor-

mally a static process, but due to the constant knowledge change, services, models and

ontologies that regulate systems are not static. This constant change is mainly caused by

the dynamics of global market.

As explained before, MDA specifies a standard-based architecture for models, which

is organised around three different abstraction levels. Since the details of each modelling

level are different, to perform such transformations (vertical transformations) is necessary

49

CHAPTER 3. MODEL-DRIVEN APPROACHES

to define a consistent set of rules that provide extra meaning to components from one ab-

straction level to another. These components usually represent real objects, interactions,

behaviours, services or systems which are represented thanks to a countless number of

modelling languages, with completely different types (e.g., graphical, object-oriented,

etc.) that are able to establish rules for model transformation.

Horizontal
Transformation

Horizontal
Transformation

Horizontal
Transformation

System A System B

A
b

st
ra

ct
io

n
Le

ve
l 2

A
b

st
ra

ct
io

n
Le

ve
l 3

A
b

st
ra

ct
io

n
Le

ve
l 1

Figure 3.4: MDA’s Abstraction Layers and Transformations.

Vertical Transformations (see Figure 3.4) can be achieved through the use of MDA

tools to translate from one abstraction level to another (i.e. refine or abstract a model; they

affect the abstraction level of the model specification). Most of the MDA tools provide a

mechanism to perform model annotations at the different abstraction levels. Additionally,

they provide means to customize transformation rules according to user’s needs, as well

as, predefined PSMs, along with their respective annotation stereotypes for the most

commonly used programming languages (e.g. Java, C++, etc.). The amount of generated

code depends on both the code generator and also on the level of detail represented in

the PSMs (i.e. how well the PSM captures the details of the physical platform).

3.3 Modelling and Transformation Languages

The Model-Driven Development (MDD) can be seen as an approach to create applications

tackling the complexity through simplification and formalisation techniques during the

design phase. Model-Driven Architecture (MDA) is an OMG initiative to address tools

and systems interoperability based on MDD principles, enabling also the transformation

from systems specification (e.g.: design models) to a particular, specific platform (e.g.:

Java).

Next section will address two important topics regarding model-driven standard tech-

nologies, the modelling and transformation languages, which enable the implementation

of MDD approach.

50

3.3. MODELLING AND TRANSFORMATION LANGUAGES

3.3.1 Modelling Languages

The Object Management Group (OMG), organisation responsible for Model-Driven Archi-

tecture (MDA), has adopted some technologies, which together enables the model-driven

approach. These technologies include the Unified Modelling LanguageTM (UML), the

Meta-Object Facility (MOF)TM, Extensible Markup LanguageTM (XML), the XML Meta-

data Interchange (XMI), and Ecore the Eclipse Modeling Framework (EMF) Meta-Model.

Next section will present an overview regarding these modelling languages.

3.3.1.1 Unified Modelling Language (UML)

The Unified Modelling Language (UML) is a standard modelling language that allows

visualising, specifying and documenting software systems. The main purpose of UML

is to provide system architects, software engineers, and software developers with tools

to analyse, design, and implement software-based systems as well as modelling business

and similar processes [157].

However to accomplish these objectives UML has to fulfil some requirements to enable

meaningful exchange of models information between systems, such as:

• “A formal definition of a common MOF-based meta-model that specifies the abstract

syntax of the UML. The abstract syntax defines the set of UML modelling concepts,

their attributes and their relationships, as well as, the rules for combining these

concepts to construct partial or complete UML models.”

• “A detailed explanation of the semantics of each UML modelling concept. The

semantics define, in a technology-independent manner, how the UML concepts are

to be realised by computers.”

• “A specification of the human-readable notation elements for representing the indi-

vidual UML modelling concepts, as well as, rules for combining them into a variety

of different diagram types corresponding to different aspects of modelled systems.”

3.3.1.2 Meta-Object Facility (MOF)

Meta-Object Facility (MOF) is based on a simplification of the UML 2’s class modelling

capabilities which provides the basis for a meta-model definition for the MDA languages,

with core capabilities for model management, regardless of applied meta-model. There

are now two compliance parts: Essential MOF (EMOF) and Complete MOF (CMOF) [169].

MOF Core defined in ISO/IEC 19508, is the technological foundation to describe

meta-models, providing also models repository which can be used to specify and manip-

ulate models in all the MDA phases. Through the MOF platform-independent meta-data

management framework, with a set of meta-data services associated to it, MOF enables

the development and interoperability among heterogeneous models and model-driven

systems.

51

CHAPTER 3. MODEL-DRIVEN APPROACHES

3.3.1.3 eXtensible Markup Language (XML)

The eXtensible Markup Language (XML) is a simple, very flexible text format designed by

World Wide Web Consortium (W3C) to store information that can be read by machines, as

well as, by humans. XML distinguish document’s contents, structures and presentations,

by using XML tags, each one with its own meaning, to represent, identify blocks of data.

XML Meta-Model is composed by five classes: Node (core and abstract class), Element,

Attribute, Text and Root. The classes Element, Attribute and Text inherit from class

Node, while Root inherits from class Element. Node class main attributes are “name” and

“value”. Class Element contains a reference, “children” to enable inclusion of successive

classes of type Node. It also references a package, named PrimitiveTypes, with three

types of primitive data: boolean, integer and string.

Application examples of XML utilisation go from saving and displaying a contact list,

to integrate multiple independent systems, through interfaces defined in XML. There

are currently a number of initiatives to replace proprietary formalization methods by

XML-based methods due to simplicity inherent to XML use.

3.3.1.4 XML Metadata Interchange (XMI)

The XML Metadata Interchange (XMI) main purpose is to simplify the meta-data inter-

change between development lifecycle tools in distributed heterogeneous environments

[170]. Among these tools is possible to find tools based on UML, ISO/IEC 19505, and

meta-data repositories/frameworks based on the MOF, ISO/IEC 19508.

The XMI integrates three key industry standards: the eXtensible Markup Language

(XML), a W3C standard, the UML and MOF from Object Management Group (OMG).

XMI is widely used as the interchange format for XML files. It defines a set of aspects to

describe objects in XML, such as:

• The representation of objects in terms of XML elements and attributes;

• The standard mechanisms to link objects within the same file or across files;

• The validation of XMI documents using XML Schemas;

• Object identity, which allows objects to be referenced from other objects in terms of

IDs and UUIDs.

3.3.1.5 Ecore: Eclipse Modeling Framework (EMF) Meta-Model

Eclipse Modeling Framework (EMF) is a very popular modelling tool that is part of the

Eclipse modelling project, Eclipse Modeling Project (EMP). The Ecore modelling lan-

guage is the EMF Meta-Model [171]. EMF also provides runtime support with default

XMI serialization, and a very efficient reflective API to manipulate EMF objects in a

generic way.

52

3.3. MODELLING AND TRANSFORMATION LANGUAGES

Ecore’s flexibility allows to model complete hierarchies of Domain-Specific Languages

(DSL), such as models “sequence”, each being the meta-model of the next. Regarding

code generation, EMF provides tools for code generation from Ecore models and their

instances.

3.3.2 Transformation Languages

A model-based architecture to accomplish interoperability between models, a mapping

from the source to the target model must be defined. However, to implement such con-

version a type of methodology has to be applied. That methodology is based on transfor-

mation languages.

A specific standard language for model transformation has been defined by OMG

called Query/Views/Transformations (QVT). Although, is Atlas Transformation Lan-

guage (ATL) that is widely used, due to a large user database and its good integration

with JAVA. ATL was developed by OBEO and INRIA, inspired in MOF QVT. Both trans-

formation languages will be addressed in the next sections.

3.3.2.1 Query/Views/Transformation (QVT)

The mapping process between models is expected to correlate one or more input models

(source models) with one output model (target model). However one source model can

be mapped to several target models. Mapping languages are languages that execute the

transformations between models, i.e. the models mapping.

Model transformation is an important activity in MDE as it has been recognised by the

OMG. OMG issued the MOF Query/Views/Transformation (QVT) Request for Proposals

(RFP) to seek an answer compatible with its MDA standard suite. Many contributions for

the QVT (RFP) were submitted, like ATL and QVT itself. Comparisons of applicability

and interoperability between several transformation languages are widely available [172],

which helps narrowing the choice to a few transformation languages for a known given

type of transformation.

The Meta-Object Facility (MOF) QVT language defines three related transformation

languages: Relations, Operational Mappings, and Core. The QVT specification depends

on two OMG specifications: the MOF 2.0 and the Object Constraint Language (OCL)

2.0 specifications. The QVT specification is divided in two parts, a declarative part

formed by two layers, a user-friendly Relations meta-model and a Core meta-model, and

the imperative part formed by the Operational Mappings Language and the Black Box

implementations [173], as depicted in Figure 3.5.

The user-friendly Relations layer consists in a declarative specification of the relation-

ships between MOF models. The Relations language is capable of performing complex

object pattern matching and is able to create a trace of what happens during a transforma-

tion. The Core is a small model/language that only supports pattern matching, evaluating

the conditions over a set of variables against a set of models. It deals with the source and

53

CHAPTER 3. MODEL-DRIVEN APPROACHES

Operational
Mappings

Relations

Core

Black
Box

RelationsToCore
Transformations

Figure 3.5: Relations between QVT Meta-Models (based on [173]).

targets elements as well as the trace models in a symmetrically way. However, the Core

trace models must be explicitly defined, since they are not retrieved from the transfor-

mation description as in the Relations case. Concerning the imperative Operational

Mappings, it is considered to be a language which provides imperative implementations,

fulfilling the same trace model as the Relations language. Operational Mappings can be

used to implement one or more Relations. On the other hand, a Black Box implementa-

tions do not have an implicit relationship to the Relations layer, therefore each one of

these implementations must explicitly implement a Relations to keep trace between the

model elements.

3.3.2.2 ATLAS Transformation Language (ATL)

Atlas Transformation Language (ATL) is a transformation language and a tool kit devel-

oped and maintained by OBEO and AtlanMod (INRIA). In the field of MDE, ATL provides

ways to produce a set of target models from a set of source models, with capabilities to

perform syntactic or semantic translations.

The ATL is a hybrid language capable of performing declarative and imperative trans-

formations and it is specified as a meta-model, as well as, a textual concrete syntax.

An ATL transformation is composed by rules that define how the elements from the

source model are matched and navigated, and also how the target models elements are

initialised.

The Figure 3.6 shows how a transformation is defined following the OMG MOF/QVT

compatible with the MDA. A given transformation operation is then represented as

follows:

ModelB← f (MetaModelA,MetaModelB,ModelT ,ModelA) (3.1)

Equation 3.1, means that a target model (Model B) based on a target meta-model

(Meta-model B), is obtained from a source model (Model A) based on a specification

model (Meta-model A), by applying a transformation (Model T) based on the standard

transformation language (i.e.: ATL).

54

3.4. TOPIC DISCUSSION

Model A

Meta-
Model A

conformsTo

MOF

ATL

Model B

Meta-
Model B

conformsTo

Model T

Transformation

conformsTo

conformsTo conformsTo

conformsTo

Figure 3.6: A Generic ATL Transformation.

The ATL defines its abstract syntax by the way of a meta-model (see Figure 3.6) taking

inspiration from the Object Constraint Language (OCL) 2.0, which may be considered

here as an assertion and as a navigation language at the same time. This means that every

ATL transformation is in fact a model, with all the properties that are implied by this

[174].

3.4 Topic Discussion

Model-Driven Engineering (MDE) methodology is addressed in this literature review,

due to its importance and significant impact on automatic tools development. As stated

before, MDE has been used by the academia and industry for software development [147].

Its capabilities to formalise and describe “anything” using models enables IT managers,

entrepreneurs and software developers to tackle systems complexity by simplifying de-

sign and development processes [23].

Looking to the principle of “everything is a model” [151], an IoT System is no different.

Model-driven techniques can then be used to formally describe hardware, software or en-

ergy aspects of an IoT System. Assisting in this way, on tools development based on such

descriptions. For example, energy consumption-simulation, development of IoT applica-

tions by non-experts, multi-criteria assessment (of features such as cost, programming

language, hardware characteristics), etc.

The Model-Driven Architecture (MDA) was initially design for software development,

although it has been used in other areas like Business Process Modelling and system-

s/enterprises interoperability. MDA presents three abstractions layers, Computation

Independent Model (CIM), Platform Independent Model (PIM) and Platform Specific

Model (PSM), to cover a system development process. Although, MDA does not specify

55

CHAPTER 3. MODEL-DRIVEN APPROACHES

transformations from CIM to PIM level since it uses an OMG standard, the Meta-Object

Framework (MOF) which provides basis for a meta-model definition.

MDA presents two types of transformations, horizontal and vertical, in which a variety

of possible transformation categories can be performed, such as, Marking, Meta-Model

transformation, Model transformation and Model Merging. These transformations assist

on the development process (more automatic) of new system functionalities, from the de-

sign phase to the actual implementation. It can also be used to perform system/enterprise

interoperability. Matching processes phases or data descriptions from one company/sys-

tem to another.

56

C
h
a
p
t
e
r

4
Decision-Making Methodologies

Decisions are something that all people around the world have to face daily. Questions,

either simple or complex, are placed constantly and decisions have to be taken. Decisions

can be made by common sense, by lived experience or intuition from those who decide or

advise. Although, when the number of criteria to be analysed increases, more difficult, it

is to make a correct and accurate decision for human beings. Consequently, it is essential

to organise information in a formal way, using available methods and techniques, to

choose a best or more proper alternative to the question in hands.

Multi-Criteria Decision-Making (MCDM) is one of the most widely used decision

methodologies in sciences, business, governmental and engineering worlds. MCDM meth-

ods can help to improve the quality of decisions, by making the decision-making process

more explicit, rational, and efficient [24, 25, 175, 176].

MCDM is an approach comprehensive of techniques which provides alternatives rank-

ing methods, methods to classify criteria of a certain problem and assist on decision phase.

MCDM can tear down complex problems into small, manageable problems, in such way

that small sets of data can be analysed from which is obtain reasonable judgements. Re-

assembling all pieces, it is formed a coherent overall system view that will aid decision

makers on their decisions [13].

Two sub-classes derive from Multi-Criteria Decision Making problems. Multi-Criteria

evaluation problems focus on choosing a solution from a finite, explicitly known number

of alternatives made available in the beginning of the process. The second, Multiple-

Criteria design problems focus on cases where alternatives are not known, infinite or

not countable when the process starts. This sub-class is associated to multiple objective

mathematical programming problems [177].

Following sections will focus particularly on MCDM sub-class: Multi-Criteria evalu-

ation problems, i.e., problems with a finite and known number of alternatives. To meet

57

CHAPTER 4. DECISION-MAKING METHODOLOGIES

with the thesis scope, more particularly, assist on the selection of a proper IoT System

from a set of available alternatives/solutions.

4.1 Decision-Making Process

One of the main challenges in engineering is the ability to choose from a set of alternatives

which are the most correct and consistent ones. Given a specific situation, make a right

decision is probably one of the toughest challenges for science and technology.

From the moment that a problem is identified until a solution is chosen, that best fit

the defined requirements/criteria, it should be carried out some steps that aim to assist

in the decision process [13, 178]. Figure 4.1 depicts a simplified version of this process.

Looking to the simplified vision of decision-making process, the first step, Identifica-
tion of Possible Solutions and Assessment Criteria, identifies a set of possible alternatives/so-

lutions for a problem, and which will be the criteria used to choose the most appropriate

solution. Next, in Solutions Evaluation based on Criteria step, it is assigned a weight to each

criterion, and solutions are evaluated based on the criteria importance. In the last step,

Results Analysis and Suitable Solution Identification, it is performed the results assessment,

to identify one or more suitable solutions for the identified problem. The process is in a

close-loop because the identified solution can hold an unwanted parameter, not identified

early, or a new criterion must be included or even it may be necessary to change a criteria

weight.

Results Analysis and
Suitable Solution

Identification

Solutions Evaluation
based on Criteria

Identification of:
• Possible Solutions;
• Assessment Criteria;

Figure 4.1: Simplified Vision of Decision-Making Process.

Identification of possible solutions is an obvious step in a decision making process.

From terminology point of view, the term “possible solution” refers to an “option”, “alter-

native”, “possible action”, to be applied or solve a certain problem. A possible solution

must be formally characterised by a set of attributes which define the solution. Such

attributes are then used to form a group of assessment criteria that allow a solution to be

ranked.

To evaluate a solution, criteria are defined and must be specific, relevant and mea-

surable, either in a quantitative or in a qualitative form. In the former case, it can be

58

4.2. METHODS FOR MULTI-CRITERIA DECISION-MAKING

considered simpler since it has a unit associated (e.g.: cost). The latter, in which is nor-

mally associated more vague concepts (e.g.: quality), it is necessary to use numerical

indicators (more than one if necessary) or define categories (such as Very High, High, ...,

or Very Low).

In multi-criteria problems there is no optimal solution, but a better, proper or suitable

solution. Problems have often conflicting criteria and so it is impossible to choose a

solution without controversy (except in a problem with non-conflicting criteria). The

notion of suitable solution varies depending on decision maker. Each one has its’ own

interests and preferences. The identification of a solution must therefore include such

opinion [178].

4.2 Methods for Multi-Criteria Decision-Making

Multi-Criteria Decision-Making (MCDM) is a process that can make a decision upon a set

of available solutions, assessing which one is more suitable across diverse, contradicting,

qualitative and/or quantitative criteria [177]. MCDM methods have been applied to engi-

neering problems, providing useful insights to decision makers, making their decisions

more qualified to overcome complex problems [179].

MCDM methods share a common ground, a starting point from which all methodolo-

gies are applied. This is that problems have a finite and known number of alternatives

and solutions. From now on, Solutions are represented by set, SSet, as in Equation 4.1

and the set of Features/Criteria, called CSet, is defined as in Equation 4.2.

SSet = {s1, s2, ..., sn} ; n ∈ N (4.1)

CSet = {c1, c2, ..., cm} ;m ∈ N (4.2)

Based in [179–181], as others could be point out, three of the most widely used deci-

sion making methods used in literature are the AHP (Analytic Hierarchy Process), Pref-

erence Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and

Elimination and Choice Expressing the Reality (ELECTRE) (original name: Elimination

Et Choix Traduisant la Realite).

4.2.1 Analytic Hierarchy Process (AHP)

Analytic Hierarchy Process (AHP) was proposed by Thomas L. Saaty [182], and it is aimed

to solve problems with multiple and conflicting criteria. AHP is a powerful decision

making methodology, which defines solutions ranking through a pair-wise comparison

of multiple criteria. AHP original methodology has four steps, as shown in Figure 4.2.

The first step is to decompose a complex problem into a systematic hierarchy structure

[183], as depicted in Figure 4.3. At the top is place the objective(s); next level contains all

59

CHAPTER 4. DECISION-MAKING METHODOLOGIES

Hierarchical
Structure

Criteria
Weights

Definition

Solutions individual
classification based

on Criteria

Solutions
Comparison
and Ranking

Figure 4.2: Analytic Hierarchy Process (AHP) original Methodology.

assessment criteria considered important to reach the goal; and finally, at the bottom are

the solutions/alternatives.

Objective

Criteria 2 Criteria 3 Criteria m…Criteria 1

Solution 1 Solution 2 … Solution n

Figure 4.3: Example of a criteria and solutions hierarchy.

In the second step of AHP methodology, is applied a criteria pairwise comparison

based on decision maker judgement, creating the Saaty 1-9 scale to assess criteria priority.

Qualifying a criterion with 1 indicates equal importance and 9 extremely important (other

levels are: equal importance, weak importance, extremely important, etc). With an m

criteria and n solutions it is achieved a decision matrix, DM, of n×m size, in which vij
element indicates the value for ith solution in respect to the jth criteria (see Equation 4.3).

Where i = {1,2, ...,n} and j = {1,2, ...,m}.

DM =


v1,1 v1,2 · · · v1,m

v2,1 v2,2 · · · v2,m
...

...
. . .

...

vn,1 vn,2 · · · vn,m


= (vi,j) ∈ Rn×m (4.3)

The pairwise comparison matrix, AHPM , is an m×m size, in which the αkj element

indicates the value for kth criteria in respect to the jth criteria (see Equation 4.4). Nor-

malized comparison matrix, NAHPM , is computed as presented in Equation 4.5.

AHPM =


α1,1 α1,2 · · · α1,m

α2,1 α2,2 · · · α2,m
...

...
. . .

...

αm,1 αm,2 · · · αm,m


= (αk,j) ∈ Rm×m (4.4)

NAHPM =
(αk,j)
m∑
k=1

(αk,j)

=


A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m
...

...
. . .

...

Am,1 Am,2 · · · Am,m


;k = 1, ...,m; j = 1, ...,m. (4.5)

60

4.2. METHODS FOR MULTI-CRITERIA DECISION-MAKING

The contribution of each criteria j to the problem objective, i.e. the eigenvector —

W , is given by Equation 4.6 [184]. It is also possible to compute the criteria pairwise

comparison consistency, by applying Equations 4.7 and 4.8. Where λmax is the maximum

value from eigenvector, W . CI is the Consistency Index and m the number of criteria.

W =

m∑
j=1

(Ak,j)

m
=
[
w1 w2 · · · wm

]
;k = 1, ...,m. (4.6)

λmax =
1
m

m∑
j=1

(AHPM W T)j
W T
j

(4.7)

CI =
λmax −m
m− 1

(4.8)

Knowing the Consistency Index, CI, is then possible to compute the Consistency

Ratio, CR, which indicates the consistency of the decision maker subjective judgement.

Consistency Ratio, CR, is given by Equation 4.9. If CR > 0.10(10%), exists serious incon-

sistencies, on the other hand, if CR ≤ 0.10(10%), the consistency degree is completely

satisfactory [185]. The Random Consistency Index, RI, as the name implies, is a ran-

dom value. There are several studies, each one presenting its own random consistency

index table. RI tables are built from exhaustive tests, where the number of criteria varies,

and several pairwise comparisons, AHPM , or judgement matrixes are applied. Table 4.1

presents values from two to ten criteria, retrieved from [186]. However, RI values can be

computed for a number of criteria higher than 10.

CR =
CI
RI

(4.9)

Table 4.1: Random Consistency Index values, RI , from 2 to 10 criteria.

n 2 3 4 5 6 7 8 9 10
RI 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

In step three of AHP methodology, solutions are classified individually based on

criteria. Individual score is obtained through a simple matrix multiplication, i.e.: the

decision matrix, DM, multiplied by the eigenvector transposed, W T .

The Analytic Hierarchy Process (AHP) follows the prioritization theory, dealing with

complex problems that need multi criteria consideration simultaneously. Although, AHP

presents some disadvantages, such the pairwise comparison is based on decision makers’

subjective judgement, and criterion weight has a direct impact on the final score.

61

CHAPTER 4. DECISION-MAKING METHODOLOGIES

4.2.2 PROMETHEE

Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE)

[187] is a MCDM method, with six different versions based on ranking. The first ver-

sion, PROMETHEE I, consists on partial ranking; PROMETHEE II on complete ranking;

PROMETHEE III performs ranking based on intervals and PROMETHEE IV is a method

for the continuous case; PROMETHEE V method has integer linear programming and net

flows; and finally the PROMETHEE VI method includes a representation of the human

brain [184, 188].

The PROMETHEE methodology can be described in five steps, as Figure 4.4 shows.

The decision maker chooses a preference function, defined in two actions independently

(e.g. Boolean function — value 0 or 1), and then it is applied to compare solutions. The

comparison results and criteria values are used to form a matrix, on which methods

are then applied. For example, PROMETHEE I to create a partial solutions rank and

PROMETHEE II to obtain a final solutions ranking [189].

Preference
Function

Comparison
between
Solutions

Solutions
Comparison and
Criteria Matrix

Partial
Rankings

Solutions
Final Ranking

Figure 4.4: PROMETHEE Methodology.

Maintaining the focus on one of the thesis problems, i.e. evaluation of solutions with

multi criteria, let’s consider the problem defined in Equation 4.3. Decision matrix, DM,

presents the criteria values for each individual solution, represented by vij , where ith

solution in respect to the jth criteria.

Commonly decision problems present a multi-criteria nature, and its solution de-

pends on the preferences made by each decision maker, consequently there is not a best

absolute solution [184]. To represent such decision maker preferences are defined the

following relations (see Equation 4.10):

For each (a, b), where a, b ∈ SSet: ∀j : vaj ≥ vbj
∃k : vak > vbk

⇔ aP b,

∀j : vaj = vbj ⇔ aIb,∃s : vas > vbs
∃r : var < vbr

⇔ aRb

k = 1, ...,m; j = 1, ...,m.

(4.10)

Where P stands for pref erence, I for indif f erence, and R for incomparability.

The first equation branch (Equation 4.10), states that a solution a is better than another

solution b if it is at least as good as the other in all criteria. But in one criteria k, solution

62

4.2. METHODS FOR MULTI-CRITERIA DECISION-MAKING

a is for sure better than b. Second equation branch indicates that solution a and b are

equal in all criteria, therefore indifferent. The third and last branch, states that if there

is a criteria s where solution a is better that b, and in criteria r, solution b is better than

solution a, these solutions cannot be comparable, at least without additional information.

PROMETHEE methods use a preference modelling process, based on the information

between criteria, and information within each criterion. Information between criteria

is achieved by weight attribution to each criterion by the decision maker. Weights are

non-negative numbers, and higher the weight, more important the criteria. It is common

to use normalized weights. Information within criteria is obtain by a preference function,

Pj , reflecting evaluation differences between two solutions for a specific criteria j [190].

Preference function result, Pj , as described in Equation 4.11, can be consider a real num-

ber between zero and one. Also, larger the difference larger is the preference. Six basic

types of preference functions have been defined, for more information see [184].

Pj(a,b) = Fj [gj(a)− gj(b)]

0 ≤ Pj(a,b) ≤ 1

j = 1, ...,m

(4.11)

PROMETHEE procedure uses pairwise comparisons, which allows the evaluation of

each solution. The preference between two solutions, taking into consideration all the

criteria, is expressed by Equation 4.12. π(a,b) gives the degree in which solution a is

preferred to solution b, and π(b,a) how solution b is preferred to a.
π(a,b) =

m∑
j=1

Pj(a,b)wj ,

π(b,a) =
m∑
j=1

Pj(b,a)wj

(4.12)

Properties presented in Equation 4.13 hold for all pair of solutions (a,b). If π(a,b) ∼ 0

it indicates a weak global preference of solution a over solution b. On the other hand, if

π(a,b) ∼ 1 it indicates a strong global preference of solution a over b.
π(a,a) = 0,

0 ≤ π(a,b) ≤ 1,

0 ≤ π(b,a) ≤ 1,

0 ≤ π(a,b) +π(b,a) ≤ 1

(4.13)

Calculating π(a,b) and π(b,a) for each solutions pair is obtained a complete outrank-

ing valued graph, by drawing two arcs between solutions a and b. Figure 4.5 depicts an

example.

Each individual solution face the competition of (n− 1) other solutions. The outrank

of (n−1) solutions from the perspective of solution a is given by φ+(a) and φ−(a). Positive

outranking flow, φ+(a), express how solution a outranks all the others. Higher φ+(a)

63

CHAPTER 4. DECISION-MAKING METHODOLOGIES

a

c

b

d

π(a,b)

π(b,a)

π(c,b)

π(b,c)

π(c,d)

π(d,c)

Figure 4.5: PROMETHEE: Example of an Outranking Valued Digraph.

value, better is the solution. Negative outranking flow, φ−(a), express how solution a is

outranked by all the others. Lower φ−(a) value indicates better solution. φ+(a) and φ−(a)

expressions are defined in Equation 4.14.

Consider SSet as the solutions set.

φ+(a) = 1
n−1

∑
x∈SSet

π(a,x),

φ−(a) = 1
n−1

∑
x∈SSet

π(x,a)

a ∈ SSet

(4.14)

The PROMETHEE procedure described above is used by all PROMETHEE variations.

Each method individually applies its own extension for its particular focus. PROMETHEE

methods I and IV use preference functions which are more suitable for qualitative criteria.

Methods type III and V are normally chosen for quantitative criteria problems. Type II

and VI preference functions are used with less frequency [179].

This method is consistent, easy to use and does not need great interaction with de-

cision makers. Although, PROMETHEE presents as downside the incapability to react

when a new alternative is introduced, and method II is unable to present the preferred

solution in a bi-criteria problem, after method I had been applied.

4.2.3 ELECTRE

Elimination Et Choix Traduisant la Realite (ELECTRE — Elimination and Choice Ex-

pressing the Reality) method was created by Bernard Roy [191]. Similar to the previous

decision method, ELECTRE has also six variations: type I, II, III, Iv, IS and TRI.

ELECTRE is a preference-based model, performing a pair-wise comparison between

solutions. The model is based on three types of relations between solutions: is preferred

to; is indifferent to; and incomparable to. From these, ELECTRE methods use binary

outranking relations, S, to characterize four possible situations which can occur between

two solutions (a and b), as Equations 4.15 shows:

64

4.3. TOPIC DISCUSSION

aSb and (not bSa), i.e.: aP b (a is strictly preferred to b),

bSa and (not aSb), i.e.: bP a (b is strictly preferred to a),

aSb and bSa, i.e.: aIb (a is indifferent to b),

(not aSb) and (not bSa), i.e.: aRb (a is incomparable to b)

(4.15)

To define the outranking relations, S, two major conditions must be satisfied to vali-

date a relation aSb. The conditions are: Concordance andNon−Discordance. Concordance
condition states that for an assertion aSb to be valid, a sufficient number of criteria must

support this claim. Meaning that for a solution a to be strictly preferred to b, solution

a must be better in a majority of criteria. Non − Discordance condition states that if

Concordance condition is true, none of the criteria in minority set should oppose too

strongly to outranking relation aSb [184].

ELECTRE methods also bring two more notions, the criteria importance and veto

thresholds. Criteria importance is the “weight” given to a criteria j, i.e.: wj . It is used to

reflect criteria power in the majority set in favour for a certain outranking relation. These

weights do not depend from criteria types, ranges or values. Veto threshold is a value,

affiliated to each criterion, which reflects the possible difference between two solutions

for that specific criterion. These values can be constant or vary.

All ELECTRE methods are based on the same background, but have different pro-

cesses. In ELECTRE I and IS, a single solution or a group of solutions are selected and

assigned as a possible solution. ELECTRE II was developed to deal with problems that

need to rank solutions from the best to the worst solution. ELECTRE III introduced

pseudo-criteria and fuzzy binary outranking relations. ELECTRE Iv method was possi-

ble to rank solutions without the use of relative criteria coefficients (the only ELECTRE

method that did not use it). Finally, ELECTRE TRI assigns categories to solutions [179,

187].

Generally, ELECTRE methods do not frequently lead to the case in which one solution

stands out from the others. For this reason the method is considered to be more suitable

for problems with several solutions and not so many criteria.

4.3 Topic Discussion

Looking to the thesis scope and identified problem, is possible to see that today we

are living in a world with a large number of heterogeneous devices, with capabilities

to implement an uncountable number of tasks. Consequently, it is very important to

develop and provide methods capable to assist engineers on the selection of a proper,

more suitable hardware platform (device) to implement such tasks or systems.

Taking into account that Multi-Criteria Decision-Making (MCDM) is one of the most

widely used decision methodologies in sciences, business, governmental and engineering

worlds. This section has presented a literature review on well-known MCDM methods,

capable of improving the quality of decisions made by decision makers, for example, in

65

CHAPTER 4. DECISION-MAKING METHODOLOGIES

choosing a platform from a set of available hardware alternatives. Reviewed methods are

focus on problems with finite and known number of solutions/alternatives.

The MCDM method, Analytic Hierarchy Process (AHP), is commonly applied to prob-

lems with multiple, and even conflicting criteria. AHP classify solutions, pointing out the

proper one with judgement based on criteria. This method presents as main advantage,

compared to the other two methods, the capability to decompose a problem into small

parts, becoming clearer the importance of each criteria. Although, it is not suitable for

cases were the large number of criteria is maintained. The pair-wise criteria comparison

becomes difficult, and the use of the nine-point scale is also a limitation. For example,

a criteria k which is more important than a criteria r four times, and criteria r is also

four times more important than a criteria s. AHP method presents a serious evaluation

problem to deal with the scenario where a criteria is sixteen times (16x) more important

than another [190]. Table 4.2 points out other strengths and weaknesses of this method,

as for PROMETHEE and ELECTRE methods.

Table 4.2: AHP, PROMETHEE and ELECTRE: Main Advantages and Disadvantages.

AHP: PROMETHEE: ELECTRE:

A
d

va
n

ta
ge

s:

• Flexible and checks
inconsistencies;

• Gathers subjective and
objective evaluation
measures;

• Able to assist in group
decision-making;

• Decomposition of a
problem;

• Normalisation is not
needed;

• Able to assist in group
decision-making;

• Easy to use;

• Takes into
consideration
uncertainty;

• Able to deal with
qualitative and
quantitative criteria;

D
is

ad
va

n
ta

ge
s:

• Unfit for large number
of criteria;

• Important information
may be lost;

• Criteria weights have
direct impact on the
result;

• Nine-point scale
limitation;

• Do not structure the
problem;

• Difficult to use with
many criteria and
alternatives;

• Not a single method;

• Difficult to
understand: Find
concordance and
discordance matrix;

• Definition of
thresholds: no
“correct” value;

• Time consuming;

66

4.3. TOPIC DISCUSSION

PROMETHEE, the second MCDM method addressed in this section, is an outranking

method that sort solutions based on criteria and decision maker preferences. Comparing

with AHP, PROMETHEE needs much less inputs, only solutions evaluation through

criteria must be performed [190]. It is considered a strong methodology basically due to

its mathematical properties and ease of use [184]. To use PROMETHEE it is necessary to

choose a preference function, and it has to be selected carefully by the decision maker,

which can turn out difficult for an inexperienced user. Another downside is the lack of

problem structuring, to give a more clear view of the problem.

The last aimed MCDM method is ELECTRE. This method generates binary outrank-

ing relations between alternatives, based on a concordance and discordance index. It

is capable to handle qualitative and quantitative data with high uncertainty. It has a

good performance when decision makers are not able to give rational information about

some aspects [180]. ELECTRE do not use pairwise comparison, and is more suitable in

cases with a large number of solutions [181]. It is also less sensitive to addition of other

solutions, in comparison with the previous method.

67

C
h
a
p
t
e
r

5
Framework to Formally Describe an IoT

System

This chapter intends to present the author’s first conceptual contribution, which is a

framework for IoT Systems formal description. Sub-research question Q1.1 presented in

Section 1.4.1 refer the lack of methods to formally describe an IoT System. But before the

framework presentation, a background study, is presented in next section, on how IoT

Systems are described and in which levels, areas and the detail it is done.

5.1 Models, Methods for IoT Systems Specification

Literature has been more focus on functional/behaviour aspects, and in activities/action-

s/interactions within an IoT Deployment [16–18]. Internet-of-Things (IoT) is addressed

from an observation/functional point of view and not to fully describe an IoT System.

The proof of this is the creation of standards such as the Systems Modeling Language

(SysML) [19, 20] from the Object Management Group (OMG), the Sensor Model Language

(Sensor Model Language (SensorML)) [21] from the Open Geospatial Consortium (OGC)

and Semantic Sensor Network (SSN) [22] from the World Wide Web Consortium (W3C).

Standards have also been proposed to define systems and systems-of-systems, mod-

elling requirements, behaviours, processes, etc., supporting interoperability at a syntactic

as semantic level. One example is the OMG’ Systems Modelling Language (SysML) [19,

20, 192], a general-purpose architecture modelling language for engineering systems.

SysML is an extension to the OMG’ Unified Modeling Language (UML), designed to

support the specification of requirements, structure and behaviour, as verification and

engineering systems validation. Interoperability between engineering tools is supported

by the use of OMG XMI 2 model interchange and the ISO 10303 STEP AP233 data inter-

change standard. SysML also supports the use of the OMG’s Model Driven Architecture

69

CHAPTER 5. FRAMEWORK TO FORMALLY DESCRIBE AN IOT SYSTEM

(MDA) techniques (see Section 3.2.2).

The Sensor Model Language (SensorML) [21], an OGC approved standard, main ob-

jective is to enable interoperability, syntactic as semantic using ontologies and semantic

mediation. SensorML represent components, physical (e.g. detectors, actuators) and non-

physical (e.g. mathematical operations or functions), as processes. Sensors and sensor

systems are defined using geometric, dynamic, and observational characteristics. Sen-

sorML describes sensors functional models, although it states that can, but generally does

not, provide detailed information of a sensor hardware design.

Other example is the W3C Semantic Sensor Network (SSN) [22], an ontology to de-

scribe sensors and observations. SSN was developed with two main objectives, first create

ontologies to describe sensors, and second provide an extension (semantic annotations)

to the SensorML. The created ontologies allow classification and reasoning over sensors

capabilities and measurements. Sensor and services semantic annotations allow data to

be organised, managed, queried and understood by different systems.

5.1.1 Hardware Representations

In the IoT domain, the formal representation of full hardware system, platform has

been some left behind. Frameworks, architectures describe IoT hardware with a level of

precision as needed. Next is presented a background study on how hardware components

are represented and with what level of detail it is done. Main hardware components are

identified to support the proposed hardware specification of an IoT System.

The work presented in [193] identifies four central hardware components for a sensor

node, the processing, power, transceiver and sensing units. The processing unit responsi-

ble for managing all procedures can also contain a sub-component to storage data. Power

unit, the more important unit, i.e. no-energy, no-work. The transceiver used to communi-

cate with the rest of the network. To sense the environment, the sensing unit, to which is

recognize the existence of two sub-components, the sensor and ADC units.

The publication [43] reports to a so called “typical” representation of a sensor node

architecture, containing six components: the micro-controller, battery, ADC, sensing unit,

external memory and a transceiver. The work developed in [11] states that sensor nodes

are equipped with processor, memory, power supply, radio, an actuator and sensors.

In [194] it was identified eight components: processing unit, memory, power supply,

security, sensor, actuator, machine-machine and human-machine interface. It is stated

that the presented structure is the maximum composition possible.

The literature review regarding the hardware components of an IoT System presents

clearly an issue, already identified by the author, which is the lack of a formal represen-

tation to specify the hardware components and their characteristics of an IoT System.

All the works analysed identify the core components, but through graphical representa-

tions. Figure 5.1 depicts, also in a graphical form, the four representations of sensor node

architecture.

70

5.2. FRAMEWORK FOR IOT SYSTEM FORMAL DESCRIPTION

Akyildiz Processing
Unit

Processor Storage

Sensing
Unit

Sensor ADC

Power
Unit

Transceiver

Yick

Farooq

Processor MemoryRadio Sensor Actuator
Power

Supply

Processing
Unit

Sensing
Unit

External
Memory

Transceiver
Battery

ADC

Processing
Unit

Machine-
Machine

Security Sensor

Memory
Power

Supply

Actuator

Human-
Machine

Cuteloop

Figure 5.1: Hardware Components of a Sensor Node.

The authors Akyildiz [193], Farooq [43] and Yick [11] share almost the same idea

on which the core components are. The slightest difference is focused on two specific

components. First, the case of component “memory” belongs or not to a processing unit,

i.e. if component memory is a core or sub-component of a sensor node. The second case

is similar, and is referred to component sensing unit and its sub-components sensor and

ADC.

In Cuteloop [194], a European Project of the 7th Framework Programme — “Cuteloop:

Customer in the loop: using networked devices enabled intelligence for proactive cus-

tomers integration of the drivers integrated enterprise”, the authors presented three new

core components for the architecture of a sensor node in comparison with the other pub-

lications. The new components are security, machine-machine (replacing “transceiver”,

“radio”) and human-machine interfaces.

The author considerations will be presented in Section 5.4.1 and consequently propose

a method to formally specify the hardware of an IoT System and its characteristics.

5.2 Framework for IoT System Formal Description

The Internet-of-Things (IoT) is here to stay: IoT deployments abound, more IoT-related

technologies and new IoT apps are launched each day. We live in a highly connected

world, connected to a large number of things making us more aware of the surrounding

environment, consequently more proactive and less reactive [7]. IoT smart “things” have

been playing an important role and will keep doing it in up-coming years with novel and

diverse business models [3, 32, 33].

Markets are offering a wide device diversity, with a very specific characteristic —

Resource-Constrained. Manufacturers are engaged in developing new embedded systems

for different purposes to address the variety of application domains and services. This

factor enhances even more the established heterogeneous nature of IoT Deployments.

Some manufacturers provide in their websites ways to select a product from a set

71

CHAPTER 5. FRAMEWORK TO FORMALLY DESCRIBE AN IOT SYSTEM

of choices. Products are displayed with some detailed (number of features), but limited

to hardware characteristics. Interaction is completely handmade, with no way to apply

user’s preferences between criteria. Information data, when possible, can be collected

only by user’s action and change depending on the performed query. Two examples can

be found in [14, 15].

Consequently, methods to formally describe these imperative pieces (IoT Systems) are

needed, independent of hardware platforms, as well as independent from programming

languages — Platform Independent. Also important is the capacity to be used by appli-

cations in an automatic way. These factors, hardware and software code, pose as core

aspects to properly describe an IoT System.

Section 1.2 referred that literature involving IoT, specifically Resource-Constrained

Systems (RCS), should be study carefully. Methodologies, methods analysed, and key

features/aspects to describe RCS identified. Chapter 2 focused on this theme.

To formally describe IoT Systems, a key approach was identified — Model-Driven

Engineering (MDE). This is due to the fact that model-driven approaches revealed to be a

common ground in literature [19–23], regarding for example information modelling and

interoperability. This topic was addressed in Chapter 3.

To overcome the identified issue, lack of methods to formally describe an IoT System,

the author proposes the framework depicted in Figure 5.2. The proposed framework

is composed by three main blocks, Harmonisation Engine, Storage and IoT System. The

description of the considered blocks is the following:

• Harmonisation Engine: Responsible for parse information and mapping to IoT

System specifications. This block takes use of the MDA techniques to fulfil its goal,

by merging or transform the raw information. Ontologies can be used to identify

and reasoning over data gathered. For example, matching, conversion of units can

be accomplished with this semantic analysis. This theme will be addressed in more

detail in Section 5.5;

• Storage: Divided in two sections, section Formalisms/Specification, serves as repos-

itory for IoT System specification models (meta-models), and rules that execute

data interchange (transformations). At this level, IoT System Meta-Models form

a representation of a generic IoT System. Referring to MDA layers, this will be

located at abstraction level 2 — PIM (see Section 3.2.3). The second one, section

Data, serves as repository for data models that are created and consequently have

to be stored along the transformation process. At this level, a representation of a

specific IoT System is created, i.e. structure data/information is stored describing

an IoT System. Relatively to MDA layers, a representation of a specific IoT System

correspond to abstraction level 1 — PSM;

• IoT System: Represents a full description of an IoT System, following the estab-

lished specifications and relations. An IoT System, if it does not already exist in the

72

5.3. SPECIFICATION OF IOT SYSTEM GENERIC FEATURES

Storage block, can be defined from already available specifications (e.g.: combine

different hardware parts). Another possibility is the generation of a new IoT System

representation as a result of parse information and mapping from block Harmoni-
sation Engine. An IoT System is specified by a hardware model, a software model

and a generic features specification model. It is also possible to include an energy

profile model, but is not mandatory. The energy profile is based on both software

and hardware information.

Storage

IoT System HW
Model

Energy
Profile

SW
Model Models

Data

New/Existing

IoT System

Constructs and
Relationships

Specification

Information
Gathered

Formalisms/
Specifications

defines

Harmonisation Engine

Generic
Model

Generates

Parse
Information Merge/

Transformation

Ontology
Markup

Meta-
Models

Figure 5.2: A Framework to Formally Describe an IoT System.

Next Sections will address the specification models that describe an IoT System. First

is presented a specification for generic features/properties, their domains and units. Fol-

lowed by the IoT System specification, that includes hardware meta-model, examples of

software specifications and energy profiles specification.

5.3 Specification of IoT System Generic Features

Prior to present the IoT System specification, is necessary to describe how properties are

defined by all modules of the presented framework.

IoT Systems Analysis Generic (IoTSAG) Meta-Model, presented in Figure 5.3 is a

specification model used to instantiate properties/features/criteria and related aspects

(property domains and units), in a way that consistency is maintain between framework

models, as well as assist in a easy interoperability between tools.

The main model object of IoTSAG Meta-Model is the Definitions class. This class

is responsible, mainly, for representation and aggregation of properties domains and

define/specify units. IoTSAG specification also contains other important classes, two

types of Properties, the SystemDescription and Annotation.

The class Property is an abstract class (i.e. cannot be instantiated), used to embrace

two types of properties, AggregationProperty and SingleProperty. Property class exist to be

73

CHAPTER 5. FRAMEWORK TO FORMALLY DESCRIBE AN IOT SYSTEM

Figure 5.3: IoT Systems Analysis Generic (IoTSAG) Specification Model.

referenced by other specification models. SingleProperty class has the objective of define

a single instance value. Composed by a name and a value, this property has also to refer

to a unit type. On the other hand, AggregationProperty class is used to define composed

properties, i.e. a property that contains more than one single value to be instantiated (e.g.

communication has range, transmission rate, etc.). This class has to reference one type

of domain (e.g. communication, price, weight). AggregationProperty and SingleProperty
inherit from Property class, and it is this two classes that actually are instantiated by other

models.

g

Weight

kg

lbs.

Property Domain Unit

Communication

bits Memory

Kilobytes

Kbps

Architecture

Mbits

GHz

Frequency

MHz

ms

Time

h

mA

Energy

mW

Figure 5.4: Property Domains and Units Relation: Graphical Example.

Classes PropertyDomain and Unit are responsible for maintaining a common ground,

a relationship between different units of the same feature. Figure 5.4 depicts some graphi-

cal examples of well known units and their corresponding domains. Identified as property

domains is weight, frequency, architecture, communication, memory, energy and time,

each one embracing a set of units. For example, “g” (gram), “kg” (kilograms) and “lbs”

(pounds) are units used to represent weight, or ways to represent time such as “ms” (mil-

liseconds) and “h” (hour). However, there are cases where a unit (“bits”) is shared by

different domains (architecture, memory and communication).

74

5.4. IOT SYSTEM SPECIFICATION

The SystemDescription class is an abstract class that contains generic attributes (ver-

sion, name and id) to assist in a system description (e.g. IoT System). Annotation class is

used to add additional information. Normally used for comments, but can also be used

to describe scenarios, objectives, functions, etc.

The Ecore representation of the IoTSAG Meta-Model is presented in Appendix A.

5.4 IoT System Specification

Section 2.2.2 referred the ongoing evolution on micro-electronic technologies bringing

to IoT domain a brand new series of devices/systems. These IoT Systems are in fact

Resource-Constrained Systems (RCS), as result of their particular features (e.g. small size,

low-power, low processing).

To formally describe these imperative pieces (IoT Systems) in a complete and con-

scious form some concepts should be taken into consideration. Hardware characteristics

vary greatly from one device to another, therefore a hardware specification has to be

comprehensive enough to embrace hardware platforms diversity. The variety of available

software languages poses as a higher issue, since there is not a common ground for the

rules they obey, therefore a careful analysis is needed. Finally, and mentioned as other key

aspect in IoT evolution, is the energy consumption (see Section 2.1). Energy information

is not always available, it is still an ongoing research and besides that when available,

such information representation differ or in case of further research is unknown.

Consequently, the Resource-Constrained System Meta-Model (RCSM) (see Figure 5.5)

is the proposed specification model to describe an IoT System. In the figure is also possible

to see the relations with other models. An IoT System formalisation is composed by three

core parts. These core parts, represented as class are the HardwareModel, SoftwareModel
and EnergyProfile.

Figure 5.5: Resource-Constrained System (RCS) Specification Model.

The reasoning over an IoT System description is the following. The representation of

IoT System hardware characteristics could be achieved by a single specification model

75

CHAPTER 5. FRAMEWORK TO FORMALLY DESCRIBE AN IOT SYSTEM

(Section 5.4.1 describes the proposed meta-model). Representation is identified through

the connection to the hardware specification main model object, HardwareModel. Litera-

ture review in Section 2.2.2 presented some forms on how to describe a device in terms

of hardware, such as [11, 43, 193, 194]. It was then possible to prepare a model to fully

embrace device hardware characteristics, maintaining openness for different hardware

platforms — Platform Independent.

Although, for the software languages and energy information cases, is not possible

to achieve a single model. Programs follow specific rules of the software languages in

which they are written from. With energy information the scenario is similarly, different

forms of represent, simulate energy consumption. Consequently, a different approach is

proposed. Classes SoftwareModel and EnergyProfile are in fact interface classes, allowing

instantiation of different software languages and energy profile models. Furthermore,

non-existing/forthcoming specification models (software and energy) can be associated

to an IoT System.

In these cases, the proposed framework is not bound to a restricted, pre-established

specification models. Maintaining an important feature — Platform Independent. Nev-

ertheless, software and energy specification models have to respect two rules. Properties

must be specified by IoTSAG model and the main model objects have to inherit the corre-

sponding interface (e.g. SoftwareModel).

The three core parts are addressed in detail in the following sections.

The main model object (class ResourceConstrainedSystem) inherits the attributes from

IoTSAG SystemDescription class, and more important it is able to instantiate IoTSAG

properties. Features instantiation, such as cost, memory used, final physical size, imple-

mentation time/effort/difficulty, etc., are directly connected to a RCS in its final form and

not to one of the parts (e.g. Hardware) that builds it.

As last consideration regarding the use of RCSM is that a device (physical part) can be

associated with different software languages, forming different RCS. Or simply joining

different hardware parts (shields/expand boards that can be coupled together). That

is, from one hardware or one software model multiple RCS (multiple solutions) can be

obtained.

The Ecore representation of the RCSM is presented in Appendix B.

5.4.1 IoT System: Hardware Specification

Unlike the programming languages, that present well defined meta-models or grammars,

a hardware specification model capable of representing an IoT System is still missing.

Next is presented a way to formally represent a hardware platform/device and all its

hardware components, with a careful consideration for interoperability and integration

with tools and systems.

The author’s proposed specification model is based on the previous background study.

From the presented works, it was possible to conclude that some of them are strongly

76

5.4. IOT SYSTEM SPECIFICATION

focused on functional, behaviour aspects and in activities, interactions within an IoT

Deployment [16–18], rather than on IoT Systems itself. Also, the available hardware

descriptions are high level, i.e graphical representations of the hardware components [11,

43, 193, 194].

Figure 5.6 identifies the core components of a hardware system in the author’s perspec-

tive. It is considered that these components are adequate and no hardware component is

left without representation.

Akyildiz

Processing Unit

Storage

Sensing Unit

Sensor

ADC

Power
Unit

Transceiver

Yick Farooq

Radio

Actuator

Power
Supply

Processing
Unit

Sensing
Unit

Battery

ADC

Machine-
Machine

Security

Actuator

Human-
Machine

Cuteloop

Processor Processing
Unit

Processor

Memory
External

Memory
Memory

Transceiver

Power
Supply

Sensor Sensor

Proposed
Components

Processing
Unit

Memory

Machine
Machine

Power
Supply

Sensing
Unit

Actuator

Security

Human
Machine

Figure 5.6: Components Considered for the Hardware Specification Model.

Most of considered components are self-explanatory, although a clarification is im-

portant regarding SensingUnit and MachineMachine components as to the cases where a

component contain other components (reported by Akyildiz [193]).

It is considered by the author that a SensingUnit is the sensor itself (e.g. thermostat)

any additional unit (normally an ADC unit) belongs to the sensing component but it

is not a sensing unit. A MachineMachine component is any hardware part responsible

for any kind of interaction between two electronic components. The ADC is an example,

converting analogue data from a sensing unit to a processing unit digital port. As depicted

in Figure 5.6, a transceiver is also a good example, processing the data from the processing

unit to wireless waves that will be pick-up by other transceivers.

It is clear at this point that a component can be form, contain other components. For

example a processing unit can have memory, ADC, M2M components. It is essential that

the proposed specification has this into consideration, i.e. a component can contain other

components.

To tackle the lack of formal descriptions that allow a complete specification of an

hardware system, it is proposed the Resource-Constrained System Hardware (RCSH)

Meta-Model depicted in Figure 5.7, one of the core parts to describe an IoT System.

RCSH specification model provides a way to formally describe a RCS in terms of its

77

CHAPTER 5. FRAMEWORK TO FORMALLY DESCRIBE AN IOT SYSTEM

Figure 5.7: Resource-Constrained System Hardware (RCSH) Specification Model.

hardware components. A more detailed explanation of the Meta-Model composition is

presented, evidencing the use of each defined structure:

• HardwareModel: the main model class, includes a model version (for version con-

trol) currently at “4.0−2019”, a name settle as “Resource-Constrained System Hard-

ware Model”, a hardware version (to control the content of the model versus any

possible change in hardware by the manufacturer), and a description (from IoTSAG

meta-model). A HardwareModel is composed by one device (class Device), i.e. the

physical part of a RCS;

• Device: represents the whole hardware of an IoT System. It is identified by a name

and a reference (used by manufacturers), can also include a version. A Device
contains one or several modules (class Module);

• Module: this class represents the important individual hardware parts of an IoT

System. The Module class identifies by reference and version (not mandatory) each

part. The use of multiple modules is in case of an IoT System built from different

parts (e.g. a processor unit and a communication shield). A Module can contain one

or more components (class Component);

• Component: is an abstract class to represent any kind of hardware part available

in an IoT System. It is identified by name, and can contain other components

has it was highlighted as an important feature (instantiation of other Component
classes using “contains” reference). It can also include properties and additional

descriptions from IoTSAG specification model. An instantiation of a Component

78

5.4. IOT SYSTEM SPECIFICATION

can be of different types: ProcessingUnit, Memory, Security, SensingUnit, Actuator,

PowerSupply, and also of two types of Interfaces, MachineMachine or HumanMachine;

• Interfaces: is an abstract class to represent two types of connections. First, a

Machine-to-Machine M2M interaction (MachineMachine), and second, a human—

machine interaction (HumanMachine);

• ProcessingUnit: is a specific Component used to instantiate processing units. In IoT

Systems these processing units are normally micro-controllers containing several

other components (e.g. memory, communication, converters);

• Memory: is a specific Component used to define different types of memory (e.g.

Random-Access Memory (RAM), Static Random-Access Memory (SRAM), Flash);

• Security: is a specific Component to represent hardware parts that implement specif-

ically security control. Security appliance has its normal implementation using

software code. Although, security implementation using hardware is being more

used due to its faster handling compared to software implementation. Its common

hardware implementation uses programmable logic components, reconfigurable

hardware;

• SensingUnit: is a specific Component to define sensor units, such as temperature,

humidity, light sensors;

• Actuator: is a specific Component to define for example magnetic locking mecha-

nisms, relays controlling water, light mechanisms;

• PowerSupply: is a specific Component, which due to the specific nature of an IoT

System, is used to describe a battery and the corresponding power controllers;

• MachineMachine: is a specific Interface, which inherits Component features and is

used to represent M2M interaction, for example communication type (e.g. Universal

Asynchronous Receiver/Transmitter (UART), Serial Peripheral Interface (SPI)), or

ADC converters;

• HumanMachine: is a specific Interface, which inherits Component features and is

used to represent the interaction between human and machine (e.g. a display, led,

button).

All classes inheriting from Component class, can instantiate properties through the

reference link properties and can include a description using reference link annotation (an

instantiation of class Annotation from IoTSAG specification model).

The Ecore representation of RCSH is presented in Appendix C.

Figure 5.8 illustrates a high level view of a Resource-Constrained System RCS being

represented by the proposed RCSH specification model. This example shows an electronic

79

CHAPTER 5. FRAMEWORK TO FORMALLY DESCRIBE AN IOT SYSTEM

development platform (the Arduino Uno Revision 3) on the left and on the right side the

corresponding formal representation of some parts that compose the device.

HardwareModel modelVersion: 4.0-2019;
name: Resource-Constrained System Hardware Model; hwVersion: 1.0;

description: Hardware Model: Arduino Uno Rev3.

Device name: Uno; reference: Arduino Uno; version: 3.0;

Module reference: ATmega328P; version: 7810D-AVR-01/15;

ProcessingUnit (Component) name: ATmega328P;

Memory
(Component)

name: EEPROM;

name: Size; value: 1 KiloByte;

MachineMachine (Component) name: USART0;

type: UART;

type: Mode;

name: Value; value: Master/Slave;

Module reference: Energy Supply;
version: ;

PowerSupply
(Component)

name: ;

name: DC Supply; value: 5 Volt;

Module reference: Connector; version: ;

MachineMachine (Component) name: USB;

type: USB;

name: Type; value: Standard-B;

name: Version; value: 2.0;

Figure 5.8: Hardware Platform: A RCSH Formal Representation Example.

The identification, representation of all parts that form a hardware device is extensive

set of data. Therefore, the example identify 3 hardware parts, the micro-controller, the

Universal Serial Bus (USB) connector (used to program the device) and the power supply

set, and shows partial information of each one.

White boxes reports to model classes from IoTSAG specification model. For more

detail regarding units and property domains specification see Section 5.3 and practical

example depicted in Figure 5.4.

5.4.2 IoT System: Software Formalisation

One of the three core parts that describe an IoT System is its program, the software code.

However, the number of software languages available is high and in most cases they do

not share a common ground which poses as a problem. To tackle this issue the proposed

framework provides an interface, so users can integrate their own software languages

and consequently build a properly formalisation of their IoT Systems. Section 2.3.4 point

out some programming languages known to be used in IoT (C language and nesC), but

others could be mentioned (e.g. VHDL).

Describe an IoT System using the proposed framework requires an application, firmware

model to be added to the RCSM. Such description, application model, must follow a spec-

ification model — Meta-Model. In case stakeholders intend to form an IoT System using

a new software language is necessary to properly integrate the new application specifica-

tion model into the IoT System Formal Description Framework.

80

5.4. IOT SYSTEM SPECIFICATION

To properly integrate a software language into the proposed framework, two rules

must be obeyed by the specification model. Additional information, properties must be

specified using IoTSAG specification and the main model object inherit from the inter-

face class SoftwareModel. Figure 5.9 illustrates an example on how a software language

specification model must be defined.

Figure 5.9: Software Language Specification: A Generic Example.

The main model object of Generic Software Language specification is the Application-
Model class. As depicted, this class inherits, is a children class, from the interface class

SoftwareModel of the RCSM. In this way, is enabled its use as a software language spec-

ification model, consequently as one of the parts that describes a RCS. Inheriting from

SoftwareModel class, the main model object can instantiate properties through the ref-

erence link properties and include a description using reference link annotation (an in-

stantiation of class Annotation from IoTSAG specification model). Possible properties

examples for software languages could be references to messages payload or maximum

number of exchange messages per day in a communication scenario, or storage limits

(e.g. vectors, arrays) in a data storage scenario. These aspects, restrictions are imposed

by stakeholders or systems restrictions, but applied by programmers in program codes.

Even though, properties instantiation are automatically available by inheriting from class

SoftwareModel, it is possible to other classes to reference IoTSAG properties. To exemplify

this case it was included in the figure the class ClassWithProperties.

The example also suggests the use of two attributes (use not mandatory), language and

modelVersion, for the software language main model object. The language attribute could

specify the software language (e.g. C, nesC). With language identification additional

functionalities could be released, activated such as a high level, graphical tool to show

the application. The use of attribute modelVersion is intended for model version control,

consequently versions compatibility.

81

CHAPTER 5. FRAMEWORK TO FORMALLY DESCRIBE AN IOT SYSTEM

5.4.3 IoT System: Energy Profile Formalisation

Unlike the two previous cases, a specification of an energy profile is not mandatory in the

proposed framework, since it is not a binding factor to correctly describe an IoT System.

An energy profile is an additional set of information, but not a required feature for an

IoT System to work.

Nevertheless, an accurate analysis of power consumption is a fundamental support

for research and development activities, since it is instrumental to predict expected IoT

Systems lifetime and to allow developers to optimize energy consumption in distributed

IoT applications. Two primary approaches have been followed up to now. Direct mea-

surement is performed by engineering the devices to measure energy consumption while

they are executing their distributed applications; this approach is accurate but it is very

expensive since it involves engineering every single device involved, and it is not practical

in large distributed applications. The second approach is related to simulation models,

which are more practical and scale better, but which depend on direct measurement over

smaller scenarios to collect the parameters used to enhance the realism of the model.

It is hard for a programmer to have complete knowledge of the energy consumption

of his applications, since many low level details are hidden by the OS, and the details of

the operations executed by the OS are device-dependent [195].

As proposed by framework in Figure 5.2, an energy profile must be built based on the

hardware and application code models. These last two, together form a System Under

Study (SUS), i.e. an IoT System from which is intended an energy consumption analysis.

A hardware platform can be used for several kinds of purposes, such as sensing the

environment, communicate, act, process data, etc. Each one of these functions has dif-

ferent energy consumption impact. Furthermore, sensing a room light or temperature

have different consumptions, in sending a message the consumption will be related to

the amount of data that needs to be transmitted. Software code, program gives this addi-

tional, specific information necessary to properly generate the energy profile for a certain

task.

Consequently, an energy consumption profile needs to embrace different aspects

where time (e.g. wake, sleep time) is an important one but not unique, e.g. the par-

ticularity of the hardware components used, user code are of major importance as well.

Real-life tests and available simulation methods and tools should also be analysed. Figure

5.10 proposes a high-level IDEF-0 [196] “black box” view on the energy analysis activity

specifying inputs, outputs, control, and mechanisms:

• Inputs: the IoT System, expressed through the hardware and application model, is

the system input. Along with the control definitions, they feed the energy analysis

system with the information required to calculate the outputs via the application

of the indicated mechanisms.

• Controls: variables that when adjusted can fine tune the outputs. For the specific

82

5.4. IOT SYSTEM SPECIFICATION

case of energy analysis, changing the desired degree of information (e.g. overall

system or a specific function) and time constraints, influence directly the values

obtained.

• Mechanisms: normally it is a person, a facility or a machine that executes the pro-

cess. Since the process involves simulation, it requires models and simulation meth-

ods that can assist in producing the required outputs, using the information pro-

vided by the inputs and definitions by the controls. To analyse, simulate the SUS,

one needs to have a well-defined SUS model. In this case, the IoT System is rep-

resented by two models, the hardware and application models, from which the

system extensive composition is mitigated. Reinforced with information from avail-

able simulation methods, tools and models aggregated with real tests data, energy

consumption can be extrapolated for the SUS, for different periods of time and with

details for the amount of energy consumed for a specific hardware component or

code function.

• Outputs: the system output is the energy consumption profile of the IoT System

under study.

Energy
Consumption

Detail

Hardware
Model Energy Analysis

Software
Model

Real
Tests
Data

Simulation
Methods/

Tools

Simulation
Model

Energy
Profile

Specification

Time
Constraints

Desired
Information

Degree
Resource-Constrained

System

Inputs

Controls

Outputs

Mechanisms

Figure 5.10: IoT System’ Energy Consumption Analysis Activity Detail.

As in the software language case, the energy profile specification model has to respect

the same rules so it can be properly integrated into the proposed framework. Properties

must be specified using IoTSAG specification and the main model object inherit inter-

face class EnergyProfile. Figure 5.11 illustrates an example on how an energy profile

specification model should be defined.

The main model object of Generic Energy Profile specification model is the EnergyModel
class. As depicted, this class inherits, is a children class, of the interface class EnergyProfile
from the RCSM. This enables the association of an energy consumption model to a RCS.

EnergyModel class automatically inherits the capability to instantiate properties (from

IoTSAG) and to include a description (Annotation class instantiation, also from IoTSAG).

83

CHAPTER 5. FRAMEWORK TO FORMALLY DESCRIBE AN IOT SYSTEM

Figure 5.11: Energy Profile Specification: An Example.

The example given in Figure 5.11 shows a new specification model but an existing sim-

ulation model, once properly adapted to the two rules (properties instantiation and core

class inheritance) imposed by the framework, can also be used. However, the example

can be used as background for further, future developments in this area.

Concerning the specification model example to represent energy information, the

reasoning used considers the representation of systems — expressing an objective of

the IoT System, tasks, and energy consumption. Nevertheless, other aspects may need

to be introduced in the final version of a energy profile specification model. A more

detailed explanation of the composition of the meta-model example for the energy profile

is presented, evidencing the use of each structure defined:

• EnergyModel: the main model class includes a model version (for version control)

and reference identifier for the RCSM owner of the interface class EnergyProfile,

parent of this class. An EnergyModel is composed by one System;

• System: here the word “system” is used to identify the IoT System objective/func-

tion/job. Inherits all features from IoTSAG SystemDescription class: the system

version, name, identifier and a description. It can be composed by a multitude of

System (i.e. sub-systems of the System) and at least one Task;

• Task: allows a system operation to be split into multiple parts, allowing the identi-

fication where the energy is consumed with more detail. It is identified by a name,

can include a description (from IoTSAG Meta-Model), and contains at least one

energy analysis (EnergyAnalysis class).

• EnergyAnalysis: describes the energy consumption of a Task, aggregating the en-

ergy value (reference “energyConsumption” to a SingleProperty) with the time in

which it was consumed (TimePeriod);

84

5.4. IOT SYSTEM SPECIFICATION

• Time: is an abstract class to represent time aspects related to the conditions in which

the energy tests or simulation take place. At this point it can be instantiated as time

period (TimePeriod). This class is composed by a property (SingleProperty), from

IoTSAG specification, to instantiate the time value and it can include a description

(from IoTSAG Annotation class);

• TimePeriod: is a class to represent the time window in which the energy consump-

tion tests, simulation take place. Inherits all features from class Time.

Classes System and Task manages the desired degree of information, being able to

specify operations, code lines, expressions, etc.

As one of the mechanisms for the energy analysis activity, the presented Generic En-
ergy Profile specification model could describe the energy consumption information as

depicted in Figure 5.12. The example describes a device, a RCS, executing two opera-

tions: sensing the environment (sensor type is not important for the scenario) and the

transmission of the real-time collected data.

Sensing the environment and transmit real-time data.

System id: XPTO; name: Sensing_SendData; version: 1.0;

System id: XPTO_Sensing; name: Sensing;
version: 1.0;

name: Energy; value: 6 mA;

name: Period; value: 1 hour;

name: Sensing;Task

EnergyAnalysis

System id: XPTO_SendData; name: SendData; version: 1.0;

name: Energy; value: 50 mA;

name: Period; value: 1 hour;

name: Send Data;Task

EnergyAnalysis

name: Energy; value: 10 mA;

name: Period; value: 5 ms;

EnergyAnalysis

name: Energy; value: 250 mW;name: Period; value: 1 hour;

name: Full System;Task

EnergyAnalysis

description: System: Sensing and Send Data.

description: System: Sensing Environment.
description: System: Send Data.

device

Figure 5.12: Energy Profile: A Practical Example.

The RCS is characterized as a system with “XPTO” as identifier and name “Sens-

ing_SendData”. This approach allows an energy consumption description for the full

system (through the Task — Full System). The associated time period and energy con-

sumption states that the full system was evaluated during one hour and had an energy

consumption of 250 milliwatts. Nevertheless, and as it was described, the presented

meta-model enables the evaluation of each individual operation. Operation, i.e. system

“Sensing the environment”, identified as “XPTO_Sensing”, reports an analysis of one hour

period with a consumption of 6 milliamps. On the other hand, operation “transmit real-

time data”, identified as “XPTO_SendData”, is divided in two energy analyses for the

85

CHAPTER 5. FRAMEWORK TO FORMALLY DESCRIBE AN IOT SYSTEM

same task (name “Send Data”). The first analysis reports for the same time period, one

hour, with a consumption of 50 milliamps. The second analysis presents a narrow period,

5 milliseconds, and consequently less energy consumption (10 milliamps).

White boxes reports to model classes from IoTSAG specification model. Different

units are used for the same property domain. For more detail regarding units and prop-

erty domains specification see Section 5.3 and practical example depicted in Figure 5.4.

5.5 Model-Driven Harmonisation Framework

Previous sections presented how an IoT System can be described using formalisms (spec-

ification models — Meta-Models) in terms of hardware, software languages and also

associate an energy profile, guaranteeing that the IoT System representation is indepen-

dent of the hardware platform and software language. The proposed specification models

need a model-driven approach to materialise, support the harmonisation of the specifi-

cation models, models and data in a platform-independent context. To achieve these

objectives, next is presented a MDA-based framework.

Figure 3.2 in Section 3.2.1 presented a generic view of the formalisation of a System

Under Study (SUS). Using the same approach on an IoT System, in this case the SUS, is

obtained the representation depicted in Figure 5.13.

IoT System

RCS
Meta-model

RCSH
Meta-model

“Software”
Meta-model

“EnergyProfile”
Meta-model

references

describes

references

references

written in Meta
Language

describes

Languages
each written in

RCS
Model

RCSH
Model

“Software”
Model

uses

“Energy Profile”
Model

uses

uses

IoTSAG
Meta-model

references

references

IoTSAG
Model

IoTSAG
Model

IoTSAG
Model

Figure 5.13: IoT System: Model and Meta-Models Relationship.

86

5.5. MODEL-DRIVEN HARMONISATION FRAMEWORK

An IoT System is described by a set of models, one or more IoTSAG models, an RCSH

model, a software model, and an energy profile model (not mandatory), all pinpointed

by a RCS model. The use of different IoTSAG models depends of each one of the other

models that describe an IoT System. Meaning that a single IoTSAG model is pinpointed

by all the other models, or different IoTSAG models are referenced.

The models are written in a coherent way, syntactic as well as semantically, well-

defined by the corresponding modelling language. These languages are described by

Meta-Models, i.e. the proposed specification models presented in the previous sections.

The Meta-Models specify the constructs and relationships within the modelling language.

The proposed Meta-Models are written in the Ecore modelling language.

To address the realization of the IoT System platform-independent view a MDA-based

Harmonization Framework is presented in Figure 5.14. It makes use of MDA’s techniques,

mainly horizontal transformations, to support interoperability between modelling lan-

guages, models and data, and streamline the integration process with other systems and

tools.

Meta-Model
A

Meta-Model
B

Meta-Meta-
Model

Model
A

Model
B

Data Data

described by described by

Data Transformations

A to B
Mapping

Harmonisation Layer

Models and Ontologies Mapping

R
e

al
iz

e
s

Platform-Independent
Specification Models
(Abstraction Level 2)

Platform-Specific
Models

(Abstraction Level 1)

Computation-Independent
Meta-Meta Models

(Abstraction Level 3)

defined by defined byStructural, Specification Mapping

A to B
Mapping

Figure 5.14: Model-Driven Harmonisation Framework.

This MDA-based Harmonization Framework implementation architecture is used by

the Harmonisation Engine of the proposed Framework to Formally Describe an IoT System
presented in Section 5.2. It is based on the work by Agostinho et al. [197] and on the

author work developed in [198], which addresses interoperability problems associated

to model languages transformations, and furthermore allowing communities to build

interoperable systems and services.

87

CHAPTER 5. FRAMEWORK TO FORMALLY DESCRIBE AN IOT SYSTEM

The left and right-hand sides of Figure 5.14 represent two specifications for informa-

tion representation formats, each one with its own internal models, where information

is presented following a model-language—meta-model hierarchy introduced previously

in Section 3.2.1. Both representation formats can be the same, originating for example

a data merge transformation, or of different formats in which the data from one-end is

transformed to the representation format of the other-end.

In the middle, the Harmonisation Layer is responsible for model and semantics harmon-

isation, defining mapping morphisms among the different specification formats. Map-

pings are expected to be pre-defined and transformation scripts relatively static, since

changes in specification models are not common. Although, transformation scripts, “en-

ablers”, can be updated to execute new rules or correct existing ones. The transformation

process includes the use of a storage database. Besides the common storage action (e.g.

data models storing), it includes storing of model and semantics harmonisation in a

communication mediator knowledge base, to grant a planned traceability to support in-

telligence and sustainability. For example the use of the Mediator Ontology [199], which

stores morphisms according to a tuple format [198].

Storage features and semantics analysis through terminology mapping is possible but,

it is not in the scope of this dissertation.

Figure 5.15 depicts two examples of possible transformations in the IoT System for-

mal specification scope. The first example, Figure 5.15a, illustrates two IoTSAG models

being merged into a single file/model. The mapping is performed at abstraction level 1,

Platform-Specific layer, since all models in this transformation share the same specifica-

tion model (IoTSAG), i.e. no need to define rules between specification models (Platform-

Independent layer). Nevertheless, the mapping rules to perform the merge could take

into consideration the no repetition of Unit or PropertyDomain, or proper aggregation of

units under the same property domain. The requirement of matching data within the

model could be achieve through ontology markup, semantic analysis.

Model
IoTSAG

Data

described by

Model
IoTSAG 1

defined by

Data

described by

defined by

Meta-Model
IoTSAG

Model
IoTSAG X

defined by

Data

described by

mapping

Transformation

R
ea

liz
es

(Abstraction
Level 2)

(Abstraction
Level 1)

a IoTSAG Model Files: Merge Example.

Meta-Model
RCSH

Model
RCSH

defined by

Data

described by

mapping

Transformation

R
ea

liz
es

Meta-Model
XML

Model
XML

defined by

Data

described by

(Abstraction
Level 2)

(Abstraction
Level 1)

b RCSH to XML: Model Transformation Example.

Figure 5.15: Harmonisation Layer: Mapping Examples.

The second example, Figure 5.15b, presents a transformation from one format to

88

5.6. TOPIC DISCUSSION

another. The mapping from the source to a target specification model is performed at

the abstraction level 2, i.e. at Platform-Independent layer. The selected target model

is XML, a common data encoding standards widely used. The source model is a RCSH

model. The specification models’ mapping is performed using a syntactic matching be-

tween the models objects. The process of language mapping is manual, but the language

transformations are always automatic and repeatable.

5.6 Topic Discussion

Internet-of-Things (IoT) is bringing diverse and novel business models to society, and

consequently manufacturers are focus on developing new embedded systems to tackle

the variety of application domains and services. It is predict that will be around 30 billion

wireless connected devices to IoT in the next years [4, 5]. With a very specific character-

istic, Resource-Constrained, these IoT Systems carry out simple and small applications

like monitor physical or environmental conditions, such as temperature, sound, pressure,

etc.

To facilitate and increase effectiveness during the design of IoT Deployments, stake-

holders must be able to verify IoT Systems based on all characteristics, features that

these systems have to offer. Available representations of an IoT Systems for its physical

components are very high level (i.e. graphical representations), neglecting completely

components parameters/values [11, 43, 193, 194]. Some manufacturers provide in their

websites ways to select a product from a set of choices. Products are displayed with some

detailed (number of features), but the interaction is completely handmade. Information

data, when possible, can be collected only by user’s action and change depending on the

performed query. Two examples are [14, 15].

Consequently, the lack of ways to formally describe an IoT System, capable of being

used by applications in an automatic way, is an issue. To tackle this, and to meet the first

sub-research question “Which methods could be applied or develop to formally describe an IoT
System (hardware, software, energy)?”, it was proposed a framework capable of formally

describe an IoT System.

To describe complete an IoT System, it is considered mandatory to have a hardware

and software characterisation, but the proposed framework also enables the specification

of an energy profile. Although, the framework describes means to achieve this energy

profile, and initial works have been developed, it is not part of the research work of thesis.

89

C
h
a
p
t
e
r

6
Assessment Framework for IoT Systems

Questions, either simple or complex, are something that all people have to face daily. To

make a correct and accurate decision depends many times on multiple criteria, which is

a tough challenge for human beings [13]. Engineers have in their hands many different

devices, each one built with a very specific purpose. Consequently, they are facing the

difficulty to choose in a conscious way, a more suitable IoT System on how to implement

and/or improve a certain task. This need grounded the formal specification of an IoT

System presented in Section 5.2, where hardware, software and energy consumption

characteristics are gathered to build a knowledge database. That structured information

plays an important role on the developed framework for multi-criteria assessment of

IoT Systems, the author’s second conceptual contribution and which is presented in this

chapter.

6.1 Decision-Making in IoT

Internet-of-Things (IoT) is an umbrella term for a wide range of technologies, applications

and services domains. Next are addressed some examples of decision-making in IoT

scope. This literature review shows that the proposed framework is a novel-framework

focused on an existing problem not yet addressed; that the envisaged decision making

methodologies are widely used; and that the framework openness to different MCDM

methods is a disruptive approach from one-two methods’ frameworks application.

The authors in [200] focus on ensure an appropriate manufacturing processes selec-

tion to be improved, updated with IoT technologies. Processes stages were analysed

for IoT application based on five criteria: reliability, security, business, mobility and

heterogeneity. The selection of the more suitable part of the process to implement IoT

technologies was based on applying the AHP method.

91

CHAPTER 6. ASSESSMENT FRAMEWORK FOR IOT SYSTEMS

In wireless communications, poses the problem of selecting which technologies best

serves the IoT network scenario. The publication [201] addresses the decision-making

regarding wireless communication technologies (Wi-Fi, Z-Wave, Bluetooth, ZigBee, NFC,

etc.) considering four criteria as the most important: reliability, dependability, safety

and security. The application of MCDM methods is due to the wide offer of wireless

communication technologies with also a large variety of features.

Another scope is security of IoT services. In [138], authors combine MCDM fuzzy

methods to assess different aspects and requirements during the architecture and ser-

vice implementations, to assist on decision-making regarding the allocation of security

assets and resources. They combine the Analytic Network Process (a generalisation of

AHP; problems are modelled as networks instead of decomposed into a hierarchy) with a

decision-making trial and evaluation laboratory (DEMATEL) technique (analyse criteria’

cause and effect interrelationship).

In [202], the authors present the problem of selecting an IoT platform using MCDM

during the design phase of IoT. Facing the common problem of a wide offer, in this case of

IoT platforms, it is proposed two MCDM approaches for weight coefficients calculation.

The approaches are based in a linear convolution and the second on a multiplicative

convolution method.

6.2 Framework for IoT Systems Assessment

In a world with a diversity of possible solutions, IoT Systems, engineers are facing the

difficulty to choose in a conscious way, the more suitable solution on how to implement

and/or improve a certain task. Sub-research question Q1.2 presented in Section 1.4.1,

addressing the analysis of IoT Systems, asks for “Which methods could be applied or

develop to assist in IoT System assessment”.

As shown, MCDM methodologies have being applied in IoT independently of the area

(e.g.: security, communications, platforms, etc.). However, a concrete decision-making

regarding IoT Systems is still missing. State-of-the-art approaches or are very specific

(e.g.: looking for a wireless communication protocol) or very high level (e.g.: select an IoT

platform). Methodologies, tools are of standalone application (i.e. works only with the

designed, the initial methods), and with no process defined for constraints application

rather the normal evaluation by maximisation (i.e. optimisation by which has the higher

values).

To address this challenge, a framework is presented in Figure 6.1 proposing a multi-

criteria assessment framework to analyse IoT Systems, capable of suggesting the more

suitable IoT System to execute a certain task. The proposed framework is composed by

five main blocks, Storage, Objective Characterisation, Multi-Criteria Decision Methods, IoT
Systems Assessment and Assessment Engine. The description of the considered blocks is

the following:

92

6.2. FRAMEWORK FOR IOT SYSTEMS ASSESSMENT

• Storage: is in all similar to the Storage block from the framework to formally de-

scribe an IoT System, presented in Section 5.2 and depicted in Figure 5.2. Divided

in two sections, section Formalisms/Specification, serves as repository for specifi-

cation models (meta-models), in this case for Multi-Criteria Analysis Meta-Model

(MCAM) and MCDM Methods, and rules that execute data interchange (transfor-

mations). The section Data, serves as repository for data models that are created

and consequently have to be stored along the transformation process. As referred

in the framework proposed in the previous chapter, the section Data contains the

structure information regarding IoT Systems. The specification model MCAM is

presented next in Section 6.3, and the integration of MCDM Methods, with two

proposed specification models are presented in Section 6.4;

Multi-Criteria
Decision Methods

Functional Flow

Data flow

Settle Assessment
Constraints

Criteria
Identification

Solutions
Identification

Settle Criteria
Priorities

Objective
Characterisation

Users

IoT Systems
Assessment

Solutions
Ranking

Apply Criteria
Prioritisation

Multi-Criteria
Analysis

Apply
Constraints (1)

Storage

Models
Assessment

Engine

IoT Systems

Assessment Result

Data

R
ef

in
em

en
t

Formalisms/
Specifications

defines
Meta-

Models

d
ef

in
es

4

1

2

3

Apply
Constraints (2)

Figure 6.1: A Framework for IoT Systems Assessment.

• Objective Characterisation: addresses the characterisation of the problem to solve.

Consists on define a purpose/objective, criteria and constraints. It is composed by

four steps:

1. Solutions Identification: first is necessary to identify the IoT Systems that are

considered to be possible solutions capable of accomplishing the desired ob-

jective;

2. Criteria Identification: decision makers choose a set of features considered im-

portant to be analysed within the objective scope. For example, and commonly

selected are properties like cost, energy consumption, computation speed, etc.;

3. Settle Criteria Priorities: based on decision makers judgement it is determine the

preference levels between the selected criteria. Decision makers have different

93

CHAPTER 6. ASSESSMENT FRAMEWORK FOR IOT SYSTEMS

perspectives of which feature is more important, and criteria importance also

depends on the scenario that is being addressed;

4. Settle Assessment Constraints: this step allows decision makers to indicate, de-

fine some type of restrictions to criteria. It is possible to select seven types of

restrictions/optimisations divided among three groups. Each constraint can be

applied to one or more criteria. Two or more constraints can be applied to sin-

gle feature/criterion. First, Criteria Optimization, is the optimization method

group that allows criteria to be organised in two ways, minimize or maximize

feature values. Second group is the Criteria Availability, split in two types. The

constraint MustHave is used for cases in which a feature must be present, and

constraint CannotHave for the opposite case, i.e. criterion/feature cannot be

available in the final proposed solution(s) group. The third group, Criteria
Condition, allows the definition of three different kinds of constraint levels.

Constraints LessThan, Equal and GreaterThan, enables users to set threshold

values or look for a specific feature value;

• Multi-Criteria Decision Methods: is the representative block on an important

framework feature — openness to the use of different MCDM Methods. The pro-

posed framework takes use of MCDM Methods to assist in the assessment process

of IoT Systems, since these processes are able to evaluate diverse, contradicting

criteria. Assisted by the Assessment Engine, in terms of specification models, trans-

formation rules and user-defined enablers applicability, this block is able provide

new and even user-defined MCDM Methods for the IoT Systems assessment pro-

cess. Enablers are pieces that need to be developed and applied each time a new

MCDM Method is introduced, working as interoperability facilitators between the

new specification models (MCDM Methods) and the framework;

• IoT Systems Assessment: is the assessment procedure block. Gathered all data

(following well-defined syntax) necessary to perform a conscious decision regarding

the more suitable solution for a specific task, and stakeholders decided on the

MCDM Method to use, is possible to execute a methodology to perform a multi-

criteria analysis based on the defined constraints and criteria prioritisation, and

obtain a solutions ranking. The complete assessment methodology is presented in

Section 6.5. In case of assessment outcome not satisfactory for some reason (e.g.

applied constraints excluded all solutions), is possible to go back for requirements

refinement. For example adjust criteria conditions or constraints or even remove a

criterion;

• Assessment Engine: is the mechanism responsible for all computation regarding

the IoT Systems assessment. It carries out the data transformation from the IoT Sys-

tems specification to the MCAM, load the selected MCDM Method and respective

enabler and finally execute the IoT Systems assessment procedure. The MDA-based

94

6.3. MULTI-CRITERIA ASSESSMENT SPECIFICATION

Harmonization Framework, presented in Section 5.5 is also applied here to accom-

plish the harmonisation between specification models.

Next sections will address the specification model that allows the objective characteri-

sation by specifying criteria, constraints and possible solutions, and address the openness,

dynamism of the proposed framework regarding the use of different even user-defined

Multi-Criteria Decision Making (MCDM) Methods. It is presented the way to include

MCDM Methods in the IoT System Assessment process. Finally, and focus on MCDM)

Methods, two specification models are proposed to describe the AHP and ELECTRE

methods, which were addressed in Section 4.2.

6.3 Multi-Criteria Assessment Specification

Many are the features/criteria which influence the overall performance of an application

running in an IoT System. From a diversity of possible hardware solutions and software

languages, a complex problem emerges for stakeholders regarding the selection of a more

suitable IoT System. Combining or fulfil several requirements is not an easy task to

researchers, domain practitioners and engineers [32].

Consequently, it is proposed a Multi-Criteria Analysis Meta-Model (MCAM) that for-

malises all parts of IoT Systems evaluation process. The MCAM is depicted in Figure 6.2.

This specification model, to maintain a straightforward functionality, uses the IoTSAG

specifications (presented in Section 5.3). Similarly to the RCSM, MCAM provides an

interface class to allow the use of different (even new or user-defined) MCDM methods

within the same problem (multi assessments by changing criteria, constraints or MCDM

methods).

Figure 6.2: Multi-Criteria Analysis Specification Model.

95

CHAPTER 6. ASSESSMENT FRAMEWORK FOR IOT SYSTEMS

The Ecore representation of MCAM is presented in Appendix D.

A more detail explanation of the MCAM composition is presented, evidencing the use

of each defined structure:

• MultiCriteriaAnalysisModel: the main model class includes a model version (for

version control) currently at “2.0-2019” and a description of the objective. A Multi-
CriteriaAnalysisModel is composed by at least one criterion (class Criteria), at least

one decision method (class MultiCriteriaDecisionMethod) and can contain the out-

come result (class RankOutcome). With no criterion define it is impossible to de-

liberate upon the available solutions. With no decision method there is no MCDM

methodology to apply, making the proposed methodology incomplete. The outcome

result is fulfilled by the IoT Systems Assessment process;

• Criteria: is an abstract class to represent two kinds of criteria, Qualitative or Quan-
titative. The criterion is defined by its name and has to declare its unit, by using

the class Unit from the IoTSAG specification. It is also composed by at least one

constraint (class Constraint) and at least two values for the same criterion (which

indicates that there is at least two solutions being evaluated);

• Qualitative: is a specific Criteria used to define qualitative criteria, for example:

implementation difficulty;

• Quantitative: is a specific Criteria used to define quantitative criteria, such as cost,

energy consumption, etc.;

• CriteriaValue: this class is composed by a property (SingleProperty class) from IoT-

SAG specification, used to instantiate criterion value, and by the identification of the

IoT System (ResourceConstrainedSystem class) to which the property value belongs

to;

• Constraint: is an abstract class to represent the different kinds of criteria constraints.

An instantiation of a Constraint can be of the following types: Availability, Optimiza-
tion, and also of two types of Condition, QualitativeCondition or QuantitativeCondi-
tion;

• Availability: is a specific Constraint used to express the necessity of having a feature

within the final solution. A feature’s need is defined by the attribute type which is of

type AvailabilityType. The use of this type of constraint can automatically exclude a

solution;

• AvailabilityType: is an enumeration class. An attribute of this kind can be of two

types: MustHave, used to indicate that a solution has to include that criterion, and

CannotHave, used to indicate the opposite, i.e. a criterion cannot be part of the final

solution;

96

6.3. MULTI-CRITERIA ASSESSMENT SPECIFICATION

• Optimization: is a specific Constraint used to sort all considered solutions. The

attribute type defines the sorting type which is of type OptimizationType. The use of

this type of constraint does not automatically exclude a solution;

• OptimizationType: is an enumeration class. An attribute of this kind can take two

values: MIN where a solution with the less criterion value gains a higher score and

MAX where a solution with the higher criterion value gains an higher score. Criteria

values are ordered in a minimization or maximization sequence;

• Condition: is an abstract class to represent two types of conditions: QualitativeCon-
dition and QuantitativeCondition. It is used to express a data range. The attribute

type defines the condition type which is of type ConditionType. The use of this type

of constraint can automatically exclude a solution;

• QualitativeCondition: is a specific Condition, which inherits Constraint features.

The attribute value is used in combination with the condition type to set starting

point of the data range. For example, the implementation difficulty has to be less

than medium difficulty. For qualitative criteria, at this moment, decision makers

must indicate the weight for each possible qualitative criterion values (e.g.: Very

Important – 10; Important – 5; Not Important – 1). Also, a semantic analysis to the

qualitative criterion values could be performed to automatically assign a specific

order;

• QuantitativeCondition: is a specific Condition, which inherits Constraint features.

The attribute value is used in the same way as for class QualitativeCondition, an

example could be the cost has to be less than a certain amount of Euros;

• ConditionType: is an enumeration class. An attribute of this kind can be of three

types: LessThan, Equal, GreaterThan;

• MultiCriteriaDecisionMethod: is an interface class that allows instantiation of

different MCDM Methods. In this way the proposed framework is not bound to

restrict, pre-established decision methods. However, new methods specification

models must respect the fact that its main model object has to inherit from the

interface class MultiCriteriaDecisionMethod. Sections 6.4.1 and 6.4.2 propose spec-

ification models for two MCDM Methods, that shows the framework openness to

the use of different decision methods;

• RankOutcome: is a class than gathers the assessment result. It is composed by

the decision method used (class MultiCriteriaDecisionMethod) and by at least two

ranking positions (class Rank), which relates the rank with the possible solutions

(IoT Systems);

97

CHAPTER 6. ASSESSMENT FRAMEWORK FOR IOT SYSTEMS

• Rank: identifies, relates the solutions analysed with their outcome. It is composed

by the identification of the solution (class ResourceConstrainedSystem from the RCS

specification model), the solution ranking position and its assessment result value.

The proposed specification model (MCAM) enables stakeholders to assess which IoT

System is more suitable to their application scenario and purpose. It is a concrete form to

describe criteria than influence the overall performance, define constraints or restrictions

for each criterion, and which MCDM method will be applied to assist in the decision.

Besides all the known benefits of using MCDM methods (e.g. solve problems with multi-

ple and conflicting criteria, solutions ranking), MCAM gathers in a single formalisation

the possibility to complement the decision method with user-defined restrictions. Re-

strictions that indicate that a solution must have or cannot have a certain feature, define

value thresholds (limits) or in which way criteria are organised (minimise or maximise

optimization).

With its model-driven nature, MCAM is easy to include, operate with other tools or

systems. It provides direct binding with IoT Systems formalisation and also the use of

different MCDM methods, even user-defined methods.

6.4 MCDM Methods Specification

Multi-Criteria Decision-Making (MCDM) is a process to decide which is the more suitable

solution, from a set of available solutions, by analysis of contradicting criteria [177].

Section 4.2 addressed the most widely used decision making methods in literature in a

general form, where three methods were highlighted: AHP, PROMETHEE and ELECTRE.

Section 6.1 presented a background research, focus on IoT, regarding in which scenarios

decision-making is being applied and which are the methods used. To complement the

State-of-the-art, it was proposed a novel framework for a multi-criteria assessment of

IoT Systems, with a possibility to define different types of constraints divided into three

groups (optimisation by not only by maximisation but also minimisation; availability

by must or cannot have a certain feature; and definition of acceptance data ranges by a

settling conditions) but also the used of different MCDM methods.

Next is proposed two specification models for the MCDM methods presented in Sec-

tion 4.2.1 and 4.2.3, respectively the Analytic Hierarchy Process (AHP) and Elimination

and Choice Expressing the Reality (ELECTRE). The proposed Meta-Models formalise

the MCDM methods’ methodologies fulfilling their rules. Each specification model also

respects the necessary rule so it can be integrated as one MCDM methods’ possibility in

the MCAM. This rule refers to the necessity of the main model class to inherit from the

interface class MultiCriteriaDecisionMethod of the MCAM.

98

6.4. MCDM METHODS SPECIFICATION

6.4.1 Analytic Hierarchy Process (AHP) Specification

The Figure 6.3 proposes a specification model to describe, formalise the AHP decision

method, and to allow its reference, inclusion by the Multi-Criteria Analysis specification

model (MCAM). A more detail explication of the AHP specification model, evidencing

the use of each structure, is presented next:

Figure 6.3: Analytic Hierarchy Process (AHP) Meta-Model.

• AHPModel: is the main model class and contains three attributes. First, method,

identifies the MCDM method that in this case is by default “Analytic Hierarchy

Process”. Second attribute, modelVersion, is a model version (for version control)

currently at “1.1-2019”. The third is the definition of the consistency degree thresh-

old (consistencyRatioThreshold), settle by default to 10%, is the value used to analyse

correctness of priorities assigned by decision makers. An AHPModel is composed

by one CriteriaComparison, and contains an annotation of type RandomConsisten-
cyIndex. It inherits from MultiCriteriaDecisionMethod class of the MCAM, there by

respecting the rule imposed by the framework;

• CriteriaComparison: is a class to aggregate all criteria used by the decision method.

Contains one attribute, scale, to define the comparison scale used to compare criteria

priority. Attribute scale is set by default to “Saaty 1-9 scale”. This class is composed

by at least two criteria (class FromCriteria), since it is the minimum number of

criteria for this method;

• FromCriteria: is a class used to define the pairwise comparison matrix (see Section

4.2.1, Equation 4.4). It is composed by one criterion (reference to Criteria class from

MCAM), and at least one reference (reference to class ToCriteria) to priorities values

regarding the other criteria available in the decision process. It is able to define the

relation, i.e. priorities values, between criterion a and all the other criteria;

99

CHAPTER 6. ASSESSMENT FRAMEWORK FOR IOT SYSTEMS

• ToCriteria: it enables the definition of criteria priority values. Meaning that a

source criterion (FromCriteria) has a priority value of priorityValue attribute in rela-

tion to a target criterion, referenced by class Criteria from MCAM;

• RandomConsistencyIndex: is a specification model annotation that contains nine

random consistency index values, from two to ten criteria. The values are the same

as in Table 4.1 and were retrieved from [186].

The Ecore representation of AHP specification model is presented in Appendix E.

To give a better notion of the match between the AHP decision process and the pro-

posed AHP specification model, Figure 6.4 depicts the relationship between the Equation

4.4 and the equivalent classes of the proposed AHP Meta-Model. This relationship works

in the two directions, meaning that is possible to fill the specification model from the

pairwise comparison matrix, AHPM , as it also possible to build the AHPM matrix from

the AHP Meta-Model.

criterion a criterion b

criterion a 1 1/9

criterion b 9 1

FromCriteria
(Criteria-MCAM)

ToCriteria
(priorityValue)

ToCriteria
(Criteria-MCAM)

Criterion a is less important than criteria b

Criterion b is more important than criteria a

Equation 4.2, where m = 2:

Figure 6.4: AHP Meta-Model: Example of a Pairwise Comparison Matrix.

The example considers two criteria, criterion a and criterion b (m = 2). The pairwise

comparison matrix, AHPM , shows that criterion b is nine times more important than

criterion a, and consequently criterion a is nine times less important than b. The priority

value between the same criterion is always one. The table identifies the specification

model classes used.

Furthermore, the decision matrix (Equation 4.3) is criterion value matrix from the

solutions versus the criteria considered important. This matrix is obtained from all

the instantiations of the FromCriteria class. This class references the Criteria class from

MCAM, that has a connection to each criterion value and the correspondent IoT System

to which this value belongs. Equations 4.5 to 4.9 from the decision method AHP, are

basically mathematical calculations and consequently no need for a representation in the

proposed specification model.

100

6.4. MCDM METHODS SPECIFICATION

6.4.2 ELECTRE Specification

ELECTRE is one of the decision-making methods point out as a MCDM method widely

used in the literature [179–181]. In the same way as for the previous case, next is pro-

posed a specification model for the ELECTRE method, respecting the rules of the ELEC-

TRE method presented in Section 4.2.3 and the proposed framework rule to allow the

ELECTRE Meta-Model utilisation in the multi-criteria assessment of IoT Systems.

Figure 6.5 depicts a specification model for ELECTRE decision method. A more detail

explanation of the ELECTRE Meta-Model composition is presented, evidencing the use

of each defined structure:

• ELECTREModel: the core model class, that inherits from the interface class Multi-
CriteriaDecisionMethod (MCAM) to enable its inclusion, use in the proposed Frame-

work for IoT Systems Assessment. This class presents three attributes that identify

the model. First is attribute method set by default to “ELECTRE”, the second desig-

nates the model version used for version control (at this point it is set to “1.4-2019”),

and the third (methodVersion) is used to stipulate which ELECTRE version is spec-

ified in the model. An ELECTREModel class is composed by the definition of a

discordance and one to five concordance threshold levels (class Coalition), and by a

weight vector (class CriteriaImportance) to identify all criteria weights;

• ELECTRETypes: is an enumeration class. It is used by the core model class to iden-

tify the ELECTRE version. As presented in Section 4.2.3, the ELECTRE method has

six variations. The proposed Meta-Model is able to describe five of the six varia-

tions, ELECTRE type I, II, III, IV and IS. The specification model is not adequate to

describe ELECTRE TRI, since it is not capable to describe the categories assign to

the solutions in this ELECTRE variation;

• Threshold: is an abstract class to represent the different groups of thresholds. An

instantiation of a Threshold can be of three types: Coalition, Discriminatory and Veto.

A threshold is defined by its value;

• Coalition: is a specific Threshold used to define the outranking relation between

two solutions. The coalition is formed by two conditions, the Concordance and

Non-Discordance conditions, used to define the four possible outranking relations

between two solutions (see Section 4.2.3). Variation II and IV of ELECTRE method

use two and five concordances levels, respectively;

• Discriminatory: is a specific Threshold used to define a preference and indifference

thresholds to each criterion. Discriminatory thresholds are used in ELECTRE III, IV

and IS variations in one way or another;

• Veto: is a specific Threshold used in all ELECTRE variations except in I. ELECTRE

Iv is an unofficial variation that refers to ELECTRE I with veto threshold. The veto

101

CHAPTER 6. ASSESSMENT FRAMEWORK FOR IOT SYSTEMS

Figure 6.5: Elimination and Choice Expressing the Reality (ELECTRE) Meta-Model.

concept is related to the definition of the discordance level, giving an upper bound

to this threshold;

• CriteriaImportance: is used to represent the weights assigned to each criterion.

This class is composed, aggregates at least two criteria (referencing class ELECTRE-
Criterion);

• ELECTRECriterion: a class that defines all aspects related to criteria which are also

directly related with the used ELECTRE method variation. This class is composed

by one criterion (reference to Criteria class from MCAM), and it can contain three

types of thresholds. Two Discriminatory thresholds, identified by preference and

indifference references, and by one Veto threshold.

Ecore representation of ELECTRE specification model is presented in Appendix F.

The proposed ELECTRE specification model depicted in Figure 6.5 enables the def-

inition of ELECTRE I, II, III, IV (electre four) and IS variations, being also possible to

specify the “unofficial” ELECTRE Iv (electre one vee) variation (basically, variation I with

veto threshold definition). However, and given that the specification of MCDM methods

is not a focus of this thesis, ELECTRE TRI variation is not contemplated in the proposed

Meta-Model. ELECTRE TRI variation focuses on assigning categories to solutions, sorting

from the worst to the best category (or in the other way around). The specific feature,

assigning categories, that the proposed Meta-Model does not cover.

6.5 IoT Systems: Multi-Criteria Assessment Methodology

The previous sections addressed and formalised, following a model-driven approach,

the assessment framework which supports a multi-criteria assessment process for IoT

102

6.5. IOT SYSTEMS: MULTI-CRITERIA ASSESSMENT METHODOLOGY

Systems. Specification models were present that in conjunction with the proposed IoT

System specification in Chapter 5, enables stakeholders to describe all factors needed

to assess which IoT System is more suitable for a concrete application. These specifica-

tion models are not only qualified to evaluate and rank solutions based on criteria using

known MCDM methods, but also able to use new or even user-defined decision meth-

ods. Furthermore, and to tackle the inadequacy of the MCDM methods to define specific

constraints/restrictions, it is enabled the specification, association of acceptable/not ac-

ceptable data ranges, establishing availability degrees, and optimisation rules for the

criteria values.

Although, the proposed framework and each of its steps are well specified, which

facilitates the assessment process, it does not implement it. Based on formal descriptions,

tools and systems are easily developed, adapt and respond well to changes [147].

Consequently, next is presented the IoT Systems Multi-Criteria Assessment Method-

ology, based on the proposed specification models and within the Framework depicted in

Figure 6.1, more effectively in the Assessment Engine block, to actually implement, materi-

alise the assessment of IoT Systems. To manage the model-driven nature of the proposed

framework, support the harmonisation between meta-models, models and data it is used

the MDA-based Harmonisation Framework presented in Section 5.5, more precisely in

Figure 5.14.

The proposed methodology starts by collecting the available IoT Systems, or by gath-

ering the ones which will be analysed. As mentioned in Chapter 5 users can also build

new IoT Systems based on different parts (e.g.: micro-controllers, communication boards,

sensing elements, etc.). From the formal descriptions, solutions, i.e. IoT Systems, can

be selected, identify by stakeholders (users, developers, researchers, etc.) creating a so-

lutions group to be analyse. These Solutions are represented by set SSet in Equation 4.1.

The number of alternatives, solutions is a finite number n ∈ N.

The selection of criteria, features is performed following the same principle as in so-

lutions. Criteria are also well described by the proposed specification models (in particu-

larly by IoTSAG Property class), making the data clear and accessible for stakeholders. IoT

Systems have a vast number of features, although stakeholders may or may not consider

all of them as important for the scenario, problem in hand. The set of features/criteria,

called CSet, is defined as in Equation 4.2, with a m size, m ∈ N.

From the MCAM specification (see Figure 6.2) it is possible to build the Solutions

and Criteria sets, SSet and CSet, respectively. Each instantiation of class Criteria is a

criterion cj , i.e. an element of CSet. In the solutions case, the instantiation of class

ResourceConstraintSystem gives origin to Solutions set SSet. A solution si , with si ∈ SSet, is

an instantiation of class ResourceConstraintSystem, where there is no elements repetition.

With the sets of possible solutions and criteria defined is then possible to create an

Assessment Table. The idea of table follows a common principle seen in MCDM methods

analysed, and therefore applied to describe the solutions-criteria cluster in the form of a

matrix (which also benefits the mathematical operations). The Assessment Table, Atable,

103

CHAPTER 6. ASSESSMENT FRAMEWORK FOR IOT SYSTEMS

given by Equation 6.1, is a n-by-m matrix. Rows represent the contemplated solutions

and the columns the assessment features. The element vi,j presents the value for IoT

System i of the criterion j. This matrix is in all identical to DM matrix presented in

Equation 4.3.

Atable =


v1,1 v1,2 · · · v1,m

v2,1 v2,2 · · · v2,m
...

...
. . .

...

vn,1 vn,2 · · · vn,m


= (vi,j) ∈ Rn×m (6.1)

The possible solutions, IoT Systems, present a vast number of criteria, and each crite-

rion has its own unit. At this point is important to remark that in the proposed formal

descriptions, criteria are specified by the IoTSAG Property class which is composed by a

unit and property domain. Two criterion/property descriptions that work as foundation

to outline a method, a process that unifies all units found for the same criterion. Clarifica-

tion regarding how units and properties domains are treated in the proposed frameworks

was addressed in Section 5.3 with a practical depicted in Figure 5.4. Solved the issue of

different unit types for the same criterion, the methodology manages all features/criteria

values as dimensionless.

As stated, the proposed Multi-Criteria Assessment Methodology for IoT Systems

complements the available MCDM methods by enabling the definition of specific con-

straints/restrictions for each criterion. Seven different constraints are included in the

Multi-Criteria Assessment specification model (MCAM), and each one can be applied

to one or more criteria, as well as two or more constraints can be applied to the same

criterion.

The Assessment Constraints set,ACset, defined in Equation 6.5, is formed by the three

subsets of constraints. This division occurs due to two factors. First the eliminative nature

of constraints (automatically exclude solutions) of type Availability and Condition. Second,

Optimization constraints have a direct influence on the MCDM methods, since these are

built to rank solutions from criteria higher values to the lower ones, and which is why

the two constraints subsets are applied at different steps of the proposed methodology

(as explained later). In this sense, the no-eliminative assessment constraints set, ACOpt,

is defined in Equation 6.2, and the eliminative assessment constraints sets, ACCod and

ACAva, is defined in Equation 6.3 and 6.4, respectively.

ACOpt = {MIN, MAX} (6.2)

ACCod = {LessT han, Equal, GreaterT han} (6.3)

ACAva = {MustHave, CannotHave} (6.4)

104

6.5. IOT SYSTEMS: MULTI-CRITERIA ASSESSMENT METHODOLOGY

ACset = ACOpt ∪ACCod ∪ACAva (6.5)

The stakeholder’s judgement has an important role since it is their considerations

that specify the rules over the criteria (settling the constraints) which express formally

what has to be analysed and in which way, to achieve the objective. The constraints that

each criterion has to respect are obtained from the instantiation of MCAM, enabling the

proposed methodology to assess all criteria accordingly to decision maker objective.

To determine the impact that the constraints enforce in the solutions, a procedure was

developed to execute this task and it is presented in Figure 6.6. This function, ProcessAC,

which processes the assessment constraints has four input arguments and returns a value

of type double. The argument CriteriaValue is vi,j , the ConstraintType is one of the ACset
elements, the MaxValue is determine by Equation 6.6, and the last argument Threshold

is the value define in the MCAM for the constraint Condition of criterion j.

MaxV alue =max{v1,j , v2,j , ..., vn,j} (6.6)

Function ProcessAC (CriteriaValue, ConstraintType, MaxValue, Threshold)

If ConstraintType is of type MAX then

Return CriteriaValue;

Else if ConstraintType is of type MIN then

Return MaxValue - CriteriaValue;

Else if ConstraintType is of type MustHave then

If CriteriaValue different from 0 then

Return 1.0;

Else if ConstraintType is of type CannotHave then

If CriteriaValue equal to 0 then

Return 1.0;

Else if ConstraintType is of type LessThan then

If CriteriaValue is less than Threshold then

Return 1.0;

Else if ConstraintType is of type GreatThan then

If CriteriaValue is greater than Threshold then

Return 1.0;

Else if ConstraintType is of type Equal then

If CriteriaValue is equal to Threshold

Return 1.0;

Return 0.0;

End Function.

Figure 6.6: Procedure to Process Assessment Constraints.

As mentioned, constraints are divided in two sets, no-eliminative and eliminative, and

are applied at different stages of the IoT Systems assessment methodology. The first

105

CHAPTER 6. ASSESSMENT FRAMEWORK FOR IOT SYSTEMS

assessment constraints applied are the no-eliminative evaluation constraints, ACOpt.

Equation 6.7 presents the application of Optimization constraints to the solutions-criteria

cluster using the Assessment Constraints function, resulting in OptAtable, a n-by-m ma-

trix. Rows continue to represent the contemplated solutions and the columns the assess-

ment features, similar to Atable in Equation 6.1. The value p identifies the number of

constraints applied to criterion j.

Φi,j =
p∏
k=1

P rocessAC(vi,j , Constraintk , MaxV alue, 0) ;

OptAtable = (Φi,j) ;

Constraintk ∈ ACOpt ;

p ∈ N

(6.7)

The main difference between matrix Atable and OptAtable is that the second contem-

plates the application of Optimization constraints, which is highly important if stakehold-

ers desire any criterion minimisation analysis.

The proposed framework enables the possibility to apply different MCDM methods,

even new or user-defined methods. This MCDM methods diversity makes it impossible

to describe all methods in a single, unique mathematical procedure, since it will depend

directly of the method used. However, it is known what is needed as input to apply a

MCDM method and it is possible to specify how the outcome, result form should be,

so the developed enablers can be built to achieve this goal. Therefore, this procedure

depicted as a “black box” in Figure 6.7, is basically a process that computes, applies the

selected MCDM method.

MCDMROOptAtable

MCDM Method
Procedure

Stakeholders
Judgement

Input

Output

Controls

Method
Specification

Solutions-Criteria
Cluster

Method
Tools

Mechanisms Rank
Outcome

Figure 6.7: MCDM Method Procedure Activity Detail.

The process is presented using a high-level IDEF-0 [196] “black box” view to describe

the MCDM method procedure activity specifying inputs, outputs, control, and mecha-

nisms:

106

6.5. IOT SYSTEMS: MULTI-CRITERIA ASSESSMENT METHODOLOGY

• Input: the Assessment Table with Optimisation constraints, OptAtable, i.e. the

solutions-criteria cluster with optimisation constraints already applied. Literature

review preformed in Section 4.2 show that MCDM methods for problems with

a finite and known number of alternatives perform their analysis based on three

aspects: information regarding solutions and their features, and in stakeholders

judgement. Stakeholder’s judgement is part of the control definition, that with the

application of the indicated mechanisms the output is calculated;

• Controls: the stakeholder’s judgement. MCDM methods in some way need the

decision maker judgement. For example in the AHP method it is used to establish

criterion priority, in PROMETHEE case is used to select the preference functions,

and in ELECTRE is used to select the different thresholds. With a model-based

framework the stakeholder’s judgement is provided in the form of a model (e.g.:

AHP model — an instantiation of AHP Meta-Model);

• Mechanisms: normally it is the who or what that executes the process. With the

information provided by the input and definitions by the controls, it is necessary

to apply tools to compute the method outcome. Since the proposed framework as a

model-driven nature, specification model is provided describing the method;

• Output: the system output is the rank outcome, MCDMRO, a result from the appli-

cation of MCDM method procedure.

The proposed methodology specifies the outcome result provided by the selected

MCDM method, MCDM Rank Outcome, as given in Equation 6.8. The MCDM Rank

Outcome, MCDMRO, is a n-by-1 matrix. Rows continue to represent each contemplated

solution and the column reports the rank outcome values. The element ROi,1 presents

the MCDM method rank outcome value for IoT System i.

MCDMRO =


RO1

RO2
...

ROn


= (ROi,1) ∈ Rn×1 (6.8)

Known the result from the selected MCDM method is time to apply the two types of

assessment constraints left, the eliminative assessment constraints, ACCod and ACAva.

The enforcement of assessment constraints of type Condition, ACCod , results in a n-by-1

binary matrix, EvalCod , given by Equation 6.9. The Th argument is the threshold value

for constraint k in criterion j, value that is retrieved from the instantiation of MCAM.

Considering,

107

CHAPTER 6. ASSESSMENT FRAMEWORK FOR IOT SYSTEMS

Θi =
m∏
j=1

p∑
k=1

P rocessAC(vi,j , Constraintk , 0, T h) ;

Constraintk ∈ ACCod ;

p, ∈ N ;

then,

(EvalCod)i,1 =

1, if Θi > 0

0, otherwise.
(6.9)

The enforcement of the assessment constraints of type Availability,ACAva, also results

in a n-by-1 binary matrix, EvalAva, and is given by Equation 6.10.

(EvalAva)i,1 =
m∏
j=1

p∑
k=1

P rocessAC(vi,j , Constraintk , 0, 0) ;

Constraintk ∈ ACAva;
p, ∈ N

(6.10)

The binary outcome from matrices EvalCod and EvalAva state if a solution is consid-

ered valid according to stakeholders’ eliminative constraints. The final solutions ranking,

(IoTSystems)Rank , is given by Equation 6.11. Where (SOutcomeV alue)i,1 is the Multi-Criteria

Assessment outcome value for the solution i (IoT System i). The highest (SOutcomeV alue)i,1
identifies the more suitable solution, according to the proposed methodology.

(IoTSystems)Rank =MCDMRO �EvalCod �EvalAva

=


(SOutcomeV alue)1

(SOutcomeV alue)2
...

(SOutcomeV alue)n


= ((SOutcomeV alue)i,1) ∈ Rn×1 (6.11)

6.6 Topic Discussion

This Chapter addressed a multi-criteria decision problem regarding the more suitable

IoT System to perform a certain task. New embedded systems are provided everyday by

manufacturers, and many are the features/criteria that influence the overall performance

of an IoT System, which makes the IoT Systems selection a decision very difficult for

stakeholders (e.g. engineers, developers, end-users, etc.) [32, 203].

It was proposed a novel framework and a multi-criteria specification model to anal-

yse IoT Systems, covering hardware, software as well as energy consumption aspects.

Presents the capability to allow integration of different MCDM methods (even new ones)

to analyse and rank solutions, but it also introduces means for stakeholders to define dif-

ferent types of criteria constraints. Decision makers can indicate optimisation functions

108

6.6. TOPIC DISCUSSION

(best or worse based on criteria value), availability restrictions (must or cannot have a

certain feature) or set data range for criteria for which a solution is acceptable.

In this sense, it is addressed the question, Q1.2, raised in Section 1.4.1, stating : “Which
methods could be applied or develop to assist in IoT System assessment?”. Not only, the full

State-of-the-Art regarding Multi-Criteria Decision-Making (MCDM) for problem with a

known number of solutions is considered, it is suitable to be used within the proposed

framework. But also, new tools are provided to work together with MCDM methods,

improving the assertiveness of the decision.

Furthermore, as secondary contribution are proposed specification models for two

well-known MCDM methods in literature. The Meta-Model are for the Analytic Hierar-

chy Process (AHP) and for Elimination and Choice Expressing the Reality (ELECTRE)

methods. With the remark, that the proposed ELECTRE specification model is not able

to describe the ELECTRE TRI method variation (the sixth method variation).

Disadvantages from the known MCDM methods are not solve and are projected to the

proposed methodology, however the framework openness to accept new, different MCDM

methods allows stakeholders to decide which is best not only for them but also for each

particular application case. Besides, with the model-driven nature of the framework,

already existing MCDM methods can be improved, and changes applied. It is possible,

by updating a MCDM method specification model and the respective interoperability

enablers, to continue using the proposed framework.

It is also important to notice that is possible to specify qualitative criteria. Decision

makers can indicate a weight for each possible qualitative criterion value (e.g.: Very

Important – 10; Important – 5; Not Important – 1), or a semantic analysis could be made

to automatically assign quantitative values for the qualitative criterion. The study or

applicability of semantic analysis is not one of the focuses of this thesis.

109

C
h
a
p
t
e
r

7
Framework for Design Support of IoT

Systems

This chapter intends to present the author’s main conceptual contribution, an IoT Systems

design support framework based on IoT Systems detailed and formal characterisation and

in a multi-criteria assessment methodology for IoT Systems. Stakeholders are provided

with an effective toolset to make decisions reasoning, more aware during IoT Systems

design phase [32]. Coexistence with other tools, systems, standards or methods is also

taken into consideration by the model-driven nature of the proposed framework and

well-defined formalisations [204]. An example is the benefit that energy consumption

evaluation tools can obtain from the proposed IoT Systems formal specifications. Energy

usage optimization depends on modelling power consumption. Model-based simula-

tion must consider parameters that depend on the device used, operating system, and

application under study [195].

7.1 Conceptual Approach for Design Support of IoT Systems

The author’s conceptual approach for the design support of IoT Systems is based on two

points identified from the background research. The first focus on lack of methods to

describe and assess the suitability of IoT Systems for a specific task and the second on

the mechanisms considered ideal to assist on achieving the desired goal. This goes in line

with the main research question formalisation in Section 1.4 stating: “How can Internet-
of-Things Systems be designed to optimize the matching with the operating environment?”

Figure 7.1 depicts the author’s main conceptual contribution overview, for the Multi-
Criteria Framework to Assist on the Design of IoT Systems. The conceptual approach initial

step, Alternatives, is in all related with the wide diversity of “things” (IoT Systems)

111

CHAPTER 7. FRAMEWORK FOR DESIGN SUPPORT OF IOT SYSTEMS

provided by manufacturers, designed for different purposes, addressing a variety of ap-

plication domains and services. Consequently, the set of alternatives must be collected

from webpages, systems, modelling tools, datasheets, etc., enabling IoT Systems defini-

tions (formal specifications) in terms of hardware, software and other general information

considered important. IoT Systems formal specification is accomplished with the formal-

isations proposed in Chapter 5.

A Multi-Criteria
Framework to
Assist on the

Design of
IoT Systems

IoT Systems
Definition

Collect
Hardware & Software

Information

Identify
Solutions

Identify
Criteria

Settle Assessment
Constraints

Settle
Criteria

Priorities

Suitable
IoT System

Identification

IoT
Systems

Assessment

Datasheets
Webpages

Formal
Descriptions

Decision

Analysis

Figure 7.1: Proposed Concept for the Design Support of IoT Systems.

The second step, Objective, is related to the task, problem to solve definition. It starts

by identify, select possible solutions (IoT Systems) from the set of alternatives specified

in the previous step. Although it is possible to consider the entire solutions set, database,

the stakeholders may decide for some reason that there are some IoT Systems that should

not be considered as possibilities for a specific task. IoT Systems are mainly used, but not

limited to, for environment awareness, giving people a more truly interaction with the

surrounding world. Sensing the environment is an operation that can change from case to

case. Different sensor units imply different hardware features, or transmission data sets,

or communication protocols, etc. Consequently, for each case the task objective(s) must be

defined. To accomplish this, is envisage the criteria identification (e.g.: sensing unit type,

deployment difficulty, transmission range, cost, etc.), specify criteria constraints (e.g.:

sensor of humidity type, deployment difficulty less or equal to medium, transmission

above 10 meters, etc.) and define which are the more important criteria (normally criteria

112

7.2. FRAMEWORK FOR DESIGN SUPPORT OF IOT SYSTEMS

does not have the same importance for stakeholders, and this can change from case to

case) for the established objective.

The third and final step, Decision, addresses the decision regarding the suitable solu-

tion(s) for a specific task. Many are the factors which influence the overall performance

of an application running in an IoT System. Combine or fulfil several requirements

is not an easy task. Therefore, to perform a more conscious decision of which is the

proper solution(s), is applied one of the most widely used decision methodologies —

Multi-Criteria Decision-Making (MCDM). IoT Systems multi-criteria assessment is ac-

complished by combining MCDM methods with a constraint-based assessment method-

ology. Constraints are set accordingly with three principles: optimisation rules; accept-

able or unacceptable data ranges; and mandatory or non-mandatory criteria availability.

Matching decision-makers prerequisites imposed during the design of an IoT System, is

possible to identify the more suitable solution (IoT System) through the decision process

outcome.

The author’s approach aims to provide a mechanism to assist stakeholders on the

design of IoT Systems, enabling conscious and justifiable decisions upon more suitable

IoT System(s), strengthened with modules to accomplish interoperability with systems

and tools (e.g. Standards, integration with energy-assessment tools).

7.2 Framework for Design Support of IoT Systems

To materialise the high level abstraction structure presented in Figure 7.1, is proposed a

framework for the design support of IoT Systems in Figure 7.2. The proposed framework

also addresses interoperability and harmonisation with other tools, systems, standards or

methods. Highlighting, the possible positive impact on energy consumption simulation

tools (addressed in Section 5.4.3 — IoT System: Energy Profile Formalisation) and highly

interoperable nature (that will be addressed in Section 8.1.2 — Application Scenario 2:

SensorML Standard, and demonstrated in Section 8.2.2 — Implementation of Scenario

2: SensorML Standard).

The Multi-Criteria Framework for Design Support of IoT Systems presented in Figure

7.2, aggregates the two previous contributions, presented in Chapter 5 — Framework to

Formally Describe an IoT System, and in Chapter 6 — Assessment Framework for IoT

Systems.

The formal specification of IoT Systems is identified in the figure by IoT System

block, and assessment of IoT Systems is identified by Assessment Methodology block.

As described in the framework presented in Section 5.2 an IoT System is characterised

at two levels. At a higher level (Platform-Independent, abstraction level 2 as presented

by MDA) the formal specification (a generic IoT System) and at a lower level (Platform-

Specific, abstraction level 1 as stated by MDA) the IoT System description accordingly,

respecting the formal specifications (a specific IoT System).

113

CHAPTER 7. FRAMEWORK FOR DESIGN SUPPORT OF IOT SYSTEMS

in
p

u
t

d
e

fin
e

d
 b

y

…
Se

n
so

rM
L

R
e

al Te
sts

Sim
u

latio
n

B
lo

cks

D
a

ta
sh

eets

D
a

ta
/In

fo
rm

a
tio

n
So

u
rces

W
eb

-p
a

g
es

M
u

lti-C
riteria

D
ecisio

n
 M

eth
o

d
s

M
C

D
M

M
C

D
M

in
p

u
t

Sta
keh

o
ld

ers

ju
d

g
em

en
t

Sta
keh

o
ld

ers

-
d

evelo
p

ers
-

en
g

in
eers

-
in

vesto
rs

-
…

Figu
re

7.2:M
u

lti-C
riteria

Fram
ew

ork
for

D
esign

Su
p

p
ort

of
IoT

System
s.

114

7.2. FRAMEWORK FOR DESIGN SUPPORT OF IOT SYSTEMS

The assessment of IoT Systems is established based on two principles: 1) a formal

characterisation of the objectives using criteria, different and predefined constraints types,

and taking into consideration stakeholders preferences; 2) an IoT Systems assessment

methodology to analyse, enforce all conditions that define the objective, and with the

capability to apply any MCDM method(s) to rank all solutions.

These two blocks, IoT System and Assessment Methodology, result of the proposed

contributions in Chapter 5 and 6, will not be addressed in detail here since it was already

done in the previous chapters.

The Multi-Criteria Framework for Design Support of IoT Systems (see Figure 7.2),

presents a core block that blends, conciliate, works to a specific end — make all other

blocks and components to work as a whole. This block is the Harmonisation Layer.

The Harmonisation Layer takes use of an Interoperability Engine to execute and

manage a set of Enablers. These Enablers are framework components built to interpret,

orchestrate distinct data sets (structured or not) from different sources, capable of im-

port/export data enabling the proper framework functioning as well as maintain, sustain

interoperability with other systems or tools. Examples of structured data sets are stan-

dard specification models or the very specifications of IoT Systems presented earlier in

this work. Unstructured data are for example the description of IoT Systems hardware

components available in manufacturer’s web-pages. The Interoperability Engine is a

processing engine responsible to execute already available Enablers or include new ones.

Inclusion of Enablers occurs whenever a new specification model, system, tools, etc. is

considered to work/integrate the proposed framework. Engineers, developers have to

provide, always, the respective enabler. The Interoperability Engine is based on MDA

techniques as proposed by Agostinho et al. [197] and on the author work developed in

[198], which addresses interoperability problems associated to model languages trans-

formations, and furthermore allowing communities to build interoperable systems and

services. Harmonisation Layer and Interoperability Engine will be address later in Sec-

tion 7.4.

Another framework block is Repository, an “aggregation” of the Storage blocks pre-

sented in the two previous frameworks (see Section 5.2 and 6.2), that follows the same

approach — a two levels block. Top level, Formalisms/Specifications, to store formali-

sation, specification models (meta-models) for standards, tools, methods or systems and

respective mapping rules that regulate how data interchange is performed between mod-

els. Bottom level, Data, is a storage unit for data models that are created and consequently

have to be stored along the framework functional process.

Illustrated at the bottom of Figure 7.2 is the Systems block. The word “systems” is

used in this block in a general, broad sense, referring to a block that embraces a wide

set of unknown possibilities (e.g.: tools, methods, standards, systems, etc.). Section 6.4

proposes specification models for two different MCDM methods to be used within the

framework by the assessment methodology which follows under this category. Particu-

larly, it is highlighted two “systems”, Energy Simulation and Standards.

115

CHAPTER 7. FRAMEWORK FOR DESIGN SUPPORT OF IOT SYSTEMS

Energy Simulation is of great relevance within IoT scope [7–9, 11, 33, 39, 40], and

directly related with the third point to describe an IoT System — Energy Profile. Section

5.4.3 addressed this matter by proposing IDEF-0 [196] “black box” view on an energy

analysis activity indicating that a trade-off can be made between the proposed IoT Sys-

tems specifications and simulation results of energy consumption. It is indicated, and

depicted in the figure, that formal, specific descriptions of IoT Systems can be applied,

used by simulations tools with the return of energy data to create an Energy Profile.

Another point is interoperability with Standards. This work proposes means to assist

during the design phase of IoT Systems, however other phases exist like deployment or

observation. As mentioned in Section 5.1, literature has been more focus on functional/be-

haviour aspects, and in activities/actions/interactions within an IoT Deployment [16–18].

Proof of this is the creation of standards such as the Systems Modeling Language (SysML)

[19, 20], the Sensor Model Language (SensorML) [21] and Semantic Sensor Network (SSN)

[22]. As an additional feature to the already presented contributions is proposed, based

on the model-driven framework nature, means to interconnect the results of the design

phase (identification of the more suitable IoT System(s), with well-formed descriptions)

with the following phases of an IoT Ecosystem build up. This aspect will be addressed

in Sections 8.1.2 and 8.2.2, presenting an accomplished interoperability with SensorML

standard, therefore highlighted in the proposed Multi-Criteria Framework for Design

Support of IoT Systems, depicted in Figure 7.2.

7.3 Design of IoT Systems: Specification Models

Chapters 5 and 6 addressed two core contributions of this work: a Framework to Formally
Describe an IoT System and an Assessment Framework for IoT Systems, respectively. Despite

the clear relation between these contributions, it is still necessary to formally present

the connection specification, the glue that binds, aggregates both of them. Furthermore,

when designing a System of IoT Systems is needed to contemplate a group of IoT Systems

and with the possibility, almost certain, of each IoT System have its own objective, task

in the overall system.

Figure 7.3 proposes the IoT Systems Assessment Core (IoTSAC) specification model.

Through this Meta-Model is possible to define/reference known RCS (possible solutions),

specify different objectives, criteria and constrains (definition of tasks to be performed),

and select/apply different MCDM methods, even for the same goal. Consequently, a com-

plete formalisation is provided, specifying how to perform a more aware, proper decision

regarding the selection of an IoT System for distinct tasks that needs to be executed in

an entire system of IoT Systems. A more detailed explanation of the IoTSAC Meta-Model

composition is presented next, evidencing the use of the two defined structures:

• TheSystemIoT: is the main model class. It inherits all features from IoTSAG Sys-
temDescription class, used to register, give identification to the entire system of IoT

116

7.3. DESIGN OF IOT SYSTEMS: SPECIFICATION MODELS

Figure 7.3: IoT Systems Assessment Core Specification Model.

Systems, i.e. the IoT scenario, deployment. As mentioned, a system of IoT Systems

can be, and normally is, built upon a set of different tasks, functions which are

performed by autonomous sensors. Each task, function has its own requisites and

objective(s). The analysis of the considered IoT Systems to perform such task is rep-

resented by the class IoTSystemsAnalysis. The TheSystemIoT class identifies all RCS

considered valid for evaluation, being used or not, by a reference to the respective

RCS models (ResourceConstraintSystem link). The IoTSAC specification model is

also responsible to identify all definitions used, from one or several IoTSAG models.

Once identified the IoT Systems for assessment, the proposed framework is respon-

sible for managing properties definitions, for example verify, aggregate units and

property domains;

• IoTSystemsAnalysis: a class used to combine all IoT Systems considered valid and

describe the applied multi-criteria assessment, that ascertains which is/are the more

suitable IoT Systems for a certain objective. RCS considered valid are reference us-

ing the link to ResourceConstrainedSystem class from RCSM. Note that for each

assessment makes sense consider at least two IoT Systems for comparison. Different

multi-criteria assessments can be set to evaluate IoT Systems for the same objective,

for example by changing a constraint. Class IoTSystemsAnalysis also inherits all fea-

tures from IoTSAG SystemDescription class, used to register and give identification

to each IoT Systems assessment scenario.

The Ecore representation of IoTSAC Meta-Model is presented in Appendix G.

The relationship between all specifications models, identified as packages, which for-

malise the necessary aspects within the proposed framework are depicted in Figure 7.4,

with a high level view of the involved packages structure. In a five permanent pack-

ages disposition, others exist to describe non-static, changeable aspects of the framework.

117

CHAPTER 7. FRAMEWORK FOR DESIGN SUPPORT OF IOT SYSTEMS

Static packages are the IoTSAG, IoTSAC, RCSM, RCSH, and MCAM. Non-Static, change-

able packages refer to the ability to include different MCDM methods, software languages

and energy consumption profiles. In the figure are used two types of relation (arrows):

uses and imports. The relation uses intends to demonstrate that one or more classes within

a package reference a class(es) in another package. Relation imports demonstrate that one

or more classes within a package inherit from a class of another package. This relation

can also include a uses relation type.

<<imports>>

<<uses>>

<<uses>>

<<uses 1>>

<<uses n>>

<<imports>>

<<uses>>

<<imports>>

<<uses n>>

<<uses 0/1>>

<<imports>>

<<uses n>>

<<uses>>

<<imports>>

IoT Systems
Assessment Core

Resource-Constrained
System Hardware

Resource-Constrained
System

Software Language
(1, 2, …, m)

MCDM Methods
(1, 2, …, n)

Energy Profile
(1, 2, …, p)

IoT Systems
Analysis Generic

Multi-Criteria
Assessment Model

<<uses>>

Figure 7.4: Design Support of IoT Systems: High Level Packages Structure.

Accordingly, the core specification (IoTSAC) references one or more IoT Systems

(RCSM), one or more multi-criteria assessment (MCAM), and includes (and references)

features from IoTSAG (generic, common aspects specification model). A multi-criteria

assessment description references one or more MCDM methods and a generic aspects

description (IoTSAG). Each MCDM method specification inherits from MCAM to respect

integration rules, as described in Section 6.4. IoT Systems (RCSM) definitions inherit

description features and references properties from IoTSAG. To its full representation

is reference also a hardware description (RCSH), a software language and it can also

include an energy profile description. These last two have to respect the framework inte-

gration rules. The RCSH, chosen software language and if it is the case an energy profile

description reference properties from IoTSAG specification.

Figure 7.5 presents in detail the relationship between the five main specification

models, and their respective classes.

118

7.4. HARMONISATION LAYER & INTEROPERABILITY ENGINE

Fi
gu

re
7.

5:
D

es
ig

n
Su

p
p

or
t

of
Io

T
Sy

st
em

s:
M

ai
n

Sp
ec

ifi
ca

ti
on

M
od

el
s.

119

CHAPTER 7. FRAMEWORK FOR DESIGN SUPPORT OF IOT SYSTEMS

7.4 Harmonisation Layer & Interoperability Engine

Harmonisation Layer is one of the main blocks of the proposed Multi-Criteria Frame-

work for Design Support of IoT Systems. It is responsible of interconnect all blocks and

components, maintain interoperability, and execute necessary facilitators (Enablers) to

enable data exchange across the framework and with other systems. The Harmonisa-

tion Layer follows a Model-Driven approach based on MDA that provides generative

and transformational techniques for software engineering, system engineering, and data

engineering [164, 165]. A Model-Driven Harmonisation Framework was presented in

Section 5.5 and depicted in Figure 5.14, the same principle is followed in Harmonisation

Layer of the overall framework, introduced in this chapter.

Next it will be addressed pre-established facilitators (Enablers) focusing first on data,

information sources regarding devices hardware, its common forms of availability, fol-

lowed by method to create new IoT Systems using different and already formalised hard-

ware components. Then, interoperability with standards is addressed, emphasizing well-

known modelling languages, proceeded of the possible trade-off between IoT Systems

formalisation and energy consumption. It finalises with the Enabler’ presentation, Ser-

vice Bus Interface.

Available information regarding hardware components of IoT Systems is very tech-

nical and wide, making it very difficult to analyse all aspects by human beings. Besides,

markets are offering a wide set of different devices, contributes even further to aggravate

this problem. Manufacturers distribute device’s technical information in their websites,

datasheets, or through modelling descriptions and systems. In [14, 15] stakeholders have

the possibility to select and collect information data depending on the performed query,

using a web page interface to retrieve data from manufacturers repository. Also, informa-

tion can be provided by stakeholders (e.g.: end users, developers) but normally from DiY

scenarios, small laboratory test-beds, etc. In addition, technical information of IoT Sys-

tems physical components can be scattered all over the Internet (due to a broad number of

manufacturers), when it is considered built a new IoT System with multi-functionalities

based on different but already available market solutions.

To address these issues, the Harmonisation Layer by executing the right Enablers

provides means to identify a concrete set of data, reasoning over retrieved data, and

consequently transform, fulfil the proposed formalisations of IoT Systems. To accomplish

this, several types of Enablers can be used or created. Identified are: Ontology Markup,

based on semantic analysis (from knowledge databases — Ontologies) to match features,

criteria units (units’ conversion) for example; Merge/Transformation to aggregate data

information from two or more different sources (following or not the same specification

models), for example used when setting a new IoT System from separated definitions

(e.g.: micro-controller with a Wi-Fi shield); and Parse Information based on syntactical

mapping, defined rules between two different specification models (e.g. HTML, language

for web-pages, to IoT System specification).

120

7.4. HARMONISATION LAYER & INTEROPERABILITY ENGINE

Enablers of type Ontology Markup are not here detailed, and high-level examples

of Merge/Transformation and Parse Information are presented in Figure 7.6 with more

practical examples addressed in next chapter.

IoTSAG
Meta-model

“Model Y”.xmi

XML
Meta-model

“Model Y”.xml

XML
Meta-model

Extractor
RCSH

Meta-model

Merge/
Transf.

“Hardware”.rcsh

“Definitions”.iotsag

RCSH
Meta-model

“Hardware X”.rcsh

RCSH
Meta-model

“Hardware X”.xml

XML
Meta-model

RCSH
Meta-model

“Hardware X”.xmi

XML
Meta-model

Parse InformationMerge Extractor

“Hardware 1”.rcsh

“Hardware 2”.rcsh

Example 1

Example 2

Example 3MCAM
Meta-model

“Assessment”.xml

XML
Meta-model

AHP
Meta-model

“Assessment”.xmi

XML
Meta-model

Merge/
Transf. Extractor

“Assessment”.mcam

“AHPModel”.ahpm

Figure 7.6: Harmonisation Layer & Interoperability Engine: Merge/Transformation Ex-
amples.

Figure 7.6 depicts three examples, possibilities involving the proposed specification

models. Although, many more are possible and even more if it is considered interoper-

ability with other specifications. The first two examples are related with the hardware

characteristics of an IoT System, while the third is related to assessment of IoT Systems.

Besides the proposed specification models, Figure 7.6 presents XML and XMI lan-

guages. Utilisation is due to the fact that XML is a language widely used and that can

be read by machines as well as by humans, while XMI is used as interchange format for

XML files.

First example in Figure 7.6, merge, aggregates units definition (IoTSAG file) with the

hardware characteristics of an IoT System, so it can be transformed to a single represen-

tation, file describing IoT System hardware components. Note that general definitions

(units and properties type and domains) are kept in an independent file (a file described

by IoTSAG specification model) for reusability reasons.

The Extractor Enabler is a third-party operational component, free for XML language,

which transforms information described by XML Meta-Model to XML model. The inverse

121

CHAPTER 7. FRAMEWORK FOR DESIGN SUPPORT OF IOT SYSTEMS

process is also available and it is called Injector.

The second example shown addresses the possibility to integrate, aggregate several

hardware descriptions to form different solutions (IoT Systems). The hardware part of

an IoT System can be formed by different modules (e.g. shields), i.e. coupling boards

together. This enables stakeholders, in a clear way, to create a final hardware block. All

similar to the previous example, the difference resides in one additional step to reach an

XML representation. First, two hardware models are gather together by a merge operation,

since both comply with the same specification model (RCSH Meta-Model), followed by a

conversion between RCSH and XML syntax (rules specifying syntactic mapping — Parse

Information). The final step was described in Example 1.

The proposed IoT Systems assessment methodology enables the possibility to apply

different MCDM methods, even new or user-defined methods. Section 6.4 presented

formal specifications for two well-known MCDM methods (AHP and ELECTRE), suitable

of being integrated, used with the proposed assessment methodology. To add a new

MCDM method, it must be provided the specification model respecting the framework

rules, and the respective Enablers to parse the necessary criteria data and implementation

tool (also an enabler) for Interoperability Engine execution to obtain the method results.

Enablers to parse information from IoT Systems specifications to MCAM specification

models are also available, that follows the same principle, explain above. Figure 7.6,

Example 3, depicts a high-level process example of going from a multi-criteria assessment

(MCAM) using AHP as MCDM method to XML representation. This transformation

process uses the same enablers as in Example 1.

The proposed Framework, depicted in Figure 7.2, highlights the interoperability with

SensorML standard. However, integration with other standards is also possible by inclu-

sion of the respective Enabler(s). Figure 7.7 shows a high-level view for the approach to

achieve interoperability with standards.

Interoperability with SensorML standard is addressed in Sections 8.1.2 and 8.2.2,

presenting the corresponding mapping rules between the proposed specification models

and the standard, in which the Enabler is built upon. A scenario is also presented to

validate this concept. This work focus on interoperability with standards built to define

IoT Ecosystems requirements, behaviours, processes, etc., to serve as bridge from the

design phase to IoT Ecosystem working management (real measurement, observation,

data analysis, etc.).

The previous examples, presented in Figure 7.6, emphasise the use XML language

although other modelling languages exist and could be considered to represent the pro-

posed formalisations. As an example is EXPRESS (ISO 10303-11) a data modelling lan-

guage to define product data aspects used to represent and exchange that same data. It

also allows graphical visualisation of data using EXPRESS-G representation [205]. It is

the modelling language used by the Standard for the Exchange of Product Model Data

(STEP), the ISO 10303, which describes means to represent and exchange digital prod-

uct information [206]. Its non-utilisation is due to its unfamiliarity to most developers,

122

7.4. HARMONISATION LAYER & INTEROPERABILITY ENGINE

“IoT System”.rcs

“Hardware”.rcsh

RCS
Meta-model

“App. Code”.
***SW Language

Meta-model

“EnergyProfile”.***

Energy Profile
Meta-model

references

references

references

RCSH
Meta-model

references

references

references

“IoT Systems Analysis”.
iotsacIoTSAC

Meta-model

“Analysis”.
mcam

“MCDM Method”.***

MCAM
Meta-model

MCDM Method
Meta-model

“Definitions”.iotsag

IoTSAG
Meta-model

Modelling Behaviour,
Processes, etc...

Modelling Languages
(XML, EXPRESS, etc.)

Others …

Figure 7.7: Harmonisation Layer & Interoperability Engine: Interoperability with Stan-
dards.

which poses to smaller companies a huge effort to hire or educate employers [207]. More-

over, the use UML classes to define the proposed formalisations are based on author’s

knowledge and common, worldwide utilisation.

Energy simulation is also an emphasized tool, system from/to which this work could

be associated, contribute and/or take advantage. This topic is not envisaged as a contri-

bution of this work and therefore will not be addressed in detail here. Nevertheless, to

focus on the identified framework’ openness to interoperate with other tools, systems,

methods, etc., an integration process example considering a generic energy consumption

evaluation tool is presented next.

Section 5.4.3 — IoT System: Energy Profile Formalisation proposes a high-level ar-

chitecture from which a trade-off can be obtain between the proposed IoT Systems spec-

ifications and simulation results of energy consumption. The architecture depicted in

Figure 5.10 indicated that IoT Systems formal descriptions can be used by simulations

tools to build more precise energy models, contributing in this way to better, improved

energy consumption information.

Considering the proposed high-level architecture presented in Figure 5.10, the envis-

aged behaviour within the Harmonisation Layer regarding data flow (interoperability

operations achieved by applying Enablers) is depicted in Figure 7.8.

On the left of the mentioned figure is presented the IoT System formal description,

while on the right is depicted a generic (“black box”) energy consumption evaluation tool.

The Energy Analysis can provide or not its specification model (Meta-Model), in which

simulations are based. However, to achieve interoperability between the two systems,

Enablers must be provided to execute such task, i.e. parse information from IoT Systems

representation to the simulator models.

123

CHAPTER 7. FRAMEWORK FOR DESIGN SUPPORT OF IOT SYSTEMS

“IoT System”.rcs

“Hardware”.rcsh

RCS
Meta-model

Energy Consumption
Detail

RCSH
Meta-model

“Simulator”.***

Simulator
Meta-modelParse

Information

“App. Code”.***

SW Language
Meta-model

“EnergyProfile”.***

Energy Profile
Meta-model

references references

references

Parse Information

Energy Analysis
(black box)

inputs

outputs

Controls

Mechanisms
Mechanisms

Figure 7.8: Harmonisation Layer & Interoperability Engine: Integration of Energy Simu-
lations.

Providing the formal, detail data of an IoT System, energy simulation can be per-

formed and the outcome (detail energy consumption) inserted into an Energy Profile.

This allows the completion of a formal IoT System representation. It is important to point

out, that being an external system (the Energy Analysis tool) it can use a different repre-

sentation language (e.g.: XML). Therefore, it might be needed an extra step to convert

the data. The previous examples addressed this issue.

To finalise the more important features description provided by Harmonisation Layer,

it is enhance the possibility to access the assessment of IoT Systems through a Service

Bus — an IoT Systems Multi-Criteria Decision Service. This service enables the analysis of

different IoT Systems, allowing stakeholders to improve their own or verify other avail-

able solutions by examining the performance according to a set of features. Basically it

provides means to access the framework and obtain indication of the more suitable IoT

System for a certain task — a response as a service.

Multi requests to the IoT Systems Multi-Criteria Decision Service, through a Product-

Service System bus, each request with its own specifications, will allow a complete build

of an IoT Deployment. Requests/responses are accessible by an Enabler, the Service Bus

Interface, responsible for maintain interoperability between framework specification

models and exchanged messages content. A message is in binary format, which can

contain for example XML, or just text. Messages exchange was addressed in Section

2.3.2.2 by presenting standard mechanisms called Message-Oriented Middleware (MOM).

7.5 Topic Discussion

This chapter presented the final contribution of this research work. The purpose of this

contribution is to aggregate the two previous contributions, presented in Chapter 5 and

124

7.5. TOPIC DISCUSSION

6, and in addition, not only respond to the sub-research question, Q1.3, raised in Section

1.4.1, stating: “Which multi-criteria decision framework would provide a suitable decision sup-
port for the design of IoT Systems?”; but also address the identified main research problem,

and consequently respond to the main research question that states: How can Internet-of-
Things Systems be designed to optimise the matching with the operating environment?.

In this sense, it was proposed a Multi-Criteria Framework to Assist on the Design of

IoT Systems, that provides automatic mechanisms to create and use IoT Systems formal

definitions, enabling a more conscious, aware, accurate selection of a more suitable IoT

System(s).

Based on a Model-Driven approach, the proposed framework presents a Harmonisa-

tion Layer with a high openness level to include different software languages and MCDM

methods. Stakeholders are free to define, formalise an IoT System with their own soft-

ware language characterisation, as well as apply existing or user-defined MCDM methods

within the proposed multi-criteria assessment methodology.

With mechanisms to assist during the design phase, tackling the process of perform

an aware choice regarding the more suitable IoT System to execute a certain task, the

proposed framework presents methods to interoperate not only with modelling languages

standards but also with IoT Ecosystems’ real-time management tools, standards or not.

The framework’ openness to work with other tools and/or systems, unlocks a large

number of possibilities. For example, integration of energy simulation tools based on

well-characterised IoT Systems, or high-level visualisation of hardware components (i.e.:

3D visualisation tools), using transformations (Enablers) to their specification models.

125

C
h
a
p
t
e
r

8
Implementation and Hypothesis Validation

In this chapter the proposed contributions feasibility is addressed. The proposed Multi-

Criteria Framework to Assist on the Design of IoT Systems is tested using a set of Proof-

of-Concept (POC) implementations, and moreover an industrial implementation is also

presented, in order to validate the hypothesis presented in this research work.

8.1 Proof-of-Concept Implementations

To demonstrate the conceptual approach feasibility for design support of IoT Systems, a

test-cases set was created to verify contributions potential to be used. The first two test-

cases are to prove IoT Systems formalisation concept presented in Chapter 5 “Framework
to Formally Describe an IoT System” is valid. Each one of these test-cases contains scenarios

to present how a stakeholder is able to describe an IoT System. The scenarios provide a

high level vision on how to formally represent the physical part (hardware) and the soft-

ware language used in the design of an IoT System. It is followed by a test-case to prove

the validity of the IoT Systems multi-criteria assessment concept presented in Chapter 6

“Assessment Framework for IoT Systems”. Finally, and to consider the motivations for this

work, it is important to prove that the concept presented in Chapter 7 “Framework for
Design Support of IoT Systems” is viable for the design of IoT Systems for different areas

of applicability (e.g.: smart buildings, Intelligent Transportation Systems, Industry 4.0).

Figure 8.1 depicts, and in-line with a new world — a “Smart World”— that surrounds

us, that many are the application scenarios (e.g.: Smart Cities, Industry 4.0) embracing

IoT technologies. Being IoT the idea of a global, dynamic network infrastructure where

physical and virtual “things” (devices, sensors, smart objects, etc.) communicate and

share information among each other [3], and with manufacturers engaged in developing

new embedded systems to address the variety of application domains and services [32],

127

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

the number of possible physical “things” for each specific task is astronomic.

Smart Building

Transportation
Systems

Industry 4.0

…

Smart Cities

Operation
Concept

EcoSystem
Requirements Technologies

Time & Budget
…

…

…
Acceptance

Release

Figure 8.1: Design Support of IoT Systems: Proof-of-Concept Application Scenario(s).

Therefore, the topic design support of IoT Systems within IoT Ecosystems is appli-

cable and interdisciplinary by nature, since it involves all Smart System scenarios. The

Figure 8.1 highlights four scenarios: Smart Building, Transportation Systems, Industry

4.0 and Smart Cities; but others exist and could be mentioned as for example Smart Home,

Smart Farming, Smart Health, etc. However, the focus of this thesis concerns interop-

erable IoT Systems assessment, thus the POC illustrates how to formally represent and

then perform a conscious assessment of IoT Systems and how interoperability with other

systems, tools is facilitated. Two application scenarios integrate the Proof-of-Concept

(POC) and are described in the following sections:

• The first scenario addresses how IoT Systems description and assessment is achieved.

Aims the necessary formalisation of an IoT System and the assessment methodol-

ogy;

• The second scenario focus on the interoperability with standards, namely an IoT

Ecosystems description standard;

8.1.1 Application Scenario 1: Smart Building Design

As mentioned, and depicted in Figure 8.1, it was possible to consider any scenario under

the IoT scope as POC due to the sensors network nature of IoT deployments. In this way,

lets consider a Smart Building scenario as presented in Figure 8.2.

A Smart Building ecosystem provides means for many kinds of applications, such as

for security, fire and gas safety, lighting control, 24/7 monitoring, HVAC control, energy

saving, etc., based on a continuous environment surveillance performed by IoT Systems.

The scenario depicted in Figure 8.2 illustrates that hundreds if not thousands devices

are place in a skyscraper building, some to perform one type of function others another

128

8.1. PROOF-OF-CONCEPT IMPLEMENTATIONS

(e.g.: sensing temperature, turn-off lights, control gas leakage), all working together for

a common good — people welfare. The tasks diversity within the deployment and the

availability of numerous solutions, either in terms of hardware or software languages

poses as an issue. Decide on which is the proper solution for each task and in what

ground will solutions be selected are two topics that this dissertation addresses.

Store Store

- Multiple Sensor Units;
- Different Sensing Types;
- Different Communication
Requisites;

- Specific Sensors and Tasks
Particularities;

- …

- Multiple Sensor Manufacturers;
- Manufacturers provide Different

Devices;
- Devices Built for Different Purposes;
- Devices with Distinct Software

Languages;
- …

Ethernet Connection

Remote
Access

• Power-Saving
through light-control

• HVAC control using
motion sensors

Objectives:

Gas Temperature

HumidityWind

Noise Seismograph

Light

Sensors:

Motion

Figure 8.2: Proof-of-Concept Scenario 1: Smart Building Design.

The scenario, Smart Building Design, presented in Figure 8.2 depicts several applica-

tion possibilities (e.g.: security, fire and gas safety). However it is impossible to consider

and address all the possibilities, therefore two possible applications are highlighted:

Power-Saving through light-control; and HVAC control using motion sensors. The ob-

jectives focus on getting an indication of which is/are the more suitable IoT Systems to

perform:

1. Objective 1: Power-Saving through light-control. Light sensors, place by room-

zones, sense the environment (light values) and act on the respective light modules

(luminaire) controlling the light-intensity;

2. Objective 2: HVAC control using motion sensors. HVAC is turn-off/on accordingly

to movement in room and days’ time verification.

In terms of hardware platforms, a set of possible solutions are considered for both

cases. Software languages are applied, chosen accordingly to hardware platforms with

which they will be integrated. Multi-criteria assessment of IoT Systems methodology is

apply for both objectives, but criteria, constraints, priorities and MCDM methods are

considered separately, accordingly with respective objective.

129

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

To demonstrate how the IoT Systems description and assessment is achieved (pre-

sented respectively in Section 5.2 “Framework for IoT System Formal Description”, and

Section 6.2 “Framework for IoT Systems Assessment”), the POC for this scenario was split

in three test-cases and are presented in next subsections:

1. How to formally represent IoT System physical components (hardware);

2. How to add formal representation of software languages to the framework and

associate it to the formal description of an IoT System;

3. How to perform IoT Systems assessment and obtain a more suitable solution for a

specific task.

8.1.1.1 IoT System: Hardware Components

Formal descriptions of IoT Systems are crucial not only for this work but also to other

existing design systems or new ones. The ability to define operations based on specific

data structures enables processes to be automatic and easily upgradable. The definition of

IoT Systems characteristics, features is the groundwork for the main contribution of this

work. As mentioned, manufactures are providing several solutions to act as IoT Systems

and many of them with expansion capabilities (i.e. aggregate, join different hardware

parts to form a single hardware). However, the information regarding these solutions is

scattered all over the internet, where specifications are normally provided through web

pages, datasheets (normally in PDF), user-defined text, etc.

Figure 8.3 presents a general perspective of how to go from scattered information of

a large diversity set of hardware solutions to a specific, formal description of these same

solutions.

At the top is represented some hardware alternatives, of a market with a much larger

offer. Manufactures are focus mainly in providing two types of boards/devices. First

devices with a set of built-in sensors and wireless communication, but with no capacity

to be expanded, i.e. impossible add new hardware features to these devices (referred as

specific boards). Second, development boards, larger in size, normally with no sensor

or communication features (from scratch), but with a more user-friendly development

environment and with the capability to be expand with other hardware components (e.g.

communication boards, dc motors control boards, sensor units, etc.).

To get to the bottom, to the IoT Systems formal descriptions, is necessary to gather

the hardware information and convert it to the right specification models. Stakeholders

have the opportunity to identify new components or combine some if possible. It is also

possible to reuse formal descriptions already available or combine these with existing or

new boards.

130

8.1. PROOF-OF-CONCEPT IMPLEMENTATIONS

Expansion Boards

Development Boards

Specific Boards

Ontology
Markup

Harmonisation
Engine

IoT Systems
Formal Descriptions

Stakeholders:
- developers
- engineers
- investors
- …

possible reuse,
combine!

identify,
combine,

pick

Web Pages

Datasheets

Merge/
Transformation

Users

Parse
Information

Figure 8.3: From Scattered Hardware to Formal IoT Systems Specification (Hardware).

8.1.1.2 IoT System: Software Languages

The number of software languages available is high and in most cases they do not share

a common ground for the rules they obey. As POC for the integration of a software

language into the proposed framework and consequently allowing to build a properly

formalisation of an IoT System, next is presented two software languages adaptations.

These programming languages are the C language and the nesC.

To properly integrate a software language two rules must be obeyed by the specifi-

cation model. Additional information in the form of properties must be specified using

IoTSAG specification and the main model class inherit from the interface class Software-
Model from RCSM specification.

C Language Specification

The C Programming Language [117] is a widely used software language. As mentioned

in Section 2.3.4 this language is used by two of three most known and used OS in the IoT.

Figure 8.4 depicts a specification model for C Language version 1.0 retrieved from [208],

adapted to be part of an IoT System specification. Meaning that a software application,

can be described using this language and associated to the respective IoT System.

The Ecore representation of the adapted C Language specification model is presented

in Appendix H.

The specification model of the C Language suffered one necessary change to fulfil the

rules imposed by the proposed framework. This is the addition of class ApplicationModel,
inheriting from class SoftwareModel, to the Meta-Model.

131

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

Figure 8.4: C Language Specification Model (version C1.0 adapted from [208].)

Class ApplicationModel was added as main model class, including two attributes and

one class reference. The attributes, modelVersion and language, indicate the model version

(for version control) currently at “1.1-2019” and the software language name set to “C

Language”, respectively. The class reference, functions, pointing to class CFunction from

the original specification, is used to reference at least one function of C Language pro-

gramming file. As known, a C file contains at least one function, the main function. The

detail composition of C Language specification is not presented since it is not the focus

of this work to explain the constructs of this model, but rather to explain how to add a

software language to the proposed framework.

nesC Language Specification

The second software language used as POC for the openness of the framework to use

different programming languages is the Network Embedded Systems C (nesC) [109]. The

software language of TinyOS the OS more used by the scientific community accordingly to

the study presented in [128]. The nesC specification model shown in Figure 8.5 contains

the necessary changes so it can be included in the framework. Changes made to the

nesC Meta-Model proposed by João Ralo in [209], a specification model to describe and

formalize the nesC programming language, a work supervised by the author. This work

was developed based on the reference manual of nesC language version 1.3, written by

David Gay [210], and on the formalisation proposed by Rontidis Pavlos [211]. Although,

this last formalisation was incomplete since it only describe part of the nesC Language.

The Ecore representation of the nesC Language specification model is presented in

132

8.1. PROOF-OF-CONCEPT IMPLEMENTATIONS

Fi
gu

re
8.

5:
ne

sC
Sp

ec
ifi

ca
ti

on
M

od
el

(a
d

ap
te

d
fr

om
[2

09
])

.

133

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

Appendix I.

The necessary change to nesC specification model was to add SoftwareModel interface

class as parent of the core class ApplicationModel. This class already provides means to

describe the language name and model version, with pre-defined values of “nesC” and

“2.0-2019”, respectively.

8.1.1.3 Multi-Criteria Assessment of IoT Systems

The third, and final test-case considered for the Smart Building Design scenario is the POC

of multi-criteria assessment of IoT Systems to obtain the more suitable solution for each

specified task/objective. Figure 8.6 shows a high-level view of that decision process.

Multi-Criteria

Methods

More Suitable
Solution for
Objective 1

More Suitable
Solution for
Objective 2

Objective 1:
Power-Saving

Through Light-Control

Objective 2:
HVAC control using

motion sensors

IoT
Systems

Formal
Descriptions

Stakeholders: - developers;
- engineers;
- investors;
- …

judgement

Decision Upon which is/are the Proper Solution(s) for the Objective

assessment criteria;
constraints;

priorities

Figure 8.6: IoT Systems Assessment: Two Objectives of Smart Building Design Scenario.

The IoT Systems are described in terms of their hardware features; software language;

and respective application code, and are all considered as possible solutions for both

objectives. However, stakeholder’s judgement is not the same for the two cases. In this

sense, for the first objective, Power-Saving Through Light-Control, it is considered that

the solution must contain a light-sensing unit, a PWM output signal to control the light

module and with a low price. The second objective, HVAC Control Using Motion Sensors,
dictates that to be used in this case an IoT System must be able to communicate using IEEE

802.15.4 protocol for time synchronisation, at least one digital output for on/off relay

control (HVAC on/off), a motion-sensing unit and it has to present a good quality/price

relation (low cost). It is considered that the relay module it not included for analysis.

8.1.2 Application Scenario 2: SensorML Standard

The Sensor Model Language (SensorML) [21], is an OGC standard used to describe sensors

functional models with the capability to represent components as processes, physical (e.g.

detectors, actuators) as well as non-physical (e.g. mathematical operations or functions).

Sensors and sensor systems are defined using geometric, dynamic, and observational

characteristics.

134

8.1. PROOF-OF-CONCEPT IMPLEMENTATIONS

SensorML standard uses models and a XML encoding to describe processes. These

processes, which are discoverable and executable, define their inputs, outputs, param-

eters, and method, as well as provide relevant meta-data. It can work as an electronic

specification sheet perform sensors, sensors systems and process discovery. Provides

support for tasking observation and alert services, with also an on-demand processing

of Observation outcomes among other features. Figure 8.7 presents the SensorML main

packages dependencies, retrieve from [21].

imports

imports

imports

imports

imports

imports

imports

imports

imports

Sensor Model
Language 2.0

Physical
Component

Physical
System

Aggregate
Process

Simple
Process

Core

Figure 8.7: SensorML Main Internal Packages Dependencies (retrieved from [21]).

The proposed framework and specification models presented do not intend to replace

or be concurrent, better than SensorML standard, but rather assist, work together, automa-

tize the process that goes from the design phase to the real measurement and observation

processes within an IoT Ecosystem. The scenario presented in Figure 8.8, depicts an

example, “Internet of Things — Simple Sensor”, retrieve from [212], the SensorML exam-

ples database. In this scenario is described a sensor with a simple data stream containing

temperature values. This sensor is an online processing component (simple thermometer)

with a link so real-time data can be obtained.

On the left of Figure 8.8 is depicted a generic sensor acting as simple thermometer.

At the middle, SensorML model classes are identified accordingly to their use in XML

representation of the considered example, on the left. A complete version of the XML file

describing the entire example can be found in Appendix J.

Regarding the POC of this scenario, it is defined a test-case to demonstrate the inter-

operable nature of the proposed framework. The test-case implementation consists on

providing the mapping between SensorML and proposed specification models, enabling

in this way the process to go from a decision at design phase, of which is the more proper

IoT System, to the objective fulfilment — online temperature observation.

135

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

Outputs

OutputList

Physical Component

Output

DataInterface

Data

DataStream

ElementType

Encoding

Quantity

temp

temperature

UOM Cel

K

Coordinates

‘,’ ‘ ’

Position

Point

….

Id / srsName

Description

Identifier ….

….

MY_SENSORId=

uniqueIDcodeSpace=

name=

name=

Values ….href=

definition=

code=

Figure 8.8: Proof-of-Concept Scenario 2: Temperature Sensor with Online Data Observa-
tion (SensorML Example).

8.2 Technical Implementations

Section 8.1 of this work presented as Proof-of-Concept (POC) a set of test-cases scenarios

that addressed the implementation of Chapters 5 to 7 frameworks and architectures

specification. However, a POC is not supposed to be flawless, robust or a complete

solution, instead it is intended to demonstrate the feasibility of a solution and/or idea.

Therefore, and as proof of feasibility, next technical implementations are presented

for each of test-cases proposed, and consequently verify the contributions potential.

8.2.1 Implementation of Scenario 1: Smart Building Design

The Smart Building Design scenario presented in Section 8.1.1 and depicted in Figure 8.2

addressed two objectives: first, energy saving through by controlling light modules; and

second a HVAC on/off switching using motion sensors. This scenario was in three test-

cases matching the contributions: IoT Systems hardware formal representation; associate

application code to an IoT System; and perform an assessment and decision regarding the

more suitable IoT System(s) for the design objectives. The next sections aim to demon-

strate the contributions potential for each one of these test-cases.

8.2.1.1 Hardware Description of IoT Systems

The proposed IoT System formal specification (Resource-Constrained System Meta-Model

(RCSM) represented in Figure 5.5) states that to correctly and completely describe these

136

8.2. TECHNICAL IMPLEMENTATIONS

systems three parts must be considered, even if one is not mandatory. The two core

parts are hardware and application code formal descriptions, and the optional relates

to energy consumption. IoT Systems hardware formal representation from scattered,

unformatted data sources is presented next by describing implementation steps of the

MDA-based Harmonization Framework.

As it would be impossible to include all hardware components description, a selection

was made upon two platforms: an AdvanticSys34 device (CM4000) and the Arduino35

Uno (already used as an example in Section 5.4.1).

Regarding the proposed IoT Systems specification is important to highlight, clarify

some points from a technical, practical point of view. From one hardware specification

(and if the physical device allows it) it is possible to aggregate other hardware specifica-

tions and consequently generate different, numerous IoT Systems specifications (possible

solutions).

One possible source of data information regarding hardware components and its

details are web pages, which are described using HTML. Manufacturers commonly an-

nounce their offers with a set of features to enable stakeholders to have an overview of

what is being sell. Although it is important emphasize that web-pages do not have de-

tail and complete information, but links to datasheets and technical reports are usually

available. Figure 8.9 gives an high level overview of what happens when the proposed

framework is used to obtain IoT Systems formal description from web-pages data source.

On the left of Figure 8.9 is depicted the two hardware platform web-pages, with a

user common perspective followed by source code (HTML code). From the common

user-perspective, hardware and software characteristics are described and by using the

model-driven framework is possible to generate the IoT Systems formal descriptions, as

represented in the right side of the figure. On top, from left to right, is presented the

process for CM4000 AdvanticSys mote, and on the bottom for Arduino UNO.

Considering web-pages as data information source regarding hardware components,

meaning that information is arranged using HTML specification, is possible to describe

the transformation process within the model-driven framework, which deals with the

process of going from a HTML representation to a RCSH and IoTSAG representation, i.e.

to a formal specification of an IoT System. Figure 8.10 shows this process.

With the hardware information following HTML specification (a XML serialised) it

cannot be directly put into the ATL toolkit, since this toolkit needs a XMI representation

as input. Consequently, the first step, XML injection, is to convert data to a XML MOF

meta-model specification. Accomplished this, next follows a step responsible to map

the obtained XML format data to the reference HTML Meta-Model which is the input

for the actual language mapping (from HTML to RCSH and IoTSAG representations).

This transformation is performed accordingly to a pre-defined mapping between the

structural formats of the two languages (XML and HTML). It is a mapping between both

34https://www.advanticsys.com/
35https://www.arduino.cc/

137

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

H
a
rm

o
n
isa

tio
n

La
yer

In
tero

p
era

b
ility

En
g
in
e

Figu
re

8.9:IoT
System

s
Form

alD
escrip

tions
B

ased
on

W
eb-Pages

Inform
ation.

138

8.2. TECHNICAL IMPLEMENTATIONS

specification models, i.e. Meta-Models, therefore executed at the second abstraction level

accordingly to MDA approach.

HTML
Meta-Model (XMI)

MOF

defined by

hardware ‘X’
Model (XMI)

definitions ‘X’
Model (XMI)

Data
Data

described by
described by

Data Transformations

Harmonisation Layer

Specification
Models

(Abstraction
Level 2)

Models
(Abstraction

Level 1)

Meta-Meta
Models

(Abstraction
Level 3)

hardware ‘X’
Model (HTML/XML)

hardware ‘X’
Model (XMI)

XML
Meta-Model (XMI)

instance of instance of

defined by

IoTSAG
Meta-Model (XMI)

RCSH
Meta-Model (XMI)

defined by

defined by

hardware of ‘X’
Model (XMI)

instance of

instance of

Data

R
e

al
iz

e
s

described by

R
e

al
iz

e
s

XML to HTML
Mapping

R
e

al
iz

e
s

Structural, Specification
Mapping

XML
injection

HTML to IoTSAG
Mapping

HTML to RCSH
Mapping

Models and Ontologies
Mapping

HTML to IoTSAG
Mapping

HTML to RCSH
Mapping

Structural, Specification
Mapping

Figure 8.10: Harmonisation Layer: IoT System Physical Components Instantiation.

The transformation process, mapping from HTML to the RCSH and IoTSAG specifi-

cation models is accomplished at two levels accordingly to MDA abstraction levels, more

precisely, at the first and second abstraction levels. At specification models level (abstrac-

tion level 2) mapping is defined by matching input classes (HTML classes) with output

classes (RCSH and IoTSAG classes), delineating in this way part of the transformation

process.

The second part is realised by taking into consideration the data (mapping definition

at abstraction level 1). Since XML is a generic data representation, data in each attribute,

element must be analysed for a correct matching, and consequently transformations can

be performed to destination models. For instance, words like processor, micro-controller,

CPU are linked to the ProcessingUnit class of the RCSH specification model.

8.2.1.2 Application Code for IoT Systems

An application code, firmware of an IoT System is described by a Software Language

which is the second core part to completely describe IoT Systems. Sections 8.1.1.2 and

8.1.1.2 presented two software languages specification models, the C and nesC languages,

with the necessary changes to respect the imposed framework rules.

IoT Systems firmware, applications code are inserted into devices by the use of specific

compilers or Integrated Development Environment (IDE) tools. These tools, normally,

use text files as input developed, created by developers, programmers. The use of a

139

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

Model-Driven based framework facilitates the code generation, and consequently the

deployment of IoT Systems.

Similarly to the reuse of hardware specifications to create new IoT Systems, the asso-

ciation of an application code with different hardware platforms (of a similar nature, e.g.:

same processor family) also enables the creation of multiple, different IoT Systems.

Figure 8.11 depicts the process of going from a software language specification model

to application code text files. The two software languages follow the same principle,

therefore C and nesC languages are represented in a general way, “App. Language”, in

the figure. In terms of number of steps, generate text files from specification models is

simpler than to perform a transformation between models. From a perspective of code

generation, once the software language model is filled, with the rules established by the

specification model respected, is possible by applying the necessary conversion rules

obtain the application code file(s).

App. Language
Meta-Model (XMI)

Meta-Meta-
Model

App. Language
Model (XMI)

Data
Data

described by

Data Transformations

Harmonisation
LayerSpecification

Models
(Abstraction

Level 2)

Models
(Abstraction

Level 1)

Meta-Meta
Models

(Abstraction
Level 3)

instance of

defined by

Data

App. Language
to Text Mapping

R
e

al
iz

e
s

Structural, Specification
Mapping

Figure 8.11: Harmonisation Layer: From Software Languages Specification to Applica-
tions Code (Text Files).

The transformation process is bidirectional, which means that it is possible to create

applications code from the specification model as well as to get meta-model instantiation

from code files. It will be necessary to create the rules, specify the transformations to

implement both transformations.

Let’s consider the nesC language as the software language used to program the IoT

Systems with the necessary firmware. To execute the transformation, from the nesC

specification model to code files, is necessary to implement the mapping rules. Trans-

formations are normally static processes, specified during the system design, that once

140

8.2. TECHNICAL IMPLEMENTATIONS

defined can be repeated indefinitely. Mapping rules defined to be applied based on

structural aspects, based on specification models produces the same structural output

independently of content. Figure 8.12 depicts the process of going from an instantiation

of nesC meta-model, i.e. the definition of an application, to an IoT System programmed

with the application. The instantiation of nesC meta-model is identified in the as Step

1.0.

In nesC case, there will be at least two necessary programming files, with “.nc” exten-

sion, for the configuration and module. It can also contain library files, “.h” files, also

generated by the specified transformation rules. The transformation language used was

Atlas Transformation Language (ATL). The mapping rule to create the mentioned files is

presented in Figure 8.12, identified as Step 1.1 (all underlying functions are not described

in the figure).

Executing the transformation, Step 2.0, the nesC files are created: configuration,

module and 1 library file. Programming is described in the figure as Step 3.0, and it was

used the Ubuntu 12.04 with TinyOS version 2.1.2 installed, to compile and program the

devices. A correct compilation serves as validation of the process of going from the nesC

specification model to actual code files.

8.2.1.3 IoT Systems Assessment & Proper Solution(s)

Previously, IoT Systems formal description was addressed by going through the imple-

mentation aspects, explaining how data could be retrieved and aggregated from external

sources, or the use of different languages could be applied within the proposed frame-

work. With IoT Systems well defined, where information follows specific rules, tools can

retrieve and/or analyse each one of the IoT System features, characteristics. These brings

the third test-case defined for the Smart Building Design scenario — perform an assess-

ment and decision regarding the more suitable IoT System(s) for the design objectives.

Let’s focus on the formal representation, i.e. the specification model (MCAM) pro-

posed in Section 6.3, that describes an IoT Systems assessment rather than on the assess-

ment methodology proposed in Section 6.5 that uses, is based on the proposed MCAM.

The implementation aspects of the assessment methodology will be addressed in Section

8.3.2 with the analysis of an Industrial scenario.

The third test-case for the Smart Building Design scenario sets two objectives. Objective
1: Power-Saving Through Light-Control establishing as criteria a light-sensing unit, a PWM

output signal to control the light module and a low price. On the other hand, Objective
2: HVAC Control Using Motion Sensors specifies IEEE 802.15.4 compliant protocol as

communication, one digital output for HVAC on/off, a motion-sensing unit and a low

cost as criteria.

From the objectives definition is possible to define constraints for each criterion. The

list of criteria applied to each criterion is depicted in Equation 8.1 for Objective 1, and

in Equation 8.2 for Objective 2, where each line represents jth criterion. Respectively:

141

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

S
te

p
 1

.1

c
o

n
fig

u
ra

tio
n

 S
e

n
d

M
s
g

X
b

y
te

s
A

p
p

C
{

}im
p

le
m

e
n

ta
tio

n
{

c
o

m
p

o
n

e
n

ts
 S

e
n

d
M

s
g

X
b

y
te

s
C

 a
s
 A

p
p
;

c
o

m
p

o
n

e
n

ts
 M

a
in

C
;

c
o

m
p

o
n

e
n

ts
 L

e
d

s
C

;

c
o

m
p

o
n

e
n

ts
 A

c
tiv

e
M

e
s
s
a

g
e

C
 a

s
 W

ire
le

s
s
;

c
o

m
p

o
n

e
n

ts
 n

e
w

 A
M

S
e

n
d

e
rC

(W
IR

E
L

E
S

S
_
M

S
G

_
ID

) a
s
 A

M
S

e
n

d
;

c
o

m
p

o
n

e
n

ts
 n

e
w

 T
im

e
rM

illiC
() a

s
 T

im
e

r;

A
p

p
.B

o
o

t ->
 M

a
in

C
;

A
p

p
.L

e
d

s
 ->

 L
e

d
s
C

;

A
p

p
.A

M
C

o
n

tro
l ->

 W
ire

le
s
s
;

A
p

p
.A

M
S

e
n

d
 ->

 A
M

S
e

n
d

;

A
p

p
.T

im
e

r ->
 T

im
e

r;

}

q
u
e
r
y

n
e
s
C
2
T
X
T

=

n
e
s
C
!
M
o
d
e
l
.
a
l
l
I
n
s
t
a
n
c
e
s
(
)
-
>

s
e
l
e
c
t
(
i

|

i
.
o
c
l
I
s
T
y
p
e
O
f
(
n
e
s
C
!
M
o
d
e
l
)
)
-
>

c
o
l
l
e
c
t
(
m

|

m
.
C
r
e
a
t
e
F
i
l
e
s
(
)
)
;

h
e
l
p
e
r

d
e
f

:

F
I
L
E
S
_
P
A
T
H

:

S
t
r
i
n
g

=

'
.
.
/
n
e
s
C
2
T
X
T
/
O
u
t
p
u
t
M
o
d
e
l
s
/
'
;

h
e
l
p
e
r

d
e
f

:

T
A
G
_
n
e
w

:

S
t
r
i
n
g

=

'
n
e
w
'
;

h
e
l
p
e
r

d
e
f

:

T
A
G
_
T
A
B

:

S
t
r
i
n
g

=

'

'
;

h
e
l
p
e
r

d
e
f

:

T
y
p
e
_
G
e
n
e
r
i
c

:

S
t
r
i
n
g

=

'
G
e
n
e
r
i
c
'
;

h
e
l
p
e
r

d
e
f

:

T
y
p
e
_
N
o
r
m
a
l

:

S
t
r
i
n
g

=

'
N
o
r
m
a
l
'
;

h
e
l
p
e
r

c
o
n
t
e
x
t

n
e
s
C
!
M
o
d
e
l

d
e
f
:

C
r
e
a
t
e
F
i
l
e
s
(
)

:

S
t
r
i
n
g

=

l
e
t

c
o
n
f
i
g
u
r
a
t
i
o
n

:

n
e
s
C
!
C
o
n
f
i
g
u
r
a
t
i
o
n

=

s
e
l
f
.
a
p
p
l
i
c
a
t
i
o
n

i
n

i
f

(
c
o
n
f
i
g
u
r
a
t
i
o
n

<
>

O
c
l
U
n
d
e
f
i
n
e
d
)

t
h
e
n

l
e
t

r
e
s
u
l
t

:

S
t
r
i
n
g

=

c
o
n
f
i
g
u
r
a
t
i
o
n
.
t
o
S
t
r
i
n
g
(
S
e
q
u
e
n
c
e
{
'
'
}
)
.
w
r
i
t
e
T
o
(
t
h
i
s
M
o
d
u
l
e
.
F
I
L
E
S
_
P
A
T
H

+

c
o
n
f
i
g
u
r
a
t
i
o
n
.
n
a
m
e

+

'
.
n
c
'
)

i
n

l
e
t

_
m
o
d
u
l
e
s

:

S
e
q
u
e
n
c
e
(
n
e
s
C
!
M
o
d
u
l
e
)

=

c
o
n
f
i
g
u
r
a
t
i
o
n
.
i
m
p
l
e
m
e
n
t
a
t
i
o
n
-
>
s
e
l
e
c
t
(
i

|

i
.
o
c
l
I
s
T
y
p
e
O
f
(
n
e
s
C
!
M
o
d
u
l
e
)
)

i
n

i
f

(
_
m
o
d
u
l
e
s

<
>

O
c
l
U
n
d
e
f
i
n
e
d
)

t
h
e
n

l
e
t

r
e
s

:

S
t
r
i
n
g

=

_
m
o
d
u
l
e
s
-
>
c
o
l
l
e
c
t
(
i

|

i
.
t
o
S
t
r
i
n
g
(
S
e
q
u
e
n
c
e
{
'
'
}
)
.
w
r
i
t
e
T
o
(
t
h
i
s
M
o
d
u
l
e
.
F
I
L
E
S
_
P
A
T
H

+

i
.
n
a
m
e

+

'
.
n
c
'
)
)

i
n

l
e
t

l
i
b
s

:

S
e
q
u
e
n
c
e
(
n
e
s
C
!
H
e
a
d
e
r
)

=

_
m
o
d
u
l
e
s
-
>
i
t
e
r
a
t
e
(
s
;

a
c
c
:

S
e
q
u
e
n
c
e
(
n
e
s
C
!
H
e
a
d
e
r
)

=

S
e
q
u
e
n
c
e
{
}

|

a
c
c
-
>
u
n
i
o
n
(
s
.
h
a
s
H
e
a
d
e
r
s
)

)

i
n

i
f

(
l
i
b
s

<
>

O
c
l
U
n
d
e
f
i
n
e
d
)

t
h
e
n

l
i
b
s
-
>
c
o
l
l
e
c
t
(
i

|

i
.
t
o
S
t
r
i
n
g
(
S
e
q
u
e
n
c
e
{
'
'
}
)
.
w
r
i
t
e
T
o
(
t
h
i
s
M
o
d
u
l
e
.
F
I
L
E
S
_
P
A
T
H

+

i
.
n
a
m
e

+

'
.
h
'
)
)

e
l
s
e

O
c
l
U
n
d
e
f
i
n
e
d

e
n
d
i
f

e
l
s
e

O
c
l
U
n
d
e
f
i
n
e
d

e
n
d
i
f

e
l
s
e

O
c
l
U
n
d
e
f
i
n
e
d

e
n
d
i
f
;

#
ifn

d
e

f L
IB

_
H

#
d

e
fin

e
 L

IB
_

H

#
in

c
lu

d
e

 "T
im

e
r.h

"

e
n

u
m

 {W
IR

E
L

E
S

S
_

M
S

G
_

ID
 =

 9
9

,

T
im

e
P

e
rio

d
 =

 1
0

0
,

N
u

m
b

e
rO

fB
y
te

s
 =

 2
8

,

M
A

X
_

P
A

Y
L

O
A

D
 =

 2
8

};ty
p

e
d

e
f n

x
_
s
tru

c
t W

ire
lle

s
s
M

e
s
s
a

g
e

 {

n
x
_

u
in

t8
_
t v

a
lu

e
[N

u
m

b
e

rO
fB

y
te

s
];

} W
ire

lle
s
s
M

e
s
s
a

g
e
;

#
e

n
d

if /* L
IB

_
H

 */

S
te

p
 3

.0

S
te

p
 2

.0

S
te

p
 1

.0

Figu
re

8.12:From
nesC

M
od

els
to

A
p

p
lication

C
od

e
(Text

Files).

142

8.2. TECHNICAL IMPLEMENTATIONS

Light-Sensing Unit; PWM Output Signal; and Price for Objective 1. For Objective 2: IEEE

802.15.4 Protocol; Digital Output Signal; Motion-Sensing Unit; and Cost. Considering

the first objective, the first line of Equation 8.1 indicates that constraint, MustHave, is

applied to criterion Light-Sensing Unit.

ConstraintsObj1 = { MustHave;

GreaterT han;

MIN }
(8.1)

ConstraintsObj2 = { Equal;

GreaterT han;

MustHave;

MIN }

(8.2)

The formal description of the first objective is depicted in Figure 8.13. Following

the proposed MCAM specification it is highlighted the constraints definition for each

criterion, the criteria units’ definition and the indication of the MCDM method used.

On the left of Figure 8.13 is presented the MCAM Meta-Model instantiation (objective 1

MCAM model), and on the right the IoTSAG Meta-Model instantiation.

Constraints

MCAM

IoTSAG

Figure 8.13: MCAM Specification Model: Instantiation of Objective 1 — Power-Saving
Through Light-Control.

Reading from the top of MCAM model, criterion “Light-Sensing Unit” presents a con-

straint of type “MCAM:Availability” with a considered unit of type “Number”. The no

definition of the availability type indicates that the default value is applied, i.e. MustHave.

The assessment methodology will process this criterion looking for values different from

143

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

zero (as defined in procedure presented in Figure 6.6) to certify the possible solution as

valid. Next is criterion “PWM Output Signal”, with “MCAM:QuantitativeCondition” of

type “GreaterThan” defined as constraint (default value for this constraint is “LessThan”),

with a considered unit of type “PWM”. Default value for attribute “value” of class

“MCAM:QuantitativeCondition” is 0.0. The third and final criterion considered for Ob-
jective 1 is “Price”, for which was established an “Optimization” constraint with type

“MIN” (default type for this constraint). The MCDM method used is specified in the final

of MCAM model, by the “DecisionMethod” tag. For this objective was considered the AHP

method.

MCAM, IoTSAG and AHP models are instantiated in different files, as well as the

possible solutions, IoT Systems models (RCS, RCSH, and software language). In case of

being used different IoTSAG files, aggregation is performed by Harmonisation Layer of

the proposed Framework (presented in Figure 7.2).

The formal description of the second objective is depicted in Figure 8.14. Following

the proposed MCAM specification it is highlighted the constraints definition for each

criterion, the criteria units’ definition and the indication of the MCDM method used.

On the left of Figure 8.14 is presented the MCAM Meta-Model instantiation (objective 2

MCAM model), and on the right the IoTSAG Meta-Model instantiation.

Constraints

MCAM

IoTSAG

Figure 8.14: MCAM Specification Model: Instantiation of Objective 2 — HVAC Control
Using Motion Sensors.

Reading from the top of MCAM model, criterion “IEEE 802.15.4 Protocol” presents a

qualitative constraint of type “MCAM:QualitativeCondition” stating that criteria values

(text values) have to be equal to “Yes”. With this assessment constraint the proposed

144

8.2. TECHNICAL IMPLEMENTATIONS

assessment methodology can exclude any solution that does not have a wireless commu-

nication using the IEEE 802.15.4 standard. Next is criterion “Digital Output Signal” with

a constraint “MCAM:QuantitativeCondition” of type “GreaterThan” (default value is 0.0),

establishing a condition that allows the methodology to exclude any solution that does

not present at least 1 digital output pin. The two last criteria “Motion-Sensing Unit” “Cost”
are in all equal to criterion “Light-Sensing Unit” and “Price” of the previous objective. The

MCDM method used is specified in the final of MCAM model, by the “DecisionMethod”

tag. For this objective was considered the ELECTRE method.

In order to address the specification models proposed in Section 6.4, which describes

two MCDM methods, AHP and ELECTRE, using a model-driven approach, the scenarios

presented here used these MCDM methods. Figure 8.15 depicts the methods instantiation,

where on top is presented AHP used in the first objective and on the bottom ELECTRE

method used for the second objective.

AHP

ELECTRE

Figure 8.15: MCAM Methods: Instantiation for both Objectives.

From the figure is possible to identify the priority and weight values determined by

stakeholders, defining the relation between criteria. Then each method has its own way

145

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

to evaluate solutions and consequently assess which is the more suitable solution (see

Section 4.2). From the AHP model is concluded that criterion “Light-Sensing Unit” has

the same importance than the second criterion, “PWM Output Signal”, and half of the

importance of criterion “Price”. Priority values for criterion “PWM Output Signal” are

hidden for document size reasons, but are the same as for criterion “Light-Sensing Unit”.

The last criterion, “Price”, consequently presents twice the importance than the previous

two.

Looking to ELECTRE model, shown on the bottom of Figure 8.15, stakeholders de-

cided that the most important criterion is “Cost” with a weight of 40% (weight = 0.40) on

the assessment, while the other three criteria (“IEEE 802.15.4 Protocol”, “Digital Output
Signal” and “Motion-Sensing Unit”) have a 20 % weight (weight = 0.20) each. Discordance

and concordance levels were computed following the ELECTRE methodology.

8.2.2 Implementation of Scenario 2: SensorML Standard

Standards have been proposed to define systems, modelling requirements, behaviours,

processes, etc., supporting interoperability at a syntactic as semantic level. An example

is SensorML [21], capable of represent physical as non-physical components as processes,

for example detectors, actuators, mathematical operations or functions. SensorML is

focus on describing sensor systems through a process, operation model to cover specifi-

cations, input/output, meta-data, etc., making a sensor system discoverable, measurable

and observable. SensorML defines processes and processing components rather than give

thorough description of its hardware.

The integration, interconnect of the proposed framework with SensorML standard evi-

dence a clear benefit to the design of IoT Ecosystems. From one side, there is a framework

capable of assist during the design phase of IoT Systems, with a complete and conscious

form of represent IoT Systems and assess which is the more suitable to perform a certain

task. Tasks which can be described by SensorML standard as all its operational aspects.

Therefore, and accordingly to the scenario presented in Section 8.1.2 — “Internet of

Things — Simple Sensor”, next are described the implementations steps that enable the

interoperability between the proposed framework and the mentioned standard, demon-

strating one of the framework features — interoperable with other systems.

Considering the design phase of an IoT Ecosystem, where the Multi-Criteria Frame-

work to Assist on the Design of IoT Systems is used, the next step is to start defining IoT

Systems deployment. With the use of the proposed framework, all information needed

to match from IoT Systems assessment to functional aspects and processes is available.

In this sense, Figure 8.16 depicts the process of going from IoT Systems description

and assessment specification to SensorML specification, using as example the test-case

defined in Section 8.1.2. The left side of the figure represents the proposed framework

specification models, and the right side is referent to SensorML.

To accomplish an automatic generation of a partial, pre-fill the description of sensor

146

8.2. TECHNICAL IMPLEMENTATIONS

Data
Data

Data
Data

IoTSAC
Meta-Model (XMI)

MOF

defined by

Data

described by

Harmonisation
Layer

Specification
Models

(Abstraction
Level 2)

Models
(Abstraction

Level 1)

Meta-Meta
Models

(Abstraction
Level 3)

IoTSAG
Meta-Model (XMI)

defined by

instance ofinstance of

described by

R
e

al
iz

e
s

MCAM
Meta-Model (XMI)

RCSM
Meta-Model (XMI)

Core
Model (XMI)

definitions ‘X’
Model (XMI) Assessment

Model (XMI)
RCSystem

Model (XMI)

SensorML
Meta-Model (XMI)

Data Transformations

All to SensorML
Mapping

Structural, Specification
Mapping

Simple Sensor
Model (XMI)

Figure 8.16: Harmonisation Layer: From Proposed Specifications to SensorML Specifica-
tion (Internet of Things — Simple Sensor).

behaviour and processes (SensorML) a set of mapping rules must be specified. These

rules are structural, specification mapping between the Meta-Models, performed at the

second abstraction level accordingly with MDA. The resulting SensorML model is only

partial; it is an initial formalisation, since the proposed work thus not addresses sensors,

application actions or aspects regarding data exchange. The example, presented in Figure

8.8 shows that a SensorML model can contain the physical location of the sensor using

GPS. The proposed specifications models are not able to describe the physical location,

but can represent the GPS component itself.

Table 8.1 presents classes’ and attributes matching between the two specifications.

Where Source is referent to the specification models proposed in this work and Target is

referent to the SensorML standard.

None of IoTSAC classes or attributes are mapped (directly) in this example, due to the

fact that this example only describes a physical component processes. Although, being

the core model, embracing all specifications, it is necessary to have it as Source to access

to all other proposed specifications.

The sensor function description (PhysicalComponent::description) is obtained from

the objective definition in attribute “objective” from class MultiCriteriaAnalysisModel of

MCAM model. The objective for a multi-criteria assessment is defined in the beginning

by the characterisation of the problem to solve.

147

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

Table 8.1: Harmonisation Layer: Structural, Specification Mapping to SensorML (Internet
of Things — Simple Sensor).

Source
Package:

Source Class / Attribute: Target Class / Attribute:

IoTSAC IoTSystemsAnalysis (not mapped)
MultiCriteriaAnalysisModel::objective PhysicalComponent::description

MCAM
Rank::rankingPosition

PhysicalComponent::id
ResourceConstrainedSystem::name

RCSM
ResourceConstrainedSystem::id PhysicalComponent::identifier

IoTSAG Property; Unit InputList; OutputList

To generate the PhysicalComponent in SensorML model, first is necessary to obtain

the more suitable IoT System to execute the desired objective. Class Rank from MCAM

contains the assessment result (numbered list) identifying each IoT System. Attribute

“id” is then retrieved directly from the IoT System that finished in first place. In the

defined SensorML test-case scenario the physical component has “MY_SENSOR” as “id”

(see Figure 8.8).

The physical component identifier is a more specific, unique value to identify the

component. In the proposed specification models this is obtained from attribute “id” of

class ResourceContrainedSystem in RCSM. Attribute “id” derived from class SystemDe-

scription of IoTSAG specification model.

The considered SensorML example, reports a simple temperature sensor providing

online data observation. It does not contain any input information, commands but out-

puts the observed property — temperature. Property name, unit, domain are described

in IoTSAG Meta-Model by classes Property (aggregation or single property), Unit and

PropertyDomain. At this moment, the property information is selected by stakeholders,

however in the future a semantic analysis could be made to the objective text and retrieve

the exact property(ies). Or at least give a smaller set of alternative properties.

8.3 Acceptance by Scientific Community & Industry

To be a contribution the research results must be published. Results should be published

and shared with peers from the scientific community, and if appropriated transferred to

the industry.

8.3.1 Acceptance by Scientific Community

Acceptance by the scientific community is important to verify the quality of the research

work. To allow a continuous assessment of the work that has being developed, findings,

contributions and research results must be publish, shared not only at the final but also

148

8.3. ACCEPTANCE BY SCIENTIFIC COMMUNITY & INDUSTRY

during the thesis elaboration. This enables the author to have an “on-line” verification of

the work but others can continue the research or apply it into other areas.

During this thesis work, the author of this dissertation has published in a number

of international conferences and scientific journals. Publications can be arranged ac-

cordingly with the groundwork themes that help to achieve the expected outcomes, as

depicted in Figure 8.17.

2013 2014 2015 2016 2017 2018 2019

Modelling
&

Interoperability

DoCEIS15

EuCNC

JGE

ICE2017

DoCEIS17

IoT
Bus. Model

EIS19

Background
Observation

Research Work
Industrial
Placement

Finalisation

JIOT

Figure 8.17: Acceptance by Scientific Community: Publications Timeline.

In a first phase, a background research was carried out and observations were made

that lead to the identified issues that this dissertation addresses. In [198], the author

published a work focus on information modelling and enterprises systems interoperabil-

ity, which gave a perspective on a promising software engineering approach to simplify

and formalise various systems activities and tasks (Modelling & Interoperability). IoT

thematics, more exactly a business model for IoT Test-beds was published in [3]. During

this research the author studied and faced numerous issues that needed to be addressed

in IoT (IoT Business Model).

Identified the research area, a research question was drawn, “How can Internet-of-

Things Systems be designed to optimise the matching with the operating environment?”,

and that give motto to the research work presented in this dissertation. In detail, the most

important publications with inputs from this work are:

• In Conferences:

– DoCEIS15 [213]: presented a model-based approach for Resource-Constrained

Devices (RCS) energy test and simulation. It gave a first glimpse of a formal

representation of an IoT System;

– EuCNC [214]: focus on energy consumption awareness for Resource-Constrained

Devices (RCS), by presenting an approach to direct measurement of consumed

149

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

energy, to streamline the process of building realistic models of power con-

sumption;

– DoCEIS17 [203]: presented a multi-criteria analysis and decision methodol-

ogy to analyse a set of different hardware platforms for the IoT;

– ICE17 [32]: presented a multi-criteria decision model to select a more suitable

IoT System, with focus on an industrial scenario. This publication embraces

the three areas used as background for thesis;

• In Scientific Journals:

– JGE [195]: an extension of the work published in EuCNC, it include the study

of a different development platform with focus on programmable logical, re-

configurable hardware platform — Field-Programmable Gate Array (FPGA);

– EIS19 [204]: addresses a multi-criteria decision problem regarding the more

suitable IoT System to perform a certain task for Cyber-Physical Systems (CPS).

This publication embraces the three areas used as background for this disser-

tation.

– JIOT [215]: Focus on presenting the overall thesis concept, an Assessment

Methodology where is possible to apply Multi-Methods for Decision-Making,

the use of Multi-Criteria and Multi-Constraints to analyse different solutions,

all in benefit of a more conscious/aware IoT Ecosystems design. Submitted

for review at the same time of the thesis document for defence (in 2019), it

was accepted in July 2020 during the COVID19 pandemic and before thesis

defence (September 2020).

8.3.2 Acceptance by Industry

Acceptance by Industry is of same importance as acceptance by peers in the scientific

community. In case, results are not accepted by industry it is almost certain that the

proposed contributions will never be used. Consequently, this research has been putted

to test, to industrial validation in the metalworking sector. The prototyping scenario is

based on the C2Net European Project, more specifically in a Portuguese pilot. The pilot,

a Metalworking Small-Medium Enterprise (SME), aimed to improve the management of

logistic flows and resources. The C2Net pilot is presented next in more detail.

8.3.2.1 C2Net’s Metalworking Process Design

The C2Net Project goal was the creation of cloud-enabled tools to support supply network

optimization of manufacturing and logistic assets based on collaborative demand, produc-

tion and delivery plans. C2Net provided a scalable real-time architecture, platform and

software that allow supply network partners to master complexity of a supply network to

optimize the manufacturing assets by the collaborative computation of production plans.

150

8.3. ACCEPTANCE BY SCIENTIFIC COMMUNITY & INDUSTRY

C2Net’s Metalworking Process Design focus mainly on two premises: provide more

information to logistics so they can find best delivery prices and dates (among deliv-

ery/distribution services); and to improve delivery plans, giving a better response to

customers’ orders.

Scenario

The fabrication process starts when all necessary raw materials arrive at the factory

for the fabrication of a metal post. The production depicted in Figure 8.18 starts by a

bar code reader (Start Process), and finishes the same way, with a bar code reader (End

Process). Along the process the raw material is cut (Phase 1), mould to desired shape

(Phase 2) and painted (Phase 3).

Phase 1 (Cut).
• Material supply

and cut.

Start Process.
• Order Barcode Reader.

Process Cycle

Communication
Interfaces

C2Net
IoT Hub

Phase 3 (Paint).
• Parts Painting.

Communication Data

Phase 2 (Mold/Stamp.
• Proprietary Controller.

Material Supply
ControlBarcode

Information

Painting Impurity
and Thickness

C2Net
Conn

C2Net Connection:
• A Physical communication

Interface + Processing Unit;
• Allows transmission of data

to C2Net IoT Hub.

C2Net
Sensor

C2Net Sensor:
• Sensor Unit + Data

Acquisition;
• Contains a C2Net Conn

Element.

Information
Data

End Process.
• Order Barcode

Reader.

C2Net
Conn

C2Net
Sensor

C2Net
Sensor

Barcode
Information

C2Net
Conn

Figure 8.18: Industrial Scenario: C2Net’s Metalworking Process Design.

Figure 8.18 shows the process steps, C2Net sensor functions (sensing functionalities)

and C2Net IoT Hub that collects information from the fabrication process to optimise the

supply network. The process stages are described next in detail:

• Start Process: operator starts by reading the order code using a bar-code reader.

This bar-code reader has attached a C2Net Connection (C2Net Conn) module that

is used to send the code information read to the central unit (C2Net IoT Hub);

• Phase 1 (Cut): is a step where the material is cut to a pre-defined size, from where

each part will be created. Here, material supply and cut is controlled and this

information is sent to the C2Net IoT Hub. The control focus on getting the relation

between the supplied material and the amount of waste (number of pieces non-

conforming);

• Phase 2 (Mould/Stamp: mould, gives the intended shape to each piece. The infor-

mation from the stamp machine is managed by a proprietary controller and sent to

151

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

the central unit (C2Net IoT Hub). This machine, process phase does not need any

additional computational module to share control information to system;

• Phase 3 (Paint): in this phase each part is painted. A C2Net Sensor is used to

control the painting impurity and thickness of each painted part. This information

is also sent to the central unit;

• End Process: is last step of the fabrication process. The operator reads again the

order code using a bar-code reader to indicate that the process has ended. The code

information is sent to C2Net IoT Hub using a C2Net Connection module.

The scenario, regarding IoT Systems, is composed by three types of components, mod-

ules: a C2Net IoT Hub; C2Net Sensors; and C2Net Connection (C2Net Conn) modules. A

C2Net Sensor is composed by a sensor unit (e.g.: temperature, light sensor), a data acqui-

sition module (e.g.: extra circuit elements needed for the sensor unit, signal amplifier),

and a C2Net Conn module. A C2Net Conn module contains a physical communication in-

terface (wired or wireless), a processing unit (e.g.: micro-controller) to handle the C2Net

sensor instructions, functions or communication.

The C2Net IoT Hub selection, decision process will not be addressed in this scenario.

It was implemented using a Raspberry PI version 2.0 with a Controller Area Network

(CAN) module for communication, design (specifically to be used by the processing unit)

and developed by author in collaboration UNINOVA-GRIS (Group for Research on In-

teroperability of Systems) integrated in the UNINOVA’s CTS (Centre for Technology and

Systems).

Objective Characterisation

The objective for the presented C2Net industrial scenario, the fabrication process of a

metal post, is to select a proper, more suitable IoT System to act as C2Net Conn module.

The decision making regarding the IoT Systems focus on C2Net Conn due to the fact that

C2Net Sensors modules have different and specific sensing elements.

The objective has its characterisation divided in one pre-condition (wired communi-

cation) and five requisites (criteria) which are described next:

• Wired Communication: the pre-condition is related to the surrounding environ-

ment. In an industrial environment/factory, wireless communication can suffer

great interferences due the amount of metal and iron. Therefore, a wired commu-

nication is advised. To reduce the complexity inherent to a fully-meshed network,

and the delay in a point-to-point network, it is appreciated a bus communication. A

bus communication network allows adding and removing C2Net Sensors, without

any change to the physical network;

• Energy: the first requisite is related with energy consumption. Even with sensors

connected to plant electric line (i.e. it not poses the problem of battery powered

152

8.3. ACCEPTANCE BY SCIENTIFIC COMMUNITY & INDUSTRY

devices, common to this type of sensors), energy consumption still is an aspect to

consider because it will affect the factory electrical bill;

• Implementation Time: a straightforward solution is appreciated, and one aspects

is the implementation time (e.g. purchase-delivery time of an item; code implemen-

tation time);

• Implementation Difficulty: to obtain a rapid deployment, difficulty (e.g. built/adapt

hardware) is also an important aspect;

• Cost: from all the previous aspects, prerequisites it is impossible to forget the cost,

always present in this type of operation/selection;

• Processing Clock Speed: is the last considered requisite. A good computation

speed should also be taken into consideration.

With the identification of criteria, decision-makers (author, programmers, researchers,

factory operators and owner) establish, set the priority values for each criteria. Table

8.2 presents the preference values between criterion, reflecting accordingly to decision-

makers the importance, weight that each criterion has on the decision process.

Table 8.2: C2Net Scenario: Criteria Preference Relation.

Criteria: Energy
[milli-Watts]

Implem.
Time

[Days’ Work]

Implem.
Difficulty

[Difficulty]

Cost
[€]

Processing
Clock

Speed [MHz]
Energy 1 1/3 1/3 1/3 2
Implem.

Time
3 1 1 1 4

Implem.
Difficulty

3 1 1 1 4

Cost 3 1 1 1 4
Processing

Clock Speed
1/2 1/4 1/4 1/4 1

Analysing the outcome of decision-maker’s judgement is possible to state that criteria

Implementation Time, Implementation Difficulty and Cost are the most important and

present the same preference weight. Criterion Energy is less important than the previous

three but is more important than criterion Processing Clock Speed.

As an example let’s consider the first weight line from Table 8.2. Energy has weight

1 to its own, therefore equal importance. It is 3 times less important than the next three

criteria (criterion 2, 3 and 4). But criterion Energy has a relation of 2 with last criterion

(Processing Clock Speed), meaning that Energy it is more important than Processing

Clock Speed.

153

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

Once more the decision-makers are call to dictate, define criteria constraints for the

desired objective. The selected Constraints which were applied to the possible solutions

(IoT Systems) are divided in two of the three possible types of constraints:

• Optimization: the first four criteria must be optimise by minimisation, and to

(Processing Clock Speed), the last criterion, must be applied maximization;

• Condition: criterion Implementation Time is limiting the use of IoT Systems that

take more than a 8 days’ work to be implemented (or enables the use of solutions

that take less than 8.1 days’ work). IoT Systems are only considered if their criterion

Implementation Difficulty presents values lower than “hard”.

In this scenario the availability constraint was not applied.

As possible solutions, IoT Systems, to act as C2Net Connection module in the pre-

sented C2Net scenario, were identified six hypotheses. Each one is a combination of

micro-controller unit with a Controller Area Network (CAN) communication module.

The six IoT Systems (the solutions) considered are:

1. s1: an Arduino UNO R3 with a CAN Shield, both bought (off-the-shelf). This IoT

System is identified as “UnoRev3 + CANShield”;

2. s2: an Arduino UNO R3 (bought — off-the-shelf) with a new full CAN board (new

design and construction). This IoT System is identified as “UnoRev3 + Complete-

CANcomm”;

3. s3: an Arduino DUE with a CAN Shield, both bought (off-the-shelf). IoT System

identified as “DUE + CANShield”;

4. s4: an Arduino DUE (bought — off-the-shelf) with a new built CAN board (new

design and construction). Identified as “DUE + CANcomm”;

5. s5: a micro-controller board (new design and construction) and a CAN Shield

(bought — off-the-shelf). This IoT System is identified as “ATMEGA328P + CAN-

Shield”;

6. s6: a micro-controller board with a new full CAN board (both from a new design and

construction). IoT System identified as “ATMEGA328P + CompleteCANcomm”.

The first four are based on two types of Arduino hardware development platforms,

varying the CAN module used. The last two IoT Systems follow mainly a built from

scratch approach. Figure 8.19 shows graphically the arrangement between the different

micro-controllers and CAN boards. si identifies the solution i, a combination of a micro-

controller with a CAN module.

To give a better notion of the criteria values, their differences, and to clarify the

imposed IoT Systems concurrency by assessment criteria, it is presented in Table 8.3 the

154

8.3. ACCEPTANCE BY SCIENTIFIC COMMUNITY & INDUSTRY

S1 S2 S3 S4S6 S5

CAN Modules

Micro-Controllers Units

Figure 8.19: Industrial Scenario: Considered IoT Systems (Hardware part).

data values for each criterion. Figure 8.20 presents the same data in a radar chart. This

small data set is a clear example on how difficult a decision can be for decision makers, if

there is not a tool to assist them in their choice.

Table 8.3: C2Net Scenario: Criteria Values.

Criteria: Energy
[milli-Watts]

Implem.
Time

[Days’ Work]

Implem.
Difficulty

[Difficulty]

Cost
[€]

Processing
Clock

Speed [MHz]
UnoRev3 +
CANShield

127.5 1 1 46.2 16

UnoRev3 +
Complete-
CANcomm

127.5 5 4 30.2 16

DUE + CAN-
Shield

372.9 1 1 61.87 84

DUE + CAN-
comm

372.9 5 3 43.57 84

ATMEGA328P
+ CANShield

100.7 5 3 28.1 20

ATMEGA328P
+ Complete-
CANcomm

100.7 10 5 12.1 20

It is important to state that the presented values for criterion energy, are in fact en-

ergy consumption values from the operating system footprint. Each IoT System was

programmed with the application code and real tests were made to measure the energy

155

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

consumption. Tests were made outside the C2Net network.

Figure 8.20 is a radar graph with criteria values from each IoT System. Values are

normalised to facilitate the graph interpretation, since the difference between the Energy

criterion and the others is high. IoT Systems are identified as si and the criteria as cj
accordingly with Equation 8.3 and 8.4, respectively.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

c1

c2

c3c4

c5

s1

s2

s3

s4

s5

s6

Figure 8.20: Industrial Scenario: Criteria Values (Radar Chart).

Assessment Methodology

With the objective defined, criteria, respective constraints, priorities and the possible

solutions (IoT Systems) to act as C2Net Connection modules was possible to apply the

multi-criteria assessment methodology presented in Section 6.5.

In this sense, and following the proposed methodology, the Solutions represented

by set SSet and Criteria represented by set CSet are defined in Equation 8.3 and 8.4,

respectively. Where n = 6 and m = 5.

SSet = {UnoRev3 +CANShield, UnoRev3 +CompleteCANcomm,

DUE +CANShield, DUE +CANcomm, ATMEGA328P +CANShield,

ATMEGA328P +CompleteCANcomm}
(8.3)

CSet = {Energy, ImplementationT ime, ImplementationDif f iculty,
Cost, P rocessingClockSpeed}

(8.4)

156

8.3. ACCEPTANCE BY SCIENTIFIC COMMUNITY & INDUSTRY

The solutions set, SSet, was obtained, created from the IoTSAC file, by going through

the list of ResourceConstrainedSystem classes from RCSM file. The list of criteria, CSet, is

given by MCAM model.

With the sets of possible solutions and criteria defined is now possible to create As-

sessment Table, Atable, presented in Equation 8.5 that describes the solutions-criteria

cluster.

Atable =



127.5 1 Easy 46.2 16

127.5 5 Medium−Hard 30.2 16

372.9 1 Easy 61.87 84

372.9 5 Medium 43.57 84

100 5 Medium 28.1 20

100 10 Hard 12.1 20


= (vi,j) ∈ R6×5 (8.5)

The list of criteria applied to each criterion is depicted in Equation 8.6, where each

line represents jth criterion. For example, the first line represents the criterion Energy,

j = 1.

Constraints = {MIN ;

MIN,LessT han;

MIN,LessT han;

MIN ;

MAX; }

(8.6)

Applying the Optimization constraints to the solutions-criteria cluster, Atable, using

the Assessment Constraints function, results in OptAtable shown in Equation 8.7. This is

an intermediate matrix that represents solutions-criteria values changed by the influence

of Optimization constraints.

OptAtable =



245.4 9 4(Medium−Hard) 15.67 16

245.4 5 1(Easy) 31.67 16

0 9 4(Medium−Hard) 0 84

0 5 2(Easy −Medium) 18.3 84

272.9 5 2(Easy −Medium) 33.77 20

272.9 0 0(Extra−Easy) 49.77 20


= (vi,j) ∈ R6×5 (8.7)

The values for criterion Implementation Difficulty were converted from their quali-

tative values to a quantitative scale. This mapping is presented in Table 8.4.

Table 8.4: C2Net Scenario: Conversion of criterion “Implementation Difficulty”.

Extra-Easy Easy Easy-Medium Medium Medium-Hard Hard
0 1 2 3 4 5

157

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

The proposed framework enables the use of any method to rank the solutions. More

precisely, Section 6.5 — IoT Systems: Multi-Criteria Assessment Methodology, described

how methods can be integrated with the assessment methodology. The selected MCDM

method for this C2Net scenario was the Analytic Hierarchy Process (AHP). Therefore

applying MCDM Method Procedure with AHP, results on the output, MCDMRO, given

by Equation 8.8.

MCDMRO =



0.2189

0.1508

0.1840

0.1416

0.1799

0.1248


= (ROi,1) ∈ R6×1 (8.8)

The element ROi,1 presents the AHP method rank outcome value for IoT System i.

Computed the result from the AHP method was then applied the eliminative as-

sessment constraints, that in this case consists only of Condition constraint type. The

enforcement of assessment constraints of type Condition, ACCod , results in a 5-by-1 bi-

nary matrix, EvalCod , given by Equation 8.9.

EvalCod =



1

1

1

1

1

0


= (EvalCod)i,1 ∈ N6×1 (8.9)

The Th argument is the threshold value for constraint k in criterion j, value that is

retrieved from the instantiation of MCAM. Threshold value, Th, for criterion Implemen-

tation Time is 8.1 and for criterion Implementation Difficulty is “hard”. The element

(EvalCod)i,1 represents the outcome for IoT System i by applying all constraints of the

Condition type.

Since there is no constraints of type Availability to be applied the final solutions

ranking, (IoTSystems)Rank , is given by Equation 8.10. Where (SOutcomeV alue)i,1 is the Multi-

Criteria Assessment outcome value for the solution i (IoT System i).

(IoTSystems)Rank =MCDMRO �EvalCod

=



0.2189

0.1508

0.1840

0.1416

0.1799

0.0


= ((SOutcomeV alue)i,1) ∈ R6×1 (8.10)

158

8.3. ACCEPTANCE BY SCIENTIFIC COMMUNITY & INDUSTRY

Sorting the final solutions ranking list it is obtained the multi-criteria assessment

of all six possible chosen solutions (IoT Systems) ordered from the more suitable to the

less suitable IoT System to perform the designated task. For the presented scenario (see

Figure 8.18), the fabrication process of a metal post, the proper IoT System to act as

C2Net Connection (C2Net Conn) element is the Arduino Uno R3 with a CAN Shield. The

complete and ordered result is presented in Table 8.5.

Table 8.5: C2Net Scenario: IoT Systems Final Ordered Ranking.

Position: IoT System: Outcome Value:
1 UnoRev3 + CANShield 0.2189
2 DUE + CANShield 0.1840
3 ATMEGA328P + CANShield 0.1799
4 UnoRev3 + CompleteCANcomm 0.1508
5 DUE + CANcomm 0.1416
6 ATMEGA328P + CompleteCANcomm 0

This study, perform during the IoT deployment design phase for the factory ground

floor (in this case an industrial scenario — C2Net Portuguese pilot), assisted stakeholders

on the decision of which was the more suitable IoT System to act as the C2Net Connec-

tion module. Stakeholders were able to perform a more conscious decision taking into

consideration different and in some cases contradictory factors. Notwithstanding the fact

that the number of elements analysed was small, and even so the assessment methodol-

ogy proved to be very useful. The considered solutions were based on a single hardware

platform (Arduino) that lead also to a single programming language, and it was only

considered a short list of criteria and constraints. In bigger IoT Ecosystems the proposed

framework helpful impact will be even higher.

8.3.2.2 Envisaged Integration with vf-OS

Virtual Factory Open Operating System (vf-OS) is a co-funded European Project under

H2020 and is already in its final year. Composed by 14 partners (Users, Technology

Providers, Consultants and Research Institutes) of 7 different countries, vf-OS has the

objective of develop an Open Operating System for Virtual Factories. Aiming in providing

a Software Development Kit (OAK) to be used by software developers to build and deploy

Manufacturing Smart Applications for industrial users. Applications stored in the Virtual

Factory Platform, a economical multi-sided market platform, enables the value creation

from customers groups interactions (Software Developers, Manufacturing and Logistics

Users, Manufacturing and Logistics Solution Providers, and Service Providers) [216].

vf-OS focus on provide a range of services for Factories of the Future integrating better

manufacturing and logistics processes, to become a reference software managing factory’

components system. Factory components are hardware and software resources, on which

159

CHAPTER 8. IMPLEMENTATION AND HYPOTHESIS VALIDATION

vf-OS provided common services for factory computational programs. A high-level view

of vf-OS Architecture is presented in Figure 8.21, retrieved from [217].

Figure 8.21: High-Level View of vf-OS Architecture (retrieved from [217]).

Clearly the author’s proposed work hooks up with “Application Development” archi-

tectural building block, for its use within the design phase. This block embraces different

vf-OS components that assist developers, analysts on the development of assets/applica-

tions.

The vf-OAK Software Development Kit (SDK) is a central environment for applica-

tions development, providing centralised access to vf-OS assets and functionalities. It

supplies components, resources and services to other vf-OS architecture parts (e.g.: Stu-

dio) as they required. To this moment are provided 30 SDK User’s Story (SDUS) for assets

search, invoke, deploy, and store services. Identifying some assets and functionalities pro-

vided by the vf-OAK SDK, and considered to be related to this work, are found SDUS003

— Get Data Analytic Services; SDUS004 — Get Enablers; and SDUS006 – Get Drivers

[216].

Each one of these tasks is described next, converging, focusing on these work contri-

butions:

• SDUS003 — Get Data Analytic Services: list existing Data Analytic services. It is

focused on analyse events from stream and historic process data within the manu-

facturing domain;

• SDUS004 — Get Enablers: list existing vf-OS Enablers. Enablers are responsible for

160

8.4. HYPOTHESIS VALIDATION

expose their service interfaces, identifying the needs to understand and implement

the services diverse functionalities;

• SDUS006 – Get Drivers: list existing Drivers. vf-OS Drivers provides a set of func-

tionalities such as register physical devices in vf-OS and specification of their pa-

rameters, devices’ data reading or controlling devices.

It is envisaged the integration of Multi-Criteria Assessment of IoT Systems as an

additional Analytic Service (accessible through SDUS003), enabling developers to con-

sciously, properly assess which is the more suitable IoT System(s) for a certain task. The

formal specifications proposed in this work can also contribute to a more straightforward,

better description of IoT Systems parameters, therefore a useful vf-OS Driver (accessi-

ble through SDUS006). Since this poses as an integration of new services, it will be

needed new vf-OS Enablers to expose these new services interfaces (accessible through

SDUS004).

8.4 Hypothesis Validation

Section 1.4.2 presented the considered hypothesis for this dissertation, derived from the

background analysis and stated research questions. In order to remember and verify the

assumption, it is included here:

“If in an Internet-of-Things system design, engineers could use a multi-criteria framework
to simulate and analyse hardware and software solutions, then proper solutions could be
selected and applied, leading to a more suitable design of an Internet-of-Things System.”

The outcomes observation, collected from implementations and proposed methods

testing, drives the author to conclude that the hypothesis has been validated. In fact, it

was demonstrated that the multi-criteria assessment framework is capable to perform

an analysis of different solutions, assisting stakeholders during the design phase of IoT

Deployment. It takes into consideration different and even contradictory aspects that

have a direct impact not only on IoT Systems performance but also on overall ecosystem

performance. Also, the description of IoT Systems using formal specifications, to describe

its hardware components and enabling the specification of different software languages,

presented as a powerful mechanisms to specific assessment criteria but it is also to the

use, integration, or improvement of other tools or systems (such as energy simulation

tools or for an IoT higher-level description systems).

These work contributions have been recognised and accept by scientific experts through

publications acceptance and collaboration in international projects. It was also possible

to validate this work on industrial scenarios, showing a complete external consensus and

acceptance regarding the research work developed.

161

C
h
a
p
t
e
r

9
Conclusions

This chapter provides a summary of the research developed, how it was conducted and

identifies the main contributions. First, an overview of the path taken, identifying re-

search activities that had somehow an important role on this research work. Followed by

a description of the main contributions, highlighting the publications made during this

PhD thesis and also mentioned others that are not directly related with the research work.

To finalise it is proposed some future research.

9.1 The Path from Background Research up to PhD Thesis

This PhD work was developed based on built experience from involvement, and knowl-

edge acquired in distinct European projects, working with differentiated research teams.

At an early stage, the author had the opportunity to study two important themes used

as background thematics in this dissertation. Figure 9.1 depicts the author progress and

involvement with other research activities, leading to this PhD thesis. The figure presents

along four stages, the background thematics cross-referencing with European Projects

that had more relevance to this work theme.

The first phase, identified as Background Observation in Figure 9.1, allowed knowl-

edge enrichment about IoT and model-based techniques and methods, as well as the

problem identification that this work addresses.

Identified the scope and problem to address, the author carry on the background

study and started the research work development, as identified in the figure as Research

Work. The work conclusion was carried out in two phases: the first (identified in figure

as Industrial Placement) consisted on obtaining professional experience in the PhD area

and verify the work developed; the second phase (identified in figure as Finalisation)

consisted on the doctoral program finalization by writing this document. The following

163

CHAPTER 9. CONCLUSIONS

subsections will describe each phase overtaken, and how did it influence this PhD work.

By the help provided on improving the know-how regarding this thesis scope or in the

enforcement of the developed work.

9.1.1 Background Observation

During the Background Observation phase, identified in Figure 9.1, the author had the

opportunity to get actively involved in European Projects and work with other research

teams, exchanging personal experience and knowledge, improving in this way the know-

how regarding this thesis scope. Next is describe each European Project, and how it

contributed to the author work.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Background
Observation

Research Work
Industrial
Placement

Finalisation

Figure 9.1: The Path from Background Research up to PhD Thesis.

9.1.1.1 Cuteloop and EAR-IT

“Customer in the loop: using networked devices enabled intelligence for proactive cus-

tomers integration of the drivers integrated enterprise” (Cuteloop) was an European

Project co-funded, launched under Seventh Framework Programme (FP7) that had bring

together nine organisations from six different countries. The project focus was to create

a new approach for distributed and asynchronous control of business processes, em-

ploying “Networked Devices Enabled Intelligence”, bringing diverse actors (particularly

customers) to interact in an integrated enterprise scenario.

“Experimenting Acoustics in Real environments using Innovative Test-beds” (EAR-IT)

was also an European Project co-funded, launched under Seventh Framework Programme

(FP7), coordinated by UNINOVA — Instituto de Desenvolvimento de Novas Tecnologias,

a team that the author was part of. This project had bring together seven organisations

all from different countries. The project aimed to validate and confirm the Research and

164

9.1. THE PATH FROM BACKGROUND RESEARCH UP TO PHD THESIS

Technological Development (RTD) possibilities of using audio data, both in indoor as

in outdoor environments. With validation on large-scale and innovative test-beds that

support experimental research, namely the SmartSantander and HobNet — the FIRE

facilities.

Both these projects give a deep insight over varied IoT thematics, with the objective of

deliver new innovative range of services and applications to many IoT areas, namely In-

dustry 4.0, smart-buildings and smart-cities. Besides a high level of practical experience,

these projects also allow the author to clearly identify the issues that this work addresses.

In other words, manufacturers are engaged in developing new embedded systems for

different purposes, addressing a wide set of application domains and services, unlocking

a variety of hardware and software solutions, without a clear way to formally describe IoT

Systems, capable of being used by applications in an automatic way. Cuteloop in [194]

presented a sensor node architecture using graphical representation which was used

as background for the proposed IoT System hardware formal specification (see Section

5.4.1).

9.1.1.2 CRESCENDO, MSEE and MONDO

“Collaborative & Robust Engineering using Simulation Capability Enabling Next Design

Optimisation” (CRESCENDO), an European Project co-funded, launched under FP7, with

59 partners involved from 13 different countries, including major aeronautics industry

companies (e.g.: Airbus), service and IT solution providers (e.g.: Siemens), research

centres and academic institutions. It was a research and technology project led by Air-

bus, with the ambition to make a step change in the way that modelling and simulation

activities are carried out, by multi-disciplinary teams working as part of a collaborative

enterprise, in order to develop new aeronautical products in a more cost and time efficient

manner. It provided a generic Business Object Model, web services and Data Exchange

(DEX) specifications built on ISO standards, supporting collaborative simulation built

upon flexible workflows, traceability, re-usability, and advance interoperability.

“Manufacturing Service Ecosystem” (MSEE), also an European Project co-funded,

launched under FP7, with 22 participants from 8 different countries, focus on transform

current manufacturing hierarchical supply chains into manufacturing open ecosystems.

This project aimed to create new Virtual Factory Industrial Models, where service orienta-

tion and collaborative innovation can support a new renaissance of Europe in the global

manufacturing context.

“Scalable Modelling and Model Management on the Cloud” (MONDO), a Specific Tar-

get REsearch Project (STREP) of FP7, focus on tackle the increasingly important challenge

of scalability in MDE in a comprehensive manner. With 9 partners involved in achieving

scalability in modelling and MDE, by enabling teams of modellers to construct and refine

large models in a collaborative manner, advancing the state-of-the-art in model querying

and transformations tools so that they can cope with large models (of the scale of millions

165

CHAPTER 9. CONCLUSIONS

of model elements), and providing an infrastructure for efficient storage, indexing and

retrieval of large models.

CRESCENDO, MSEE and MONDO where three projects that enabled the author to get

acquaintance with problems such as information exchange between different companies,

sustainable interoperability, and scalability. But these projects also present methodolo-

gies, methods to address such issues like using model-driven techniques capable of mod-

elling systems at different levels of abstraction. Model-driven approaches were presented

in detail in Section 3, and applied to the proposed framework, enabling formalisation

of all contributions, presenting methodologies to an interoperable framework with any

kind of system.

9.1.1.3 PROBE-IT

“Pursuing ROadmaps and BEnchmarks for the Internet of Things” (PROBE-IT), a co-

funded European Project launch under FP7 with 9 participants from 7 different coun-

tries with the particularity on involving 4 different continents (Europe, Asia, Africa and

South America). The project aimed to complement the global portfolio with benchmarks,

roadmap and other key inputs on validation and interoperability. It was also focus on

providing overall support, “Hitchhiker’s” guide, to current and future IoT research pro-

grammes addressing all these important and technical issues.

This project addressed transversely the IoT scope, providing, among other themes,

prospective views on aspects such as: IoT Business Models; IoT Interoperability & Stan-

dards; and IoT Human Factors with focus on Privacy. Focus on giving answers regarding

where the IoT is heading, in its many dimensions; what technologies/issues to consider

for IoT deployment in the future.

9.1.2 Research Work

The second period identified in Figure 9.1, Research Work, corresponds to the beginning

of contributions development with a constant, continuous background study. Insights

over multi-criteria decision thematics, were fortified with participation and collaboration

with research teams and contributions were validated through industrial scenarios.

9.1.2.1 Proasense

“The Proactive Sensing Enterprise” (Proasense), was an European Project co-funded launch

under FP7 with 8 participants from 6 different countries, where it is included two large

industrial partners, one Small-Medium Enterprise and five research organisations. The

project goal was to aid a class of enterprise systems — proactive enterprises, to be con-

tinuously aware of what “might happen” in the relevant business context and optimize

their behaviour to achieve that what “should be the best action”. This was proposed to be

achieved by an efficient transmission from Sensing into Proactive enterprises.

166

9.1. THE PATH FROM BACKGROUND RESEARCH UP TO PHD THESIS

This project gave the opportunity to the author to be involved in the design and

develop methods for supporting enterprise decision making. The creation of specification

models to define Key Performance Indicators (KPI) with contextualized target values, with

proactive validation through offline and online KPI values analysis, and the creation of a

proactive-based Business Models.

9.1.2.2 Mantis

Cyber Physical System based Proactive Collaborative Maintenance (Mantis), was a co-

funded, H2020 European Project with 50 partners from 12 different countries. Its goal

was to develop a proactive maintenance service platform architecture based on Cyber-

Physical Systems (CPS) that allows estimation of future performance, predict and prevent

imminent failures, and schedule proactive maintenance.

Working directly with a Portuguese company — Adira Metal Forming Solutions S.A.

(leading manufacturer and global supplier of sheet metal working machinery, specializing

in laser cutting, hydraulic press brakes, shears, robotised bending), the author had the

opportunity to apply and improve the know-how regarding IoT and interoperability

themes. The author was involved in prerequisites definition, architecture design taking

into account interoperability issues. Also, analysis of already available machine sensors;

study of market and research sensors suitable to the use case; study and analysis of

hardware components suitable for the design of new sensor boards based on features

such as sound, infra-red and motion.

9.1.2.3 C2Net

Cloud Collaborative Manufacturing Networks (C2NET), a co-funded European Project

launch under H2020 with 20 participants from 6 different countries with the objective

of create cloud-enabled tools, based on a scalable real-time architecture, enabling supply

network optimization of manufacturing and logistic assets, taking into consideration

collaborative demand, production and delivery plans. Decision makers can manage

information, process and store with a complete visibility and real-time status of the

entire supply chain with capability to control, share and collaborate.

This collaborative project adds specific contributions from this PhD, namely a more

conscious, aware selection of IoT Systems for a use-case scenario. Contributions were

applied to improve the management of logistic flows and resources of a Portuguese met-

alworking Factory (Antonio Abreu Metalomecanica, LDA.). This scenario enabled the

use of the formal specifications as well as the use of the multi-criteria assessment of IoT

Systems, to assess the overall performance of each solution according to the sensing needs

of each machine. The validation of the proposed framework, using the C2Net Portuguese

pilot was presented in Section 8.3.2.

167

CHAPTER 9. CONCLUSIONS

9.2 Scientific and Technical Contributions

This research work’ vision (see Section 1.2) foreseen the proposal of a framework capable

of fully characterise an IoT System and assist stakeholder’s to perform a more conscious,

aware, accurate decision regarding which is the proper IoT System for a specific task. The

framework also intended to provide methods for energy-simulation tools integration and

address interoperability with standards, methods or systems within the IoT scope.

The presented theme, although ambitious, is an important research challenge, propos-

ing relevant scientific contributions to the research community and consequently com-

plements the State-of-the-art.

Scientific and technical contributions addressed the lack of formal descriptions of IoT

Systems, in a highly diversified market where manufacturers are providing numerous

devices, proposes means to assist stakeholders in improving their decisions quality, rather

than continue to believe in lived experience or intuition, in a wide set of features/criteria

that influence the overall performance of an IoT System. Literature review in Section 2.3,

that only scraped standards topic in IoT scope, showed a numerous variety of possible so-

lutions in many IoT areas (e.g.: data, communication protocols, platforms, OSs, security),

with a broad number of features to analyse. With a model-driven nature framework and

well-defined formalisations coexistence with other tools, systems, standards or methods

was also addressed.

Next is presented this research work outcomes in terms of scientific and technical

contributions, industry placement and accomplished publications.

9.2.1 From a Research Question to Validation

Section 1.4 presented the research question that this PhD Thesis addresses. In order to

remember and verify the question, it is included here:

“How can Internet-of-Things Systems be designed to optimise the matching with the
operating environment?”

This question was decomposed in three sub-questions, identified by the author as

key to solve the main research question, ensuring in this way the research focus and

targeted results. Table 9.1 presents the main outcomes derived from this research work

contributions, split over the research sub-questions.

The presented outcomes clearly addressed the question of how to optimise the match-

ing of IoT Systems with the operating environment, by proposing means to improve the

design of IoT Systems. However, literature has been focus on functional/behaviour, ac-

tivities/actions/interactions within an IoT Ecosystem, which cannot be left apart. In this

sense, and to not isolate the proposed work and in somehow fill the gap between design

(addressed in this work) and management phases of an IoT Ecosystem, mechanisms were

168

9.2. SCIENTIFIC AND TECHNICAL CONTRIBUTIONS

Table 9.1: Relation Between Research Sub-Questions and Contributions.

Research
Sub-Question:

Q1.1: “Which methods could be applied or develop to formally describe an IoT System
(hardware, software, energy)?”

Contributions
and

Outcomes:

A framework that formally describes a complete IoT System (Chapter 5). It is
mandatory to have a hardware and software characterisation, but if available it can
also include an energy profile:

• A single specification model, Resource-Constrained System Hardware (RCSH), to
describe any IoT System hardware (see Section 5.4.1);

• Different software languages to describe IoT System application code. Domain
experts can include their own programming language. Conceptual approach in
Section 5.4.2, while Section 8.1.1.2 complements it with two software languages
examples;

• Section 5.4.3 proposes an approach to in the future an energy analysis can be
achieved based on specific IoT Systems descriptions.

Research
Sub-Question:

Q1.2: “Which methods could be applied or develop to assist in IoT System
assessment?”

Contributions
and

Outcomes:

An IoT Systems Multi-Criteria Assessment Methodology (Section 6.5), based on a
specification model, Multi-Criteria Analysis Meta-Model (MCAM), presented in
Section 6.3, to:

• Enable stakeholders to assess which IoT System is more suitable to their application
scenario and purpose;

• A concrete form to describe criteria than influence the overall performance, define
constraints or restrictions for each criterion;

• Use of different (even new or user-defined) MCDM methods, with the possibility of
being applied within the same problem;

• Two specification models (Section 6.4) are presented to describe AHP and ELECTRE
MCDM methods.

Research
Sub-Question:

Q1.3: “Which multi-criteria decision framework would provide a suitable decision
support for the design of IoT Systems?”

Contributions
and

Outcomes:

It is proposed a novel model-driven multi-criteria assessment framework to analyse
IoT Systems, capable of suggesting the more suitable IoT System to execute a certain
task (Chapter 6):

• Criteria are based on IoT Systems formal descriptions (see outcomes of Q1.1);

• Applies a novel multi-criteria assessment methodology to improving assertiveness
regarding IoT Systems selection (see outcomes of Q1.2).

proposed to achieve an automatic coupling (see Sections 7.4 and 8.2.2) with standards

that define systems interaction, modelling requirements, behaviours, processes, etc.

9.2.2 Publications Summary

Along the research work development several publications were made in conferences and

journals. The next two sub-sections will present respectively the publications made in

169

CHAPTER 9. CONCLUSIONS

conferences and the ones made in journals. It will also be mentioned publications that

are not directly related with this work.

9.2.2.1 Publications in Conferences

Table 9.2 shows the accomplish conference publications. The first part of the table identi-

fies publications directly related to the envisaged work, followed by publications, “Other

Publications”, accomplished by parallel research. Publications are organised by year (first

column), and it is highlighted publication, conference and/or book name.

Table 9.2: Accomplished Publications in Conferences.

Year: Title: Conference/Book: Ref:

2013
Achieving Interoperability via Model
Transformation within the MDI

Enterprise Interoperability [198]

2015
A Model-based Approach for
Resource Constrained Devices Energy
Test and Simulation

Technological Innovation for
Cloud-Based Engineering
Systems

[213]

2016
Energy consumption awareness for
resource-constrained devices

European Conference on Net-
works and Communications

[214]

2017

Multi-Criteria Analysis and Decision
Methodology for the Selection of
Internet-of-Things Hardware
Platforms

Technological Innovation for
Smart Systems

[203]

2017
A Multi-Criteria Decision Model for
the Selection of a More Suitable
Internet-of-Things Device

International Conference on
Engineering, Technology and
Innovation

[32]

Other Publications:

2014
Communication support for Petri
nets based distributed controllers

IEEE 23rd International
Symposium on Industrial
Electronics

[218]

2014

A platform independent
communication support for
distributed controller systems
modelled by Petri nets

12th IEEE International
Conference on Industrial
Informatics

[219]

170

9.3. FUTURE WORK

9.2.2.2 Publications in Journals

The achievements regarding the publications in journal are presented in Table 9.3. Once

more publications are organised by year (first column), and it is highlighted publication

and journal name.

Table 9.3: Accomplished Publications in Journals.

Year: Title: Journal: Ref:

2014 IoT Testbed Business Model Advances in Internet of Things [3]

2016
Energy Consumption Awareness for
Resource-Constrained Devices:
Extension to FPGA

Journal of Green Engineering [195]

2019
Cyber-Physical Systems: A
Multi-Criteria Assessment for
Internet-of-Things (IoT) Systems

Enterprise Information Sys-
tems

[204]

2020
(IoT) Ecosystems Design: A
Multi-Method, Multi-Criteria
Assessment Methodology

Institute of Electrical and Elec-
tronics Engineers (IEEE) Inter-
net of Things Journal

[215]

9.3 Future Work

Like all other PhD thesis, this work is not completely finalised. Besides some technical

work needed to complete automate the proposed framework, new ideas had arisen during

this research work that can be exploited even in new PhD thesis.

From a technical point of view, the author highlights two areas of the proposed frame-

work, more specifically regarding IoT Systems formal specification. As mentioned, there

is a wide diversity of IoT Systems, designed for different purposes, addressing a variety

of application domains and services. Information is available from webpages, systems,

modelling tools, datasheets, etc. Collect this data automatically needs more work, namely

the use of ontologies to allow semantic identification and reasoning over important IoT

System features, and consequently fill the framework models. The second aspect is re-

lated with software languages. This work addressed two software languages (C and nesC),

proposing all the necessary changes to Meta-Models and presenting the respective en-

ablers. However, there are a large number of software languages, which the proposed

framework could embrace.

From a conceptual point of view, there is the concept of an energy profile of an IoT

System. It is a wide theme, identified as one of the more important issues regarding

Internet-of-Things (IoT). The author considers that the proposed formal specification of

171

CHAPTER 9. CONCLUSIONS

an IoT System tackles a very important aspect in energy simulation, which is devices di-

versity. This formal description could be used as input for an energy analysis framework.

Section 5.4.3 envisaged this issue, by proposing a high-level architecture of a possible

approach to what the author identifies as a future, significant scientific contribution.

Furthermore, and already mentioned, it is foreseen the integration of this work with

vf-OS, an European Project focus on provide a range of services for Factories of the Future

integrating better manufacturing and logistics processes, to become a reference software

managing factory’ components system. It is envisaged, mainly, that Multi-Criteria Assess-

ment of IoT Systems as a vf-OS Analytic Service, and IoT Systems formal specification as

an useful vf-OS Driver.

172

Bibliography

[1] Merriam-Webster. system. Retrieved June 4, 2019. https://www.merriam-

webster.com/dictionary/system. Merriam-webster, An Encyclopaedia Britan-

nica, 2019.

[2] C. Dictionary. system. Retrieved June 4, 2019. https://dictionary.cambridge.

org/dictionary/english/system. Cambridge Dictionary, 2019.

[3] E. M. Silva and P. Maló. “IoT Testbed Business Model.” In: Advances in Internet of
Things 4.4 (Oct. 2014), pp. 37–45. doi: 10.4236/ait.2014.44006.

[4] I. Gartner. Gartner Says the Internet of Things Installed Base Will Grow to 26 Billion
Units By 2020. Access in March 16, 2015. http://www.gartner.com/newsroom/

id/2636073. Gartner, Inc. Dec. 2013.

[5] A. Research. More Than 30 Billion Devices Will Wirelessly Connect to the Internet
of Everything in 2020. Access in July 2, 2015. https://www.abiresearch.com/

press/more-than-30-billion-devices-will-wirelessly-conne/. Allied

Business Intelligence, Inc, May 2013. (Visited on 02/07/2015).

[6] P. M. (UNINOVA), E. M. S. (UNINOVA), P. F. (UNINOVA), B. A. (UNINOVA), P. C.

(EGM), A. G. U. of Surrey), S. Z. (CATR), G. M. (PERCEPTION), H. H. (CERT),

N. D. (CSIR), and L. C. (CSIR). Deliverable D3.1b Roadmaps for IoT Deployments.
FP7-288315 PROBE-IT “Pursuing ROadmaps and BEnchmarks for the Internet of

Things”. Project co-financed under the 7th framework program of the European

Commission. Sept. 2013.

[7] D. Evans. The Internet of Things: How the Next Evolution of the Internet Is Chang-
ing Everything. White Paper. Available from: http://www.cisco.com/web/

about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf. CISCO Internet Business

Solutions Group (IBSG), Apr. 2011.

[8] L. Atzori, A. Iera, and G. Morabito. “The Internet of Things: A Survey.” In: Com-
puter Network 54.15 (Oct. 2010), pp. 2787–2805. issn: 1389-1286. doi: 10.1016/

j.comnet.2010.05.010.

[9] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac. “Internet of things: Vision,

applications and research challenges.” In: Ad Hoc Networks 10.7 (Sept. 2012),

pp. 1497–1516. issn: 1570-8705. doi: 10.1016/j.adhoc.2012.02.016.

173

https://www.merriam-webster.com/dictionary/system
https://www.merriam-webster.com/dictionary/system
https://dictionary.cambridge.org/dictionary/english/system
https://dictionary.cambridge.org/dictionary/english/system
https://doi.org/10.4236/ait.2014.44006
http://www.gartner.com/newsroom/id/2636073
http://www.gartner.com/newsroom/id/2636073
https://www.abiresearch.com/press/more-than-30-billion-devices-will-wirelessly-conne/
https://www.abiresearch.com/press/more-than-30-billion-devices-will-wirelessly-conne/
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.adhoc.2012.02.016

BIBLIOGRAPHY

[10] M. Hempstead, M. J. Lyons, D. Brooks, and G.-Y. Wei. “Survey of Hardware

Systems for Wireless Sensor Networks.” In: Journal of Low Power Electronics 4.1

(Apr. 2008), pp. 11–20. issn: 1546-1998. doi: 10.1166/jolpe.2008.156.

[11] J. Yick, B. Mukherjee, and D. Ghosal. “Wireless Sensor Network Survey.” In:

Computer Networks: The International Journal of Computer and Telecommunications
Networking 52.12 (Aug. 2008), pp. 2292–2330. issn: 1389-1286. doi: 10.1016/j.

comnet.2008.04.002.

[12] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Çayirci. “Wireless sensor

networks: a survey.” In: Computer Networks 38.4 (Mar. 2002), pp. 393–422. issn:

1389-1286. doi: 10.1016/S1389-1286(01)00302-4.

[13] D. for Communities and L. Government. Multi-criteria analysis: a manual. Manual.

Available from: http://eprints.lse.ac.uk/12761/1/Multi- criteria_

Analysis.pdf. Bressenden Place, London: Crown, Jan. 2009.

[14] Microchip. New/Popular Microcontroller and Processors Products. Retrieved June

11, 2019. https://www.microchip.com/ParamChartSearch/chart.aspx?

branchID=1005. Microchip Technology Inc., 2019.

[15] T. Instruments. BOM & cross reference tool. Retrieved June 11, 2019. https:

//bomcross.ti.com/en/. Texas Instruments Incorporated, 2019.

[16] S. K. Lee, M. Bae, and H. Kim. “Future of IoT Networks: A Survey.” In: Applied
Sciences 7.10 (2017). issn: 2076-3417. doi: 10.3390/app7101072.

[17] A. Brogi and S. Forti. “QoS-Aware Deployment of IoT Applications Through the

Fog.” In: IEEE Internet of Things Journal 4.5 (Oct. 2017), pp. 1185–1192. issn:

2327-4662. doi: 10.1109/JIOT.2017.2701408.

[18] F. Li, M. Vögler, M. Claeßens, and S. Dustdar. “Towards Automated IoT Ap-

plication Deployment by a Cloud-Based Approach.” In: IEEE 6th International
Conference on Service-Oriented Computing and Applications. Dec. 2013, pp. 61–68.

doi: 10.1109/SOCA.2013.12.

[19] J. A. Lane and T. Bohn. “Using SysML modeling to understand and evolve systems

of systems.” In: Systems Engineering 16.1 (Mar. 2013), pp. 87–98. issn: 1098-1241.

doi: 10.1002/sys.21221.

[20] OMG. SysML Open Source Project - What is SysML? Retrieved June 7, 2019. https:

//sysml.org/. Object Management Group (OMG), June 2019.

[21] OGC. Sensor Model Language (SensorML). Retrieved June 7, 2019. https://

www.opengeospatial.org/standards/sensorml. Open Geospatial Consortium

(OGC), Feb. 2014.

[22] W3C. Semantic Sensor Network XG Final Report. Retrieved June 26, 2019. https:

//www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/. World Wide Web

Consortium, June 2011.

174

https://doi.org/10.1166/jolpe.2008.156
https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1016/S1389-1286(01)00302-4
http://eprints.lse.ac.uk/12761/1/Multi-criteria_Analysis.pdf
http://eprints.lse.ac.uk/12761/1/Multi-criteria_Analysis.pdf
https://www.microchip.com/ParamChartSearch/chart.aspx?branchID=1005
https://www.microchip.com/ParamChartSearch/chart.aspx?branchID=1005
https://bomcross.ti.com/en/
https://bomcross.ti.com/en/
https://doi.org/10.3390/app7101072
https://doi.org/10.1109/JIOT.2017.2701408
https://doi.org/10.1109/SOCA.2013.12
https://doi.org/10.1002/sys.21221
https://sysml.org/
https://sysml.org/
https://www.opengeospatial.org/standards/sensorml
https://www.opengeospatial.org/standards/sensorml
https://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
https://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

BIBLIOGRAPHY

[23] C. Agostinho. “Sustainability of systems interoperability in dynamic business

networks.” Available from: http://hdl.handle.net/10362/8582. Doctoral

dissertation. Quinta da Torre, Caparica: Faculdade de Ciências e Tecnologia da

Universidade Nova de Lisboa, Oct. 2012.

[24] K. E. Cambron and G. W. Evans. “Layout design using the analytic hierarchy

process.” In: Computers and Industrial Engineering 20.2 (Feb. 1991), pp. 211–229.

issn: 0360-8352. doi: 10.1016/0360-8352(91)90026-3.

[25] X. Wang and E. Triantaphyllou. “Ranking irregularities when evaluating alterna-

tives by using some ELECTRE methods.” In: Omega 36.1 (Feb. 2008), pp. 45–63.

doi: 10.1016/j.omega.2005.12.003.

[26] M. webster editors. Scientific Method. Access in November 11, 2016. https://

www.merriam-webster.com/dictionary/scientificmethod. Merriam-webster,

An Encyclopaedia Britannica.

[27] G. Dodig-Crnkovic. “Scientific Methods in Computer Science.” In: Proceedings
of the Conference for the Promotion of Research in IT at New Universities and at
University Colleges in Sweden. Apr. 2002, pp. 126–130.

[28] S. D. Schafersman. An introduction to science: Scientific thinking and the scientific
method. Accessed August 02, 2012. http://www.geo.sunysb.edu/esp/files/

scientific-method.html. Department of Geology, Miami University. Jan. 1997.

[29] S. Buddies. Steps of the Scientific Method. Access in August 03, 2012. http :

//www.sciencebuddies.org/science-fair-projects/project_scientific_

method.shtml. Science Buddies.

[30] O. Blakstad. Research Methodology. Access in January 09, 2017. https : / /

explorable.com/research-methodology. Explorable.com. Mar. 2008.

[31] L. M. Camarinha-Matos. Scientific Research Methodologies and Techniques — Unit
2: Scientific Method. Access in August 02, 2012. http://www.uninova.pt/cam/

teaching/SRMT/SRMTunit2.pdf. 2009.

[32] E. M. Silva, C. Agostinho, and R. Jardim-Goncalves. “A multi-criteria decision

model for the selection of a more suitable Internet-of-Things device.” In: Inter-
national Conference on Engineering, Technology and Innovation (ICE/ITMC). June

2017, pp. 1268–1276. doi: 10.1109/ICE.2017.8280026.

[33] J. A. Stankovic. “Research Directions for the Internet of Things.” In: Internet of
Things Journal, IEEE 1.1 (Feb. 2014), pp. 3–9. issn: 2327-4662. doi: 10.1109/

jiot.2014.2312291.

175

http://hdl.handle.net/10362/8582
https://doi.org/10.1016/0360-8352(91)90026-3
https://doi.org/10.1016/j.omega.2005.12.003
https://www.merriam-webster.com/dictionary/scientific method
https://www.merriam-webster.com/dictionary/scientific method
http://www.geo.sunysb.edu/esp/files/scientific-method.html
http://www.geo.sunysb.edu/esp/files/scientific-method.html
http://www.sciencebuddies.org/science-fair-projects/project_scientific_method.shtml
http://www.sciencebuddies.org/science-fair-projects/project_scientific_method.shtml
http://www.sciencebuddies.org/science-fair-projects/project_scientific_method.shtml
https://explorable.com/research-methodology
https://explorable.com/research-methodology
http://www.uninova.pt/cam/teaching/SRMT/SRMTunit2.pdf
http://www.uninova.pt/cam/teaching/SRMT/SRMTunit2.pdf
https://doi.org/10.1109/ICE.2017.8280026
https://doi.org/10.1109/jiot.2014.2312291
https://doi.org/10.1109/jiot.2014.2312291

BIBLIOGRAPHY

[34] M. B. (NEC), M. B. (ALBLF), N. B. (CFR), F. C. (UniS), C. J. (SIEMENS), J. D. L.

(ALUBE), S. M. U. Carsten Magerkurth (SAP), A. N. F. IML), A. O. (CEA), M. T.

(SAP), J. W. W. (SIEMENS), J. S. (CSD/SUni), and A. S. (UniWue). Deliverable
D1.5 — Final architectural reference model for the IoT v3.0. FP7-257521 IoT-A “The

Internet of Things – Architecture”. Project co-financed under the 7th framework

program of the European Commission. July 2013.

[35] E. Commission. ICT30 — 2015 Internet of Things and Platforms for Connected
Smart Objects. Access in April 20, 2016. https://ec.europa.eu/digital-

single-market/events/cf/ictpd14/item-display.cfm?id=12597. European

Commission. 2014.

[36] E. Commission. Horizon 2020 Work Programme 2016 -2017: 17. Cross-cutting activ-
ities (focus areas). Access in January 18, 2017. http://ec.europa.eu/research/

participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-focus_

en.pdf. European Commission. 2016.

[37] E. Commission. Horizon 2020 Work Programme 2018-2020: 5.i. Information and
Communication Technologies. Access in June 12, 2019. http : / / ec . europa .

eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-

wp1820-leit-ict_en.pdf. European Commission. 2018.

[38] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. “A Dynamic Operat-

ing System for Sensor Nodes.” In: Proceedings of the 3rd International Conference on
Mobile Systems, Applications, and Services. MobiSys ’05. New York, NY, USA: ACM,

June 2005, pp. 163–176. isbn: 1-931971-31-5. doi: 10.1145/1067170.1067188.

[39] S. E. Díaz, J. C. Pérez, and J. F. Muñoz. “Survey of the State-of-the-Art in Flash-

based Sensor Nodes.” In: Flash Memories. Ed. by P. I. Stievano. Croatia: InTech,

Sept. 2011. Chap. 6, pp. 113–136. isbn: 978-953-307-272-2. doi: 10.5772/

19407.

[40] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. “System Archi-

tecture Directions for Networked Sensors.” In: SIGOPS Operating Systems Review
34.5 (Dec. 2000), pp. 93–104. issn: 0163-5980. doi: 10.1145/384264.379006.

[41] M. Hempstead, M. Welsh, and D. Brooks. “TinyBench: The Case For A Standard-

ized Benchmark Suite for TinyOS Based Wireless Sensor Network Devices.” In:

Proceedings of the 29th Annual IEEE International Conference on Local Computer
Networks. LCN ’04. Washington, DC, USA: IEEE Computer Society, Nov. 2004,

pp. 585–586. isbn: 0-7695-2260-2. doi: 10.1109/LCN.2004.129.

[42] L. Nazhandali, M. Minuth, and T. Austin. “SenseBench: Toward an accurate

evaluation of sensor network processors.” In: Proceedings of the IEEE International
Workload Characterization Symposium. IISWC-2005. IEEE, Oct. 2005, pp. 197–203.

isbn: 0780394615. doi: 10.1109/IISWC.2005.1526017.

176

https://ec.europa.eu/digital-single-market/events/cf/ictpd14/item-display.cfm?id=12597
https://ec.europa.eu/digital-single-market/events/cf/ictpd14/item-display.cfm?id=12597
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-focus_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-focus_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-focus_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-leit-ict_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-leit-ict_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-leit-ict_en.pdf
https://doi.org/10.1145/1067170.1067188
https://doi.org/10.5772/19407
https://doi.org/10.5772/19407
https://doi.org/10.1145/384264.379006
https://doi.org/10.1109/LCN.2004.129
https://doi.org/10.1109/IISWC.2005.1526017

BIBLIOGRAPHY

[43] M. O. Farooq and T. Kunz. “Operating Systems for Wireless Sensor Networks:

A Survey.” In: Sensors 11.6 (May 2011), pp. 5900–5930. issn: 1424-8220. doi:

10.3390/s110605900.

[44] A. Corporation. ATmega128 — 8-bit Atmel Microcontroller with 128KBytes In-
System Programmable Flash. Access in July 1, 2016. http://www.atmel.com/

Images/doc2467.pdf. Atmel Corporation. June 2011.

[45] T. I. Incorporated. MSP430TM ultra-low-power Microcontrollers. Access in July

1, 2016. http://www.ti.com/lsds/ti/microcontrollers_16- bit_32-

bit/msp/overview.page. Texas Instruments Incorporated. 2016.

[46] T. I. Incorporated. CC2420 - Single-Chip 2.4 GHz IEEE 802.15.4 Compliant and
ZigBeeTM Ready RF Transceiver. Access in July 1, 2016. http://www.ti.com/

product/cc2420. Texas Instruments Incorporated. 2016.

[47] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava. “Design Con-

siderations for Solar Energy Harvesting Wireless Embedded Systems.” In: Proceed-
ings of the 4th International Symposium on Information Processing in Sensor Networks.
IPSN ’05. Piscataway, NJ, USA: IEEE Press, Apr. 2005. isbn: 0-7803-9202-7.

[48] S. Roundy, P. K. Wright, and J. M. Rabaey. Energy Scavenging for Wireless Sensor
Networks: With Special Focus on Vibrations. Boston, MA, USA: Springer Science

& Business Media, 2004. isbn: 978-1-4613-5100-9. doi: 10.1007/978-1-4615-

0485-6.

[49] M. Rahimi, H. Shah, G. Sukhatme, J. Heidemann, and D. Estrin. “Studying the

Feasibility of Energy Harvesting in a Mobile Sensor Network.” In: Proceedings
of the IEEE International Conference on Robotics and Automation. Vol. 1. ICRA

’03. Taipai, Taiwan: IEEE, Sept. 2003, pp. 19–24. doi: 10.1109/ROBOT.2003.

1241567.

[50] E. Kovacs, M. Bauer, J. Kim, J. Yun, F. Le Gall, and M. Zhao. “Standards-Based

Worldwide Semantic Interoperability for IoT.” In: IEEE Communications Magazine
54.12 (Dec. 2016), pp. 40–46. issn: 0163-6804. doi: 10.1109/MCOM.2016.

1600460CM.

[51] S. A. Weis. “RFID (radio frequency identification): Principles and applications.”

In: System 2.3 (2007), pp. 1–23.

[52] I. Square. Near Field Communication Technology Standards. Access in September

13, 2018. http://nearfieldcommunication.org/technology.html. Square,

Inc. 2017.

[53] I. O. for Standardization (ISO) and I. E. C. (IEC). ISO/IEC 18000-3:2010. Tech. rep.

3. Available from: https://www.iso.org/standard/53424.html. ISO/IEC, Nov.

2010.

177

https://doi.org/10.3390/s110605900
http://www.atmel.com/Images/doc2467.pdf
http://www.atmel.com/Images/doc2467.pdf
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/overview.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/overview.page
http://www.ti.com/product/cc2420
http://www.ti.com/product/cc2420
https://doi.org/10.1007/978-1-4615-0485-6
https://doi.org/10.1007/978-1-4615-0485-6
https://doi.org/10.1109/ROBOT.2003.1241567
https://doi.org/10.1109/ROBOT.2003.1241567
https://doi.org/10.1109/MCOM.2016.1600460CM
https://doi.org/10.1109/MCOM.2016.1600460CM
http://nearfieldcommunication.org/technology.html
https://www.iso.org/standard/53424.html

BIBLIOGRAPHY

[54] Z. Alliance. ZigBee Specification FAQ. Access in September 13, 2018. https://web.

archive.org/web/20130627172453/http://www.zigbee.org/Specifications/

ZigBee/FAQ.aspx. Zigbee Alliance. 2013.

[55] M. T. Galeev. Catching the Z-Wave. Access in September 11, 2018. https://

www.embedded.com/design/connectivity/4025721/Catching-the-Z-Wave.

Embedded.com Aspencore Inc. 2006.

[56] I. Bluetooth SIG. Radio Versions. Access in March 19, 2019. https: // www.

bluetooth.com/bluetooth-technology/radio-versions. Bluetooth SIG, Inc.

2019.

[57] W.-F. Alliance. Discover Wi-Fi. Access in January 14, 2019. https://www.wi-

fi.org/discover-wi-fi. Wi-Fi Alliance.

[58] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt. “Wire-

lessHART: Applying Wireless Technology in Real-Time Industrial Process Con-

trol.” In: 2008 IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. Apr. 2008, pp. 377–386. doi: 10.1109/RTAS.2008.15.

[59] S. S.A. Radio Technology Keypoints. Access in January 14, 2019. https://www.

sigfox.com/en/sigfox-iot-radio-technology. Sigfox S.A.

[60] L. Alliance. What is LoRaWAN. Access in January 14, 2019. https://lora-

alliance.org/resource-hub/what-lorawantm. LoRa Alliance.

[61] R. Sanchez-Iborra, J. Sanchez-Gomez, J. Ballesta-Viñas, M.-D. Cano, and A. F.

Skarmeta. “Performance Evaluation of LoRa Considering Scenario Conditions.”

In: Sensors 18.772 (Mar. 2018). doi: 10.3390/s18030772.

[62] Y. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman,

and H. S. Razaghi. “A Primer on 3GPP Narrowband Internet of Things.” In: IEEE
Communications Magazine 55.3 (Mar. 2017), pp. 117–123. issn: 0163-6804. doi:

10.1109/MCOM.2017.1600510CM.

[63] Sentineo. NB-IOT or LORA, which technology to choose for your next IOT device.

Access in March 19, 2019. https://www.pietcallemeyn.be/sentineo/2018/

04/30/nb-iot-or-lora-which-technology-to-choose-for-your-next-iot-

device/. Sentineo. 2018.

[64] G. M. C. Centre. Progress on 3GPP IoT. Access in March 19, 2019. http://

www.3gpp.org/news-events/3gpp-news/1766-iot_progress. 3GPP Mobile

Competence Centre. 2016.

[65] U. A. Force. GPS: The Global Positioning System. Access in March 19, 2019. https:

//www.gps.gov/. U.S. Air Force. 2019.

[66] R. Meier and V. Cahill. “Taxonomy of distributed event-based programming sys-

tems.” In: The Computer Journal 48.5 (Sept. 2005), pp. 585–586. issn: 0010-4620.

doi: 10.1093/comjnl/bxh120.

178

https://web.archive.org/web/20130627172453/http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx
https://web.archive.org/web/20130627172453/http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx
https://web.archive.org/web/20130627172453/http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx
https://www.embedded.com/design/connectivity/4025721/Catching-the-Z-Wave
https://www.embedded.com/design/connectivity/4025721/Catching-the-Z-Wave
https://www.bluetooth.com/bluetooth-technology/radio-versions
https://www.bluetooth.com/bluetooth-technology/radio-versions
https://www.wi-fi.org/discover-wi-fi
https://www.wi-fi.org/discover-wi-fi
https://doi.org/10.1109/RTAS.2008.15
https://www.sigfox.com/en/sigfox-iot-radio-technology
https://www.sigfox.com/en/sigfox-iot-radio-technology
https://lora-alliance.org/resource-hub/what-lorawantm
https://lora-alliance.org/resource-hub/what-lorawantm
https://doi.org/10.3390/s18030772
https://doi.org/10.1109/MCOM.2017.1600510CM
https://www.pietcallemeyn.be/sentineo/2018/04/30/nb-iot-or-lora-which-technology-to-choose-for-your-next-iot-device/
https://www.pietcallemeyn.be/sentineo/2018/04/30/nb-iot-or-lora-which-technology-to-choose-for-your-next-iot-device/
https://www.pietcallemeyn.be/sentineo/2018/04/30/nb-iot-or-lora-which-technology-to-choose-for-your-next-iot-device/
http://www.3gpp.org/news-events/3gpp-news/1766-iot_progress
http://www.3gpp.org/news-events/3gpp-news/1766-iot_progress
https://www.gps.gov/
https://www.gps.gov/
https://doi.org/10.1093/comjnl/bxh120

BIBLIOGRAPHY

[67] C. Rathfelder, B. Klatt, K. Sachs, and S. Kounev. “Modeling event-based communi-

cation in component-based software architectures for performance predictions.”

In: Software & Systems Modeling 13.4 (2013), pp. 1291–1317. issn: 1619-1374.

doi: 10.1007/s10270-013-0316-x.

[68] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems: Con-
cepts and Design. 5th. USA: Addison-Wesley Publishing Company, 2011. isbn:

0132143011, 9780132143011.

[69] J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni.

“Impact of mobility on Message Oriented Middleware (MOM) protocols for collab-

oration in transportation.” In: Proceedings of the IEEE 19th International Conference
on Computer Supported Cooperative Work in Design. CSCWD ’15. IEEE, May 2015,

pp. 115–120. doi: 10.1109/CSCWD.2015.7230943.

[70] J. O’Hara. “Toward a Commodity Enterprise Middleware.” In: Queue 5.4 (May

2007), pp. 48–55. issn: 1542-7730. doi: 10.1145/1255421.1255424.

[71] A. Banks and R. Gupta. MQTT Version 3.1.1. Access in May 24, 2016. Retrieved

from: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-

os.pdf. OASIS. Oct. 2014.

[72] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol (CoAP).
Access in February 2, 2017. https://tools.ietf.org/html/rfc7252. Internet

Engineering Task Force (IETF). 2014.

[73] STOMP Protocol Specification, Version 1.2. Access in April 11, 2016. Oct. 2012.

url: http://stomp.github.io/stomp-specification-1.2.html#Protocol_

Overview.

[74] O. M. Group. Data Distribution Service (DDS), version 1.4. Tech. rep. formal/2015-

04-10. Version 1.4. Available from: http://www.omg.org/spec/DDS/1.4/PDF.

Needham, MA, USA: Object Management Group, Inc., Apr. 2015.

[75] G. Pardo-Castellote. “OMG Data-Distribution Service: Architectural Overview.”

In: Proceedings of the 23rd International Conference on Distributed Computing Sys-
tems. ICDCSW ’03. Washington, DC, USA: IEEE Computer Society, May 2003,

pp. 200–. isbn: 0-7695-1921-0. url: http://dl.acm.org/citation.cfm?id=

839280.840571.

[76] T. A. S. Foundation. Apache ActiveMQ. Access in April 11, 2016. http : / /

activemq.apache.org/. The Apache Software Foundation. 2011.

[77] A. Foster. Messaging Technologies for the Industrial Internet and the Internet of
Things Whitepaper: A Comparison Between DDS, AMQP, MQTT, JMS, REST, CoAP
and XMPP. Messaging Technologies Whitepaper. PrismTech, June 2015. url:

http://www.prismtech.com/sites/default/files/documents/Messaging-

Whitepaper-040615_1.pdf.

179

https://doi.org/10.1007/s10270-013-0316-x
https://doi.org/10.1109/CSCWD.2015.7230943
https://doi.org/10.1145/1255421.1255424
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://tools.ietf.org/html/rfc7252
http://stomp.github.io/stomp-specification-1.2.html#Protocol_Overview
http://stomp.github.io/stomp-specification-1.2.html#Protocol_Overview
http://www.omg.org/spec/DDS/1.4/PDF
http://dl.acm.org/citation.cfm?id=839280.840571
http://dl.acm.org/citation.cfm?id=839280.840571
http://activemq.apache.org/
http://activemq.apache.org/
http://www.prismtech.com/sites/default/files/documents/Messaging-Whitepaper-040615_1.pdf
http://www.prismtech.com/sites/default/files/documents/Messaging-Whitepaper-040615_1.pdf

BIBLIOGRAPHY

[78] M. Iglesias-Urkia, A. Orive, and A. Urbieta. “Analysis of CoAP Implementations

for Industrial Internet of Things: A Survey.” In: Procedia Computer Science 109

(2017). 8th International Conference on Ambient Systems, Networks and Tech-

nologies, ANT-2017 and the 7th International Conference on Sustainable Energy

Information Technology, SEIT 2017, 16-19 May 2017, Madeira, Portugal, pp. 188 –

195. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2017.05.323.

[79] N. Naik. “Choice of effective messaging protocols for IoT systems: MQTT, CoAP,

AMQP and HTTP.” In: 2017 IEEE International Systems Engineering Symposium
(ISSE). Oct. 2017, pp. 1–7. doi: 10.1109/SysEng.2017.8088251.

[80] M. Kovatsch. “CoAP for the Web of Things: From Tiny Resource-constrained

Devices to the Web Browser.” In: Proceedings of the 2013 ACM Conference on
Pervasive and Ubiquitous Computing Adjunct Publication. UbiComp ’13 Adjunct.

Zurich, Switzerland: ACM, 2013, pp. 1495–1504. isbn: 978-1-4503-2215-7. doi:

10.1145/2494091.2497583.

[81] J. DizdareviMalć, F. Carpio, A. Jukan, and X. Masip-Bruin. “A Survey of Commu-

nication Protocols for Internet of Things and Related Challenges of Fog and Cloud

Computing Integration.” In: ACM Comput. Surv. 51.6 (Jan. 2019), 116:1–116:29.

issn: 0360-0300. doi: 10.1145/3292674.

[82] O. M. Group. The Data Distribution Service, The Proven Data Connectivity Standard
for the Internet of Things. Access in April 11, 2016. Object Management Group,

Inc. 2016. url: http://portals.omg.org/dds/.

[83] P. S.-A. (editor). Extensible Messaging and Presence Protocol (XMPP): Instant Mes-
saging and Presence. Access in March 29, 2016. Available from http://xmpp.org/

rfcs/rfc3921.html. Jabber Software Foundation. Oct. 2004.

[84] N. Deakin. Java Message Service (JMS) 2.0 (“Specification”). Access in April 11,

2016. Oracle America, Inc. Mar. 2013. url: http://download.oracle.com/

otndocs/jcp/jms-2_0-fr-eval-spec/index.html.

[85] D. Ingram. “Reconfigurable Middleware for High Availability Sensor Systems.” In:

Proceedings of the Third ACM International Conference on Distributed Event-Based
Systems. DEBS ’09. Nashville, Tennessee: ACM, July 2009, 20:1–20:11. isbn:

978-1-60558-665-6. doi: 10.1145/1619258.1619285.

[86] A. Richardson. RabbitMQ - An open source message broker that just work. 2009. url:

http://www.rabbitmq.com/resources/RabbitMQcon.pdf.

[87] RabbitMQ. Which protocols does RabbitMQ support? Access in March 29, 2019.

RabbitMQ. 2019. url: https://www.rabbitmq.com/protocols.html.

180

https://doi.org/https://doi.org/10.1016/j.procs.2017.05.323
https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1145/2494091.2497583
https://doi.org/10.1145/3292674
http://portals.omg.org/dds/
http://xmpp.org/rfcs/rfc3921.html
http://xmpp.org/rfcs/rfc3921.html
http://download.oracle.com/otndocs/jcp/jms-2_0-fr-eval-spec/index.html
http://download.oracle.com/otndocs/jcp/jms-2_0-fr-eval-spec/index.html
https://doi.org/10.1145/1619258.1619285
http://www.rabbitmq.com/resources/RabbitMQcon.pdf
https://www.rabbitmq.com/protocols.html

BIBLIOGRAPHY

[88] R. Bajpai, K. K. Dhara, and V. Krishnaswamy. “QPID: A Distributed Priority

Queue with Item Locality.” In: Proceedings of the International Symposium on Paral-
lel and Distributed Processing with Applications. ISPA ’08. Dec. 2008, pp. 215–223.

doi: 10.1109/ISPA.2008.90.

[89] J. Yin, S. He, F. Zhao, and S. Li. “Design and Implementation of Intelligent

Load-Balancing Heterogeneous Data Source Middleware Based on ActiveMQ and

XML.” In: Proceedings of the 2015 International Conference on Industrial Informatics
- Computing Technology, Intelligent Technology, Industrial Information Integration.

ICIICII ’15. IEEE, Dec. 2015, pp. 255–258. doi: 10.1109/ICIICII.2015.145.

[90] A. OLeary and B. Sherman. An Introduction to Fusion Connect. Conference Class,

Las Vegas. 2017. url: https://www.autodesk.com/autodesk-university/

class/Introduction-Fusion-Connect-2017#downloads.

[91] S. Mathew. Overview of Amazon Web Services. AWS Whitepapers. Dec. 2018. url:

https://d1.awsstatic.com/whitepapers/aws-overview.pdf.

[92] G. E. Company. Predix: The Industrial IoT Application Platform. GE WhitePapers.

2018. url: https://www.ge.com/digital/sites/default/files/download_

assets/Predix-The-Industrial-Internet-Platform-Brief.pdf.

[93] Google. Google Cloud IoT. Access in March 26, 2019. https://cloud.google.

com/solutions/iot/. Google. 2019.

[94] Google. Cloud IoT Core. Access in March 26, 2019. Google. 2019. url: https:

//cloud.google.com/iot-core/.

[95] S. George. Microsoft Azure IoT Suite —- Connecting Your Things to the Cloud. Access

in March 26, 2019. Microsoft. 2015. url: https://azure.microsoft.com/en-

gb/blog/microsoft-azure-iot-suite-connecting-your-things-to-the-

cloud/.

[96] N. Berdy, R. Sherafat, R. Shahan, and D. Betts. What is Azure IoT Hub? Access

in March 26, 2019. Microsoft. 2018. url: https://docs.microsoft.com/en-

us/azure/iot-hub/about-iot-hub.

[97] IBM. IBM Watson IoT Platform. Access in March 27, 2019. IBM. url: https:

//www.ibm.com/us-en/marketplace/internet-of-things-cloud.

[98] IBM. Watson IoT Platform. Access in March 27, 2019. IBM. url: https://www.

ibm.com/cloud/watson-iot-platform.

[99] K. Companie. Welcome to the Kaa IoT platform documentation! Access in March 27,

2019. Kaa Companie. 2016. url: https://kaaproject.github.io/kaa/docs/

v0.10.0/Welcome/.

[100] K. Companie. Everything an IoT platform should stand for. Access in March 27,

2019. Kaa Companie. 2019. url: https://www.kaaproject.org/.

181

https://doi.org/10.1109/ISPA.2008.90
https://doi.org/10.1109/ICIICII.2015.145
https://www.autodesk.com/autodesk-university/class/Introduction-Fusion-Connect-2017#downloads
https://www.autodesk.com/autodesk-university/class/Introduction-Fusion-Connect-2017#downloads
https://d1.awsstatic.com/whitepapers/aws-overview.pdf
https://www.ge.com/digital/sites/default/files/download_assets/Predix-The-Industrial-Internet-Platform-Brief.pdf
https://www.ge.com/digital/sites/default/files/download_assets/Predix-The-Industrial-Internet-Platform-Brief.pdf
https://cloud.google.com/solutions/iot/
https://cloud.google.com/solutions/iot/
https://cloud.google.com/iot-core/
https://cloud.google.com/iot-core/
https://azure.microsoft.com/en-gb/blog/microsoft-azure-iot-suite-connecting-your-things-to-the-cloud/
https://azure.microsoft.com/en-gb/blog/microsoft-azure-iot-suite-connecting-your-things-to-the-cloud/
https://azure.microsoft.com/en-gb/blog/microsoft-azure-iot-suite-connecting-your-things-to-the-cloud/
https://docs.microsoft.com/en-us/azure/iot-hub/about-iot-hub
https://docs.microsoft.com/en-us/azure/iot-hub/about-iot-hub
https://www.ibm.com/us-en/marketplace/internet-of-things-cloud
https://www.ibm.com/us-en/marketplace/internet-of-things-cloud
https://www.ibm.com/cloud/watson-iot-platform
https://www.ibm.com/cloud/watson-iot-platform
https://kaaproject.github.io/kaa/docs/v0.10.0/Welcome/
https://kaaproject.github.io/kaa/docs/v0.10.0/Welcome/
https://www.kaaproject.org/

BIBLIOGRAPHY

[101] SiteWhere. SiteWhere Platform. Access in March 28, 2019. SiteWhere. 2019. url:

https://sitewhere.io/docs/2.0.0/platform/.

[102] SiteWhere. Sending Data to SiteWhere. Access in March 28, 2019. SiteWhere.

2019. url: https://sitewhere.io/docs/2.0.0/guide/devices/sending-

data.html.

[103] I. The MathWorks. Learn More About ThingSpeak. Access in March 28, 2019. The

MathWorks, Inc. 2019. url: https://thingspeak.com/pages/learn_more.

[104] I. The MathWorks. The Open IoT Platform with MATLAB Analytics. Access in

March 28, 2019. The MathWorks, Inc. 2019. url: https://www.mathworks.com/

products/thingspeak.html.

[105] Ubidots. IoT and Cloud tools to build your business. Access in April 2, 2019. Ubidots.

2019. url: https://ubidots.com/platform/.

[106] J. L. Hill. “System Architecture for Wireless Sensor Networks.” Available from:

http://eps2009.dj-inod.com/docs/09-02-01/system_architecture_for_

wireless_sensor_networks.pdf. Doctoral dissertation. Berkeley, CA, EUA:

University of California, Berkeley, Mar. 2003.

[107] A. Moschitta and I. Neri. “Power consumption Assessment in Wireless Sensor

Networks.” In: ICT - Energy - Concepts Towards Zero - Power Information and
Communication Technology. Ed. by D. G. Fagas. InTech, 2014. Chap. 9. isbn:

978-953-51-1218-1. doi: 10.5772/57201.

[108] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,

J. Hill, M. Welsh, E. Brewer, and D. Culler. “TinyOS: An Operating System for

Sensor Networks.” In: Ambient Intelligence. Ed. by W. Weber, J. M. Rabaey, and E.

Aarts. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 115–148. isbn:

978-3-540-27139-0. doi: 10.1007/3-540-27139-2_7.

[109] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. “The nesC

Language: A Holistic Approach to Networked Embedded Systems.” In: Proceed-
ings of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation. PLDI ’03. San Diego, California, USA: ACM, June 2003, pp. 1–11.

isbn: 1-58113-662-5. doi: 10.1145/781131.781133.

[110] K. Klues, C.-J. M. Liang, J. Paek, R. Musăloiu-E, P. Levis, A. Terzis, and R. Govin-

dan. “TOSThreads: Thread-safe and Non-invasive Preemption in TinyOS.” In:

Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems. Sen-

Sys ’09. Berkeley, California: ACM, Nov. 2009, pp. 127–140. isbn: 978-1-60558-

519-2. doi: 10.1145/1644038.1644052.

[111] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. RFC 4944 – Transmission
of IPv6 Packets over IEEE 802.15.4 Networks. IETF RFC. Available from: https:

//tools.ietf.org/html/rfc4944. Sept. 2007.

182

https://sitewhere.io/docs/2.0.0/platform/
https://sitewhere.io/docs/2.0.0/guide/devices/sending-data.html
https://sitewhere.io/docs/2.0.0/guide/devices/sending-data.html
https://thingspeak.com/pages/learn_more
https://www.mathworks.com/products/thingspeak.html
https://www.mathworks.com/products/thingspeak.html
https://ubidots.com/platform/
http://eps2009.dj-inod.com/docs/09-02-01/system_architecture_for_wireless_sensor_networks.pdf
http://eps2009.dj-inod.com/docs/09-02-01/system_architecture_for_wireless_sensor_networks.pdf
https://doi.org/10.5772/57201
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1145/781131.781133
https://doi.org/10.1145/1644038.1644052
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc4944

BIBLIOGRAPHY

[112] K. Lin and P. Levis. “Data Discovery and Dissemination with DIP.” In: Proceedings
of the 7th International Conference on Information Processing in Sensor Networks.
IPSN ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 433–444.

isbn: 978-0-7695-3157-1. doi: 10.1109/IPSN.2008.17.

[113] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “TinyDB: An Acqui-

sitional Query Processing System for Sensor Networks.” In: ACM Transactions on
Database Systems (TODS) 30.1 (Mar. 2005), pp. 122–173. issn: 0362-5915. doi:

10.1145/1061318.1061322.

[114] C. Karlof, N. Sastry, and D. Wagner. “TinySec: A Link Layer Security Architecture

for Wireless Sensor Networks.” In: Proceedings of the 2Nd International Conference
on Embedded Networked Sensor Systems. SenSys ’04. Baltimore, MD, USA: ACM,

Nov. 2004, pp. 162–175. isbn: 1-58113-879-2. doi: 10.1145/1031495.1031515.

[115] P. Levis, N. Lee, M. Welsh, and D. Culler. “TOSSIM: Accurate and Scalable Sim-

ulation of Entire TinyOS Applications.” In: Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems. SenSys ’03. Los Angeles, Cal-

ifornia, USA: ACM, 2003, pp. 126–137. isbn: 1-58113-707-9. doi: 10.1145/

958491.958506.

[116] A. Dunkels, B. Gronvall, and T. Voigt. “Contiki - A Lightweight and Flexible

Operating System for Tiny Networked Sensors.” In: Proceedings of the 29th Annual
IEEE International Conference on Local Computer Networks. LCN ’04. Washington,

DC, USA: IEEE Computer Society, 2004, pp. 455–462. isbn: 0-7695-2260-2. doi:

10.1109/LCN.2004.38.

[117] B. W. Kernighan. The C Programming Language. Ed. by D. M. Ritchie. 2nd. Pren-

tice Hall Professional Technical Reference, 1988. isbn: 0131103709.

[118] A. Dunkels and O. Schmidt. Protothreads: Lightweight, Stackless Threads in C -
SICS technical report, T2005:05. Tech. rep. Available from: http://dunkels.com/

adam/dunkels05protothreads.pdf. Swedish Institute of Computer Science, Mar.

2005.

[119] C. community. Contiki: The Open Source OS for the Internet of Things. Access in

July 1, 2016. http://www.contiki-os.org/. Contiki community. 2016.

[120] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,

J. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol for Low Power and Lossy
Networks,(RFC 6550). Standards Track. Available from: https://www.rfc-

editor.org/rfc/rfc6550.txt. Internet Engineering Task Force (IETF), Mar.

2012.

[121] N. Tsiftes, J. Eriksson, and A. Dunkels. “Low-power Wireless IPv6 Routing with

ContikiRPL.” In: Proceedings of the 9th ACM/IEEE International Conference on In-
formation Processing in Sensor Networks. IPSN ’10. Stockholm, Sweden: ACM, Apr.

2010, pp. 406–407. isbn: 978-1-60558-988-6. doi: 10.1145/1791212.1791277.

183

https://doi.org/10.1109/IPSN.2008.17
https://doi.org/10.1145/1061318.1061322
https://doi.org/10.1145/1031495.1031515
https://doi.org/10.1145/958491.958506
https://doi.org/10.1145/958491.958506
https://doi.org/10.1109/LCN.2004.38
http://dunkels.com/adam/dunkels05protothreads.pdf
http://dunkels.com/adam/dunkels05protothreads.pdf
http://www.contiki-os.org/
https://www.rfc-editor.org/rfc/rfc6550.txt
https://www.rfc-editor.org/rfc/rfc6550.txt
https://doi.org/10.1145/1791212.1791277

BIBLIOGRAPHY

[122] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt. “Enabling Large-scale Storage in Sensor

Networks with the Coffee File System.” In: Proceedings of the 2009 International
Conference on Information Processing in Sensor Networks. IPSN ’09. Washington,

DC, USA: IEEE Computer Society, Apr. 2009, pp. 349–360. isbn: 978-1-4244-

5108-1. url: http://dl.acm.org/citation.cfm?id=1602165.1602197.

[123] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. “Cross-Level Sensor

Network Simulation with COOJA.” In: Proceedings of the 31st IEEE Conference
on Local Computer Networks. SenseApp ’06. Tampa, Florida, USA, Nov. 2006,

pp. 641–648. doi: 10.1109/LCN.2006.322172.

[124] L. Casado and P. Tsigas. “ContikiSec: A Secure Network Layer for Wireless Sensor

Networks Under the Contiki Operating System.” In: Proceedings of the 14th Nordic
Conference on Secure IT Systems: Identity and Privacy in the Internet Age. NordSec

’09. Oslo: Springer-Verlag, Oct. 2009, pp. 133–147. isbn: 978-3-642-04765-7.

doi: 10.1007/978-3-642-04766-4_10.

[125] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng, and

R. Han. “MANTIS: System Support for multimodAl NeTworks of In-situ Sensors.”

In: Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks
and Applications. WSNA ’03. San Diego, CA, USA: ACM, 2003, pp. 50–59. isbn:

1-58113-764-8. doi: 10.1145/941350.941358.

[126] R. von Behren, J. Condit, and E. Brewer. “Why Events Are a Bad Idea (for High-

concurrency Servers).” In: Proceedings of the 9th Conference on Hot Topics in Oper-
ating Systems - Volume 9. HOTOS’03. Lihue, Hawaii: USENIX Association, May

2003, pp. 4–. url: http://dl.acm.org/citation.cfm?id=1251054.1251058.

[127] B. L. Titzer, D. K. Lee, and J. Palsberg. “Avrora: Scalable Sensor Network Simu-

lation with Precise Timing.” In: Proceedings of the 4th International Symposium on
Information Processing in Sensor Networks. IPSN ’05. Los Angeles, California: IEEE

Press, Apr. 2005. isbn: 0-7803-9202-7. url: http://dl.acm.org/citation.

cfm?id=1147685.1147768.

[128] R. Lajara, J. Pelegrí-Sebastiá, and J. J. P. Solano. “Power Consumption Analysis of

Operating Systems for Wireless Sensor Networks.” In: Sensors 10.6 (June 2010),

pp. 5809–5826. issn: 1424-8220. doi: 10.3390/s100605809.

[129] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and M. Welsh. “Simulating

the Power Consumption of Large-scale Sensor Network Applications.” In: Pro-
ceedings of the 2Nd International Conference on Embedded Networked Sensor Systems.
SenSys ’04. Baltimore, MD, USA: ACM, Nov. 2004, pp. 188–200. isbn: 1-58113-

879-2. doi: 10.1145/1031495.1031518.

184

http://dl.acm.org/citation.cfm?id=1602165.1602197
https://doi.org/10.1109/LCN.2006.322172
https://doi.org/10.1007/978-3-642-04766-4_10
https://doi.org/10.1145/941350.941358
http://dl.acm.org/citation.cfm?id=1251054.1251058
http://dl.acm.org/citation.cfm?id=1147685.1147768
http://dl.acm.org/citation.cfm?id=1147685.1147768
https://doi.org/10.3390/s100605809
https://doi.org/10.1145/1031495.1031518

BIBLIOGRAPHY

[130] E. Perla, A. O. Catháin, R. S. Carbajo, M. Huggard, and C. Mc Goldrick. “Pow-

erTOSSIM Z: Realistic Energy Modelling for Wireless Sensor Network Environ-

ments.” In: Proceedings of the 3Nd ACM Workshop on Performance Monitoring and
Measurement of Heterogeneous Wireless and Wired Networks. PM2HW2N ’08. Van-

couver, British Columbia, Canada: ACM, 2008, pp. 35–42. isbn: 978-1-60558-

239-9. doi: 10.1145/1454630.1454636.

[131] M. S. E. Díaz. “A generic software architecture for portable applications in het-

erogeneous wireless sensor networks.” Available from: http://hdl.handle.net/

10016/9188. Doctoral dissertation. Calle Madrid: Universidad Carlos III de

Madrid. Departamento de Informática, Mar. 2010.

[132] C. Organisation. Mica 2. Access in October 3, 2016. https://www.eol.ucar.edu/

isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf. Crossbow

Technology, Inc.

[133] T. Alliance. TinyOS Home Page. Access in October 3, 2016. http://www.tinyos.

net/. TinyOS Alliance Steering Committee.

[134] C. Organisation. Mica 2 Dot. Access in October 3, 2016. https://www.eol.ucar.

edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2dot.pdf.

Crossbow Technology, Inc.

[135] T. Bokareva. Mini Hardware Survey. Access in October 3, 2016. http://www.cse.

unsw.edu.au/~sensar/hardware/hardware_survey.html.

[136] A. Rowe, F. Mokaya, M. Buevich, and P. Lazik. Nano-RK. Access in October 3,

2016. http://www.nano-rk.org/projects/nanork/wiki. Carnegie Mellon

University. May 2011.

[137] A. Corporation. Atmel AVR 8-bit and 32-bit Microcontrollers. Access in October

3, 2016. http://www.atmel.com/products/microcontrollers/avr/default.

aspx. Atmel Corporation.

[138] K. C. Park and D.-H. Shin. “Security assessment framework for IoT service.” In:

Telecommunication Systems 64.1 (Jan. 2017), pp. 193–209. issn: 1572-9451. doi:

10.1007/s11235-016-0168-0.

[139] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan. “Internet of things (IoT)

security: Current status, challenges and prospective measures.” In: 2015 10th
International Conference for Internet Technology and Secured Transactions (ICITST).
Dec. 2015, pp. 336–341. doi: 10.1109/ICITST.2015.7412116.

[140] Y. Chahid, M. Benabdellah, and A. Azizi. “Internet of things security.” In: 2017
International Conference on Wireless Technologies, Embedded and Intelligent Systems
(WITS). Apr. 2017, pp. 1–6. doi: 10.1109/WITS.2017.7934655.

185

https://doi.org/10.1145/1454630.1454636
http://hdl.handle.net/10016/9188
http://hdl.handle.net/10016/9188
https://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
https://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
http://www.tinyos.net/
http://www.tinyos.net/
https://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2dot.pdf
https://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2dot.pdf
http://www.cse.unsw.edu.au/~sensar/hardware/hardware_survey.html
http://www.cse.unsw.edu.au/~sensar/hardware/hardware_survey.html
http://www.nano-rk.org/projects/nanork/wiki
http://www.atmel.com/products/microcontrollers/avr/default.aspx
http://www.atmel.com/products/microcontrollers/avr/default.aspx
https://doi.org/10.1007/s11235-016-0168-0
https://doi.org/10.1109/ICITST.2015.7412116
https://doi.org/10.1109/WITS.2017.7934655

BIBLIOGRAPHY

[141] X. Huang, P. Craig, H. Lin, and Z. Yan. “SecIoT: a security framework for the In-

ternet of Things.” In: Security and Communication Networks 9.16 (2016), pp. 3083–

3094. doi: 10.1002/sec.1259. eprint: https://onlinelibrary.wiley.com/

doi/pdf/10.1002/sec.1259.

[142] N. Wang, T. Jiang, W. Li, and S. Lv. “Physical-layer security in Internet of Things

based on compressed sensing and frequency selection.” In: IET Communications
11.9 (July 2017), pp. 1431–1437. doi: 10.1049/iet-com.2016.1088.

[143] O. Vermesan and P. Friess. Building the Hyperconnected Society: Internet of Things
Research and Innovation Value Chains, Ecosystems and Markets. Vol. 43. River Pub-

lishers Series in Communications. River Publishers, June 2015. isbn: 9788793237995.

doi: 10.13052/rp-9788793237988.

[144] D. C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering.” In:

IEEE Computer 39.2 (Feb. 2006), pp. 25–31. issn: 0018-9162. doi: 10.1109/MC.

2006.58.

[145] A. F. Case. “Computer-aided Software Engineering (CASE): Technology for Im-

proving Software Development Productivity.” In: SIGMIS Database 17.1 (Sept.

1985), pp. 35–43. issn: 0095-0033. doi: 10.1145/1040694.1040698.

[146] F.-I. Editors. Computer-Aided Software Engineering. Access in May 24, 2016. http:

//ithandbook.ffiec.gov/it- booklets/development- and- acquisition/

development - procedures / software - development - techniques / computer -

aided-software-engineering.aspx. Federal Financial Institution Examination

Council (FFIEC).

[147] J. Hutchinson, M. Rouncefield, and J. Whittle. “Model-driven engineering prac-

tices in industry.” In: Proceeding of the 33rd international conference on Software
engineering. ICSE ’11. Waikiki, Honolulu, HI-USA: ACM, 2011, pp. 633–642.

isbn: 978-1-4503-0445-0. doi: 10.1145/1985793.1985882.

[148] J. Miller, J. Mukerji, M. Belaunde, F. Cummins, D. Dsouza, K. Duddy, W. E. Kaim,

A. Kennedy, W. Frank, D. Frankel, R. Hauch, S. Hendryx, M. Hettinger, R. Hubert,

D. Hybertson, S. Iyengar, J. Jourdan, T. Koch, A. Mallia, S. Mellor, J. Miller, J.

Mischkinsky, C. Mullins, M. Oya, L. Rioux, P. Rivett, E. Seidewitz, B. Selic, J.

Siegel, O. Sims, D. Smith, R. Soley, A. Tanaka, S. Tyndale-Biscoe, A. Watson, D.

Weiseand, and B. Wood. MDA Guide Version 1.0.1. Tech. rep. omg/2003-06-01.

Available from: http://www.omg.org/cgi- bin/doc?omg/03- 06- 01.pdf.

Needham, MA, USA: Object Management Group, Inc., June 2003.

[149] C. Atkinson and T. Kühne. “Model-driven development: A metamodeling foun-

dation.” In: IEEE Software 20.5 (Sept. 2003), pp. 36–41. issn: 07407459. doi:

10.1109/MS.2003.1231149.

186

https://doi.org/10.1002/sec.1259
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1259
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1259
https://doi.org/10.1049/iet-com.2016.1088
https://doi.org/10.13052/rp-9788793237988
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1145/1040694.1040698
http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/development-procedures/software-development-techniques/computer-aided-software-engineering.aspx
http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/development-procedures/software-development-techniques/computer-aided-software-engineering.aspx
http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/development-procedures/software-development-techniques/computer-aided-software-engineering.aspx
http://ithandbook.ffiec.gov/it-booklets/development-and-acquisition/development-procedures/software-development-techniques/computer-aided-software-engineering.aspx
https://doi.org/10.1145/1985793.1985882
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
https://doi.org/10.1109/MS.2003.1231149

BIBLIOGRAPHY

[150] D. Ameller. “Considering Non-Functional Requirements in Model-Driven En-

gineering.” Access in May 24, 2016. http://hdl.handle.net/2099.1/7192.

Master’s thesis. Universitat Politècnica de Catalunya Departament de Llenguat-

ges i Sistemes Informàtics (LSI), June 2009.

[151] J. Bézivin. “On the Unification Power of Models.” In: Software and Systems Mod-
eling (SoSyM) 4.2 (May 2005), pp. 171–188. issn: 1619-1366. doi: 10.1007/

s10270-005-0079-0.

[152] T. Kühne. “What is a Model?” In: Language Engineering for Model-Driven Software
Development. Ed. by J. Bezivin and R. Heckel. Dagstuhl Seminar Proceedings

04101. Dagstuhl, Germany: Internationales Begegnungs- und Forschungszen-

trum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005, pp. 1–10. url:

http://drops.dagstuhl.de/opus/volltexte/2005/23.

[153] T. Kühne. “Matters of (meta-) modeling.” In: Software & Systems Modeling 5.4

(July 2006), pp. 369–385. issn: 1619-1366. doi: 10.1007/s10270-006-0017-9.

[154] M. webster editors. Model. Access in January 20, 2015. http://www.merriam-

webster.com/dictionary/model. Merriam-webster, An Encyclopaedia Britan-

nica.

[155] G. Doumeingts, A. Berre, J.-P. Bourey, and R. Grangel. Deliverable DTG2.1: RE-
PORT ON MODEL ESTABLISHMENT. FP6 IST-508011 Interop NoE Project “In-

teroperability Research for Networked Enterprises Applications and Software Net-

work of Excellence”. Project co-financed under the 6th framework program of the

European Commission. Dec. 2005.

[156] E. Seidewitz. “What models mean.” In: IEEE Software 20.5 (Sept. 2003), pp. 26–32.

issn: 07407459. doi: 10.1109/MS.2003.1231147.

[157] O. M. Group. OMG Unified Modeling LanguageTM (OMG UML), Superstructure.

Tech. rep. formal/2011-08-06. Version 2.4.1. Available from: http://www.omg.

org/spec/UML/2.4.1/Superstructure/PDF/. Needham, MA, USA: Object

Management Group, Inc., Aug. 2011.

[158] T. Clark, A. Evans, and S. Kent. “Engineering Modelling Languages: A Precise

Meta-Modelling Approach.” In: Proceedings of the 5th International Conference on
Fundamental Approaches to Software Engineering. FASE ’02. London, UK, UK:

Springer-Verlag, Apr. 2002, pp. 159–173. isbn: 3-540-43353-8. url: http://dl.

acm.org/citation.cfm?id=645370.651297.

[159] S. W. Ambler. Agile Modeling (AM) Home Pag - Effective Practices for Modeling
and Documentation. Access in May 24, 2016. http://www.agilemodeling.com/.

Ambysoft Inc. 2014.

187

http://hdl.handle.net/2099.1/7192
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1007/s10270-005-0079-0
http://drops.dagstuhl.de/opus/volltexte/2005/23
https://doi.org/10.1007/s10270-006-0017-9
http://www.merriam-webster.com/dictionary/model
http://www.merriam-webster.com/dictionary/model
https://doi.org/10.1109/MS.2003.1231147
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://dl.acm.org/citation.cfm?id=645370.651297
http://dl.acm.org/citation.cfm?id=645370.651297
http://www.agilemodeling.com/

BIBLIOGRAPHY

[160] D. Thomas and B. M. Barry. “Model Driven Development: The Case for Domain

Oriented Programming.” In: Proceeding in the Companion of the 18th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Ap-
plications. OOPSLA ’03. Anaheim, CA, USA: ACM, Oct. 2003, pp. 2–7. isbn:

1-58113-751-6. doi: 10.1145/949344.949346.

[161] J. Greenfield and K. Short. “Software factories: assembling applications with

patterns, models, frameworks and tools.” In: Proceedings of the Companion of the
18th annual ACM SIGPLAN Conference on Object-oriented programming systems
languages and applications. Vol. 9. OOPSLA ’03. Anaheim, CA, USA: ACM, Oct.

2003, pp. 16–27. isbn: 1-58113-751-6. doi: 10.1145/949344.949348.

[162] O. M. Group. MDA - The Architecture of Choice for a Changing World. Access in

May 24, 2016. http://www.omg.org/mda/. Object Management Group, Inc.

[163] R. Soley and O. S. S. Group. Model Driven Architecture. Whitepaper. Available

from: http://www.omg.org/mda/mda_files/model_driven_architecture.htm.

Object Management Group, Nov. 2000.

[164] J. Bézivin. “From Object Composition to Model Transformation with the MDA.”

In: Proceedings of the 39th International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems (TOOLS39). TOOLS ’01. Washington, DC,

USA: IEEE Computer Society, Aug. 2001, pp. 350–. url: http://dl.acm.org/

citation.cfm?id=882501.884684.

[165] J. Bézivin and O. Gerbé. “Towards a Precise Definition of the OMG/MDA Frame-

work.” In: Proceedings of the 16th IEEE International Conference on Automated Soft-
ware Engineering. ASE ’01. Washington, DC, USA: IEEE Computer Society, Nov.

2001, pp. 273–. doi: 10.1109/ASE.2001.989813.

[166] A.-J. Berre, F. Liu, J. Xu, and B. Elvesaeter. “Model Driven Service Interoperability

through Use of Semantic Annotations.” In: Proceedings of the International Confer-
ence on Interoperability for Enterprise Software and Applications. IESA ’09. China,

Apr. 2009, pp. 90–96. doi: 10.1109/I-ESA.2009.58.

[167] R. Grangel, M. Bigand, and J.-P. Bourey. “A UML profile as support for trans-

formation of business process models at enterprise leve.” In: Proceedings of the
First International Workshop on Model Driven Interoperability for Sustainable Infor-
mation Systems. MDISIS ’08. Montpellier, France, June 2008, pp. 73–87. url:

http://ceur-ws.org/Vol-340/.

[168] Y. Singh and M. Sood. “Models and Transformations in MDA.” In: Proceeding
of the First International Conference on Computational Intelligence, Communication
Systems and Networks. CICSYN ’09. Indore, India: IEEE Computer Society, July

2009, pp. 253–258. isbn: 978-0-7695-3743-6. doi: 10.1109/CICSYN.2009.52.

188

https://doi.org/10.1145/949344.949346
https://doi.org/10.1145/949344.949348
http://www.omg.org/mda/
http://www.omg.org/mda/mda_files/model_driven_architecture.htm
http://dl.acm.org/citation.cfm?id=882501.884684
http://dl.acm.org/citation.cfm?id=882501.884684
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1109/I-ESA.2009.58
http://ceur-ws.org/Vol-340/
https://doi.org/10.1109/CICSYN.2009.52

BIBLIOGRAPHY

[169] O. M. Group. OMG Meta Object Facility (MOF) Core Specification. Tech. rep.

formal/2015-06-05. Version 2.5. Available from: http://www.omg.org/spec/

MOF/2.5/PDF/. Needham, MA, USA: Object Management Group, Inc., June 2015.

[170] O. M. Group. XML Metadata Interchange (XMI) Specification. Tech. rep. formal/2015-

06-07. Version 2.5.1. Available from: http://www.omg.org/spec/XMI/2.5.1/

PDF/. Needham, MA, USA: Object Management Group, Inc., June 2015.

[171] S. Jörges and B. Steffen. “Exploiting Ecore’s Reflexivity for Bootstrapping Domain-

Specific Code-Generators.” In: 35th Annual IEEE Software Engineering Workshop.

Oct. 2012, pp. 72–81. doi: 10.1109/SEW.2012.14.

[172] F. Jouault and I. Kurtev. “On the Interoperability of Model-to-model Transforma-

tion Languages.” In: Science Computer Programming 68.3 (Oct. 2007), pp. 114–137.

issn: 0167-6423. doi: 10.1016/j.scico.2007.05.005.

[173] O. M. Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifica-
tion. Tech. rep. formal/2016-06-03. Available from: http://www.omg.org/cgi-

bin/doc?formal/2016-06-03.pdf. Needham, MA, USA: Object Management

Group, Inc., June 2016.

[174] J. Bézivin. “Model Driven Engineering: An Emerging Technical Space.” In: Pro-
ceedings of the International Conference on Generative and Transformational Tech-
niques in Software Engineering. GTTSE’05. Braga, Portugal: Springer-Verlag, 2006,

pp. 36–64. isbn: 3-540-45778-X, 978-3-540-45778-7. doi: 10.1007/11877028_2.

[175] R. N. Wabalickis. “Justification of FMS with the Analytic Hierarchy Process.” In:

Journal of Manufacturing Systems 7.3 (Jan. 1988), pp. 175 –182. issn: 0278-6125.

doi: 10.1016/0278-6125(88)90002-7.

[176] B. T. O. and M. E. L. “Multiattribute evaluation within a present framework and

its relation to the analytic hierarchy process.” In: The Engineering Economist 37.1

(1991), pp. 1–32. doi: 10.1080/00137919108903055.

[177] M. Majumder. Impact of Urbanization on Water Shortage in Face of Climatic Aber-
rations. 1st ed. SpringerBriefs in Water Science and Technology 1. Springer

Singapore, 2015. doi: 10.1007/978-981-4560-73-3.

[178] M. Matos. Ajuda Multicritério à Decisão - introdução. Access in October 20, 2016.

http://paginas.fe.up.pt/~mam/AD-intro.pdf. Faculdade de Engenharia da

Universidade do Porto (FEUP). 2005.

[179] A. Kolios, V. Mytilinou, E. Lozano-Minguez, and K. Salonitis. “A Comparative

Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs.”

In: Energies 9.7 (July 2016), p. 566. issn: 1996-1073. doi: 10.3390/en9070566.

[180] D. Sabaei, J. Erkoyuncu, and R. Roy. “A Review of Multi-criteria Decision Making

Methods for Enhanced Maintenance Delivery.” In: Procedia CIRP 37 (Aug. 2015),

pp. 30 –35. issn: 2212-8271. doi: 10.1016/j.procir.2015.08.086.

189

http://www.omg.org/spec/MOF/2.5/PDF/
http://www.omg.org/spec/MOF/2.5/PDF/
http://www.omg.org/spec/XMI/2.5.1/PDF/
http://www.omg.org/spec/XMI/2.5.1/PDF/
https://doi.org/10.1109/SEW.2012.14
https://doi.org/10.1016/j.scico.2007.05.005
http://www.omg.org/cgi-bin/doc?formal/2016-06-03.pdf
http://www.omg.org/cgi-bin/doc?formal/2016-06-03.pdf
https://doi.org/10.1007/11877028_2
https://doi.org/10.1016/0278-6125(88)90002-7
https://doi.org/10.1080/00137919108903055
https://doi.org/10.1007/978-981-4560-73-3
http://paginas.fe.up.pt/~mam/AD-intro.pdf
https://doi.org/10.3390/en9070566
https://doi.org/10.1016/j.procir.2015.08.086

BIBLIOGRAPHY

[181] M. Aruldoss, T. M. Lakshmi, and V. P. Venkatesan. “A Survey on Multi Criteria De-

cision Making Methods and Its Applications.” In: American Journal of Information
Systems 1.1 (Dec. 2013), pp. 31–43. doi: 10.12691/ajis-1-1-5.

[182] T. L. Saaty. “A scaling method for priorities in hierarchical structures.” In: Journal
of Mathematical Psychology 15.3 (June 1977), pp. 234 –281. issn: 0022-2496. doi:

10.1016/0022-2496(77)90033-5.

[183] A. H. Aldlaigan and F. A. Buttle. “SYSTRA-SQ: a new measure of bank ser-

vice quality.” In: International Journal of Service Industry Management 13.4 (2002),

pp. 362–381. doi: 10.1108/09564230210445041.

[184] M. E. José Figueira Salvatore Greco. Multiple Criteria Decision Analysis: State of
the Art Surveys. Ed. by S. Greco. International Series in Operations Research &

Management Science. Vol. 78. 1. New York, USA: Springer-Verlag New York, 2005.

isbn: 978-0-387-23067-2. doi: 10.1007/b100605.

[185] J. A. Alonso and M. T. Lamata. “Consistency in the Analytic Hierarchy Process: A

New Approach.” In: International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 14.04 (Aug. 2006), pp. 445–459. doi: 10.1142/S0218488506004114.

[186] H. Donegan and F. Dodd. “A note on saaty’s random indexes.” In: Mathematical
and Computer Modelling 15.10 (Jan. 1991), pp. 135 –137. issn: 0895-7177. doi:

10.1016/0895-7177(91)90098-R.

[187] J. P. Brans and P. Vincke. “Note-A Preference Ranking Organisation Method.”

In: Management Science 31.6 (June 1985), pp. 647–656. issn: 0025-1909. doi:

10.1287/mnsc.31.6.647.

[188] K. Mela, T. Tiainen, and M. Heinisuo. “Comparative study of multiple criteria de-

cision making methods for building design.” In: Advanced Engineering Informatics
26.4 (Oct. 2012), pp. 716–726. issn: 1474-0346. doi: 10.1016/j.aei.2012.03.

001.

[189] J. R.S. C. Mateo. Multi Criteria Analysis in the Renewable Energy Industry. 1st ed.

Green Energy and Technology 1. Springer-Verlag London, 2012. doi: 10.1007/

978-1-4471-2346-0.

[190] C. Macharis, J. Springael, K. D. Brucker, and A. Verbeke. “PROMETHEE and

AHP: The design of operational synergies in multicriteria analysis.: Strengthening

PROMETHEE with ideas of AHP.” In: European Journal of Operational Research
153.2 (Mar. 2004). Management of the Future MCDA: Dynamic and Ethical

Contributions, pp. 307 –317. issn: 0377-2217. doi: 10.1016/S0377-2217(03)

00153-X.

[191] B. Roy. “The outranking approach and the foundations of electre methods.” In:

Theory and Decision 31.1 (July 1991), pp. 49–73. issn: 1573-7187. doi: 10.1007/

BF00134132.

190

https://doi.org/10.12691/ajis-1-1-5
https://doi.org/10.1016/0022-2496(77)90033-5
https://doi.org/10.1108/09564230210445041
https://doi.org/10.1007/b100605
https://doi.org/10.1142/S0218488506004114
https://doi.org/10.1016/0895-7177(91)90098-R
https://doi.org/10.1287/mnsc.31.6.647
https://doi.org/10.1016/j.aei.2012.03.001
https://doi.org/10.1016/j.aei.2012.03.001
https://doi.org/10.1007/978-1-4471-2346-0
https://doi.org/10.1007/978-1-4471-2346-0
https://doi.org/10.1016/S0377-2217(03)00153-X
https://doi.org/10.1016/S0377-2217(03)00153-X
https://doi.org/10.1007/BF00134132
https://doi.org/10.1007/BF00134132

BIBLIOGRAPHY

[192] OMG. OMG Systems Modeling Language. Tech. rep. formal/2017-05-01. Ver-

sion 1.5. Available from: https://sysml.org/docs/specs/OMGSysML-v1.5-17-

05-01.pdf. Needham, MA, USA: Object Management Group, Inc., May 2017.

[193] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. “Wireless sensor

networks: a survey.” In: Computer Networks 38.4 (2002), pp. 393 –422. issn:

1389-1286. doi: 10.1016/S1389-1286(01)00302-4.

[194] C. Consortium. Customer in the Loop: Using Networked Devices enabled Intelligence
for Proactive Customers Integration as Drivers of Integrated Enterprise. Deliverable

D1.3.2 Cuteloop Concept. FP7-2164220 Cuteloop, 2009.

[195] E. M. Silva, P. Maló, and M. Albano. “Energy Consumption Awareness for Resource-

Constrained Devices: Extension to FPGA.” In: Journal of Green Engineering 6.3

(July 2016), pp. 1 –27. issn: 1904-4720. doi: 10.13052/jge1904-4720.631.

[196] KBSI. IDEF0 Function Modeling Method. Accessed March 22, 2019. Knowledge

Based Systems, Inc., 2019. url: http://www.idef.com/idefo- function_

modeling_method/.

[197] C. Agostinho, J. Černý, and R. Jardim-Goncalves. “MDA-Based Interoperability

Establishment Using Language Independent Information Models.” In: Enterprise
Interoperability. Ed. by M. van Sinderen, P. Johnson, X. Xu, and G. Doumeingts.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 146–160. isbn: 978-3-

642-33068-1.

[198] E. M. Silva, C. Agostinho, and R. Jardim-Gonçalves. “Achieving Interoperability

via Model Transformation within the MDI.” In: Enterprise Interoperability. John

Wiley & Sons, Inc., Jan. 2013, pp. 171–180. isbn: 9781118561942. doi: 10.1002/

9781118561942.ch26.

[199] J. Sarraipa, R. Jardim-Goncalves, and A. Steiger-Garcao. “MENTOR: an enabler

for interoperable intelligent systems.” In: International Journal of General Systems
39.5 (2010), pp. 557–573. doi: 10.1080/03081079.2010.484278.

[200] L. F.C. S. Durão, M. M. Carvalho, S. Takey, P. A. Cauchick-Miguel, and E. Zancul.

“Internet of Things process selection: AHP selection method.” In: The International
Journal of Advanced Manufacturing Technology 99.9 (Dec. 2018), pp. 2623–2634.

issn: 1433-3015. doi: 10.1007/s00170-018-2617-2.

[201] Y. P. Kondratenko, G. V. Kondratenko, and I. V. Sidenko. “Multi-Criteria Selection

of the Wireless Communication Technology for Specialized IoT Network.” In:

ICTERI Workshops. 2018.

[202] Y. Kondratenko, G. Kondratenko, and I. Sidenko. “Multi-criteria decision making

for selecting a rational IoT platform.” In: 2018 IEEE 9th International Conference
on Dependable Systems, Services and Technologies (DESSERT). May 2018, pp. 147–

152. doi: 10.1109/DESSERT.2018.8409117.

191

https://sysml.org/docs/specs/OMGSysML-v1.5-17-05-01.pdf
https://sysml.org/docs/specs/OMGSysML-v1.5-17-05-01.pdf
https://doi.org/10.1016/S1389-1286(01)00302-4
https://doi.org/10.13052/jge1904-4720.631
http://www.idef.com/idefo-function_modeling_method/
http://www.idef.com/idefo-function_modeling_method/
https://doi.org/10.1002/9781118561942.ch26
https://doi.org/10.1002/9781118561942.ch26
https://doi.org/10.1080/03081079.2010.484278
https://doi.org/10.1007/s00170-018-2617-2
https://doi.org/10.1109/DESSERT.2018.8409117

BIBLIOGRAPHY

[203] E. M. Silva and R. Jardim-Gonçalves. “Multi-Criteria Analysis and Decision

Methodology for the Selection of Internet-of-Things Hardware Platforms.” In: Pro-
ceedings of the Technological Innovation for Smart Systems. IFIP Advances in Infor-

mation and Communication Technology. Accepted in January, 2017. Caparica,

Portugal: Springer International Publishing, May 2017.

[204] E. M. Silva and R. Jardim-Goncalves. “Cyber-Physical Systems: a multi-criteria as-

sessment for Internet-of-Things (IoT) systems.” In: Enterprise Information Systems
0.0 (2019), pp. 1–20. doi: 10.1080/17517575.2019.1698060.

[205] I. S. I. data. ISO 10303-11 Industrial automation systems and integration - Product
data representation and exchange - Part 11: Description methods: The EXPRESS
language reference manual. Tech. rep. Available from: https://www.iso.org/

standard/38047.html. International Organization for Standardization (ISO),

Nov. 2004, p. 255.

[206] I. S. I. data. ISO 10303-1 Industrial automation systems and integration - Product
data representation and exchange - Part 1: Overview and fundamental principles.
Tech. rep. Available from: https://www.iso.org/standard/20579.html.

International Organization for Standardization (ISO), Dec. 1994, p. 17.

[207] R. Jardim-Gonçalves, C. Agostinho, P. Maló, and A. Steiger-Garção. “Harmonising

technologies in conceptual models representation.” English. In: International
Journal of Product Lifecycle Management (IJPLM) 2.2 (2007), pp. 187–205. issn:

1743-5110. doi: 10.1504/IJPLM.2007.014279.

[208] H. Bruneliere and P. Guyard. C 1.0. Accessed July 25, 2019. AtlanMod, Aug. 2005.

url: http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore#C_1.0.

[209] J. Ralo. “Representação da Linguagem nesC Usando Técnicas Baseadas em Mod-

elos.” Available in http : / / hdl . handle . net / 10362 / 20680. Master Thesis.

Caparica, Portugal: Universidade Nova de Lisboa, Faculdade de Ciências e Tec-

nologia, Jan. 2017.

[210] D. Gay, P. Levis, D. Culler, and E. Brewer. nesC 1.3 Language Reference Manual.
Access in February 27, 2018. http://fossil.twicetwo.com/csci256.pl/doc/

tip/doc/nesc1.3_ref.pdf. 2009.

[211] R. Pavlos. “Model Driven Development in Sensor Networks.” Doctoral disserta-

tion. Technical University of Crete, Electronic and Computer Engineering, June

2013.

[212] OGC. SensorML 2.0 Examples. Retrieved June 7, 2019. http://www.sensorml.

com/sensorML-2.0/examples/. Open Geospatial Consortium (OGC), 2013.

192

https://doi.org/10.1080/17517575.2019.1698060
https://www.iso.org/standard/38047.html
https://www.iso.org/standard/38047.html
https://www.iso.org/standard/20579.html
https://doi.org/10.1504/IJPLM.2007.014279
http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore#C_1.0
http://hdl.handle.net/10362/20680
http://fossil.twicetwo.com/csci256.pl/doc/tip/doc/nesc1.3_ref.pdf
http://fossil.twicetwo.com/csci256.pl/doc/tip/doc/nesc1.3_ref.pdf
http://www.sensorml.com/sensorML-2.0/examples/
http://www.sensorml.com/sensorML-2.0/examples/

BIBLIOGRAPHY

[213] E. M. Silva, L. Gomes, J. Rodrigues, and P. Maló. “A Model-based Approach for

Resource Constrained Devices Energy Test and Simulation.” In: Proceedings of
the Technological Innovation for Cloud-Based Engineering Systems. IFIP Advances

in Information and Communication Technology. Caparica, Portugal: Springer

International Publishing, Mar. 2015, pp. 345–354. isbn: 978-3-319-16766-4.

doi: 10.1007/978-3-319-16766-4_37.

[214] E. M. Silva, P. Maló, and M. Albano. “Energy consumption awareness for resource-

constrained devices.” In: Proceeding in the 25th Edition of the European Conference
on Networks and Communications. EuCNC 2016. Athens, Greece: IEEE, June 2016,

pp. 74–78. isbn: 978-1-5090-2893-1. doi: 10.1109/EuCNC.2016.7561008.

[215] E. M. Silva and R. Jardim-Goncalves. “IoT Ecosystems Design: A Multi-Method,

Multi-Criteria Assessment Methodology.” In: IEEE Internet of Things Journal (2020),

pp. 1–1. doi: 10.1109/JIOT.2020.3011029.

[216] R. Poler, ICE, MASS, IKE, UNI, CMS, LYON2, ASC, ALM, APR, VS, CON, KBZ,

and TARDY. Virtual Factory Operating System Architecture (vf-OS): D2.2: Func-
tional Specifications & Mockups. Tech. rep. Available from: https : / / docs .

wixstatic.com/ugd/0cf731_aea653224e80426f85f50210a10cdaf4.pdf. vf-OS,

July 2017.

[217] O. Garcia and A. partners. Virtual Factory Operating System Architecture (vf-OS):
D2.1: Global Architecture Definition - Vs: 1.2.2. Tech. rep. Available from: https:

//docs.wixstatic.com/ugd/0cf731_286b3f51e13141fa8aca27228b06aa87.

pdf. vf-OS, June 2017.

[218] E. M. Silva, R. Campos-Rebelo, T. Hirashima, F. Moutinho, P. Maló, A. Costa, and

L. Gomes. “Communication support for Petri nets based distributed controllers.”

In: Proceeding in the 23rd International Symposium on Industrial Electronics. ISIE

’14. Istanbul, Turkey: IEEE, June 2014, pp. 1111–1116. doi: 10.1109/ISIE.2014.

6864769.

[219] E. M. Silva, P. Maló, and L. Gomes. “A platform independent communication

support for distributed controller systems modelled by Petri nets.” In: Proceeding
in the 12th IEEE International Conference on Industrial Informatics. INDIN ’2014.

Porto Alegre, Brazil: IEEE, July 2014, pp. 88–93. doi: 10.1109/INDIN.2014.

6945489.

193

https://doi.org/10.1007/978-3-319-16766-4_37
https://doi.org/10.1109/EuCNC.2016.7561008
https://doi.org/10.1109/JIOT.2020.3011029
https://docs.wixstatic.com/ugd/0cf731_aea653224e80426f85f50210a10cdaf4.pdf
https://docs.wixstatic.com/ugd/0cf731_aea653224e80426f85f50210a10cdaf4.pdf
https://docs.wixstatic.com/ugd/0cf731_286b3f51e13141fa8aca27228b06aa87.pdf
https://docs.wixstatic.com/ugd/0cf731_286b3f51e13141fa8aca27228b06aa87.pdf
https://docs.wixstatic.com/ugd/0cf731_286b3f51e13141fa8aca27228b06aa87.pdf
https://doi.org/10.1109/ISIE.2014.6864769
https://doi.org/10.1109/ISIE.2014.6864769
https://doi.org/10.1109/INDIN.2014.6945489
https://doi.org/10.1109/INDIN.2014.6945489

A
p
p
e
n
d
i
x

A
Appendix: IoTSAG Ecore Representation

195

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="iotsag" nsURI=
"http://IoTSystemsAssessment/IoTSystemsAnalysisGeneric"
nsPrefix="IoTSAG">

<eClassifiers xsi:type="ecore:EClass" name="PropertyDomain">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="domain" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Unit">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="unit" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="PropertyDomain" lowerBound="1"

upperBound="-1" eType="#//PropertyDomain"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="unitType" lowerBound="1"

eType="#//UnitTypes" defaultValueLiteral="STRING"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Property" abstract="true">

<eStructuralFeatures xsi:type="ecore:EReference" name="annotation" ordered="false"
upperBound="-1" eType="#//Annotation" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="SingleProperty" eSuperTypes="#//Property">

<eStructuralFeatures xsi:type="ecore:EReference" name="Unit" lowerBound="1" eType=
"#//Unit"

derived="true"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="value" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"

iD="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="AggregationProperty" eSuperTypes="#//Property">

<eStructuralFeatures xsi:type="ecore:EReference" name="composedBy" ordered="false"
lowerBound="1" upperBound="-1" eType="#//Property" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="PropertyDomain" lowerBound="1"
eType="#//PropertyDomain" derived="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Annotation">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="description" ordered="false"
lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Definitions">

<eStructuralFeatures xsi:type="ecore:EReference" name="propertyDomain" lowerBound="1"
upperBound="-1" eType="#//PropertyDomain" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="unit" lowerBound="1" upperBound=
"-1"

eType="#//Unit" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="annotation" lowerBound="1"

eType="#//Annotation" containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="SystemDescription" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="version" unique="false"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"

APPENDIX A. APPENDIX: IOTSAG ECORE REPRESENTATION

196

defaultValueLiteral="none"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="id" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"

defaultValueLiteral="" iD="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="annotation" lowerBound="1"

eType="#//Annotation" containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="UnitTypes">

<eLiterals name="STRING" literal="STRING"/>
<eLiterals name="INTEGER" value="1"/>
<eLiterals name="DOUBLE" value="2"/>
<eLiterals name="FLOAT" value="3"/>
<eLiterals name="CHARACTER" value="4"/>
<eLiterals name="BOOLEAN" value="5"/>
<eLiterals name="BYTE" value="6"/>
<eLiterals name="LONG" value="7"/>
<eLiterals name="SHORT" value="8"/>

</eClassifiers>
</ecore:EPackage>

197

A
p
p
e
n
d
i
x

B
Appendix: RCSM Ecore Representation

199

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="rcs" nsURI=
"http://IoTSystemsAssessment/ResourceConstrainedSystem"
nsPrefix="RCS">

<eClassifiers xsi:type="ecore:EClass" name="ResourceConstrainedSystem" eSuperTypes=
"../IoTSystemsAnalysisGeneric.ecore#//SystemDescription">

<eAnnotations source="IoTSystemsAnalysisCoreModel.genmodel" references=
"../IoTSystemsAnalysisGeneric.ecore#/"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="HardwareDescription" lowerBound="1"

eType="ecore:EClass ResourceConstrainedSystemHardware.ecore#//HardwareModel"
derived="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="SoftwareDescription" unique="false"
lowerBound="1" eType="#//SoftwareModel" derived="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="EnergyProfile" eType=
"#//EnergyProfile"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="properties" upperBound="-1"

eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Property" containment="true">
<eAnnotations source="IoTSystemsAnalysisCoreModel.genmodel" references=
"../IoTSystemsAnalysisGeneric.ecore#/"/>

</eStructuralFeatures>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="SoftwareModel" abstract="true" interface="true">

<eStructuralFeatures xsi:type="ecore:EReference" name="annotation" lowerBound="1"
eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Annotation" containment=
"true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="appVersion" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="properties" upperBound="-1"

eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Property" containment="true"
/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="EnergyProfile" abstract="true" interface="true">

<eStructuralFeatures xsi:type="ecore:EReference" name="annotation" lowerBound="1"
eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Annotation" containment=
"true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="properties" upperBound="-1"
eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Property" containment="true"
/>

</eClassifiers>
</ecore:EPackage>

APPENDIX B. APPENDIX: RCSM ECORE REPRESENTATION

200

A
p
p
e
n
d
i
x

C
Appendix: RCSH Ecore Representation

201

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="rcsh" nsURI=
"http://IoTSystemsAssessment/ResourceConstrainedSystemHardware"
nsPrefix="RCSH">

<eClassifiers xsi:type="ecore:EClass" name="Device">
<eStructuralFeatures xsi:type="ecore:EReference" name="annotation" ordered="false"

upperBound="-1" eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Annotation"
containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="isComposedBy" ordered="false"
lowerBound="1" upperBound="-1" eType="#//Module" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="reference" ordered="false"
lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" ordered="false" unique=
"false"

lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="version" ordered="false"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Component" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" ordered="false" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="contains" ordered="false"

upperBound="-1" eType="#//Component" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="properties" ordered="false"

lowerBound="1" upperBound="-1" eType="ecore:EClass
../IoTSystemsAnalysisGeneric.ecore#//Property"
containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="annotation" ordered="false"
upperBound="-1" eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Annotation"
containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Module">

<eStructuralFeatures xsi:type="ecore:EReference" name="contains" ordered="false"
lowerBound="1" upperBound="-1" eType="#//Component" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="annotation" ordered="false"
upperBound="-1" eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Annotation"
containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="reference" ordered="false"
lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="version" ordered="false"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="HardwareModel">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" ordered="false" lowerBound=
"1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" changeable=
"false"
defaultValueLiteral="Resource-Constrained System Hardware Model"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="describes" ordered="false"
lowerBound="1" eType="#//Device" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="hwVersion" ordered="false"
lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
defaultValueLiteral=""/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="modelVersion" ordered="false"

APPENDIX C. APPENDIX: RCSH ECORE REPRESENTATION

202

lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
changeable="false" defaultValueLiteral="4.0-2019"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="annotation" lowerBound="1"
eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Annotation" containment=
"true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ProcessingUnit" eSuperTypes="#//Component"/>
<eClassifiers xsi:type="ecore:EClass" name="Memory" eSuperTypes="#//Component"/>
<eClassifiers xsi:type="ecore:EClass" name="Interfaces" abstract="true" eSuperTypes=
"#//Component"/>
<eClassifiers xsi:type="ecore:EClass" name="Security" eSuperTypes="#//Component"/>
<eClassifiers xsi:type="ecore:EClass" name="PowerSupply" eSuperTypes="#//Component"/>
<eClassifiers xsi:type="ecore:EClass" name="SensingUnit" eSuperTypes="#//Component"/>
<eClassifiers xsi:type="ecore:EClass" name="Actuator" eSuperTypes="#//Component"/>
<eClassifiers xsi:type="ecore:EClass" name="MachineMachine" eSuperTypes="#//Interfaces"/>
<eClassifiers xsi:type="ecore:EClass" name="HumanMachine" eSuperTypes="#//Interfaces"/>

</ecore:EPackage>

203

A
p
p
e
n
d
i
x

D
Appendix: MCAM Ecore Representation

205

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="mcam" nsURI=
"http://IoTSystemsAssessment/MultiCriteriaAnalysisModel"
nsPrefix="MCAM">

<eClassifiers xsi:type="ecore:EClass" name="MultiCriteriaAnalysisModel">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="version" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
defaultValueLiteral="2.0-2019"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="objective" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="assessmentCriteria" lowerBound="1"
upperBound="-1" eType="#//Criteria" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="DecisionMethod" lowerBound="1"
upperBound="-1" eType="#//MultiCriteriaDecisionMethod"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="rankOutcome" upperBound="-1"
eType="#//RankOutcome" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Criteria" abstract="true">

<eStructuralFeatures xsi:type="ecore:EReference" name="constraints" lowerBound="1"
upperBound="-1" eType="#//Constraint" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="values" lowerBound="2"
upperBound="-1" eType="#//CriteriaValue" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="Unit" lowerBound="1" eType=
"ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Unit"

derived="true"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="CriteriaValue">

<eStructuralFeatures xsi:type="ecore:EReference" name="ResourceConstrainedSystem"
lowerBound="1" eType="ecore:EClass
../Device/ResourceConstrainedSystem.ecore#//ResourceConstrainedSystem"
derived="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="DataValue" lowerBound="1"
eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//SingleProperty" derived=
"true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Constraint" abstract="true"/>
<eClassifiers xsi:type="ecore:EClass" name="Optimization" eSuperTypes="#//Constraint">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" lowerBound="1" eType=
"#//OptimizationType"

defaultValueLiteral="MIN"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Availability" eSuperTypes="#//Constraint">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" lowerBound="1" eType=
"#//AvailabilityType"

defaultValueLiteral="MustHave"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Condition" abstract="true" eSuperTypes=
"#//Constraint">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" lowerBound="1" eType=
"#//ConditionType"

defaultValueLiteral="LessThan"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="OptimizationType">

<eLiterals name="MIN"/>
<eLiterals name="MAX" value="1"/>

APPENDIX D. APPENDIX: MCAM ECORE REPRESENTATION

206

</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="AvailabilityType">

<eLiterals name="MustHave"/>
<eLiterals name="CannotHave" value="1"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="ConditionType">

<eLiterals name="LessThan"/>
<eLiterals name="Equal" value="1"/>
<eLiterals name="GreaterThan" value="2"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Qualitative" eSuperTypes="#//Criteria"/>
<eClassifiers xsi:type="ecore:EClass" name="Quantitative" eSuperTypes="#//Criteria"/>
<eClassifiers xsi:type="ecore:EClass" name="QuantitativeCondition" eSuperTypes=
"#//Condition">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="value" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EDouble"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="QualitativeCondition" eSuperTypes=
"#//Condition">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="value" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="MultiCriteriaDecisionMethod" abstract="true"

interface="true">
<eStructuralFeatures xsi:type="ecore:EReference" name="annotation" upperBound="-1"

eType="ecore:EClass ../IoTSystemsAnalysisGeneric.ecore#//Annotation" containment=
"true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="RankOutcome">

<eStructuralFeatures xsi:type="ecore:EReference" name="rank" lowerBound="2" upperBound=
"-1"

eType="#//Rank"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="DecisionMethod" lowerBound="1"

eType="#//MultiCriteriaDecisionMethod"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Rank">

<eStructuralFeatures xsi:type="ecore:EReference" name="ResourceConstrainedSystem"
lowerBound="1" eType="ecore:EClass
../Device/ResourceConstrainedSystem.ecore#//ResourceConstrainedSystem"
derived="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="rankingPosition" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EIntegerObject"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="outcomeValue" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EDoubleObject"/>

</eClassifiers>
</ecore:EPackage>

207

A
p
p
e
n
d
i
x

E
Appendix: AHP Ecore Representation

209

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="ahpm" nsURI=
"http://IoTSystemsAssessment/AnalyticHierarchyProcessModel"
nsPrefix="AHPM">

<eAnnotations source="RandomConsistencyIndex" references="#//AHPModel">
<details key="criteriaNumber_2" value="0"/>
<details key="criteriaNumber_3" value="0.58"/>
<details key="criteriaNumber_4" value="0.9"/>
<details key="criteriaNumber_5" value="1.12"/>
<details key="criteriaNumber_6" value="1.24"/>
<details key="criteriaNumber_7" value="1.32"/>
<details key="criteriaNumber_8" value="1.41"/>
<details key="criteriaNumber_9" value="1.45"/>
<details key="criteriaNumber_10" value="1.49"/>

</eAnnotations>
<eClassifiers xsi:type="ecore:EClass" name="AHPModel" eSuperTypes=
"MultiCriteriaAnalysisModel.ecore#//MultiCriteriaDecisionMethod">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="method" unique="false"
lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
changeable="false" defaultValueLiteral="Analytic Hierarchy Process"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="modelVersion" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
defaultValueLiteral="1.1-2019"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="criteriaComparison" lowerBound="1"
eType="#//CriteriaComparison" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="consistencyRatioThreshold"
lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EDoubleObject"
defaultValueLiteral="0.10"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="CriteriaComparison">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="scale" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"

changeable="false" defaultValueLiteral="Saaty 1-9 scale"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="fromCriteria" lowerBound="2"

upperBound="-1" eType="#//FromCriteria" containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="FromCriteria">

<eStructuralFeatures xsi:type="ecore:EReference" name="toCriteria" lowerBound="1"
upperBound="-1" eType="#//ToCriteria" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="criteriaRef" lowerBound="1"
eType="ecore:EClass MultiCriteriaAnalysisModel.ecore#//Criteria" derived="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ToCriteria">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="priorityValue" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EDoubleObject"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="criteriaRef" lowerBound="1"
eType="ecore:EClass MultiCriteriaAnalysisModel.ecore#//Criteria" derived="true"/>

</eClassifiers>
</ecore:EPackage>

APPENDIX E. APPENDIX: AHP ECORE REPRESENTATION

210

A
p
p
e
n
d
i
x

F
Appendix: ELECTRE Ecore Representation

211

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="electrem" nsURI=
"http://IoTSystemsAssessment/ELECTREModel" nsPrefix="ELECTREM">

<eClassifiers xsi:type="ecore:EClass" name="ELECTREModel" eSuperTypes=
"MultiCriteriaAnalysisModel.ecore#//MultiCriteriaDecisionMethod">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="method" unique="false"
lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
changeable="false" defaultValueLiteral="ELECTRE" unsettable="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="modelVersion" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
defaultValueLiteral="1.4-2019"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="weightVector" lowerBound="1"
eType="#//CriteriaImportance" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="discordanceLevel" lowerBound="1"
eType="#//Coalition" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="methodVersion" lowerBound="1"
eType="#//ELECTRETypes" defaultValueLiteral="ELECTRE I"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="concordanceLevel" lowerBound="1"
upperBound="5" eType="#//Coalition" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="CriteriaImportance">

<eStructuralFeatures xsi:type="ecore:EReference" name="electreCriterion" lowerBound="2"
upperBound="-1" eType="#//ELECTRECriterion" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Threshold" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="value" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ELECTRECriterion">

<eStructuralFeatures xsi:type="ecore:EReference" name="criteria" lowerBound="1"
eType="ecore:EClass MultiCriteriaAnalysisModel.ecore#//Criteria" derived="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="weight" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EDoubleObject"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="preference" eType=
"#//Discriminatory"

containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="indifference" eType=
"#//Discriminatory"

containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="veto" eType="#//Veto" containment=
"true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="ELECTRETypes">

<eLiterals name="ELECTRE_I" literal="ELECTRE I"/>
<eLiterals name="ELECTRE_II" value="1" literal="ELECTRE II"/>
<eLiterals name="ELECTRE_III" value="2" literal="ELECTRE III"/>
<eLiterals name="ELECTRE_IV" value="3" literal="ELECTRE IV"/>
<eLiterals name="ELECTRE_IS" value="4" literal="ELECTRE IS"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Coalition" eSuperTypes="#//Threshold"/>
<eClassifiers xsi:type="ecore:EClass" name="Veto" eSuperTypes="#//Threshold"/>
<eClassifiers xsi:type="ecore:EClass" name="Discriminatory" eSuperTypes="#//Threshold"/>

</ecore:EPackage>

APPENDIX F. APPENDIX: ELECTRE ECORE REPRESENTATION

212

A
p
p
e
n
d
i
x

G
Appendix: IoTSAC Ecore Representation

213

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="iotsac" nsURI=
"http://IoTSystemsAssessment/IoTSystemsAnalysisCore"
nsPrefix="IoTSAC">

<eClassifiers xsi:type="ecore:EClass" name="IoTSystemsAnalysis" eSuperTypes=
"IoTSystemsAnalysisGeneric.ecore#//SystemDescription">

<eStructuralFeatures xsi:type="ecore:EReference" name="MultiCriteriaDecision"
lowerBound="1" upperBound="-1" eType="ecore:EClass
MultiCriteriaAnalysisModel.ecore#//MultiCriteriaAnalysisModel"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="ResourceConstraintSystem"
lowerBound="2" upperBound="-1" eType="ecore:EClass
ResourceConstrainedSystem.ecore#//ResourceConstrainedSystem"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="TheSystemIoT" eSuperTypes=
"IoTSystemsAnalysisGeneric.ecore#//SystemDescription">

<eStructuralFeatures xsi:type="ecore:EReference" name="subSystem" lowerBound="1"
upperBound="-1" eType="#//IoTSystemsAnalysis" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="definitions" lowerBound="1"
upperBound="-1" eType="ecore:EClass IoTSystemsAnalysisGeneric.ecore#//Definitions"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="ResourceConstraintSystem"
lowerBound="2" upperBound="-1" eType="ecore:EClass
ResourceConstrainedSystem.ecore#//ResourceConstrainedSystem"/>

</eClassifiers>
</ecore:EPackage>

APPENDIX G. APPENDIX: IOTSAC ECORE REPRESENTATION

214

A
p
p
e
n
d
i
x

H
Appendix: C Language Ecore Representation

215

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="c" nsURI=
"http://IoTSystemsAssessment/Ccode" nsPrefix="C">

<eClassifiers xsi:type="ecore:EClass" name="ApplicationModel" eSuperTypes=
"ResourceConstrainedSystem.ecore#//SoftwareModel">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="language" unique="false"
lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
changeable="false" defaultValueLiteral="Language C"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="modelVersion" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString" changeable=
"false"
defaultValueLiteral="1.1-2019"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="functions" lowerBound="1"
upperBound="-1" eType="#//CFunction" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="CStructureContents">

<eStructuralFeatures xsi:type="ecore:EReference" name="sc_container" ordered="false"
eType="#//CStructured" eOpposite="#//CStructured/contains"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="CClassifier"/>
<eClassifiers xsi:type="ecore:EClass" name="CDataType" eSuperTypes="#//CClassifier"/>
<eClassifiers xsi:type="ecore:EClass" name="CIntegral" eSuperTypes="#//CDataType"/>
<eClassifiers xsi:type="ecore:EClass" name="CFloating" eSuperTypes="#//CDataType"/>
<eClassifiers xsi:type="ecore:EClass" name="CBitField" eSuperTypes="#//CDataType"/>
<eClassifiers xsi:type="ecore:EClass" name="CVoid" eSuperTypes="#//CDataType"/>
<eClassifiers xsi:type="ecore:EClass" name="CEnumeration" eSuperTypes="#//CIntegral"/>
<eClassifiers xsi:type="ecore:EClass" name="CInt" eSuperTypes="#//CIntegral"/>
<eClassifiers xsi:type="ecore:EClass" name="CChar" eSuperTypes="#//CIntegral"/>
<eClassifiers xsi:type="ecore:EClass" name="CDouble" eSuperTypes="#//CFloating"/>
<eClassifiers xsi:type="ecore:EClass" name="CFloat" eSuperTypes="#//CFloating"/>
<eClassifiers xsi:type="ecore:EClass" name="CLongDouble" eSuperTypes="#//CFloating"/>
<eClassifiers xsi:type="ecore:EClass" name="CUnsignedInt" eSuperTypes="#//CInt"/>
<eClassifiers xsi:type="ecore:EClass" name="CLong" eSuperTypes="#//CInt"/>
<eClassifiers xsi:type="ecore:EClass" name="CLongLong" eSuperTypes="#//CInt"/>
<eClassifiers xsi:type="ecore:EClass" name="CShort" eSuperTypes="#//CInt"/>
<eClassifiers xsi:type="ecore:EClass" name="CSignedChar" eSuperTypes="#//CChar"/>
<eClassifiers xsi:type="ecore:EClass" name="CUnsignedChar" eSuperTypes="#//CChar"/>
<eClassifiers xsi:type="ecore:EClass" name="CWChar" eSuperTypes="#//CChar"/>
<eClassifiers xsi:type="ecore:EClass" name="UnsignedLong" eSuperTypes="#//CUnsignedInt"/>
<eClassifiers xsi:type="ecore:EClass" name="UnsignedLongLong" eSuperTypes="#//CUnsignedInt"
/>
<eClassifiers xsi:type="ecore:EClass" name="UnsignedShort" eSuperTypes="#//CUnsignedInt"/>
<eClassifiers xsi:type="ecore:EClass" name="Derived" eSuperTypes="#//CClassifier"/>
<eClassifiers xsi:type="ecore:EClass" name="CStructured" eSuperTypes="#//CClassifier
#//CStructureContents">

<eStructuralFeatures xsi:type="ecore:EReference" name="contains" ordered="false"
upperBound="-1" eType="#//CStructureContents" containment="true" eOpposite=
"#//CStructureContents/sc_container"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="CStruct" eSuperTypes="#//CStructured"/>
<eClassifiers xsi:type="ecore:EClass" name="CUnion" eSuperTypes="#//CStructured"/>
<eClassifiers xsi:type="ecore:EClass" name="CSourceText">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="source" ordered="false"
unique="false" lowerBound="1" eType="#//PrimitiveTypes/String"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="fileName" ordered="false"
unique="false" lowerBound="1" eType="#//PrimitiveTypes/String"/>

</eClassifiers>

APPENDIX H. APPENDIX: C LANGUAGE ECORE REPRESENTATION

216

<eClassifiers xsi:type="ecore:EClass" name="CTypedElement">
<eStructuralFeatures xsi:type="ecore:EReference" name="type" ordered="false" lowerBound=
"1"

eType="#//CClassifier"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="source" ordered="false"

lowerBound="1" eType="#//CSourceText"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="CStructuralFeature" eSuperTypes=
"#//CStructureContents #//CTypedElement"/>
<eClassifiers xsi:type="ecore:EClass" name="CField" eSuperTypes="#//CStructuralFeature"/>
<eClassifiers xsi:type="ecore:EClass" name="CParameter" eSuperTypes="#//CTypedElement">

<eStructuralFeatures xsi:type="ecore:EReference" name="behavioralFeature" ordered="false"
eType="#//BehavioralFeature" eOpposite="#//BehavioralFeature/parameters"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="BehavioralFeature">

<eStructuralFeatures xsi:type="ecore:EReference" name="parameters" ordered="false"
upperBound="-1" eType="#//CParameter" containment="true" eOpposite=
"#//CParameter/behavioralFeature"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="CFunction" eSuperTypes="#//BehavioralFeature">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="isVarArg" ordered="false"
unique="false" lowerBound="1" eType="#//PrimitiveTypes/Boolean"/>

</eClassifiers>
<eSubpackages name="PrimitiveTypes" nsURI="http://IoTSystemsAssessment/PrimitiveTypes"

nsPrefix="primitiveTypes">
<eClassifiers xsi:type="ecore:EDataType" name="Integer" instanceTypeName="integer"/>
<eClassifiers xsi:type="ecore:EDataType" name="String" instanceTypeName="string"/>
<eClassifiers xsi:type="ecore:EDataType" name="Boolean" instanceClassName="boolean"/>
<eClassifiers xsi:type="ecore:EDataType" name="Double" instanceClassName="double"/>

</eSubpackages>
</ecore:EPackage>

217

A
p
p
e
n
d
i
x

I
Appendix: nesC Language Ecore

Representation

219

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="nesc" nsURI=
"http://IoTSystemsAssessment/NetworkEmbeddedSystemC"
nsPrefix="nesC">

<eClassifiers xsi:type="ecore:EClass" name="Statement" abstract="true">
<eStructuralFeatures xsi:type="ecore:EReference" name="body" eType="#//Body" containment=
"true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="ElementType">

<eLiterals name="Generic" value="1"/>
<eLiterals name="Normal"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="OperatorType">

<eLiterals name="none"/>
<eLiterals name="And" value="1"/>
<eLiterals name="Or" value="2"/>
<eLiterals name="Not" value="3"/>
<eLiterals name="BitAnd" value="4"/>
<eLiterals name="BitOr" value="5"/>
<eLiterals name="BitXor" value="6"/>
<eLiterals name="BitNot" value="7"/>
<eLiterals name="Greater" value="8"/>
<eLiterals name="GreaterEqual" value="9"/>
<eLiterals name="Lesser" value="10"/>
<eLiterals name="LesserEqual" value="11"/>
<eLiterals name="LeftShift" value="12"/>
<eLiterals name="RightShift" value="13"/>
<eLiterals name="Plus" value="14"/>
<eLiterals name="Minus" value="15"/>
<eLiterals name="Multiply" value="16"/>
<eLiterals name="Divide" value="17"/>
<eLiterals name="Modulus" value="18"/>
<eLiterals name="Assign" value="19"/>
<eLiterals name="Equal" value="20"/>
<eLiterals name="returnValue" value="21"/>
<eLiterals name="void" value="22"/>
<eLiterals name="MethodCall" value="23"/>
<eLiterals name="Init" value="24"/>
<eLiterals name="EnumerationAcc" value="25"/>
<eLiterals name="ClassAcc" value="26"/>
<eLiterals name="PathAcc" value="27"/>
<eLiterals name="EmitEvent" value="28"/>
<eLiterals name="NewFrame" value="29"/>
<eLiterals name="DeleteFrame" value="30"/>
<eLiterals name="EventAcc" value="31"/>
<eLiterals name="NotEqual" value="32"/>
<eLiterals name="Cast" value="33"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="InternalType">

<eLiterals name="none"/>
<eLiterals name="int" value="1"/>
<eLiterals name="int8_t" value="2"/>
<eLiterals name="int32_t" value="3"/>
<eLiterals name="uint8_t" value="4"/>
<eLiterals name="uint16_t" value="5"/>
<eLiterals name="uint32_t" value="6"/>
<eLiterals name="bool" value="7"/>

APPENDIX I. APPENDIX: NESC LANGUAGE ECORE REPRESENTATION

220

<eLiterals name="char" value="8"/>
<eLiterals name="float" value="9"/>
<eLiterals name="double" value="10"/>
<eLiterals name="void" value="11"/>
<eLiterals name="pointer" value="12"/>
<eLiterals name="struct" value="13"/>
<eLiterals name="enumDeclaration" value="14"/>
<eLiterals name="reference" value="15"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="If" eSuperTypes="#//Statement">

<eStructuralFeatures xsi:type="ecore:EReference" name="condition" lowerBound="1"
eType="#//Expression" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="elseBody" eType="#//Body"
containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Atomic" eSuperTypes="#//Statement">

<eStructuralFeatures xsi:type="ecore:EReference" name="statement" eType="#//Statement"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="For" eSuperTypes="#//Statement">

<eStructuralFeatures xsi:type="ecore:EReference" name="condition" lowerBound="1"
eType="#//Expression" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="int" lowerBound="1" eType=
"#//Expression"

containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="step" lowerBound="1" eType=
"#//Expression"

containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="While" eSuperTypes="#//Statement">

<eStructuralFeatures xsi:type="ecore:EReference" name="condition" lowerBound="1"
eType="#//Expression" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Component">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" lowerBound="1" eType=
"#//ElementType"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="provides" upperBound="-1"

eType="#//Interface" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="uses" upperBound="-1" eType=
"#//Interface"

containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="hasDeclarations" upperBound="-1"

eType="#//Variable" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="identifier" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="hasHeaders" upperBound="-1"

eType="#//Header" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="hasParameters" upperBound="-1"

eType="#//Argument"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="hasBareCommands" upperBound="-1"

eType="#//Command" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="hasBareEvent" upperBound="-1"

eType="#//Event" containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="EndPoint">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="identifier" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

221

<eClassifiers xsi:type="ecore:EClass" name="Wiring">
<eStructuralFeatures xsi:type="ecore:EReference" name="provider" lowerBound="1"

eType="#//EndPoint" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="user" lowerBound="1" eType=
"#//EndPoint"

containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Configuration" eSuperTypes="#//Component">

<eStructuralFeatures xsi:type="ecore:EReference" name="wires" upperBound="-1"
eType="#//Wiring" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="implementation" upperBound="-1"
eType="#//Component" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Module" eSuperTypes="#//Component">

<eStructuralFeatures xsi:type="ecore:EReference" name="hasVariables" upperBound="-1"
eType="#//Variable" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="implements" upperBound="-1"
eType="#//Method"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="moduleID" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EInt"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Method" abstract="true">

<eStructuralFeatures xsi:type="ecore:EReference" name="hasBody" eType="#//Body"
containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="hasParameters" upperBound="-1"
eType="#//Variable" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="returnType" lowerBound="1"

eType="#//VariableTypes" containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Interface">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" lowerBound="1" eType=
"#//ElementType"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="identifier" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="hasEvents" upperBound="-1"

eType="#//Event" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="hasCommands" upperBound="-1"

eType="#//Command" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="hasParameters" upperBound="-1"

eType="#//Argument"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Expression" eSuperTypes="#//Statement
#//Argument">

<eStructuralFeatures xsi:type="ecore:EReference" name="left" eType="#//Argument"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="right" eType="#//Argument"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="hasArguments" upperBound="2"

eType="#//Argument" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="operator" lowerBound="1"

eType="#//OperatorType"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Argument" abstract="true"/>
<eClassifiers xsi:type="ecore:EClass" name="Literal" eSuperTypes="#//Argument">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="literal" lowerBound="1"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>

APPENDIX I. APPENDIX: NESC LANGUAGE ECORE REPRESENTATION

222

<eClassifiers xsi:type="ecore:EClass" name="MethodRef" eSuperTypes="#//Argument">
<eStructuralFeatures xsi:type="ecore:EReference" name="method" lowerBound="1"

eType="#//Method"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="hasParameters" upperBound="-1"

eType="#//Variable"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Variable" eSuperTypes="#//Argument">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="typedef" lowerBound="1"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="InitExpression" eType=
"#//Expression"

containment="true"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="type" lowerBound="1" eType=
"#//VariableTypes"

containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Array" eSuperTypes="#//Variable">

<eStructuralFeatures xsi:type="ecore:EReference" name="dimension" lowerBound="1"
eType="#//Argument"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Struct" eSuperTypes="#//Variable">

<eStructuralFeatures xsi:type="ecore:EReference" name="hasStructs" upperBound="-1"
eType="#//Struct"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="hasVariables" upperBound="-1"
eType="#//Variable" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="struct_name" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Enums" eSuperTypes="#//Variable">

<eStructuralFeatures xsi:type="ecore:EReference" name="hasVariables" upperBound="-1"
eType="#//Variable" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="enum_name" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Header">

<eStructuralFeatures xsi:type="ecore:EReference" name="hasVariables" upperBound="-1"
eType="#//Variable" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="includes" upperBound="-1"
eType="#//Header" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="hasFunctions" upperBound="-1"
eType="#//InternalFunction" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Body">

<eStructuralFeatures xsi:type="ecore:EReference" name="hasVariables" upperBound="-1"
eType="#//Variable" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="hasStatements" upperBound="-1"
eType="#//Statement" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Task" eSuperTypes="#//Method">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="post" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="InternalFunction" eSuperTypes="#//Method"/>
<eClassifiers xsi:type="ecore:EClass" name="Command" eSuperTypes="#//Method">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="async" lowerBound="1" eType=

223

"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Event" eSuperTypes="#//Method">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="async" lowerBound="1" eType=
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="BinaryModule" eSuperTypes="#//Component"/>
<eClassifiers xsi:type="ecore:EClass" name="VariableTypes" abstract="true"/>
<eClassifiers xsi:type="ecore:EClass" name="ExternalTypes" eSuperTypes="#//VariableTypes">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" lowerBound="1" eType=
"#//ExternalType"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="InternalTypes" eSuperTypes="#//VariableTypes">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="type" lowerBound="1" eType=
"#//InternalType"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EEnum" name="ExternalType">

<eLiterals name="none"/>
<eLiterals name="nx_int8_t" value="1"/>
<eLiterals name="nx_uint8_t" value="2"/>
<eLiterals name="nxle_int8_t" value="3"/>
<eLiterals name="nxle_uint8_t" value="4"/>
<eLiterals name="nx_int16_t" value="5"/>
<eLiterals name="nx_uint16_t" value="6"/>
<eLiterals name="nxle_int16_t" value="7"/>
<eLiterals name="nxle_uint16_t" value="8" literal="nxle_uint16_t"/>
<eLiterals name="nx_int32_t" value="9" literal="nx_int32_t"/>
<eLiterals name="nx_uint32_t" value="10"/>
<eLiterals name="nxle_int32_t" value="11"/>
<eLiterals name="nxle_uint32_t" value="12"/>
<eLiterals name="nx_int64_t" value="13"/>
<eLiterals name="nx_uint64_t" value="14"/>
<eLiterals name="nxle_int64_t" value="15"/>
<eLiterals name="nxle_uint64_t" value="16"/>
<eLiterals name="nx_struct" value="17"/>
<eLiterals name="nx_union" value="18"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ApplicationModel" eSuperTypes=
"ResourceConstrainedSystem.ecore#//SoftwareModel">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="modelVersion" ordered="false"
lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
changeable="false" defaultValueLiteral="2.0-2019"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="configuration" ordered="false"
eType="#//Component" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="language" unique="false"
lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
changeable="false" defaultValueLiteral="nesC"/>

</eClassifiers>
</ecore:EPackage>

APPENDIX I. APPENDIX: NESC LANGUAGE ECORE REPRESENTATION

224

A
p
p
e
n
d
i
x

J
Appendix: XML File of a SensorML Example

225

<?xml version="1.0" encoding="UTF-8"?>
<sml:PhysicalComponent gml:id="MY_SENSOR"

xmlns:sml="http://www.opengis.net/sensorml/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xsi:schemaLocation="http://www.opengis.net/sensorml/2.0
http://schemas.opengis.net/sensorml/2.0/sensorML.xsd">
<!-- === -->
<!-- System Description -->
<!-- === -->
<gml:description>simple thermometer with time tag</gml:description>
<gml:identifier codeSpace="uniqueID">urn:meteofrance:stations:76455</gml:identifier>

<!-- metadata deleted for brevity sake -->

<!-- === -->
<!-- Observed Property = Output -->
<!-- === -->
<sml:outputs>

<sml:OutputList>
<sml:output name="temp">

<sml:DataInterface>
<sml:data>

<swe:DataStream>
<!-- describe output -->
<swe:elementType name="temperature">

<swe:Quantity
definition=
"http://mmisw.org/ont/cf/parameter/air_temperature">

<swe:uom code="Cel"/>
</swe:Quantity>

</swe:elementType>
<!-- simple text encoding -->
<swe:encoding>

<swe:TextEncoding tokenSeparator="," blockSeparator=" "/>
</swe:encoding>
<!-- reference the values at a RESTful resource -->
<!-- returns latest measurement or continues to send new values through
open http pipe -->
<swe:values xlink:href="http://myServer.com:4563/sensor/02080"/>

</swe:DataStream>
</sml:data>

</sml:DataInterface>
</sml:output>

</sml:OutputList>
</sml:outputs>
<!-- === -->
<!-- Station Location -->
<!-- === -->
<sml:position>

<gml:Point gml:id="stationLocation" srsName=
"http://www.opengis.net/def/crs/EPSG/0/4326">

<gml:coordinates>47.8 88.56</gml:coordinates>
</gml:Point>

</sml:position>
</sml:PhysicalComponent>

APPENDIX J. APPENDIX: XML FILE OF A SENSORML EXAMPLE

226

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Motivation
	Vision and Research Approach
	Adopted Research Method
	Research Problem and Hypothesis
	Research Question
	Hypothesis

	Thesis Plan Outline
	Core Block I: Introduction
	Core Block II: Background
	Core Block III: Contributions
	Core Block IV: Validation
	Core Block V: Conclusions

	Internet-of-Things (IoT)
	Challenges, Barriers and Trends
	Wireless Sensor Networks
	WSN Specific Issues
	Resource-Constrained Systems (RCS)

	Standards
	Organisations & Alliances
	Protocols
	Platforms
	Embedded Operating Systems (OS)
	Security

	Topic Discussion

	Model-Driven Approaches
	A First Attempt: Computer-Aided Software Engineering
	CASE Risk Factors

	Model-Driven Engineering
	Models and Meta-Models
	Model-Driven Architecture
	MDA Models and Viewpoints
	MDA and Model Transformations
	Horizontal and Vertical Transformations

	Modelling and Transformation Languages
	Modelling Languages
	Transformation Languages

	Topic Discussion

	Decision-Making Methodologies
	Decision-Making Process
	Methods for Multi-Criteria Decision-Making
	Analytic Hierarchy Process (AHP)
	PROMETHEE
	ELECTRE

	Topic Discussion

	Framework to Formally Describe an IoT System
	Models, Methods for IoT Systems Specification
	Hardware Representations

	Framework for IoT System Formal Description
	Specification of IoT System Generic Features
	IoT System Specification
	IoT System: Hardware Specification
	IoT System: Software Formalisation
	IoT System: Energy Profile Formalisation

	Model-Driven Harmonisation Framework
	Topic Discussion

	Assessment Framework for IoT Systems
	Decision-Making in IoT
	Framework for IoT Systems Assessment
	Multi-Criteria Assessment Specification
	MCDM Methods Specification
	Analytic Hierarchy Process (AHP) Specification
	ELECTRE Specification

	IoT Systems: Multi-Criteria Assessment Methodology
	Topic Discussion

	Framework for Design Support of IoT Systems
	Conceptual Approach for Design Support of IoT Systems
	Framework for Design Support of IoT Systems
	Design of IoT Systems: Specification Models
	Harmonisation Layer & Interoperability Engine
	Topic Discussion

	Implementation and Hypothesis Validation
	Proof-of-Concept Implementations
	Application Scenario 1: Smart Building Design
	Application Scenario 2: SensorML Standard

	Technical Implementations
	Implementation of Scenario 1: Smart Building Design
	Implementation of Scenario 2: SensorML Standard

	Acceptance by Scientific Community & Industry
	Acceptance by Scientific Community
	Acceptance by Industry

	Hypothesis Validation

	Conclusions
	The Path from Background Research up to PhD Thesis
	Background Observation
	Research Work

	Scientific and Technical Contributions
	From a Research Question to Validation
	Publications Summary

	Future Work

	Bibliography
	Appendix: IoTSAG Ecore Representation
	Appendix: RCSM Ecore Representation
	Appendix: RCSH Ecore Representation
	Appendix: MCAM Ecore Representation
	Appendix: AHP Ecore Representation
	Appendix: ELECTRE Ecore Representation
	Appendix: IoTSAC Ecore Representation
	Appendix: C Language Ecore Representation
	Appendix: nesC Language Ecore Representation
	Appendix: XML File of a SensorML Example

