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ABSTRACT 

The research presented in this thesis investigates the best ways to manage Distributed Situation 

Awareness (DSA) for a team of agents tasked to conduct search activity with limited resources 

(battery life, memory use, computational power, etc.). In the first part of the thesis, an algorithm 

to coordinate agents (e.g., UAVs) is developed. This is based on Delaunay triangulation with the 

aim of supporting efficient, adaptable, scalable, and predictable search.  Results from simulation 

and physical experiments with UAVs show good performance in terms of resources utilisation, 

adaptability, scalability, and predictability of the developed method in comparison with the 

existing fixed-pattern, pseudorandom, and hybrid methods. The second aspect of the thesis 

employs Bayesian Belief Networks (BBNs) to define and manage DSA based on the information 

obtained from the agents' search activity. Algorithms and methods were developed to describe how 

agents update the BBN to model the system’s DSA, predict plausible future states of the agents’ 

search area, handle uncertainties, manage agents’ beliefs (based on sensor differences), monitor 

agents’ interactions, and maintains adaptable BBN for DSA management using structural 

learning.  The evaluation uses environment situation information obtained from agents’ sensors 

during search activity, and the results proved superior performance over well-known alternative 

methods in terms of situation prediction accuracy, uncertainty handling, and adaptability. 

Therefore, the thesis’s main contributions are (i) the development of a simple search planning 

algorithm that combines the strength of fixed-pattern and pseudorandom methods with resources 

utilisation, scalability, adaptability, and predictability features; (ii) a formal model of DSA using 

BBN that can be updated and learnt during the mission; (iii) investigation of the relationship 

between agents search coordination and DSA management. 

  

 

 

 

 

 



 
 

ii 

 

 

DEDICATION 

For my parents and me. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

iii 

ACKNOWLEDGEMENTS 

My gratitude to Prof. Chris Baber for his patience, advice, support, encouragement, and guidance 

throughout my doctoral journey. Indeed, I will never forget the impact of his contributions to the 

progress of my research. I am also grateful to Dr. Mohan Sridharan and Bob Hendley for their 

valuable comments and feedback. My special thanks to Nigeria’s Petroleum Technology Trust 

Fund (PTDF) for the sponsorship and support. 

To my mum and dad, thank you so much for the prayers, support, and encouragement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

iv 

TABLE OF CONTENTS 

 

1 Chapter 1 Introduction ................................................................................................................. 1 

1.1 The Choice of Use Case: Forest Fire Monitoring ............................................................ 1 

1.2 Use Case Specifications ................................................................................................... 4 

1.2.1 Assumptions that inform the modelling in the thesis ................................................ 7 

1.3 Introducing the Concept of Situation Awareness ............................................................. 8 

1.4 Example of Situation Awareness in Forest Fire Monitoring .......................................... 10 

1.4.1 The Mann Gulch Forest fire incident ...................................................................... 10 

1.4.2 Forest Fire SA Perception Stage ............................................................................. 11 

1.4.3 Forest Fire SA Comprehension Stage ..................................................................... 12 

1.4.4 Forest Fire Projection .............................................................................................. 13 

1.5 Research Questions ........................................................................................................ 14 

1.6 Objectives of the Thesis ................................................................................................. 15 

1.7 Approaches to Research ................................................................................................. 19 

1.8 Major Contributions and Novelties ................................................................................ 20 

2 Chapter 2 Literature Review ................................................................................................. 22 

2.1 Distributed Situation Awareness Concepts .................................................................... 22 

2.2 Models of Situation Awareness ...................................................................................... 25 

2.3 Endsley’s Stages of SA: Perception, Comprehension, and Projection .......................... 26 

2.4 Agents Search Coordination to Support DSA ................................................................ 30 

2.4.1 Search Plan Generation ........................................................................................... 30 

2.4.2 Agents Interaction ................................................................................................... 32 

2.5 Distributed Situation Awareness in Forest Fire Monitoring .......................................... 33 

3 Chapter 3 Efficient Constraint-based Search ........................................................................ 36 

3.1 Introduction .................................................................................................................... 36 

3.2 Problem Formulation and Model ................................................................................... 39 

3.3 Unique Features of the Existing Solutions ..................................................................... 43 

3.4 The Proposed Solution ................................................................................................... 49 

3.4.1 Delaunay-Inspired Multi-agent Search Strategy (DIMASS) Solution ................... 51 



 
 

v 

3.5 Performance Comparison ............................................................................................... 61 

3.6 Hypothesis ...................................................................................................................... 62 

3.7 Evaluation task ............................................................................................................... 62 

3.8 Performance Measurement ............................................................................................. 64 

3.8.1 Quantitative Performance Metrics .......................................................................... 64 

• Energy ............................................................................................................................ 64 

• Mission Time ................................................................................................................. 65 

• Memory Use ................................................................................................................... 65 

• Coverage ......................................................................................................................... 65 

• Path Divergence ............................................................................................................. 66 

• Redundant Search ........................................................................................................... 67 

• Agents Interactions ......................................................................................................... 67 

• Time Complexity ............................................................................................................ 67 

• McCabe Cyclomatic Complexity ................................................................................... 68 

3.8.2 Qualitative Performance Measures ......................................................................... 68 

• Scalability ....................................................................................................................... 68 

• Predictability .................................................................................................................. 69 

• Adaptability .................................................................................................................... 69 

3.8.3 Results ..................................................................................................................... 69 

4 Chapter 4: Towards Agents Distributed Situation Awareness Modelling ............................ 81 

4.1 Introduction .................................................................................................................... 81 

4.2 An Example of the System DSA using BBN ................................................................. 83 

4.3 Performance Measures ................................................................................................... 86 

4.4 Hypothesis ...................................................................................................................... 87 

4.5 Experiment Design and Task ......................................................................................... 87 

4.6 BBN for DSA Modelling ............................................................................................... 88 

4.7 Initialising Priors of the Phenomena State in BBN ........................................................ 91 

4.8 Updating Phenomena States Priors of the BBN ............................................................. 95 

4.9 Nodes Relations Measures ............................................................................................. 97 

4.10 Discussion and Conclusion ....................................................................................... 102 



 
 

vi 

5 Chapter 5: Agents DSA Comprehension and Interaction ................................................... 105 

5.1 Introduction .................................................................................................................. 105 

5.1.1 DCOP Agent in DSA System ............................................................................... 106 

5.1.2 Dynamism and Multi-objectivity of DCOP in DSA System ................................ 107 

5.1.3 The Model ............................................................................................................. 108 

5.1.4 Hypothesis............................................................................................................. 110 

5.1.5 Metrics .................................................................................................................. 111 

5.2 Proposed DSA-based DCOP Solution ......................................................................... 111 

5.2.1 DSA Modelling for DCOP Solution ..................................................................... 111 

5.2.2 Variable Generation .............................................................................................. 117 

5.2.3 Agents Interaction Success Measurement ............................................................ 118 

5.3 The Proposed Agents Interaction Analysis Application Procedure ............................. 119 

5.4 Evaluation ..................................................................................................................... 120 

5.5 Discussion and Conclusion .......................................................................................... 131 

6 Chapter 6 System Model Methods ...................................................................................... 133 

6.1 Introduction .................................................................................................................. 133 

6.2 Hypothesis .................................................................................................................... 134 

6.3 Methods ........................................................................................................................ 134 

6.3.1 Sensor Labelling ................................................................................................... 134 

6.3.2 Sensor Data Recording ......................................................................................... 138 

6.3.3 Sensor Sampling ................................................................................................... 140 

6.3.4 Sensor Conflict (Contradictions) Handling .......................................................... 143 

6.3.5 Featuring Engineering for the SA model .............................................................. 143 

6.3.6 BBN Update to Support SA Model ...................................................................... 143 

6.3.7 Search Area Definition ......................................................................................... 144 

6.3.8 Priors Relation with Search Pattern Experiment .................................................. 146 

6.4 Fitting Real Values to Simulation ................................................................................ 146 

6.5 Search Area and UAVs Simulation .............................................................................. 149 

6.6 Results .......................................................................................................................... 153 

6.7 Discussion and Conclusion .......................................................................................... 160 

7 Chapter 7 Prediction and Uncertainty Handling ................................................................. 163 



 
 

vii 

7.1 Introduction .................................................................................................................. 163 

7.1.1 Existing Methods .................................................................................................. 165 

7.1.2 Gaussian Process ................................................................................................... 166 

7.1.3 Time Series Models .............................................................................................. 170 

7.1.4 Expectation-Maximization Algorithm .................................................................. 173 

7.2 Performance Metrics .................................................................................................... 174 

7.3 Evaluation ..................................................................................................................... 177 

7.3.1 Task ....................................................................................................................... 179 

7.3.2 Results ................................................................................................................... 180 

7.3.3 Prediction Results ................................................................................................. 180 

7.3.4 Multiple States Prediction ..................................................................................... 182 

7.3.5 Uncertainty Handling ............................................................................................ 184 

7.3.6 Small BBN (Figure 39) and Dataset ..................................................................... 185 

7.3.7 Large Datasets Validation ..................................................................................... 187 

7.3.8 Uncertainty Types Differences Evaluation ........................................................... 190 

7.3.9 Resources (Computational and Memory) Demand Results .................................. 191 

7.4 Discussion and Conclusion .......................................................................................... 193 

8 Chapter 8 Adaptable DSA .................................................................................................. 195 

8.1 Introduction .................................................................................................................. 195 

8.1.1 Existing Methods .................................................................................................. 197 

8.1.2 BBN Structural Learning for DSA System ........................................................... 198 

8.1.3 Situations and Agents Variation across DSA System and the Need for an Adaptable 
DSA Model ......................................................................................................................... 201 

8.1.4 Conditional Independence Measures .................................................................... 201 

8.2 Hypotheses ................................................................................................................... 204 

8.3 Performance Metrics .................................................................................................... 205 

8.4 Proposed Solution ........................................................................................................ 205 

8.4.1 Constraints (Protocols) Development ................................................................... 205 

8.4.2 SME Inputs Incorporation ..................................................................................... 209 

8.4.3 The Proposed Algorithm ....................................................................................... 210 

8.4.4 Algorithm Application Example ........................................................................... 215 



 
 

viii 

8.5 Algorithm Evaluation ................................................................................................... 224 

8.5.1 Comparison with the Existing Methods ................................................................ 227 

8.6 Discussion and Conclusion .......................................................................................... 230 

9 Chapter 9 Discussion, and Conclusion ............................................................................... 232 

9.1 Introduction .................................................................................................................. 232 

9.2 Recap of the Thesis Research Questions ...................................................................... 232 

9.2.1 RQ1. How can we obtain a constraint-based search method for agents with limited 
resources operating in dynamic search areas? .................................................................... 232 

9.2.2 How can we manage the Situation Awareness of distributed agents? .................. 238 

9.2.3 RQ3. How could agents’ search plan support SA management? ......................... 242 

9.3 Methods Application Adaptability ............................................................................... 244 

9.4 Positioning the Research in Current Literature ............................................................ 246 

9.5 Future Work ................................................................................................................. 249 

References ................................................................................................................................... 252 

Appendices .................................................................................................................................. 274 

Supplemental Files ...................................................................................................................... 276 

 

 

 

 

 

 

 

 

 

 



 
 

ix 

LIST OF FIGURES 

Figure 1: Fire Searching using Towers (Photo by: Lookout handbook )(US Department of the 
Interior, National Park Services). .................................................................................................... 3 
Figure 2: Problem Modelling on AMASE .................................................................................... 38 
Figure 3:AMASE Implementation of Creeping Line Search ....................................................... 44 
Figure 4:AMASE Implementation of Parallel Track Search ........................................................ 45 
Figure 5:AMASE Implementation of Zamboni Search ................................................................ 46 
Figure 6:AMASE Implementation of Expanding Square Search ................................................. 47 
Figure 7:AMASE Implementation of Sector Search .................................................................... 48 
Figure 8:Implementation of the Initial Algorithm on AMASE .................................................... 50 
Figure 9: Example of Delaunay-Inspired Multi-agent Search Strategy (DIMASS) Solution ...... 55 
Figure 10: Example of Waypoints Reflection and Refraction ...................................................... 57 
Figure 11: Multiple Agents Plan Generation ................................................................................ 59 
Figure 12: Example of Coverage Measurement ........................................................................... 66 
Figure 13: Example of Concept Map of Fire Scenario ................................................................. 82 
Figure 14: AMASE Example of Search Area Situation (Replica of Figure 2 of Chapter 3) ........ 84 
Figure 15:Initial BBN  (produced in Netica) for Forest Fire Spread Monitoring ......................... 85 
Figure 16: Final Weighted Values Number Line .......................................................................... 94 
Figure 17: Example of Belief Update Transition. ......................................................................... 96 
Figure 18:BBN Model for Fire Spread Concepts Presentation (NETICA Software) ................. 114 
Figure 19: Sample of Agents Interaction Transcripts Excerpts from AMASE .......................... 122 
Figure 20: UAV1 Waypoints Optimisation Entropy .................................................................. 123 
Figure 21: UAV1 Waypoints Number of Interactions ................................................................ 124 
Figure 22: UAV2 Waypoints Optimisation Entropy .................................................................. 125 
Figure 23: UAV2 Waypoints Number of Interactions ................................................................ 126 
Figure 24:UAV3 Waypoints Optimisation Entropy ................................................................... 127 
Figure 25: UAV3 Waypoints Number of Interactions ................................................................ 128 
Figure 26: UAV4 Waypoints Optimisation Entropy .................................................................. 129 
Figure 27: UAV4 Waypoints Number of Interactions ................................................................ 130 
Figure 28:Example of BBN for Fire Spread BBN (PC Level) ................................................... 136 
Figure 29:Example of Host BBN(Host Level) ........................................................................... 137 
Figure 30: BBN States Excerpts from AMASE UAVs Operation ............................................. 139 
Figure 31:Example of Agents Periodic Sensor Sampling. .......................................................... 142 
Figure 32:Example of Search Area Categorisation. ................................................................... 146 
Figure 33: Example of XML Weather Report ............................................................................ 149 
Figure 34: Fire Spread Experiment ............................................................................................. 153 
Figure 35: Priors Values for a Lévy Flight Mission (Coloured) ................................................. 156 
Figure 36: Priors Values for a Delaunay-Inspired Multi-agent Search Strategy (DIMASS) Mission 
(Coloured) ................................................................................................................................... 157 
Figure 37: Example of Gaussian Process Prediction and Uncertainty Handling. ....................... 170 



 
 

x 

Figure 38:An Example of Hyperparameters Identification ........................................................ 172 
Figure 39: Example of BBN for Fire Spread (PC level) ............................................................. 178 
Figure 40:Larger Bayesian Belief Network (NETICA software) for SA Model at Host Level . 179 
Figure 41:Fire Spread BBN (NETICA Software) ...................................................................... 196 
Figure 42: Degree of Transition Role ......................................................................................... 208 
Figure 43:AMASE simulation .................................................................................................... 216 
Figure 44:Elbow method number of BBN links hierarchy ......................................................... 219 
Figure 45: Elbow method number of BBN links hierarchy ........................................................ 220 
Figure 46: The Constructed BBN ............................................................................................... 222 
Figure 47: The Constructed BBN (NETICA SOFTWARE) ...................................................... 223 
Figure 48:  Delaunay-Inspired Multi-agent Search Strategy (DIMASS) Algorithm Implementation 
on Real-UAV (DJI Pilot App) .................................................................................................... 237 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

xi 

LIST OF TABLES 

Table 1: Agents Types and Mission Roles ..................................................................................... 4 
Table 2: Human Experts and Their Goals ....................................................................................... 5 
Table 3: System Constraints ........................................................................................................... 6 
Table 4: Research Objectives and Addressed Chapters ................................................................ 15 
Table 5: Definition of Parameters ................................................................................................. 40 
Table 6: Quantitative Measures Result- Coverage Measures ....................................................... 70 
Table 7: Quantitative Measures Result- Complexities Measures ................................................. 71 
Table 8: Quantitative Measures Result- Agents and Mission-Based Featured ............................. 72 
Table 9: Quantitative Measures Result- Redundant Search Result .............................................. 73 
Table 10: Qualitative Measures Result- Algorithms Adaptability Comparison ........................... 76 
Table 11: Limiting the Random Number Seed Range for Levy Flight ........................................ 79 
Table 12: An Example of Node CPT Entries ................................................................................ 90 
Table 13: Example of SMEs Paired Comparison Frequency Table ............................................. 92 
Table 14: Example of SMEs Paired Comparison Frequency Table ............................................. 93 
Table 15:Frequencies Mean and Z-Score ..................................................................................... 93 
Table 16: Estimated Probabilities for Wind Speed Data .............................................................. 96 
Table 17: Example of Cost Optimisation Grade Node CPT Entries .......................................... 114 
Table 18: Example of BBN Awareness Node ............................................................................ 116 
Table 19: Experiment Location Fuel Type Sampling on Liji Hill, Gombe State of Nigeria ...... 150 
Table 20: Different Locations and Forest Fire Spread Rate ....................................................... 158 
Table 21:UAVs Modelled ........................................................................................................... 158 
Table 22:Sensor Configuration ................................................................................................... 159 
Table 23: Single Approaches Prediction Performance on the Agents Sensor Data ................... 181 
Table 24: Multiple States Prediction Results for Delaunay-Inspired Multi-agent Search Strategy 
(DIMASS) Based Data ............................................................................................................... 183 
Table 25: Multiple States Prediction Results for Lévy Flight Data Based Data ........................ 183 
Table 26: EM Efficiency on Prediction and Uncertainty Handling ............................................ 185 
Table 27: BBN Large Data Validation ....................................................................................... 187 
Table 28: Effect of Uncertainty on Large BBN .......................................................................... 188 
Table 29: BBN Large Data Validation ....................................................................................... 190 
Table 30: Complexity Assessment .............................................................................................. 192 
Table 31:Agent-based Approach Recommendation ................................................................... 193 
Table 32: Example of CPT for Spread Node of Figure 41 ......................................................... 199 
Table 33: Example of Prior Probability for States of the BBN .................................................. 217 
Table 34: Relevance and Critical Weight Values ....................................................................... 218 
Table 35: Experiment Results ..................................................................................................... 224 
Table 36: Successful Links ......................................................................................................... 225 
Table 37: Reduced Number of Clusters Performance Comparison ............................................ 226 
Table 38: Comparison with the Existing Methods ..................................................................... 227 



 
 

xii 

LIST OF EQUATIONS 

Equation 1: Problem Modelling using DCOP .............................................................................. 39 
Equation 2: Problem Utility Function ........................................................................................... 43 
Equation 3: Waypoints Reflection ................................................................................................ 56 
Equation 4:Waypoints Refraction ................................................................................................. 57 
Equation 5 : Lévy Distribution ..................................................................................................... 63 
Equation 6: Lévy Flight Waypoints Step Size .............................................................................. 64 
Equation 7:Nodes Relation ........................................................................................................... 97 
Equation 8: BBN Nodes Relevance Computation ........................................................................ 98 
Equation 9:Agents Interaction DCOP Model ............................................................................. 108 
Equation 10:Shannon's Entropy .................................................................................................. 118 
Equation 11:Agents  Interaction Measuring ............................................................................... 119 
Equation 12: Adaptable Sensor Sampling Computation ............................................................ 141 
Equation 13: Fire Spread Modelling ........................................................................................... 147 
Equation 14: Situation Prediction using Interpolation ................................................................ 161 
Equation 15: Prediction Weight .................................................................................................. 161 
Equation 16: Bayes Rule Prediction ........................................................................................... 162 
Equation 17: Prediction using GP ............................................................................................... 166 
Equation 18:GP Equation ........................................................................................................... 168 
Equation 19:GP Mean ................................................................................................................. 168 
Equation 20: GP Standard Deviation .......................................................................................... 168 
Equation 21: GP Distribution...................................................................................................... 168 
Equation 22: GP Uncertainty Measurement ............................................................................... 169 
Equation 23: EM Expectation State ............................................................................................ 173 
Equation 24: Relevance Based Metric ........................................................................................ 174 
Equation 25:Transition Monitoring ............................................................................................ 175 
Equation 26: EM Expectation State for Convex Entries ............................................................ 194 
Equation 27:EM Expectation State for Concave Entries ............................................................ 194 
Equation 28:Nodes Relation Measurement using Entropy ......................................................... 202 
Equation 29: Number of Clusters Equation ................................................................................ 225 
 

 

 

 

 



 
 

xiii 

LIST OF ABBREVIATIONS 

Abbreviation Full Term 

SA Situation Awareness 

DSA Distributed Situation Awareness 

BBN Bayesian Belief Network 

EM Expectation-Maximisation 

GD Gradient Descent 

DCOP Distributed Constraint Optimisation 

DCOPs Distributed Constraint Optimisation Problems 

MGM Maximum Gain Message 

DPOP Distributed Pseudotree OPtimisation 

UAV Unmanned Aerial Vehicle 

SME Subject Matter Expert 

SOP Standard Operating Procedure 

API Application Programming Interface 

IDE Integrated Development Environment 

PC Picture Compiler 

CI Conditional Independence 

GMM Gaussian Mixture Model 

GP Gaussian Process 

XML eXtensible Markup Language 

MVC Model-View -Controller 

CSV Comma-Separated Values 

ACF Auto-Correlation Function 

PCF Partial auto-Correlation Function 

 

 

 

 

 



 
 

xiv 

GLOSSARY 

 

Term  

Definition 

Resources Parameters possessed by agents or missions that define their operational 

success e.g., battery, processing power, etc. for UAVs. 

Parameters Characterisation variables possessed by an agent, mission, or search area 

e.g., current location, battery level, computational power, etc. 

Search area  A bounded space to be explored by the agents. 

Phenomenon  Search area parameters e.g., trees, buildings, wind speed, wind direction. 

Coverage The portion of search area explored, i.e., the portion of the search area with 

agents’ sensing. 

Path divergence Measure of how the search path is spread across the search area. 

Protocols Set of rules that control the algorithm’s outcome. 

Team of UAVs A group of UAVs, mostly up to four. 

Paths elements Controllable parts of a path plan, these are: angles, edges, and quadrants. 

Method It depends on the context. It means the way of doing the thing, e.g., search 

method refers to search plan generation algorithm. 

Search plan Set of waypoints generated to explore an area. 

Search mission or 

search 

Exploration of a search area to detect a prescribed target. 

Waypoint Geodetic location within a search area. This can be referenced using 

longitude and latitudes or planar coordinates. 

Predictability Ability to predict the future situation e.g., for search mission, it is an ability 

to predict the location of the agents. 

Scalability Ability of an algorithm to process large number of agents or data with a 

stable resource. 

Adaptability The ability of an algorithm to be flexible based on various inputs e.g., 

given varying tasks, data, etc. 

SA modelling tool A tool used to model Situation Awareness of the system based on the 

agents’ information. 



 
 

xv 

Knowledge Agents acquired phenomena information based on sensor states. 

Automation Non-human agents, e.g., UAVs, that relied on algorithms for their task 

performance 

Distributed agents Agents with the capability to act independently, however, there could be a 

presence of sparse interaction based on proximity (limited sensor range) 

with other agents. Thus, distribution in this thesis refers to a partial 

distribution. 

Constraint Imposed system limitations e.g., for UAVs, these can be limited battery, 

communication range, processing power, etc. 

Dynamic Characterised by changing values overtime e.g., a dynamic search area has 

a changing wind speed, wind direction, fuel types, etc. configuration from 

one location to another over time. 

Information Agents gathered sensor phenomena states values based on sensor outcome 

Coordination Effective generation of search plans for multiple agents e.g., to avoid 

redundant search, etc, that control the agents search mission 

Belief Agent’s  verified sensor information 

Interaction Information exchange among agents 

Fixed-pattern Agents waypoint generation using defined geometric shapes e.g., sector 

search 

Simple agents Low-capicity automation agents specifically mini-or micro UAVs based 

on classification in Chapter 1 Table 1 

Picture compilers Medium-capacity agents responsible for managing specific group of 

information (gathered by the simple agents) for a specific concept 

understanding. 

Host High-capacity agents that can manage the system information 

Critical weight SMEs weight assignments for information importance  

Degree of 

relevance 

The degree of relations among two nodes 

Environment Depends on the context. 

 



 
 

xvi 

Thesis Publication 

This thesis development leads to the following publications. 

1. Yusuf S.M  and Baber.C.,  2021. Formalizing Distributed Situation Awareness in Multi-

Agent Networks. IEEE transactions in Human-Machine System. Journal. Published 

Contributions: SA modelling using Bayesian Belief Network 

i. Yusuf and Baber developed model. 

ii. Yusuf implemented model. 

iii. Yusuf designed and implemented experiments. 

iv.  Yusuf analysed the results. 

v. Yusuf writes the paper. 

vi. Yusuf and  Baber revised the paper. 

2. Yusuf S.M  and  Baber.C., 2022. DIMASS: a Delaunay-Inspired Multi-agent Search 

Strategy (DIMASS), Hybrid Approach to a Team of Agents Search Strategy. Frontiers in 

AI and Robotics. Journal. Accepted  

Contributions: Agents Efficient Search Algorithms Development 

i. Yusuf developed and implemented the model. 

ii. Yusuf designed and implemented experiments. 

iii.  Yusuf analysed the results. 

iv. Yusuf writes the paper. 

v. Yusuf and Baber revised the paper. 

3. Yusuf S.M  Baber.C., 2022. Distributed Situation Awareness for Multi-agent Mission in 

Dynamic Environments: A Case of Multi-UAVs Wildfires Searching. Presented at the 35th 

International Conference of the Association for the Advancement of Artificial Intelligence 

(AAAI), Doctoral Consortium Section, Vancouver, Canada. Conference. Published 

Contributions: Problem definition and methodology 

i. Yusuf and Baber defined the problem and methodology. 

ii. Yusuf designed and implemented the experiments. 

iii. Yusuf writes the paper. 



 
 

xvii 

iv. Yusuf presented the paper. 

v. Yusuf and Baber revised the paper. 

 

4. Yusuf S.M  and Baber.C.,  2020. Conflicts Resolution and Situation Awareness in 

Heterogeneous Multiagent Missions using Publish-subscribe Technique and Inferential 

Reasoning. Presented at 12th International Conference on Agents and Artificial 

Intelligence (ICAART), Valetta, Malta. Conference. Published 

Contributions: Agents sensor states conflicts handling 

i. Yusuf and Baber developed and implemented the model. 

ii. Yusuf designed and implemented experiments. 

iii.  Yusuf analysed the results. 

iv. Yusuf writes the paper. 

v. Yusuf presented the paper. 

vi. Yusuf and Baber revised the paper. 

 

5. Yusuf S.M  and Baber.C.,  2020. Handling Uncertainties in Distributed Constraint 

Optimisation Problems using Inferential Reasoning. Presented at 12th International 

Conference on Agents and Artificial Intelligence (ICAART), Valetta, Malta. Conference. 

Published 

Contributions: Agents collected sensor information uncertainty handling and predictions 

i. Yusuf developed and implemented the model. 

ii. Yusuf designed and implemented experiments. 

iii.  Yusuf analysed the results. 

iv. Yusuf writes the paper. 

v. Yusuf presented the paper. 

vi. Yusuf and  Baber revised the paper. 

6. Yusuf S.M  and Baber.C.,  2020. Inferential Reasoning in Dynamic and Uncertain 

Distributed Constraint Optimisation Problem: A Case Study of Multi-UAV Mission for 

Forest Lookouts. Presented at 12th International Conference on Agents and Artificial 



 
 

xviii 

Intelligence (ICAART), Valetta, Malta. Open Communication. Published in the book of 

abstract 

Contributions: Agents’ resources utilisation formalisation with the Distributed Constraint 

Optimisation. 

vii. Yusuf developed and implemented the model. 

viii. Yusuf designed and implemented experiments. 

ix.  Yusuf analysed the results. 

x. Yusuf writes the paper. 

xi. Yusuf presented the paper. 

xii. Yusuf and Baber revised the paper. 

7. Yusuf S.M  and Baber.C.,  2020. Human-agents Interactions in Multi-agent Systems: A 

Case Study of Human-UAVs Team for Forest Fire Lookouts. Presented at 12th 

International Conference on Agents and Artificial Intelligence (ICAART), Valetta, Malta. 

Conference. Published 

Contributions: Agents role specifications and interaction architecture 

i. Yusuf developed and implemented the model. 

ii. Yusuf designed and implemented experiments. 

iii.  Yusuf analysed the results. 

iv. Yusuf writes the paper. 

v. Yusuf presented the paper. 

vi. Yusuf and Baber revised the paper. 

 

8. Sagir M. Yusuf and Baber.C.,  2020. Probabilistic Approach of Dealing with Uncertainties 

in Distributed Constraint Optimisation Problems and Situation Awareness for Multi-agent 

Systems. Presented at 14th International Conference on Multi-Agent Systems and 

Robotics(ICMASR), London, United Kingdom. Conference.  Published, Best 

Presentation Award 

Contributions: Formalising Distributed Situation Awareness (DSA) with Bayesian 

Network and Learning 



 
 

xix 

i. Yusuf and Baber developed and implemented the model. 

ii. Yusuf designed and implemented experiments. 

iii.  Yusuf analysed the results. 

iv. Yusuf writes the paper. 

v. Yusuf presented the paper. 

vi. Yusuf and  Baber revised the paper. 

9. Sagir M. Yusuf and Baber.C.,  2020. Multiagent Searching Adaptation using Lévy Flight 

and Inferential Reasoning. Presented at 14th International Conference on Multi-Agent 

Systems and Robotics(ICMASR), London, United Kingdom. Conference. Published 

Contributions: Multi-agent search methods performance analysis 

i. Yusuf and Baber developed and implemented the model. 

ii. Yusuf designed and implemented experiments. 

iii.  Yusuf analysed the results. 

iv. Yusuf writes the paper. 

v. Yusuf presented the paper. 

vi. Yusuf and  Baber revised the paper. 

10. Sagir M. Yusuf and Baber.C.,  2020. Inferential Reasoning for Heterogeneous Multi-agent 

Mission. Presented at 14th International Conference on Multi-Agent Systems and 

Robotics(ICMASR), London, United Kingdom. Conference. Published, Best Paper 

Award 

Contributions: Agents' sensor heterogeneity management 

i. Yusuf and Baber developed and implemented the model. 

ii. Yusuf designed and implemented experiments 

iii.  Yusuf analysed the results. 

iv. Yusuf writes the paper. 

v. Yusuf presented the paper. 

vi. Yusuf and Baber revised the paper.



 
 

1 

1 Chapter 1 Introduction 

This chapter introduces the use case for this thesis: a distributed team of Unmanned Aerial vehicles (UAVs) is tasked to perform forest 

fire monitoring. For the use case and the thesis, the key questions relate to how this team is able to coordinate its search activity and 

maintain Situation Awareness, even when communications between team members is limited. This use case highlights the challenges 

of Distributed Situation Awareness (DSA) and how factors such as dynamic parameters (e.g., wind speed, wind direction, fuel types, 

etc.), limited resources (time, energy, computational power, etc.), and system constraints can affect the management of DSA within the 

system. The use case frames the research questions for the thesis. 

1.1 The Choice of Use Case: Forest Fire Monitoring 

Forest fire is still a big problem for humanity resulting in loss of lives and properties (Bjurling et al., 2020; Ingle, 2011; International 

Forest Fire News, 2006; Peter Hirschberger, 2016; S. Wang et al., 2021).  For instance, in 2020 alone, the US recorded 58,950 forest 

fire cases with over 10.1 million acres burned and loss of properties worth over 7 billion US dollars1. To address this challenge, constant 

forest monitoring (searching for the fire and general SA management) is required. Thus, addressing this challenge requires a dynamic 

search area exploration. The challenge becomes more complicated when automation agents (e.g., UAVs) are tasked to conduct the 

mission instead of purely humans. Application of automation agents to address the challenge proved to be more effective in terms of 

cost and risk management with limitations of coordination and SA management challenges (Bailon-Ruiz et al., 2022; Bjurling et al., 

2020; Bouguettaya et al., 2022; Casbeer et al., 2005; Cummings et al., 2007; Ghamry and Zhang, 2016; Merino et al., 2006.; Mohd 

Daud et al., 2022; Ozkan and Kilic, 2022; Rabinovich et al., 2018; Rocha et al., 2022; Zhou et al., 2018). Thus, these outlined challenges 

(i.e., distributed agents coordination and DSA management) are the thesis main motivations. 

 
1https://www.iii.org/fact-statistic/facts-statistics-wildfires#:~:text=2020%3A%20In%202020%20there%20were,4.7%20million%20acres%20in%202019. 
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It is proposed that, while the thesis use-case is specific, features of the example applies to various domains, e.g., missing person finding, 

search and rescue, disaster management, business monitoring, etc. (Bevacqua et al., 2015; Cooper, 2020; Drew, 2021; Kanistras et al., 

2013; Ozkan and Kilic, 2022; Weick, 1995). 

 

The primary sources of forest fires are meteorological, e.g., lightning and thunderstorm, mechanical, e.g., trains, and human activities, 

e.g., campfires (Alkhatib, 2014; Ingle, 2011; Smith, 2017). Thus, predicting the occurrence of a fire is challenging due to the random 

behaviour of these sources. As such, effective constant search must be maintained to allow early detection for an effective response 

(Ingle, 2011; Marjovi et al., 2009; Vincent and Rubin, 2004). The traditional solution relied on trained rangers (Smith, 2017). This 

evolved gradually to horse-based search and trees/towers observation (Figure 1), satellite imaging, helicopters, and UAVs approach 

(Bailon-Ruiz et al., 2022; Bouguettaya et al., 2022;Alkhatib, 2014; Baek and Lim, 2018; Bouvry et al., 2016, 2016; Breejen et al., 1998; 

Casbeer et al., 2005; Chuvieco et al., 2019; Ghamry and Zhang, 2016; Ingle, 2011; Peter Hirschberger, 2016; Rocha et al., 2022; Smith, 

2017). Helicopter and satellite imaging methods offer broader coverage than UAVs. However, these approaches are costly, and satellite 

imaging has some delays during information processing (Chuvieco et al., 2019). Due to these limitations, surveillance cameras have 

been applied (Breejen et al., 1998) with the main limitation of occlusion and lack of manoeuvrability. More recently, UAVs have been 

applied to tackle the problem (Casbeer et al., 2005; Ghamry and Zhang, 2016; Haksar and Schwager, 2018; Merino et al., 2006). UAVs 

offer cheaper solutions, better manoeuvrability, and ease of operations (Bjurling et al., 2020; Casbeer et al., 2005; Ghamry and Zhang, 

2016; Merino et al., 2006; Ozkan and Kilic, 2022); however, they are constrained by limited resources, coordination challenges, and 

DSA management (Alkhatib, 2014; Baek and Lim, 2018; Casbeer et al., 2005; Chuvieco et al., 2019; Ghamry and Zhang, 2016; Khan 

et al., 2015; Merino et al., 2010, 2006).  
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Figure 1: Fire Searching using Towers (Photo by: Lookout handbook )(US Department of the Interior, National Park 

Services). 
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1.2 Use Case Specifications 

The thesis use-case assumes a team of distributed agents.  The specification of the agents align with the definitions in Table 1.  Micro 

or mini UAVs (classified by the UK Ministry of Defence2) are responsible for generating the system’s information based on the mounted 

sensors;  Picture Compilers (PCs) are responsible for specific information organisation and comprehension, e.g., weather control; the 

host performs mission management; and specialised Subject Matter Experts will be responsible for system supervision and management 

(although these are not included in the teams modelled in the thesis, Table 2 gives an indication of the roles of the human team members 

that are assumed).  

Table 1: Agents Types and Mission Roles 

Agent Type Classification Payload Role Information Source 
 
 
 
 
Simple UAVs: 
Low-level agent 

Micro >200g - 2kg  
 
Gather and act on unique 
information (perception 
task) 

 
Simple Agent: 
Fire Detector 

Sensors, e.g., infra-
red OR temperature 
OR visual camera 
OR spectrum 
camera 

Mini 2kg – 20kg  
Simple Agent: 
Weather Detector 

Sensors, e.g., wind 
OR rain OR 
temperature OR 
humidity OR snow 
Time (day / night) 
OR fog OR mist 

Picture Compilers: 
medium capability 
UAVs 

Small > 20kg - 150kg Collate, organise, level-
based planning, and 
share information (low-
level comprehension) 

Simple Agents 
 

 

 
2 https://www.gov.uk/government/publications/unmanned-aircraft-systems-jdp-0-302 
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Host Computer base 
station 

n/a Compile information and 
high-level mission 
planning (high-level 
comprehension) 

Picture Compilers  

Human experts Suitably qualified 
and Experienced 
Practitioners (see 
Table 2) 

 Manage mission Host  

 

Table 2: Human Experts and Their Goals 

Human Expert Information required Goal 
Navigation Officer Fire presence, location, terrain type, wind 

speed, wind direction, and composite 
material. 

Navigation plan  

Fire Guards Fire presence, location, wind speed, wind 
direction,  

Fire response plan 

Fire Patrol Officer Fire presence, location, environmental 
condition 

Understanding of the 
fire 

Evacuation Officers Fire presence, location, wind speed, wind 
direction, terrain, and composite fuel. 

Rescue plan 

Contingency Planners Fire fighting resources, agents' tasks, and 
available information 

Contingency Plan 

Resource Officers Fire, location Manage resources. 

Asset Officer Fire presence, fuel type, location, wind speed, 
wind direction, road type 

Manage assets. 

 



 
 

6 

The agents’ architecture has simple agents (e.g., mini or micro UAVs) responsible for information generation and submitting information 

to their respective Picture Compilers (PCs) subject to limited communication range. The PCs will then perform an onboard analysis and 

submit their information to the host for analysis and human presentation. Summarily, the proposed entities settings have the following 

constraints (Table 3) and assumptions 

Table 3: System Constraints 

Constraints Measurement 
Sparse interactions between simple UAVs, PCs, 
and hosts, i.e., based on the limited 
communication range. 
 

This will be measured in terms of number of 
interactions and sensor range (in metre square). 

Limited resources for the agents. That is limited 
energy (power), memory, and processing power 
for the UAVs (both simple UAVs and PC, 
although PCs have higher capacities than the 
simple UAVs). 
 

Each resource parameter can be measured 
differently e.g., energy can be measured using 
the agents’ battery consumption in %/s. Detail 
description of resources parameters and their 
measurements was discussed in Chapter 3 Table 
5. 

Limited sensing and communication range. 
 

This can be measured based on the sensor 
coverage and communication range in 
kilometres square (km2) e.g., agents can 
communicate only when they are within 2m2 
apart. 

Dynamic search area, i.e., changing phenomena 
states over time, e.g., varying wind speed, wind 
directions, seasons, e.g., dry, rainy, cloudy, 
snowy, foggy, etc. 
 

This is characterised by the changing 
parameters of the environment and how 
predictable they could be e.g., wind speed, wind 
direction, fuel types, etc. Changes values over 
location and time. This is measured by the 
effectiveness of the prediction of the dynamic 
parameters. 
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Each UAV activity consumes appropriate 
resources, e.g., power, processing ability, 
memory, etc. 

Measured using the resources parameters 

Single sensor per simple agent, varying sensors, 
and absence of sensor for PCs  
 

This is measured by the ability to handle the 
sensor heterogeneity. 

 

1.2.1 Assumptions that inform the modelling in the thesis 

i. Different types of agents with varying abilities, e.g., simple UAVs, PCs, host, and human experts as described in Table 1. 

Considering the case of forest fire monitoring, information perception is assigned to simple UAVs (Table 1).  This is because 

of their manoeuvrability capacity. Similarly, PCs and host perform small and large information management respectively 

based on their processing capability. The SMEs play the role of system management and high-level control. Thus, the system 

comprises various types of agents with specific functionalities across various situations. 

ii. Different sources of information (i.e., different sensors for detecting the same and different environmental phenomena) due 

to the presence of a dynamic environment. Unlike the SMEs sensing mode (e.g., using eyes and brain interpretations), UAVs 

relied on sensors. The sensor performance varies across various situations of the search area. For example, fire detection 

using a visual sensor is less reliable in the presence of an object with similar colour (e.g., dried grasses). Thus, the sensors’ 

reliability differences need to be managed. Therefore, this leads to conflicts (contradictions) among agents’ information 

iii. Agents have different roles: as discussed in (i) and (ii), agents need to have varying roles due to environmental dynamism 

and limited capacity e.g., a set of dedicated UAVs tasked to monitor fire presence, weather monitors, etc., as describe in 

Table 2. 

iv. Constant agent sensing: agents sensing poll can be periodic, location-based, or constant. I assumed constant sensing because 

of the high speed of the perception agents (i.e., the simple UAVs as fully discussed in Chapter 6). 
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v. Possibility for sensor or agents failure:  due to agents distribution and hardware/software reliability issues, information can 

be missing. This is inevitable in any system. 

 

Summarily, the overall challenge of the thesis is to ensure the efficient management of a team of distributed agents operating in a 

dynamic search under the outlined constraints. For the purposes of this thesis, efficiency is not only defined in terms of optimal resource 

usage but also in terms of understanding the changing situation that the team faces.  This latter is considered through the application of 

the concept of Situation Awareness, which is borrowed from the domain of Human Factors. 

1.3 Introducing the Concept of Situation Awareness 

Situation Awareness (SA) means up-to-the-minute cognisance or awareness required to move about, operate equipment, or maintain a 

system (Sarter and Woods, 1991). For the use case of this thesis (Section 1.2), the agents’ environment (search area) phenomena need 

to be perceived, comprehended, and projected against the plausible future state before any decision or action. Endsley (1995) categorises 

SA into three (3) stages (i) Perception of essential features of the search area; (ii) Comprehension of the agent’s sensor information; and 

(iii.) Projection into the plausible future state of the search area’s situations. Endsley’s SA model is popular due to its ability to present 

the agents’ mental model in various situations, i.e., from perception to projection (Endsley, 2015; Jones and Endsley, 1996; Park et al., 

2016; Nguyen et al., 2019; Salmon et al., 2015; Endsley, 2015). The arrangement of the SA stages could be arbitrary; however, 

perception is typically the first task (Endsley, 2015). The perceived situation of the environment leads to the comprehension and 

projection stages. For instance, pilots plan their trip based on the assumed parameters (e.g.,  weather reports) and use in-flight information 

to update their SA (i.e., a cycle of perception, comprehension, and projection followed by decision-making and actions (Endsley, 2015, 

1999; Nguyen et al., 2019)).  Thus, SA management in a dynamic search area is a continuous process that requires understanding and 

interpretation of the perceived agents’ situations (Endsley, 2015, 2000; Erdelj et al., 2017). As such, SA management within a system 

is critical, especially in an aspect of complex disaster management e.g., forest fire fighting. Endsley’s model paved the way for the 

development of many other models of SA, such as Distributed Situation Awareness (DSA), team SA, Sensemaking, situated SA, and 



 
 

9 

shared SA (a detailed discussion of these models will be presented in Chapter 2). This thesis models the SA of the agents as Distributed 

Situation Awareness (DSA) and describes the process in a use case involving forest fire monitoring. 

 

Distributed Situation Awareness (DSA) assumes that SA is distributed within a system of agents, sensor states, and roles (Stanton et al., 

2006). From this perspective, SA arises from the transactions that occur between agents. Thus, DSA claims that each agent in the system 

has a local SA of its situation, and this contributes to and are constrained by a high-level system SA (Salmon et al., 2009, 2008, 2006; 

Stanton et al., 2006, 2009). From this perspective, there is a system-level awareness of a situation, such that the activity of other agents 

can compensate for the loss of SA by one agent. This means SA is loosely-coupled within DSA in terms of access to information and 

communications (Kitchin and Baber, 2017, 2016; Stanton et al., 2006). As such, the DSA system is comprised of a variety of agents 

with varying roles operating in various situations in which each agent is responsible for its SA management upon which the whole 

system SA depends (i.e., the collection of individual agents SA is responsible for the entire system SA management). The distributed 

agents’ perceptions (i.e., sensor data collection) in a DSA system are organised through the agent’s coordination algorithm (e.g., for the 

search mission, the coordination algorithm will be responsible for generating a search plan for SA perception). 

At its most superficial level, coordination of multiple entities can be characterised as flocking (Reynolds, 1987; Vásárhelyi et al., 2014; 

Wei and Chen, 2020). In this, an individual entity’s Situation Awareness (SA) is detecting one's neighbours and adjusting activity 

accordingly. Extending this to the DSA system, we might assume that the flock coordinates its activity towards a common goal, e.g., 

conducting a forest fire search. Here, there is a need to allocate functions between agents, e.g., to monitor fire, weather, etc., in 

consideration of the agents' distribution constraints (as described in Table 3). As such, members of the flock need to perform specific 

tasks in different locations, ensure that the fire is monitored constantly, etc. These actions rely on different information. The agent’s 

challenge is to generate efficient search plans that utilise their resources and support SA management. Thus, the flock (rather than a 

single agent) maintains DSA. This thesis focuses attention on DSA management in consideration of the agents' organisation in the 

presence of various constraints by taking the aspect of forest fire monitoring by a team of UAVs as the use case. 
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1.4 Example of Situation Awareness in Forest Fire Monitoring 

In this section, the use-case is illustrated by a case study that has been much discussed in the literature on human teams and which 
illustrates the importance of Situation Awareness.  

1.4.1 The Mann Gulch Forest fire incident 

 The Mann Gulch Forest fire incident of 1949 will be used to describe the complexity of managing Distributed Situation Awareness in 

forest fire scenes and reemphasise the need for UAVs to address the challenge. In the book ‘Young Men and Fire’, Maclean, (1992) 

describes how a team of firefighters were sent to fight fire at the Mann Gulch in August 1949, in which 13 of them lost their lives. 

Maclean starts by asking the question, What should the structure of a small group be when its business is to meet sudden danger and 

prevent disaster?  Addressing this question requires good SA management (Weick 1995). Thus, this serves as the main motivation 

behind the thesis’s primary research questions, with the main focus on agents coordination and SA management subject to outlined 

constraints and assumptions. In the Mann Gulch incident, a lookout ranger spotted a fire on a mountain 30 miles away (i.e., SA's 

perception of the current situation).  Subsequently, a team of sixteen (16) firefighters equipped with radio and fire-fighting tools under 

the leadership of the well-experienced warden, Wagner Dodge, and a second in command, William Hellman, were sent to the scene. 

The team are new to one another, and the mission requires SA at both individual (each firefighter’s level) and global levels (the whole 

team).   

 

The initial plan (from the base station) was to control the fire before 10 am the following day after they arrived at around 3:00 pm. At 

around 4 pm, the fire escalates and spreads faster at probably 200 meters per minute. The head, Dodge, yells to his second in command 

to move the team towards the north of Mann Gulch. Dodge noticed that the fire kept approaching them due to the high wind speed. Later 

on, Dodge commanded the team to come to his side and lie down on the ground, burnt by an escape fire (an intentional fire set to clear 

the fuel and give a safe place) set by him. Dodge overheard one of the men saying, "To hell with that, I am getting out of here", while 
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they climbed the Mann Gulch. Two wardens (Robert Salle and Walter Rumsey) made it to the top of Mann Gulch, Dodge survived in 

the ashes of his escape fire, and the other thirteen (13) died at around 6 pm.  

 

Maclean’s interview with the survivors reveals what happened, and concerning the thesis aims and objectives, the following points were 

marked: 

 

i. The team structure (who does what task?) is significant in managing DSA.  

ii. Had UAVs been deployed at the Mann Gulch scene, the worst story we could hear might be: five UAVs were burnt while 

monitoring the Mann Gulch fire. The reasons for this are: 

a. UAVs could be deployed to monitor the spread rate for the ground wardens, and host agents could generate possible 

actions quickly (e.g., by learning from previous missions'). But how could this happen? This thesis tackles these issues 

in Chapters 3-8 through efficient search algorithm development and DSA management tools.  

b. A swarm of 10 micro drones (e.g., Parrot Bebop or DJI Phantom 3) with 30 to 45 minutes of flying time would cost the 

same as three months’ payment for one basic-grade firefighter in the UK3.  

 

The following discussion is structured using Endsley’s 3-stage framework of SA, and this is expanded to consider how and where 

Distributed Situation Awareness is relevant. 

1.4.2  Forest Fire SA Perception Stage 

This thesis use-case assumes that SA perception is assigned to simple agents, i.e., micro or mini UAVs using various sensors (as outlined 

in Table 1).  In this case, individual agents acquire sufficient information to support their own view of the situation.  The ‘view’ depends 

 
3 https://www.prospects.ac.uk/job-profiles/firefighter 
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on the location of the agent, its sensor capabilities and the goals that it has been set.  For each of the simple agents, SA perception is 

performed under the imposed constraints (Section 1.2  and Table 1), efficient search plan algorithms are developed (Chapter 3). Thus, 

the agent’s search plan is part of SA perception. The outcome addressed resource utilisation and coordination.  It should be noted, of 

course, the SA perception could also be performed by more sophisticated agents, such as human Subject Matter Experts. However, the 

premise for this thesis is that SA perception is local (both to the agent’s physical location and their goals and capabilities). This raises 

the challenge of how local SA perception becomes Distributed through the team. 

1.4.3 Forest Fire SA Comprehension Stage 

The local SA perception from simple agents is transmitted to the interpreting agents (for this thesis, the interpreters are: Picture 

Compilers and host agents, as defined in Table 1). In the SA comprehension stage, information is logically organised by considering the 

history of the situation and presented to support decisions, e.g., firefighting, evacuation, assets and firefighter coordination, mission 

plan, etc. (i.e., model SA). Thus, comprehension transforms perceived SA into a meaningful, understandable, and presentable form 

representing the system’s SA model.  The thesis assumes a hierarchy through which information moves from simple agents to more 

complicated ones.  Again, it should be noted that these stages could be combined in agents of sufficient capability, e.g., human Subject 

Matter Experts.  However, in a dispersed team, there will always be the challenge of combining comprehension across different agents.  

In this thesis, Picture Compilers will communicate with simple agents that are relevant to their specific goals (rather than every single 

simple agent, Picture Compilers only need to acquire information from simple agents that will enhance the situation picture being 

compiled by that specific Picture Compiler agent). 

Different approaches have been applied to address SA comprehension, such as propositional networks, concept maps, ontologies, 

semantics, fuzzy logic, etc., as in (Burov, 2021; Butakova et al., 2019; Galton and Worboys, 2011; Kokar et al., 2009; Patron et al., 

2008; Stanton et al., 2009, 2006; Zhang et al., 2021). These approaches are unable to flexibly measure agents’ beliefs (e.g., sensor state 

based on reliability), support agents’ prediction, and handle uncertainties and sensor heterogeneity. 
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1.4.4 Forest Fire Projection 

SA projection in forest fire monitoring refers to estimating plausible future states of the forest to allow effective decisions and actions.  

This might involve a high-level overview of the ‘situation’ as a whole.  Thus, rather than managing local (i.e., location or goal) SA, 

projection could involve a view of the interconnected views of a situation in order to make predictions of how the overall situation is 

likely to develop.  This does not preclude projection at local SA levels; e.g., Picture Compilers might need to determine the most suitable 

regions to search and send coordinates to the simple agents.   

 

 Considering the Mann Gulch incident, the projection task involves estimating what will happen next and general decisions/actions (who 

will do what, where to start fighting, etc.) based on the perceived and comprehended situations. For the forest fire use case, the projection 

tasks are:  

i. Ability to estimate the plausible future situation of the search area phenomena (e.g., fire presence, wind speed, etc.) despite 

the agent’s distribution.  

ii. Ability to estimate a missing value (e.g., sensor failure, hardware faults, agents distribution, etc.). 

Thus, managing SA in dynamic search requires handling perception, comprehension, and projection. For instance, to address the Mann 

Gulch incident, Weick (1995) said, "There is a need for the development of a resilient group that is capable of performing improvisation, 

wisdom, respectful interaction, and communication in a suddenly changed and incomprehensible situation."(Weick, 1993, p2). In this 

case, improvisation is the ability to quickly restructure an agent’s understanding to face the current situation (i.e., SA comprehension). 

A clear question to Weick is: how could that be possible for automation agents considering the changing nature of the search area 

phenomena (i.e., changes every short period)? A possible answer to this is to develop an effective SA modelling tool that adapts to the 

situation and can predict what could happen and suggest a viable plan. For instance, when the Mann Gulch fire-fighters team noticed 

that the wind speed was high and heard a louder sound of the burning trees, they realised that they were in trouble (comprehension after 

perception) and expected a sudden danger (projection). To address this challenge, Chapters 3, 4, 5, 6, 7, and 8 develop the agents’ 
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effective search plan generation, DSA modelling tool, prediction (forecasting issues early), missing information handling, and adaptable 

DSA management model.  

1.5 Research Questions 

The research questions to be investigated in this thesis are grouped under three research topics inspired by the above thesis use case.  

Each topic has a specific research question and representative sub-questions. The sub-questions are decomposed in later chapters: 

RQ1. How can we define a constraint-based search method for agents with limited resources operating in dynamic search areas? 

  

The main focus of this question is the development of a search method that can be applied to a team of distributed agents with minimal 

resources (as described by the system assumptions and constraints above), i.e., comprising simple and low-cost agents  

 

RQ2. How can we manage the Situation Awareness of distributed agents?  

 

The main focus of this question is to obtain an adaptable, resilient, and predictable SA management tool. 

RQ3. How could agents’ search support SA management? 

These questions raise many research problems; however, this thesis focuses only on the following issues: 

i. Coordination of low-level automation agents, e.g., UAVs constrained by limited energy, processing power, communications, 

etc., to conduct search activity; 

ii. Distribution of SA in consideration of agent’s contributions towards a system goal (i.e., DSA management); 

iii. Relationship between search plan and SA management. 

 



 
 

15 

1.6 Objectives of the Thesis 

As outlined in Section 1.5, the thesis addresses three overarching research questions.  Bearing in mind the constraints and assumptions 

described in Section 1.2, these research questions are decomposed into objectives as follows:  

RQ1. How can we obtain a constraint-based search method for agents with limited resources operating in dynamic search areas? 

i. Develop an efficient way of coordinating the automation agents to conduct search activity.  

RQ2. How can we manage the Situation Awareness of the distributed agents? 

i. Develop effective tools for SA management. 

ii. Propose strategies for handling uncertainties, predictions, and conflicts (contradictions in agents’ beliefs) in DSA system 

iii. Developing an adaptable SA model tool 

RQ3.  How could agents’ search plan support SA management? 

i. Depict the relationship between the search plan and SA management 

ii. Describe agents’ interaction methods for a better SA management 

 

Table 4 summarises the thesis objectives, their importance, and the thesis chapters in which they are addressed. 

Table 4: Research Objectives and Addressed Chapters 

Research Objectives Thesis 
Chapter 

Importance Outcome 

Develop an efficient way of 
coordinating the automation 
agents to conduct search 
activity.   

3 Efficient searching plan is 
very important due to 
UAVs limited resources 
constraint  

Existing solutions have difficulty in team of agents’ 
coordination or resources utilisation. This is based on their 
reliance on either pseudorandom or structured geometric 
paths. The proposed algorithm provides a solution that 
combine the strength of both pseudorandom and structured 
approaches. 
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i. Develop effective 
tools for SA 
management. 

ii. Propose strategies 
for handling 
uncertainties, 
predictions, and 
conflicts in DSA 
system 

iii. Developing an 
adaptable SA 
model tool 

 

4 , 5 DSA has been criticised 
of lacking effective SA 
modelling tool (an 
information presentation 
tool that will allow easy 
perception, 
comprehension, 
projection, prediction, 
decision making, and 
uncertainty handling).  

Presenting SA information using a propositional network, 
concept maps, ontologies, semantics, fuzzy logic, etc., 
demonstrates inability to measure agents’ belief, agents 
prediction, uncertainty handling, and agents heterogeneity 
handling. In this thesis, I proposed the use of the Bayesian 
Belief Network and describe methods and algorithms to 
address the outlined challenges in addition to being simple, 
presentable, scalable, and adaptable.  
 

Ensure agents efficient 
interactions (information 
exchange) 

 

5 Agent interaction is 
essential for SA 
maintenance. However, 
unnecessary interactions 
need to be detected and 
filtered out. 

Existing agents’ interactions analysis focussed attention on 
the agents' consensus process and omits the resource 
utilisation. This thesis proposes a method that considers the 
agents' resources utilisation during interactions.  

(i) Depict the 
relationship 
between search 
plan and SA 
managements. 

(ii) Describe agents 
interaction 
methods for a 
better SA 
management 
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Understanding the effect 
of search methods on the 
agents DSA will allow us 
to identify the best search 
method to use for a better 
system SA. Similarly, 
monitoring agents 
interactions will reduce 
the system resources 
consumption by filtering 
useless interaction 

This aspect of the thesis describes all the methods adopted 
by the thesis and investigate the relation between the agents 
acquired data and predictions to support the system SA 
projection. Results show that fixed-search method could 
result on simple prediction when the search area is 
structured).  The chapter applied Shannon entropy and the 
formal properties of the BBN to monitor agents’ 
interactions (e.g., differentiate between useful and useless 
agents interaction). 

Propose strategies for 
handling uncertainties, 

7 DSA projection state 
(estimation of future 
plausible states of the 

The outcome of this thesis describes how DSA systems' 
phenomena states can be predicted either solely or in 
combination with other events (i.e., information from 



 
 

17 

predictions, and conflicts in 
DSA system 
 

search area phenomena 
i.e., prediction and 
uncertainty) is critical in 
DSA system due to agents 
distribution. 

other entities). To my knowledge, this is a first move 
towards addressing prediction and uncertainty handling 
in DSA systems using Bayesian learning approach. 

Developing an adaptable SA 
model tool 

 

8 The version of DSA 
developed in this thesis is 
operating in a dynamic 
search area, which means 
SA model requires 
context analysis (i.e., 
situation assessment) 
based on environmental 
conditions. Therefore, 
there will be a 
requirement for updating 
the SA based on perceived 
information. 

The outcome of this objective presents an adaptable, 
scalable, resource-efficient, multiple-agent-supported 
(i.e., accommodating both humans and automation 
agents), and adaptable Bayesian Network structural 
learning algorithm to show how SA can be updated 
within the DSA system. The existing solutions lack the 
outlined features due to their focus on BBN structure 
development.  
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1.7 Approaches to Research 

 

Research question number 1 (RQ1) was tackled using a protocol-based algorithm (Chapter 3) derived from Delaunay-triangulation 

(Boissonnat et al., 2013; Chen and Xu, 2004; Cignoni et al., 1998; Demyen, 2006) of selected waypoints (Chapter 3). Bayesian Belief 

Network and Bayesian learning are applied to tackle RQ2. I believe that the benefits of using the BBN for SA modelling could not only 

provide solutions for the limitations of the existing strategies such as the concepts map, propositional networks, fuzzy logic, ontologies,  

etc., (Galton and Worboys, 2011; Hutchins, 1995; Park et al., 2016; Raymundo et al., 2014; Stanton et al., 2006) but also provide better 

DSA modelling. Some of the solutions address Endsley’s critique of DSA) (Endsley, 2015), such as the need for entities interaction 

analysis (which is discussed in Chapter 5), individual SA merging to form the system SA (addressed in Chapter 4), lack of framework 

for information management in a distributed fashion (addressed in Chapter 4 and 6). 

 

The work on Distributed Situation Awareness (DSA) reported in this thesis originated from the field of Humans Factors and Ergonomics. 

Typically, this has involved the study of human operators working in teams and has used various forms of concept maps to qualitatively 

describe the information that team members use (Kitchin and Baber, 2017; Salmon et al., 2009, 2008, 2006; Stanton et al., 2006, 2009). 

However, the focus here is on the study of how a team of agents could collaboratively perform their respective tasks within a system 

such that SA is managed not only at the individual level but also at the system level (i.e., based on respective agents' tasks). The approach 

adopted is different from the existing works, which have fallen under Unmanned Aerial Vehicles (UAVs) coordination and Humans 

Factors and Ergonomics. The research in this thesis addresses the system's technical development. 

The evaluation process tests the ability of the proposed methods to perform various tasks. For example, the knowledge presentation tool 
was evaluated against its ability to measure agents’ beliefs, handle uncertainty, prediction, adaptability, scalability, etc., abilities. 
Similarly, the agent search coordination approach was evaluated based on how the plan utilises the available resources, scalability, 
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adaptability, and predictability. All the evaluation processes are described using the UAVs' mission for forest fire monitoring as the use 
case under simulation and physical experiments (as discussed in Section 1.2) 

1.8 Major Contributions and Novelties 

Exploration of the outlined research questions led to significant contributions in the field, such as: 

i. Development of a novel algorithm for coordinating agent’s search activities. The novelties are the metrics definition, 

success measuring processes, developed protocols, mathematical modelling, adaptability, scalability, developed 

propositions, and resource utilisation.  

ii. Development of a scalable, adaptable, and agents’ belief measurable (belief measurement using probabilities) way of 

modelling the system DSA. The novelty was the ability to measure agents’ beliefs, handle sensor conflicts, description of 

DSA emergence process, incorporate human contributions, and accommodate agents’ differences, adaptability, and 

learning for prediction and uncertainty handling. 

iii. Formalisation of BBN with DSA. The novelty is the mathematical formalisation, develop methods, and algorithms 

development. 

iv. Modelling of DSA as DCOP to show resource utilisation. The novelty lies in how agents’ resources could be utilised and 

defined mathematically. 

v. Developing a way of analysing DSA agents’ interactions. The novelty of this approach is the ability to classify useful and 

useless agents’ interactions. 

vi. Development of various approaches (both single and multiple information approaches) for making predictions within the 

DSA system. The novelty is that agent-based suitability and efficacy were investigated, in addition to new metrics 

definition. 

vii. The development of an efficient way of handling uncertainties in the DSA system was investigated. The novelty of this 

approach is that an effective way of handling uncertainties in single or multiple forms of information was analysed. 
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Additionally, the scalability of the best approach was tested, and the behaviours of the algorithm were mathematically 

formalised with the system’s requirement ( as outlined in Section 1.2). 

viii. Development of a way of estimating the number of clusters for the classifications algorithms, e.g.,  Gaussian Mixture 

Model(GMM), K-means, etc. The novelty of this approach is the significant reduction in computational demand and 

scalability. 

ix. Formalising DCOP with learning and DSA. The novelty is modelling the agents’ resource utilisation in the DSA system. 

x. Descriptions of how agents’ simulated operations can be transformed into physical agents’ operation. The novelty comes 

from the description of the more realistic dynamic system modelling. 

xi. Development of a DSA-Based BBN structural learning algorithm. The novelty of this approach is its adaptability, 

scalability, and efficiency (resources management). 
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2 Chapter 2 Literature Review 

In this chapter, Distributed Situation Awareness is reviewed. Also, the aspects of DSA concerning the agents and their coordination are 

reviewed in detail. This is in line with elaborating the position of the thesis with respect to agents’ coordination, DSA management, and 

the selected use case (forest fire monitoring) literature. Thus, this leads to the point-by-point justification of the thesis direction. 

 

2.1 Distributed Situation Awareness Concepts 

 

In its original conception, SA described the knowledge used by pilots to understand the state of their aircraft. Different information can 

be interpreted to understand the flight situation, e.g., speed (Hutchins, 2001). Endsley’s model of SA became one of the most popular 

models and is widely used to describe SA within a system. To Endsley (Endsley, 1995), SA comprises the current situation (perception), 

interpretation of the current situation using the history of previous situations (comprehension stage), and the projection of plausible 

states. These three stages lead to the system’s decision-making and actions. One of the critical limitations of Endsley's model is that, 

Situation Awareness (SA) was assumed to reside in individual agents or team (Endsley, 2015, 1999, 1995; Endsley and Jones, 1996; 

Jones and Endsley, 1996). However, there is a version of SA with the notion of SA distribution among agents upon which system SA is 

derived. That is, SA is distributed across agents based on their roles, capacities, and situation, which gave birth to the field of Distributed 

Situation Awareness (Stanton et al., 2006).  

 

Distributed Situation Awareness is not a ‘component’ view of SA but a ‘systems’ view in which SA arises from the interactions between 

agents (Salmon et al., 2015). Thus, as discussed in Chapter 1, Distributed Situation Awareness (DSA) involves the ability of diverse 

agents (an agent can be human or automation, e.g., UAVs) to perceive, comprehend, and act on information towards achieving a common 

goal, such that the process of goal achievements follows from an individual level (phenotype schema) to system-level (genotype 

schema). This is inspired by the concept of DSA developed in (Stanton et al., 2006), and differs from other theories of SA such as team 
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SA, shared SA, and situated SA (Chiappe et al., 2012; Danczyk et al., 2016; Endsley and Jones, 1996;). Thus, DSA agents have different 

roles to play within the system in a distributed fashion (i.e., with varying locations, roles, goals, and views), in which the complete 

system SA is realised at both agents’ local and system level in a compatible and transactive manner (Stanton et al., 2009). 

 

Compatibility in DSA means striving towards achieving the system goal by contributing to the assigned role. According to (Cacace et 

al., 2014; Cox and Zhang, 2005; Ferguson and Allen, 2007; Gómez and Green, 2017; Makonin et al., 2016; Stanton et al., 2009; Tecuci 

et al., 2007), compatibility requires perception, understanding, goal-based assimilation (role and goal-based interpretation and 

allocation), and situation assessment. In contrast, a transactive manner means the successful exchange of information among agents with 

varying goals, views, and activities (Chiappe et al., 2012; Salmon et al., 2009, 2006; Salmon and Plant, 2022; Stanton et al., 2006, 2017; 

Stewart et al., 2008). Because agents have different goals, locations, and views in the DSA system, the SA modelling technique needs 

to allow the restructuring of the information to suit agents’ respective goals. For instance, considering the forest fire monitoring use case 

introduced in Chapter 1, an agent responsible for forest fire mapping (fire spreading control agent) considers wind speed as a more 

important information than an agent accountable for assets monitoring (determining the available firefighting resources, e.g., vehicles, 

drones, etc.). Thus, exchanging information across agents requires different situation assessment (Chiappe et al., 2012; Stanton et al., 

2006, 2009). This has to acknowledge the current situation and other team members’ roles (Baek and Lim, 2018; Berger et al., 2021; Lu 

et al., 2016).  

To draw together the agents’ transactions, one can create a communications network in which all agents share and update each others' 

views or assume that the collation of information occurs in a structured manner. The former can be very costly due to possible 

hardware/software failure, communication breakdown, information misinterpretation, possible mistakes, and agents’ goal variations, 

i.e., what is needed by agent A could be very different from the requirement of agent B (Chiappe et al., 2012; Stanton et al., 2009; Yang 

et al., 2022; Zadeh et al., 2021). Additionally, communication demands could be costly due to excessive demand on resources (e.g., 

memory, processing ability, bandwidth, etc.) during the process of information transfer from one agent to another and security risks 
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(Chiappe et al., 2012; Cummings and Mitchell, 2008; Danczyk et al., 2016; Lu et al., 2016; Salmon et al., 2009, 2006; Stanton et al., 

2006, 2009; Stewart et al., 2008). The latter approach (a structured manner), as adopted by this thesis, impose specific protocols at both 

individual agent’s level and system level in such a way that mission activity supports SA management across agents' level. In this 

approach, one might assume that reporting agents would not be continuous, that not all agents will need to know nor be able to process 

the views of other agents, and that there is a need to ‘fill in the gaps’ to create a detailed situation picture. The thesis approaches the 

challenge by developing system protocols (i.e., to effectively maintain the agents’ structure) to support system management due to 

limited resources for the automation agents; efficient agents search mission planning, i.e., UAVs. The thesis approach is novel in the 

following ways: (i) development of system protocols to support SA, (ii) resource utilisation, and (iii) focus on automation agents 

(although there will be SMEs guidance). The system protocols aim to consider the agent’s distribution constraints in consideration of 

resources limitation. 

In terms of automation, agent SA maintenance becomes complicated if it involves agents with different roles and abilities (Chiappe et 

al., 2012; Endsley, 2015, 1999; Endsley and Jones, 1996; Kitchin and Baber, 2016b; Lopes et al., 2014; Matthews and Beal, 2002; 

Nguyen et al., 2019; Pearson et al., 2016; Salmon et al., 2015, 2008, 2006; Stanton et al., 2006; Stanton, 2016). This is as a result of the 

following reasons:  

1. Lack of sufficient cognitive ability to analyse complex situations by automation agents: automation agents rely on the 

implemented algorithms, which may not be as effective as human solutions. 

2. Limited resources: resources are minimal, especially when UAVs are applied. The resources were outlined in Chapters 1 and 3 

(i.e., energy, memory, computational capacity, etc.).  

3. Coordination of automation agents is challenging: coordination of multiple UAVs is challenging in terms of communication, 

control, autonomy, and decision-making. 

 

The thesis chose this direction based on the outlined limitations. 
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2.2  Models of Situation Awareness 

There exist different models of SA, such as comprehension-based SA in a dynamic environment (Durso and Sethumadhavan, 2008), 

system topology SA (Consciousness et al., 1995), and Endsley’s model (Endsley, 1995). Endsley’s model became popular in literature 

because of its ability to present the agents’ mental model across various situations (Endsley, 2015, 1995; Endsley and Jones, 1996; Jones 

and Endsley, 1996; Teichmann and Motus, 2021; Walshe et al., 2021). The initial theory of SA by Endsley assumes an individualistic 

view of SA by each agent and advances further to an unclear team SA, i.e., SA for a team of agents (Endsley, 2000, 1999, 1995, 1988; 

Endsley and Jones, 1996). Since then, new models have evolved, such as the situated SA (Chiappe et al., 2014), shared SA (Chiappe et 

al., 2012), sensemaking (a perception and comprehension based SA), and Distributed SA (Stanton et al., 2006).  

 

Shared SA focuses on having several agents with the same SA (Chiappe et al., 2012). This model remains a topic of argument because 

sharing information does not mean sharing SA, especially when SA is viewed as a product of a process that analyses the received 

information. As such, unanimous situation understanding could be impossible (Chiappe et al., 2012; Salmon et al., 2008; Stanton et al., 

2001). This leads to an argument that perfect shared SA can never be realised in a multiagent system involving diverse agents with 

varying goals (Stanton et al., 2009), although simple, loosely coupled, and identical modes of information sharing could reduce the 

challenge. The main reason is that investigation reveals that astronauts using the same language to communicate have a better SA 

management performance due to their better understanding (Chiappe et al., 2012; Stanton et al., 2009). This will be difficult to achieve 

in a highly dynamic (e.g., random) situation.  

In contrast to shared SA, team SA described how a group of agents could maintain SA towards achieving their common goal within the 

system SA. In team SA, agents assume to have identical SA towards achieving their goal, although with possible overlap (perhaps with 

other team members). A clear difference between team SA and DSA is that, DSA comprises distinct agents operating on a common goal 

with the assignment of individualistic roles and SA management (Stanton et al., 2006). DSA differs from shared SA by making agents 
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to have distinct goals, situations, roles, and views. Thus, shared SA is tightly coupled, whereas DSA is loosely coupled, i.e., DSA 

assumes loosely coupling at the system level. As such, each agent could have its version of SA compatible with the system SA. At times 

the concepts overlap. As an arbitrary example of overlapping between team SA and DSA, consider a team of UAVs responsible for 

forest fire monitoring from the thesis use case (Chapter 1 Section 1.4); the team using similar sensors, say spectrum cameras, could have 

a team SA. However, from a DSA point of view, each agent will be acting according to its location, current information, and situation, 

i.e., SA is distributed (perhaps with other agents using different sensors to achieve the same aim). This thesis defines DSA based on the 

distinct nature of individual agents and collaborative efforts of those agents towards common goal achievement (perhaps with different 

views). Additionally, the idea is to keep the compatible and transactive nature of achieving the DSA process as simple and effective as 

possible and suitable for the human-automation team.  

 

2.3  Endsley’s Stages of SA: Perception, Comprehension, and Projection 

Out of the outlined models of SA, the thesis focuses on DSA involving the human-automation team. Priority is given to automation 

agents. The human factor aspects were derived from existing work (Burov, 2021; Danczyk et al., 2016; Lee et al., 2007; Salmon et al., 

2009; Salmon and Plant, 2022; Stanton et al., 2006, 2009; Stanton et al., 2001; Stefanidi et al., 2022). This remains the current most 

developing challenge in the field of DSA (Baber et al., 2011; Baek and Lim, 2018; Berger et al., 2021; Bouvry et al., 2016; Cummings 

and Mitchell, 2008; Heintzman et al., 2021; Kanistras et al., 2013; Lu et al., 2016; Nguyen et al., 2019; Park et al., 2016; Quintin et al., 

2017; Salmon and Plant, 2022; Stanton et al., 2017; Zadeh et al., 2021). 

This section will discuss Endsley’s three-stage model of SA (i.e., perception, comprehension, projection) in line with the current work 

and thesis aim and objectives. 

As a primary layer of SA, perception is the agent’s sensed information (i.e., perceived using sensors or derived from the perceived 

sensors' values) leading to its current situation understanding (Minsky, 1987). This thesis assigned the task of perception to the simple 

agents, e.g., mini or micro UAVs (as classified in Chapter 1 Section 1.2) mounted with dedicated sensors (on the notion of single-agent 
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per sensor). A clear question is whether the perceived current situation belief (derived from the agent’s sensor status) could be Boolean 

(i.e., 0 or 1) or flexible? If flexible, how could it be measured? This thesis argues the need for a flexible belief measurement, especially 

when operating in a dynamic search area due to situations variation (remember, a dynamic environment is one in which its phenomena 

states change over time (Baek and Lim, 2018; Kitchin and Baber, 2017; Norstein et al., 2019; Stanton et al., 2006). Flexible belief 

(verified information) will be a better approach. For example, a fire-detecting UAV with a camera sensor could have lower reliability 

during the day due to possible confusion from fire-like objects. An additional essential feature on top of the aforementioned is providing 

a framework to allow belief learning and handle a missing variable based on the agent spatiotemporal distribution (this will be discussed 

further in Chapter 7). Existing methods use agents sensor probability, Boolean approach, and situation-based values modelling (Galton 

and Worboys, 2011; A. Khan et al., 2014; Khan et al., 2015; Lähdesmäki et al., 2006; Lohia et al., 2019; Nebel et al., 2019; Schloss et 

al., 2014; Schwab et al., 2020; Uma Pavan Kumar Kethavarapu and S. Saraswathi, 2016).  This thesis develops a team of agents’ based 

presentation of perceived information using BBN. 

 

Comprehension is the understanding of the search area situation based on the logical organisation and interpretation of the perceived 

information (Endsley, 2015, 1995; Endsley and Jones, 1996). The logical organisation and interpretation of information require 

appropriate information assembling based on the current situation and level of the agents (i.e., it needs a practical situation assessment). 

Thus, the comprehension state presents the SA model. Existing works utilise the use of concepts maps, propositional networks, fuzzy 

logic and ontologies (Galton and Worboys, 2011; Norstein et al., 2019; Salmon et al., 2006; Stanton et al., 2006; Stewart et al., 2008; 

Zhang et al., 2021) to model the system SA qualitatively. These approaches are limited by the lack of agents’ belief measurement, 

support for SA projection (prediction and uncertainty handling), multi-state presentation, and adaptability. To address these challenges, 

this thesis applied a Bayesian Belief Network. Results show an ability to handle uncertainties (in the form of missing variables due to 

hardware/software issues or soft findings from a faulty sensor using probabilities estimation algorithms), prediction support, nice 

interface, belief measurement, and adaptability, i.e., flexible situation assessment and reconfiguration  (Bari, 2011; Bouckaert, 1995; 
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Meloni et al., 2009; Park et al., 2016; Pavlin et al., 2010; Scanagatta et al., 2019, 2019; Williamson, 2001; Zhang et al., 2020) as 

described in Chapters 4,5,7, and 8.  

 

SA projection involves the ability to predict plausible future states of the system under limited time/space and information availability. 

For example, considering the forest fire spread monitoring use case (Chapter 1), projections of the situation estimate where a fire will 

likely be in t future time, etc. The effectiveness of the projection states can be measured based on their accuracy and mission support. 

For example, considering the Mann Gulch incident described in Chapter 1, the projection of Dodge was more effective because of the 

following reasons. 

1. He clearly understood the situation escalation based on the perceived information, e.g., the sound of burning trees, strong wind 

speed, etc. 

2. He effectively applied his previous experience (i.e., through the learning process) to understand the current situation.  

3. He predicted the plausible future states (i.e., the fire would be out of control). 

 

Thus, we can see that every agent can project, but the question is, does the projection supports the mission goal? The use of BBN and 

learning as proposed by this thesis demonstrates effective previous information management, prediction ability, autonomous knowledge 

presentation (data-driven knowledge presentation), and uncertainty handling as proved by the thesis chapters. The thesis evaluates 

prediction and uncertainty handling methods such as the time series models (AR, MA, ARMA, ARIMA, and SARIMA models), 

Gaussian Process and, the expectation-maximisation algorithm (Adhikari and Agrawal, 2013; Bottou, 2010; Dama and Sinoquet, 2021; 

Dempster et al., 1977; Ganoni and Mukundan, 2017; Hendikawati et al., 2020; Karduni et al., 2021; Mandt and Hoffman, 2017; 

Papastefanopoulos et al., 2020; Romanycia, 2019; Tandon et al., 2020). 
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In line with the thesis problem (Chapter 1 Section 1.2), perception, comprehension, and projection could differ based on the agents’ type 

and capacity. For example, perception, comprehension, and projection of the simple agents (from Chapter 1) refers to the ability to 

perceive the environment (using sensors), understand it (by taking the values, e.g., XoC for temperature sensor), and act accordingly (as 

projection, e.g., reporting to the nearest PC after rough mapping process) based on the limited view. The case differs in terms of Picture 

Compilers (PC) and host. PC performs lower-level information organisation and integration (perhaps using the proposed Bayesian 

Network) to make predictions and handle uncertainties. Perception comes from various individual agents’ information, and 

comprehension is realised by logically organising those information). The host can comprehend larger information (due to abundant 

resources as described in Chapter 1) including learning and projection tasks. Human Subject Matter Experts (SMEs) comprehension is 

the ability to understand the presented information, amend it where necessary, and implement the system planning and control. 

 

The perception, comprehension, and projection cycle is incomplete without the decision and action complementary events, which some 

authors sometimes assume as part of the projection (Endsley, 1995). The perception, comprehension, and projection process requires 

appropriate decisions and actions. For example, going back to the Mann Gulch fire scenario of Chapter 1, the perception begins with 

the lookouts’ fire detection. Comprehension is followed by merging the information (fire, location, time, weather reports, etc.), and 

projection estimates the mission time, critical fire level etc. The decision state is an immediate part of projections, e.g., whom to send 

to the scene, what to use, etc., and action (i.e., execution of decisions, e.g., sending firefighters, firefighting starting location, etc.). 

 

The critiques in (Endsley, 2015)  on DSA by Endsley are mostly nothing but a highlight of how the recent works improved the earlier 

concepts. Despite the harsh feedback by Endsley to other models, e.g., situated SA and team SA, her comments on DSA were good. 

However, her criticism on the lack of information exchange architecture, agents’ effective information presentation technique, and 

system information management (Endsley, 2015) was correct and is one of this thesis's main aims (Chapter 1). For example, Chapters 

4, 5, 6, 7, and 8 tackle the issues of effective SA model (Chapter 4), conflict and interactions management (Chapter 5), SA realisation 
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methods (Chapter 6), autonomous knowledge (data-driven knowledge presentation) presentation (Chapter 8), and uncertainty handling 

(Chapter 7); while Chapter 3 describes an SA-supportive agents search mission coordination. 

 

2.4 Agents Search Coordination to Support DSA 

The system perception task is assigned to simple agents (Chapter 1) under imposed constraints, e.g., limited resources, communication 

range, etc., as outlined in Chapter 1. Thus, the thesis proposes a structured, efficient, scalable, and predictable search plan generation 

method to support the system DSA management. 

2.4.1 Search Plan Generation 

Existing work has focused on fixed patterns (fixed geometric patterns, e.g., parallel track, creeping line, etc.) methods, enabling each 

agent to compute and adapt its paths (Bevacqua et al., 2015; Jensen-Nau et al., 2021; Kappel et al., 2020). Geometric fixed-pattern 

approaches follow predefined geometric paths (Cabreira et al., 2018), e.g., expanding square shapes, parallel sweeps, and other patterns, 

to explore the search area (Bevacqua et al., 2015; Jensen-Nau et al., 2021). A related method, such as sector search, defines angles and 

edges to control the agents’ paths (Bevacqua et al., 2015; Jensen-Nau et al., 2021). These approaches make it easier to compute paths 

for each agent but do not support adaptation to changes (utilisation of the method to conduct different tasks, e.g., searching, mapping, 

etc.) in complex, dynamic domains and struggle to optimise the agents' resources (Cabreira et al., 2019, 2018; Di Franco and Buttazzo, 

2016). 

There is also work inspired by animal foraging with random waypoint generation (i.e., drawing from suitable distributions) within the 

search area (Chawla and Duhan, 2018; Sutantyo et al., 2011). Lévy flight and Brownian motion became the most popular pseudo-random 

method in which waypoints are generated based on certain distributions seeded by random numbers and proved to be the most effective. 

The critical advantage of pseudorandom methods is the agent’s independent planning, which supports decentralised coordination. At 
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the same time, these methods often suffer from poor agent coordination in complex domains, difficulty in predicting the future activities 

of the agents, and little consideration of the agent's sensing abilities (Nurzaman et al., 2009), which in general affects the system DSA 

management process. 

Grid-based methods segment the search area into cells and impose some structure on the problem by constraining the random walks 

(Hackney and Clayton, 2015). The paths followed by each agent and the number of times an agent visits a particular cell are controlled 

probabilistically, e.g., using computational models inspired by the ant pheromone (Cabreira et al., 2019; Di Franco and Buttazzo, 2016; 

Koenig and Liu, 2001; Nasirian et al., 2021; Yang et al., 2014). The limitations of such methods include the computational demands of 

searching for an optimal solution and the difficulty in exchanging information collected by the individual or sub-groups of agents 

(Demyen, 2006; Koenig and Liu, 2001). 

There exist hybrid methods that combine the strengths of fixed-pattern and pseudo-random approaches. The hybrid methods apply 

protocols to guide the plan generation and maintain flexible and good agents coordination (Bolander et al., 2018; Hasegawa et al., 2012; 

Kallmann, 2005; Nebel et al., 2019; Ozkan and Kilic, 2022; Quintin et al., 2017; So and Ye, 2005). For example, Voronoi tessellation 

generates random waypoints and visits the centres of the circumcircle of the Delaunay triangles of the random waypoints. Similarly, the 

approach of   (Bolander et al., 2018; Nebel et al., 2019; Ozkan and Kilic, 2022) proposes using local protocols in the form of an if-then 

fashion to control agents’ search activity with initial random or fixed-pattern-based exploration. Other forms of hybrid approaches are 

the pseudorandom methods augmented with an artificial potential field, bat algorithm, Fireflight algorithm, cuckoo birds inspired 

algorithm, ant colony optimisation, etc., (Chawla and Duhan, 2018; Sutantyo et al., 2011). This thesis contributes to the hybrid strategies 

by aiming to develop a search plan generation algorithm that supports agents’ SA management and utilises their resources using global 

system protocols. This is similar to the work of (Quintin et al., 2017; Vagale et al., 2021), i.e., the idea of path generation to support SA. 

However, the thesis extends the focus to SA management and resource utilisation. This is achieved by developing a predictable system 

protocol (Chapter 3). 
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2.4.2 Agents Interaction 

Agent coordination and control strategies follow either centralised, decentralised or partially decentralised methods. A centralised 

approach utilises an omniscient server responsible for decision making, communication, coordination control, and tasks control. Each 

agent will be waiting for the central server for any of these actions. A key advantage of the centralised approach is that optimal solutions 

can be achieved effectively (Cortés and Egerstedt, 2017; Desai et al., 1998; Gage and Murphy, 2004; Vasile and Zuiani, 2011). Critical 

challenges to centralised method are (Cortés and Egerstedt, 2017; Desai et al., 1998; Turpin et al., 2014; Vasile and Zuiani, 2011):  

(i) Communication has to be maintained thoroughly. This is impossible due to the possibility of hardware/software failure, 

interferences, etc. 

(ii)  Workload management. The server is undergoing a vast control workload such as coordination, decision-making, etc. This 

places a significant burden on resource demands such as memory, processing power, communication bandwidth etc. Thus, 

failure of the server means complete system failure (Desai et al., 1998; Turpin et al., 2014; Vasile and Zuiani, 2011).  

 

In the decentralised method, agents are tasked to act individually. That is, each agent is responsible for coordinating its activity within 

the team (Bouvry et al., 2016; Gage and Murphy, 2004; Lumelsky and Harinarayan, 1997; Nguyen et al., 2014; Stranders et al., 2009; 

Turpin et al., 2014; Vásárhelyi et al., 2014; Yan et al., 2011). There exists partially decentralised or sparse interaction or a hybrid method 

(Bolander et al., 2018; Khan et al., 2015; Kho, 2009; Nebel et al., 2019). In the hybrid method, part of the activities is centralised subject 

to agents’ proximity (i.e., exchange of information when agents are very close). Thus, hybrid strategies could select part of the activities 

as centralised and others to be decentralised. For instance, initial planning could be decentralised, and subsequent decision-making can 

be centralised.  

In contrast, the decentralised approach offers autonomy because agents act independently based on perceived or shared environment 

states to achieve their mission. This solves issues bedevilling the use of the central server. However, resource utilisation and optimal 
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coordination cannot be guaranteed due to the partial distributions of the agents. This thesis assumes a hybrid approach by selecting the 

best possible combination. For instance, simple agents will be reporting their information to the respective picture compilers or hosts 

based on proximity interaction (e.g., within 2 meters) and engaged with any superior command. A similar interaction approach exists 

between the picture compilers and the host. Thus, during the interaction between the Picture Compiler (PC) agent and the simple agent, 

coordination tasks and decision-making will be controlled locally in a decentralised fashion. Commands can be changed during an 

interaction, e.g., if the PC receives information about fire presence from other agents, then that information will be used in altering the 

simple agents’ activities (i.e., centralised control). Thus, the thesis focuses more on hybrid coordination.  

 

2.5 Distributed Situation Awareness in Forest Fire Monitoring 

The author is interested in forest fire monitoring due to its complexity and dynamism, which allows application in most practical domains 

(Weick, 1995); as such, this use case will be repeated many times in this thesis. The initial task of forest fire monitoring is to look for 

the fire, which means early detection results in an early control (Fire Lookout History of the Santa Fe National Forest, 2017). Thus, 

lookout agents (i.e., UAVs in this case) need to spread themselves effectively (e.g., avoiding redundant search, focusing on sensitive 

locations, etc.) to effectively cover the forest and report information on fire presence. UAVs became the leading methods because they 

are cheap and manoeuvrable. Unfortunately, coordination, limited resources (i.e., insufficient battery capacity, little computational 

power, etc.), and limited ability to perceive situations and make decisions are the main issues bedevilling UAVs application which are 

to be addressed by this thesis.  

The UAVs will be mounted with fire detection sensors, e.g., infrared, spectrum camera, temperature sensor, etc. (as described in Chapter 

1). The belief of the UAVs (derived from their sensor states) and other agents is measured using probability to quantify the perceived 

information's level of certainty and uncertainty. For instance, fire detection using a visual camera will not be as reliable as temperature 

sensors during the daytime because fire-like objects, e.g., dried grasses, could interfere with visual detection. Similarly, during human 

lookouts in the olden days, couples’ lookouts are more reliable than a single person’s lookout (Fire Lookout History of the Santa Fe 
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National Forest, 2017), i.e., four eyes are better than two.  Thus, this thesis focuses on an effective search coordination algorithm for 

the UAVs with the main aim of resource utilisation (the key factor of successful forest fire monitoring) and DSA management.  

 

The second challenge is the issue of understanding the fires' situation (comprehension) based on the distributed agents' architecture. 

This includes information presentation (i.e., about perception), understanding (e.g., where it occurs, when it occurs, where will it spread 

to, etc., which will be achieved through logical organisation of the information) and projection (e.g., decisions were to start fighting, 

what assets to be deployed, mission time, etc.). All these should align with the changing nature of the situation, e.g., based on the 

dynamic search situation. This thesis proposes using BBN to address that challenge, as discussed in Chapter 4. 

 

The projection challenge refers to predicting future states and uncertainty handling. For example, in the aspects of fire spreading forecast, 

wind speed forecast, etc., as mentioned, the projection state is tightly coupled with the decision-making and actions. This thesis 

approaches prediction and uncertainty handling (i.e., SA projection) using learning algorithms. 

 

In conclusion, the thesis system DSA is maintained by a number of varying agents. For instance, the simple agents (i.e., the mini or 

micro UAVs) are tasked to perform the perception task (i.e., by gathering information from their sensors). Thus, the simple agents will 

coordinate their search activity to ensure the search area’s coverage and resource utilisation. This is also in consideration of their varying 

location, roles (e.g., fire detectors, weather monitors, etc.), and changing nature of the environment (i.e., due to dynamic environmental 

parameters, e.g., wind speed, wind direction, etc.). The perceived information (e.g., information on fire occurrence within the search) 

will then be comprehended (perhaps by depicting the contextual logical relations with other information) at the PCs and host level 

through interactions (i.e., information exchange). The comprehension tool needs to adapt to the perceived information. The projection 

tasks are characterised by making predictions and uncertainty handling. The prediction task forecast the search area’s situation, e.g., 

where the fire will likely move in t future time, etc., based on the perceived information (e.g., fuel type, wind speed, wind direction, 



 
 

35 

etc.). This allows decision-making and actions by both human and automation agents, e.g., where to place the firefighters, what assets 

to be deployed, etc.  
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3 Chapter 3 Efficient Constraint-based Search  

In Chapters 1 and 2, I have argued for the need for an efficient, predictable, scalable, and adaptable method to generate agent search 

plans based on the imposed constraints. Therefore, in this chapter, a solution to this challenge is reported. The proposed approach builds 

on a Delaunay triangulation of the search area to generate a search plan. The method was implemented on simulation software using a 

multi-UAV mission for forest fire monitoring as the use case and compared its performance against fixed-pattern and pseudo-random 

baselines. Results proved a better method. Again, the proposed solution demonstrates easy implementation on real UAVs. 

3.1 Introduction 

Different constraints can characterise a search path. As described in the thesis use case (Chapter 1), resources such as sensor range, 

battery capacity, agents interactions, computational power, memory use, and communication range were considered to be limited and 

thus conform to the challenges of applying UAVs to search problems (Bailon-Ruiz et al., 2022; Bolander et al., 2018; Cabreira et al., 

2018; Cortés and Egerstedt, 2017; Jensen-Nau et al., 2021; Kanistras et al., 2013; Merino et al., 2006; Mohd Daud et al., 2022; Ozkan 

and Kilic, 2022; Revach et al., 2017; Ucgun et al., 2021). Additionally, agents do not know where the targets (e.g., fires for the thesis 

use case) are located. The location of targets may change due to dynamic search area phenomena, e.g., forest fires in Figure 2 move 

faster downwind proportional to the wind speed. Thus, the search area is dynamic in addition to the imposed constraints. 

The focus of the search plan generation is for the simple agents (mini or micro UAVs as described in Section 1.2 of Chapter 1) with the 

requirements of allowing easy sensor information collection (between simple UAVs and PCs or host), resource efficiency, scalability, 

adaptability, and predictability. Each simple agent is responsible for generating its search plan, whether alone or collaborating with other 

agents at the premission planning stage. PCs are responsible for assigning initial location and search plan generation protocols to control 

simple agents' waypoints plan generation. Thus, the challenge is developing a search method that allows efficient agent search plan 

generation (i.e., utilising the agent’s resources parameters in Table 5) and easy coordination despite the imposed constraints and 

assupions of (Chapter 1).  
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Existing agents’ search methods assign fixed search patterns (geometric paths) to each agent within the team. These agents can operate 

in a centralised or decentralised manner (as discussed in Chapter 2). The fixed pattern follows specific predefined geometric shapes, 

e.g., sector search of Figure 7 (sector shape with defined angles and radius), parallel track of Figure 3 (follows horizontal sweeps defined 

by a track size), etc. The main limitations of these methods are the issue of scalability, adaptability, and resource utilisation (Cabreira et 

al., 2019, 2018; Jensen-Nau et al., 2021). Alternative to those methods are pseudo-random methods (search plan waypoints generation 

is based on a random distribution), e.g., the Lévy flight(Chawla and Duhan, 2018; Nurzaman et al., 2009; Sutantyo et al., 2011). These 

approaches were developed to improve the adaptability and scalability of the search solutions. Unfortunately, pseudorandom methods 

make it challenging to manage agent coordination due to pseudorandom behaviours. To address these issues, hybrid strategies (combined 

versions of the fixed-path or pseudorandom method with other techniques were developed (Chawla and Duhan, 2018, 2015; Nurzaman 

et al., 2009; Ozkan and Kilic, 2022; Yang and Suash Deb, 2009; Yang, 2012)). For example, the work of  (Ozkan and Kilic, 2022) and 

(Sutantyo et al., 2011; Yang, 2010) shows the hybrid versions of fixed-path and pseudorandom strategies, respectively. In these methods, 

the waypoints path interval is controlled by the sensor information, i.e., a longer path with no targets and shorter ones when the target 

is close (i.e., target attraction and repulsion protocols). Although the hybrid methods addressed some of the original fixed-pattern or 

pseudorandom methods' limitations, they still have limited predictability and coordination issues. For example, the attraction and 

repulsion protocol of (Ozkan and Kilic, 2022; Sutantyo et al., 2011; Yang, 2010) controls the individual agents only, and there is no 

way to coordinate the whole system agents.  Therefore, in this Chapter, we contribute to the hybrid methods as follows: 

i. Applied a Delaunay triangulation of the search area to allocate simple agents to particular regions while optimising the 

outlined resource parameters (e.g., battery power, memory, computational resources, etc., as described in Table 5), 

despite the imposed constraints. This applied system control protocol development using the Delaunay-triangulations 

theorems and defined custom protocols rather than the individual agents’ protocols. 

ii. Generates efficient, adaptable, predictable,  and scalable search plans; 

iii. Demonstrate easy implementation on real UAVs. 
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Specifically, the work reported in this chapter focuses on RQ1 of Chapter 1(i.e., How can we define a constraint-based search method 

for agents with limited resources operating in dynamic search areas?). 

 

 

Figure 2: Problem Modelling on AMASE 

 



 
 

39 

Figure 2 illustrates the search problem simulation using the Aerospace Multi-agent Simulation Environment (AMASE)4. The UAV’s 

mission is to explore the search area (defined by the rectangular area) and report its sensor information while optimising the resources 

(outlined in Table 5). For this Chapter, the mission activity is to search for the fires.  

3.2 Problem Formulation and Model 

The central problem of this chapter is to develop a method for search plan generation that efficiently utilise the agents’ resources (e.g., 

energy, memory, computational power, etc., as specified in Table 5) and is scalable, adaptable, and predictable to allow real-world 

application despite the imposed constraints. I modelled the problem as a finite horizon, proactive, dynamic, and multi-objective 

distributed constraint optimisation problem, PMO-DCOP.  This is described by the tuple D of Equation 1.  

 

D = {Ai,j, P, T, W, λ, ϒi ,δ, Scondition, Ki, αi, C,O,S}  

Equation 1: Problem Modelling using DCOP 

       

here, 

Aij = {a11, a22, a33, ..., aij } is the set of agents, i, of type, j i.e, i ϵ[1,M], jϵ[1,N]. For instance, fire spread detecting agent of simple agent 

type. Thus, the agents are heterogeneous in terms of roles and types. For example, the agents can be a team of mini UAVs serving as 

simple agents and tasked to detect the search area phenomena (fires, wind speed, fuel types, etc.) using variety of sensors and a group 

of micro UAVs tasked to collect and understand information of the simple agents. 

 
4 AMASE is a simulation-based framework developed by the Aerospace Vehicle Technology Assessment & Simulation Branch of AFRL. AMASE can display 
mission planning with simulated objects, waypoints path, communication channels, etc. AMASE is available at  (https://github.com/afrl-rq/OpenAMASE, 2019) 
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P is the set of agents’ (PA) and mission (Pm) parameters to be optimised with their cost optimisation function Co parameters (Table 5). 

These parameters determine the success of the agents’ mission. For example, considering the forest fire use case (Chapter 1), exploring 

the search area with minimum battery (energy), memory use, computational power, number of agents interactions, mission time, 

redundant search, and higher coverage is most preferable, e.g., covering a forest of 100km2 in 5 minutes is better than covering 20km2 

in the same time.  

Table 5: Definition of Parameters 

Parameter Optimisation Parameter Type 

Energy(battery)  Minimisation Agent 

Memory Minimisation Agent 

Computational power Minimisation Agent 

Number of agents interactions Minimisation Agent 

Coverage Maximisation Mission 

Path divergence Maximisation Mission 

Redundant search Minimisation during search Mission 

Mission time Minimisation Mission 

 

The justification for selecting these parameters is based on the limited resources of UAVs (Cabreira et al., 2019; Kanistras et al., 2013), 

as discussed above. In addition, most of the outlined cost functions parameters (Table 5) are widely used in literature (Huang, 2001; 

Jensen-Nau et al., 2021; Kanistras et al., 2013; Koenig and Liu, 2001; Li et al., 2011; Sauter et al., 2005; Sutantyo et al., 2011; Yoon 

and Kim, 2013).  



 
 

41 

T is the set of finite mission time, Ti = {t1, t2, t3, … , tn}, n = 1, 2, 3, … n (e.g., t1 = 5 minutes, t2 = 10 minutes, etc.).  T defines the 

solutions finite horizon feature (Fioretto et al., 2018; Hoang, 2019; Hoang et al., 2017) and can be measured using the mission clock. 

W is the finite set of search plan waypoints to be explored, i.e., W={w1,w2,w3,...,wn}. Thus, W ϵ Si, where Si is the search space. 

λ is the agents’ waypoints assignment function based on the agent's situation, such that λ:W x ϒi x αi →Ai. 

ϒi is the agent's situation defined by its location and sensor value over a period of time T, i.e. ϒi = { ϒ1,  ϒ2, ϒ3,…, ϒn}. The agent’s 

situation is defined jointly by its current location and belief over time. i.e., ϒi → δ i x si x Ti. 

δ is the agent’s belief (based on the sensor state and location, e.g., information about fire presence in location X). Thus, the probability 

distribution of δ consists of situation action transition values, i.e., δ→αi x ϒi. The value of δ can be initialised using δ = 100%/n, where 

n is the number of sensor states, e.g., fire presence or absence. The update (increments/decrements) of δ occurs after every agent’s sensor 

poll. 

Scondition is the search area conditions described by the tuple Scondition = { Sv, ϒi, Ti} where Sv is the set of search area’s dynamic parameters 

(i.e., wind speed, wind direction, fuel type, fuel condition, and terrain nature). That is, the search area is dynamic, and the dynamism 

depends on the changing parameters Sv.  It is assumed that the search is obstacle-free because the agents are aerial. However, the 

proposed solution should be adaptable enough to incorporate obstacles. 

Ki is the constraints Ki ={k1,k2,k3,...,kn}  imposed on the agent, i.e., limited resources parameters of Table 5. 

αi is the set of action spaces across agents’ situations ϒi, i.e., αi = {α1 x α2 x α3 x … x αi} is factored across each agent at every situation 

ϒi.  For example, if a simple UAV spots a fire, the action could be to make a different search plan to understand the fire’s spread etc. 
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O= {o1, o2, o3,..., on} is the set of targets. The target’s movement is subjected to the search area conditions Scondition parameters. This can 

be modelled using a dynamic function that takes the changing parameters e.g., search area condition, fuel type, etc. An example of this 

functions has been described in Equation 13  

C is a real-valued cost function defined by C: λi →ℝ+.  Every agent’s waypoint assignment is measured using an assigned real value 

e.g., two waypoints separated by a distance of 2KM have higher coverage than the ones with a distance of 1KM. Similar real values will 

be applied for other parameters. The real values are assumed to be assigned by a Subject Matter Expert (SME). 

S  is the search area defined by the cells set S = {s1,  s2, s3,…, sn}, e.g., a bound forest with n number of cell segmentations. That is, each 

cell si uniquely identifies a portion of the search area. 

 

Thus, all of the outlined variables of Equation 1 fit the described forest fire use case of Chapter 1. For example, the varying agents (Aij) 

are tasked to generate the search area’s phenomena belief, δ, (verifiable perceived sensor information) based on the agents' situations 

(ϒi), actions(αi), waypoints plan (W), changing nature of the search area (Scondition), and evolving nature of the targets (O) under the 

imposed constraints Ki and over the time t and mission costs C measured using the agents and mission parameters P. The cost utilisation 

function performs its actions through an effective waypoints assignment function (λ) based on the agent’s belief. For instance, 

considering the Mann Gulch incident discussed in Chapter 1, the lookout agents (which are UAVs in the thesis use case) undergo various 

situations, ϒi  (e.g., fire presence, wind speed change, etc.) and actions, αi, (e.g., interactions with PCs, changing search paths to map 

fire, etc.) while exploring their assigned waypoints (W) to detect the dynamic targets (Ot), i.e., fires. The operating search area is 

changing based on its dynamic parameters, Scondition, e.g., wind speed, wind direction, fuel type, etc. (as can be seen by the rapid escalation 

of the Mann Gulch fire discussed in Chapter 1), which requires various actions given varying situations.   All the agents' actions need 

to utilise the cost values C measured using the agents and mission parameters of Table 5 (e.g., minimising energy, mission time, etc.).  
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Therefore, the DCOP challenge is to find the set of search plans π' such that the mission utility function Uπ is efficient, i.e., π' ∈ 

argmin/maxπ ∈Πi Uπ where π’ = (π1, π2, π3, …, πi) is the set of search plan that utilise agents' and mission parameters. U is the best 

parameter cost-utility function given agents' waypoints assignment, situation, and action defined by Equation 2. For example, during 

the search mission, redundant search needs to be avoided (based on the specifications of Table 5). The function becomes the 

maxima/minima function based on the passed parameter’s target optimisation, i.e., minimisation or maximisation. In other words, the 

DCOP problem for the agents (e.g., UAVs) tasked to search the area (forest) is to generate search plans that utilise their resources, e.g., 

by avoiding redundant search, maximising coverage, etc.  

U(C, P,	𝜆) = 𝑎𝑟𝑔𝑚𝑖𝑛/𝑚𝑎𝑥	![∑ ∑ (𝐶"(#"
$
%&' 𝜆"\𝑃"))]$ 

Equation 2: Problem Utility Function 

Thus, Equation 2 measures the waypoints' mission utility based on the waypoints' assignment, agents' situations, and parameters, e.g., 

highly separated waypoints need to be assigned when exploring the search area and is measured based on the separation distance. 

3.3 Unique Features of the Existing Solutions 

The specific features of each method need to be considered during the experiment development. For instance, the fixed pattern methods 

vary based on their path structures in terms of coverage, redundant search, scalability, and adaptability. The creeping line (Figure 3) and 

parallel track (Figure 4) methods have similar path structures, and redundant search can be controlled by balancing the sensing range 

between tracks (inter-sweeps interval, note that the path structure can be traced using the directional arrows). This is different from other 

methods, such as expanding square (Figure 6), Zamboni search (Figure 5), and sector search (Figure 7). For example, the angle difference 

of a sector search can be used to control its scalability. Again, this is different from the Zamboni search (Figure 5) and the expanding 

square search (Figure 6), of which redundant search and path control require edge adjustment only. 
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Figure 3:AMASE Implementation of Creeping Line Search 
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Figure 4:AMASE Implementation of Parallel Track Search 
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Figure 5:AMASE Implementation of Zamboni Search 
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Figure 6:AMASE Implementation of Expanding Square Search 
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Figure 7:AMASE Implementation of Sector Search 

The pseudo-random strategies' structure depends on the pseudo-random number generation distribution. Waypoints are generated 

randomly using any suitable random number generator. This chapter used the implementation of Lévy flight in (Chawla and Duhan, 

2018) as the candidate for the pseudorandom methods. The linear congruent approach for random number generation (Knuth, 1997) was 

adopted as the random number source due to its popularity. 
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3.4 The Proposed Solution  

The proposed solution evolved by taking the Delaunay-triangulation of systematically selected seed waypoints (seed waypoints can be 

selected using defined protocols, e.g., the longest non-cross and opposing path from the current or chosen location, or sample from a 

predictable and non-redundant distribution). Each centre of the Delaunay triangle is taken as a waypoint. This version of the algorithm 

(as described in Figure 8 for the problem in Figure 2) is the Delaunay-centric algorithm. 
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Figure 8:Implementation of the Initial Algorithm on AMASE 
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From Figure 8, the waypoints labelled 1, 2, 3, 4, and 5 are the longest non-crossed (non-overlapping path detected through visual 

observation or line intersections) paths from the agent’s (UAV1) current location and serve as the first-layer waypoints. The second 

layer waypoints are labelled 6, 7, 8 and 9 and are the centres of the Delaunay triangles of the first layer (see Definition 3.1). Similarly, 

waypoints 10 and 11 are the centre of the second layer Delaunay triangles, the last layer's waypoints (waypoints number =2).  Note that 

a similar method is a Voronoi diagram in which centre of the circumcircles is visited (Koenig and Liu, 2001; So and Ye, 2005; Yu et 

al., 2014). The plan in Figure 8 and the Voronoi diagram are predictable because agents’ future locations can be predicted if the initial 

waypoint, speed, and the waypoints generation protocols (i.e., Delaunay-triangulation theorems), etc., are known. Transformation of 

this version of the algorithm to a more efficient, adaptable, scalable, and predictable performance was described in Section 3.4.1 as a 

Delaunay-Inspired Multi-agent Search Strategy (DIMASS) solution. 

Definition 3.1. Layer (τi) refers to the set of waypoints at the same level (hierarchy) of the plan, τi : Wx → Aij, such that, Wx = 

{w1,w2,w3,...,wm},∀ Wx ∈ W, and ∃ τj = Wy → Aij, where Wy = {w1,w2,w3,...,wn}, and  Wx ∩ Wy = {}∀ Wx,Wy ∈ W. Waypoints in every 

layer are characterised by having similar edges configuration, quadrants, and angles. For example, from Figure 8, the first layer 

waypoints are waypoints 1 to 5 and the second layer waypoints are 6-9, and finally, the third layer waypoints are waypoints 10 and 11. 

Each layer’s waypoints are characterised by having similar edge length, quadrant patterns, and angles; e.g., from Figure 8, first layer 

waypoints have the highest edges, quadrants, and angles. This is different from other (layer 2 and layer 3) layers’ values. 

3.4.1 Delaunay-Inspired Multi-agent Search Strategy (DIMASS) Solution 

The rule for generating seed waypoints is similar to the Delaunay-centric method (i.e., the proposed solution). However, Algorithm 1 

(DIMASS) uses angles, quadrants, and edges length to control the generation of subsequent waypoints. For example, waypoints 6, 7, 8, 

and 9 in Figure 9 were obtained by projecting towards angle ϴ = 180o/n, where n is the number of upper-layer waypoints computed 

using the Delaunay-triangulation theorem (below). This provides a system protocol for better predictability. The quadrant projection 

sequences depend on the number of agents and unique paths needed. For instance, UAV 1 could use the quadrant sequences first, third, 
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second and fourth, while other UAVs could have the third, fourth, second and first quadrants, etc. The ability to control the edge (ei) 

length for i = 1,2,3...,n, projection angles, and quadrants allows the generation of a predictable solution. For example, the second layer 

edges (edges for waypoints 6,7,8 and 9) of Figure 9 were selected as half of the opposing longer edges, i.e., the path (edge) 5 to 6 is half 

of edge 4 to 5 (i.e., e5=e4/2), etc.  Projection angles, quadrants, and edge length depends on how the waypoints utilise the agents’ and 

mission’s cost values (Table 5). The number of waypoints at every layer is computed using the Delaunay-triangulation number of 

waypoints theorem. The number of triangles and edges of a Delaunay triangulation process is 2n-2-k and 3n-3-k, respectively, where n 

is the total number of waypoints and k is the number of convex waypoints (Perera and Barnes, 2011). Therefore, the solution to the 

DCOP problem in Equation 1 is based on quadrants, angles, and edge length values adjustment to utilise the resources in Table 5. 

Finding the best combination of curves, quadrants, and edges for the agents (i.e., the solution to Equation 1) is computationally cheap 

and simple because the highest number of quadrants is only four.  

Similarly, edges and angles can be controlled by discretising the values into ranges. The best plan produces the best utilisation of the 

agents’ and mission parameters considering the imposed constraints. Algorithm 1 describes the Delaunay-Inspired Multi-agent Search 

Strategy (DIMASS) solution, and Figure 9 shows the solution for the problem in Figure 2. 

In terms of agents collision avoidance in DIMASS, waypoints altitudes variation (i.e., varying the colliding agents' altitudes e.g., 30m 

and 20m, etc.), waiting technique (stopping agents to wait for the passing of other co-agents), and waypoints adjustment (e.g., quadrant, 

angles, or edges variation) can be applied. Note that, collision among agents can be detected by considering the agents' generated plan 

and operating speed or collision detection sensors. 

 

Algorithm 1: Delaunay-Inspired Multi-agent Search Strategy (DIMASS) Algorithm 
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1 Input: seed waypoint (W), U, control protocols 

(derived from the Delaunay-triangulation 

theorems) 

2 Output: Search plan waypoints plan(π) 

3 

 

4 

 

 

 

 

 

5 

 

 

 

 

 

6 

 

 

 

Initialise W (i.e., the first layer waypoints), for 

instance, the longest non-crossed jumps of 

Figure 8 etc. i.e.,: Wi→τi, for i=1. 

For all aij ∈ A do 

        Find πi ∈ Π, such that πi ∈ argmin/maxπ 

∈Πi Uπ   using 

 

 

While (count(τi ≤ 2) do 

Use the Delaunay triangulation theorem to 

generate the number of waypoints for each 

layer and repeat the process until the number of 

waypoints is less than or equal to 2. 

 

Find the best angle, quadrants, and edge 

lengths allocation based on the control 

protocols, imposed constraints, parameters 

cost trade-offs and current situation.  For all wi 
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7 

 

8 

∈ W allocate Ubest :wi  x λ→ Ai, wi, ∀ wi ϵW. // 

by adjusting    waypoints angles, quadrants, and 

edges size (note that, to be done by picture 

compiler) 

 

w i → τ i   {Add waypoint(s) to layer} 

Endwhile 

τ i → πi   {Add the layers to search plan} 

9 Return πi  

 

The agents’ coordination and scalability can be controlled by generating protocols to control the waypoints generation; as such, 

Definitions 3.2 and 3.3 could help in monitoring the agents’ coordination.  
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Figure 9: Example of Delaunay-Inspired Multi-agent Search Strategy (DIMASS) Solution 

Thus, the application of Algorithm 1 follows these simple steps: 

1. Seed waypoints selection protocols generation, e.g., the longest non-crossed paths 
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2. Control protocols applications i.e., based on the Delaunay-triangulation and layering 

3. Quadrants, angles, and edge length generations control protocols applications 

In terms of the AMASE simulation, this can simply be generated by passing the coordinates of the seed’s waypoints to the plan 

generation Java method in the form of array. Each entry of the array contains the longitude and latitude entry of the seed waypoints. 

Subsequent layers’ waypoints are then generated based on the control protocols using a dedicated Java method that take in as a parameter 

the upper layer values and control protocols. The edge length can be computed using the Haversine formula (for longitudes and latitudes) 

or Euclidean distance (for planar coordinates). For example, the protocols will then impose that Ei+1 = Ei/2, i.e., edges from lower layer 

are half of the upper layer’s ones, e.g., E5 = E4/2 from Figure 9. The angles and quadrants will be derived in a similar way as described 

above.  

Definition 3.2: Reflection Two waypoints, Xij and Yij, in two-dimensional space, i, j, with upper and lower search area boundaries, Mij, 

Nij where i, j ∈ ℝd, within a plan π, are said to be reflected if and only if the distance computation in Equation 3 exists. 

Yi = Ni-(Xi - Mi) or Yj = Nj – (Xj - Nj) where i,j ∈ ℝd  

Equation 3: Waypoints Reflection 

  

where i,j ϵd, d is the dimension of the search area.  In other words, a reflected waypoint maintains the same distance as the original 

waypoint from the direct opposing side of the search space as described in Figure 10a. 

Definition 3.3: Refraction Two waypoints Xij and Yij in a search area with boundaries, Mij, Nij, where i,j ∈ ℝd are said to be refracted 

waypoints if and only if the distance computation in Equation 4 exists.  
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Yij = Nij-(Xij-Mij) where i,j ∈ ℝd                               

Equation 4:Waypoints Refraction 

In other words, a refracted waypoint maintains the same position as the original waypoint but from the opposing angle as described in 
Figure 10b.  
 

 

 

(a)Reflected Waypoints      (b) Refracted Waypoint 

Figure 10: Example of Waypoints Reflection and Refraction 
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The concept of waypoints reflection and refraction can be used to control the algorithm’s scalability (by reducing the number of 

interactions). For instance, Figure 11 shows the Delaunay-Inspired Multi-agent Search Strategy (DIMASS) algorithm applied to four 

UAVs (from the problem in Figure 2) using the concept of waypoints reflection and refraction. UAVs labelled A1 and A4 have refracted 

initial waypoints s1 and s4, and agents A2 and A3 have reflected initial waypoints s2 and s3. Each agent has a unique path (shown by 

colour and directional arrows) because they use different initial waypoints and control protocols. Note that, this is one of the possible 

solutions; the best solution can be obtained by adjusting the edge length, angles, and quadrants of waypoints to conform to the parameters 

cost utilisation described in Table 5. One of the advantages of the concepts of waypoints reflection and refraction is that a larger number 

of agents can be controlled with fewer interactions. For example, considering the plan in Figure 11, it is obvious that the reflected or 

refracted version of the seed waypoints guarantees non-redundant waypoints across layers as far as the edge is greater than the diagonal 

of the sensor range. Interestingly, this implicitly coordinates the visits, e.g., the overlapping edges of Figure 11 will be explored by 

different agents at different time. Overall, this reduces the number of agent interactions and improves agents’ coordination scalability. 
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Figure 11: Multiple Agents Plan Generation 

Interestingly, proposition and theorems could be applied to control the algorithm's waypoints generations. For example, proposition 1 

proves that path divergence depends on the angle configuration of the search plan. 
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Proposition 1: A convex plan has more path divergence and coverage than its concave counterpart with the same edges.  

Proof: Let n be the number of waypoints, and the convex of n be Conv(n). If m out of n edges of a concave plan has concave edges, then 

the convex of the concave plan is Conv(n-m), i.e. using Graham's Scan algorithm. From Euler's formula (number of triangles +number 

of waypoints = edges + 2 ), the number of triangles formed for the convex plan ∆convex will be: ∆convex = 2 + E – n, while for a concave 

plan, it will be ∆concave = 2 + E – (n-m). Therefore, ∆convex > ∆concave because n > n-m for m > 0 and the edges are of the same size.  

Thus, Proposition 1 encourages convex plans more than concave ones in terms of path divergence. Therefore, during forest fire search 

plan generations, convex plans will have higher priority than concave ones when number of waypoints is higher. This is due to the path 

separation and lower redundant search offered by the convex paths.  

3.2.2 Similar Strategies 

Based on observation and analysis, most fixed-pattern methods follow specific geometric shapes with poor adaptability and scalability 

(Jensen-Nau et al., 2021; Kappel et al., 2020; Koenig and Liu, 2001). For example, parallel track, creeping line, expanding square, 

Zamboni, and sector search in Figure 3 to Figure 7 all follow a fixed structure and explore the search area sequentially. Sector search 

can be similar to Algorithm 1 in terms of adaptability. For example, in Figure 7, the angle and projection edges can be controlled to 

incorporate multiple agents. Despite the potential for adaptability, sector search lacks the following features compared to the proposed 

Algorithm 1 (DIMASS) algorithm. 

i. Poor adaptability: sector search follows shapes that make them inappropriate for narrow space exploration, e.g., road 

mapping, whereas, using DIMASS, protocols are used to achieve adaptability by controlling angles, edges, and quadrants. 

Thus, adaptability is limited in sector search (as described in Table 10). 

ii. Presence of large gaps (see Figure 7). 
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iii. Poor scalability: even though multiple agents can be handled by changing the angle and edges difference, controlling many 

agents can be challenging because of the nature of the path (sectors shapes). 

 

Similarly, in the Voronoi method, agents visit the centre of the circumcircles of the Delaunay triangles (Hasegawa et al., 2012; McLain 

et al., 2001; So and Ye, 2005). This method resembles the Delaunay-centric and DIMASS algorithms with the absence of layering.  

Existing hybrid strategies act based on local protocols, which limits their system control and agent coordination (Chawla and Duhan, 

2018, 2018, 2015; Ozkan and Kilic, 2022; Yang and Suash Deb, 2009; Yang et al., 2014). The proposed solution suggests both system 

(e.g., the concepts of reflections, refractions, seeds waypoints, waypoints layers structuring, etc.) and local protocols (e.g., sensor 

information based actions). In conclusion, different strategies have their unique styles. However, sector search and Voronoi method are 

more similar to the proposed DIMASS algorithm.  

3.5 Performance Comparison 

The performance of the Delaunay-Inspired Multi-agent Search Strategy (DIMASS) algorithm is compared against popular strategies. 

For the fixed-pattern methods, parallel track (Bevacqua et al., 2015; Cabreira et al., 2019), creeping line (Bevacqua et al., 2015; Cabreira 

et al., 2019), Zamboni (João, 2012), expanding square (Bevacqua et al., 2015; Cabreira et al., 2019), and sector search (Bevacqua et al., 

2015; Cabreira et al., 2019) are selected; and Lévy flight(Chawla and Duhan, 2018) is chosen as the pseudo-random methods candidate. 

The selection of the comparing candidates is based on their popularity and efficiency (Bevacqua et al., 2015; Cabreira et al., 2019; 

Chawla and Duhan, 2018; Jensen-Nau et al., 2021; Koenig and Liu, 2001).  Comparison against the hybrids method was ignored due to 

being the combined versions of fixed-path and pseudorandom approaches, and the performance depends on the search area’s structure 

e.g., making small jumps when target is detected. The evaluation was performed on the forest fire AMASE simulation scenario in Figure 

2. UAVs team was tasked to search for the forest fires (as described in Figure 2 and the use case of Chapter 1).  
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3.6 Hypothesis 

The experiment will test the following hypotheses: 

a. Search methods perform differently on the outlined resources measures based on the mission constraints and their structure. 

b. The adaptability of a search plan depends on its paths control elements. 

c. An efficient, scalable, predictable, and adaptable search method under the outlined constraints is feasible. 

The hypotheses will be tested against the outlined performance measures of Section 3.8.  

3.7 Evaluation task 

The evaluation task is to search the simulated area described in Figure 2. The agents and search area mimic their real presentation based 

on the physical experiment described in Chapter 6.  The AMASE simulation entities e.g., fires, search area, UAVs, etc. were designed 

using their corresponding eXtensible Markup Language (XML) values. For example, fire has a tag of <Hazard> with corresponding 

characteristics such as spread rate, translation rate, etc. Note that, dynamic variables control e.g., fire spread rate value in consideration 

of wind speed can be handled by the corresponding Java controller class. Detailed process of AMASE simulation was described in 

Chapter 6. 

 Search methods were given the same resources and constraints. Due to the pseudorandom behaviour of the Lévy flight, mean and 

standard deviation of 15 experiments were taken. The number 15 is to justify the angle selection of Algorithm 1.  That is, the angle 

change (i.e., from 0o to 360o) can be discretised into trenches of 240 (i.e., 360/15), which is equivalent as the lowest angle of  the DIMASS 

solution . Therefore, for a fair comparison, 15 experiments of Lévy flight could be approximately equivalent to 15 angles, edges, and 

quadrants searching for Algorithm 1.   The performance metrics were assessed across all methods. For example, coverage is measured 

by tasking agents to apply each method to explore the area within the assigned mission time. After the mission, the proportion of the 

cells covered is taken as the coverage value (i.e., as described in Section 3.8.1).  
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In terms of AMASE approaches implementation, the fixed-pattern approaches are implemented using a Java method that generates all 

waypoints based on a selected starting waypoint. For example, considering the creeping line implementation of Figure 3, the vertical 

and horizontal edge lengths have the same length within the search plan. That is, starting from the bottom-left waypoint (as initial 

waypoint), the next waypoint was obtained by adding the vertical edge (longer edge). Again, the third waypoint was obtained by adding 

the horizontal edge (short edge). As such, the waypoints generations implement a loop that constantly adds the vertical and horizontal 

edge length as far as the edge is within the search area. Note that, the value of the horizontal edges increases at every value whereas the 

vertical edge remains constant. As such, the end of the search area is determined by the vertical edge. The parallel track is a direct 

opposite of the creeping line. That is, the vertical edge keeps increasing while the horizontal edge remains constant. The expanding 

square method selects the initial waypoint at the middle of the search area instead of the extreme edge contrary to the parallel track, 

creeping line, and Zamboni approaches. Expanding square method increases the edge values across all directions for all opposing edges 

(see Figure 6).  Similarly, Zamboni search starts from the extreme end of the search space and reduces the track length across each 

opposing edge (see Figure 5).  The end of the waypoint is detected by when the deducting edge cannot be reduced further within the 

search space. Sector search varies angles and quadrants to mimic sector shapes as described in Figure 7. For the Lévy flight method, the 

waypoints generation follows Equation 5 and Equation 6. 

P(λ) = (
) ∫ cos	(λt)*

' .e+,-!   0<c≤2 

Equation 5 : Lévy Distribution 

  

  

where c is the constant value which ranges from 0 to 2.  λ is the step size computed using Equation 6, and t is the time between two 

successive step sizes.  
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λ = .
/
"
!
 

Equation 6: Lévy Flight Waypoints Step Size 

U and V are generated using a random number of generation function. That is, each waypoint is generated using Equation 6 after every 

waypoint visit. A sample code for the implementation of the approaches can be found in the supplemental documents. 

3.8 Performance Measurement 

The author measures the success of the generated plans using the following qualitative and quantitative measures. 

3.8.1 Quantitative Performance Metrics 

Quantitative measures of performance grade the agent’s and mission’s parameters utilisation based on functional requirements (i.e., the 

outlined parameters in Table 5). That is, maximising and minimising parameters based on their target optimisation assigned in Table 5. 

For instance, coverage needs to be maximised during exploration tasks, and redundant search needs to be minimised. Thus, if an agent 

X used search method A to cover 20Km2 by spending 50% of its resources (e.g., energy, etc.); and covered 15Km2 using search method 

B with the same resources, then A is more successful (efficient) than B in terms of coverage. Other parameters will be quantified using 

a similar real-valued cost function. The metrics are: 

• Energy 

Each of the agents’ mission tasks (e.g., cruising, descending, ascending, etc.) consumes energy, measured as a percentage per second 

(%/s). For example, mini UAV ascending flight mode can consume 0.049%/s. This is very different from the other flight modes such as 

descending, loitering, etc. Thus, energy is measured as the percentage of energy consumed given a particular time interval and mission 

tasks. As described in Table 5, the lower the energy consumed relevant to the area covered, the better the search method. The energy 
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consumption values for the simulation UAVs are derived from a physical drone experiment (detail of the experiment is described in 

Chapter 6).  

• Mission Time 

Mission time is the time taken to execute the mission. This is measured using the mission clock as described in Figure 1. 

• Memory Use 

This is measured using the algorithm space complexity. That is the amount of memory space needed to store the algorithm variables. 

This includes any variable exchange among agents. 

• Coverage 

This is a proportion of search area covered, i.e., cells si with path and sensing. Coverage is measured by segmenting the search area into 

a set of cells si of equal sizes and counting the proportion of cells with path. For example, in Figure 12, the coverage is 0.92 (i.e., 23/25, 

i.e., the uncovered cells were C11 and C19 marked with x out of the 25 total cells). Thus, coverage is the measure: ∑ 𝑆""&0
"&(  such that, 

∀𝑠"  ∃ 𝑤"x		𝑟1ϵ𝑠", ∀𝑠"ϵ	𝑆" where 𝑟1 is the sensor range and equal to the cells sizes i.e., 𝑟1 = 𝑠". 
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Figure 12: Example of Coverage Measurement 

One of the limitations of measuring coverage this way is the partial visit. The partial visit is when a cell si has no agent’s path but 

receives a partial visit (i.e., based on the sensor coverage). For example, consider the uncovered cells C11 and C19 of Figure 12, they 

were not counted as covered but they got a partial sensor coverage based on their neighbouring cells’ paths. Thus, partial coverage is 

the measure: ∑ 𝑆""&0
"&(  such that, ∀𝑠"  ∃ 𝑤" 	 ∉ 𝑆" , and	𝑟"ϵ𝑠", ∀𝑠"ϵ𝑆" ,	and	ri		is	the sensor coverage corresponding to Si. Due to partial visit 

limitation, I introduce the path divergence. 

• Path Divergence 
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Path divergence measures how the search path spreads across the search area. This is measured as the summation of the Delaunay 

triangles of the search plan waypoints ∑ 𝑎𝑟𝑒𝑎𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦(D")"&0
"&( . The function 𝑎𝑟𝑒𝑎𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦(D"), i ϵ[1,N] computes the area of each 

Delaunay triangle. Again, one of the issues of measuring coverage using path divergence is that larger triangles tend to have more larger 

values. As such, balancing the number of triangles and the calculated area could guide in understanding the area covered. For example, 

if four triangles give 200kilometers square and ten triangles provide the same amount, then probably the later value has a higher number 

of uncovered cells (based on the search methods paths structure); this can be balanced further by creating closer waypoints. Thus, the 

path divergence and coverage can measure the portion of the search area covered.   

• Redundant Search 

Redundant search measures how search method performs a repetitive search. This can be measured by counting the number of 

subsequent overlapping waypoints within a search plan. Redundant search can be categorised into intra-agent and inter-agent redundant 

search. Intra-agent redundant search refers to overlapping waypoints within a particular UAV plan, and the inter-agent redundant search 

is the overlapping waypoint with other agents’ waypoints. 

• Agents Interactions 

This is measured as the number of times required to exchange information among n agents given inputs waypoints w to maintain resource 

utilisation. For example, given two agents using pseudorandom search method, avoiding redundant search requires n-1 at least 

interactions at each waypoint generation wi. Thus, the number of interactions is O(nNw) where Nw is the number of waypoints. Thus, 

the total number of interactions are n-1 x Nw.   

• Time Complexity 
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Time complexity measures the computational operations needed to implement the algorithm for a team of n agents. This is quantified 

by the run time complexity required given n waypoints inputs. For example, if the search method’s computational operations are directly 

proportional to the input waypoints n, the outcome is O(n). Thus, the time complexity can be used to measure the computational power 

needed. One of the limitations of time complexity is the omission of implementational effort. I propose using McCabe’s cyclomatic 

complexity (McCabe, 1976) to address the challenge. 

• McCabe Cyclomatic Complexity 

The McCabe cyclomatic complexity measures the implementation effort requires. It counts the number of loops, conditional statements, 

and methods as cyclomatic units. I used the eclipse metric plugin5 to measure the cyclomatic complexity. Note that the result depends 

on the implementation, and I did my best to minimise unnecessary loops, conditional statements, and methods. 

3.8.2 Qualitative Performance Measures 

Qualitative measures grade the search plan in terms of non-functional features, and these are scalability, predictability, and adaptability. 

• Scalability 

Scalability is the ability to address multiple agents’ plans with stable resources. I measure scalability using number of interactions, time, 

space, and cyclomatic complexities measures. Therefore, scalability can be in terms of coordination (measured using number of agents 

interactions), memory use (measured using space complexity), computational power (measured using time complexity) and 

implementational (measured using cyclomatic complexity). Each of these types of scalabilities has different implications on the agents. 

For example, implementation on small agents with very low capacity would prioritise memory use, computational power, and 

 
5 https://marketplace.eclipse.org/content/codecity 
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implementations scalability over coordination scalability. Similarly, coordination scalability will have a higher priority when monitoring 

many agents. Thus, a preferable outcome is a low space, time, and implementational complexities. 

• Predictability 

Predictability is the ability to estimate agents’ location given specific parameters.  For instance, if the distance between the waypoints 2 

to 3 of Figure 12 is 3KM, then assuming a stable weather report (e.g., upwind/downwind flights), a UAV with a speed of 30m/s will be 

1.8Kilometers (30m/s x 60s /1000)  away from waypoint 1 at its first minute. Therefore, a search method will be considered predictable 

if it will allow the agent’s location prediction across n waypoints with a certain level of accuracy. 

• Adaptability 

 Adaptability measures how the search method can be utilised to perform different tasks, e.g., mapping, searching, etc. I measure 

adaptability by counting the number of controllable elements of the search plan paths, i.e., angles, quadrants, and edges. 

 

3.8.3 Results 

Table 6 to Table 9 describe quantitative metrics evaluation results for the agents and mission parameters in Table 5. Table 6 shows the 

agents' coverage and path divergence measures across different search methods. 
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Table 6: Quantitative Measures Result- Coverage Measures 

 

 

 

 

 

 

 

 

 

 

 

 

 

S/N Approach Coverage Path 

Divergence 

(meter 

square) 

1 Delaunay-centric algorithm 1 834.83 

2 Delaunay-Inspired Multi-agent Search 

Strategy (DIMASS)  

1 962.33 

3 Lévy flight (Chawla and Duhan, 2018) 0.64+/-(0.28) 434.17+/- 

(281.20) 

4 Parallel Track (Bevacqua et al., 2015; 

Cabreira et al., 2019) 

1 128.03 

5 Creeping Sleep (Bevacqua et al., 2015; 

Cabreira et al., 2019) 

1 252.64 

6 Sector Search (Bevacqua et al., 2015; 

Cabreira et al., 2019) 

0.69 588.55 

7 Expanding Square (Bevacqua et al., 

2015; Cabreira et al., 2019) 

0.75 172.28 

8 Zamboni Search (João, 2012) 1 518.06 
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Table 6 shows the coverage and path divergence performance of the methods. Most of the fixed-path and the proposed method shows 

good performance in terms of coverage better than the pseudorandom method. However, the fixed-path method shows poor performance 

in terms of path divergence due to their poor flexibility (i.e., as a result of poor flexibility which affects the Delaunay triangles area). 

The Delaunay-Inspired Multi-agent Search Strategy (DIMASS) method shows good performance due to its flexibility (i.e., it produces 

well-separated and well-spread waypoints). Table 7 describes the complexity metrics evaluation. 

Table 7: Quantitative Measures Result- Complexities Measures 

S/N Search Method Cyclomatic 

Complexity 

for n agents 

Time 

Complexity 

Space Complexity Least number of Agents Interactions to avoid 

redundant search 

1 Delaunay-centric algorithm 19 O(n2logn) O(n2wz) 

where wz is the size of the 

waypoints.  

O(nlan) where nl is the number of waypoints with 

length less than the diagonal of the sensor range 

and an is the number of agents. 

2 Delaunay-Inspired Multi-

agent Search Strategy 

(DIMASS)  

2 O(n) O(nwz)  O(nlan)where nl is the number of waypoints with 

length less than the diagonal of the sensor range 

and an is the number of agents. 

3 Lévy flight(Chawla and 

Duhan, 2018) 

3 O(n) O(nwzr) where r is the 

memory needed to store  

the random number seeds 

of Equation 6. 

O(nan) 
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4 Parallel Track(Bevacqua et 

al., 2015; Cabreira et al., 

2019) 

7 O(n2) O(n) O(nlan) where nl is the number of waypoints that 

are less than the width of the sensor range. 

5 Creeping Sleep(Bevacqua et 

al., 2015; Cabreira et al., 

2019) 

9 O(n2) O(n) O(nlan) where nl is the number of waypoints that 

are less than the width of the sensor 

 

Table 7  shows the algorithms complexities performance. In terms of time complexity, the Delaunay-Inspired Multi-agent Search 

Strategy (DIMASS) and Levy flights show good performance due to independent plan generation. The fixed patterns have a higher 

value due to vertical and horizontal edge loops addition. The Delaunay-centric algorithm performs poorly because of the Delaunay-

triangulation processes.  

Table 8: Quantitative Measures Result- Agents and Mission-Based Featured 

# Search Method Energy 

Used 

Time 

Spent(secon

ds) 

Number of 

waypoints 

1 Delaunay-centric algorithm 9% 3909.6 11 

2 Delaunay-Inspired Multi-agent Search Strategy 

(DIMASS)  

9% 4095.3 11 

 

3 

Lévy flight(Chawla and Duhan, 2018) 19.13 +/- 

(1.54%) 

4095.3+/-3 10.73 +/-

7.13 
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4 Parallel Track(Bevacqua et al., 2015; Cabreira et al., 

2019) 

14% 2758.9 10 

5 Creeping Sleep(Bevacqua et al., 2015; Cabreira et al., 

2019) 

18% 3562.8 10 

6 Sector Search(Bevacqua et al., 2015; Cabreira et al., 2019) 16% 3109.0 9 

7 Expanding Square(Bevacqua et al., 2015; Cabreira et al., 

2019) 

19% 3774.44 15 

8 Zamboni Search(João, 2012) 87% 17693.1 33 

 

Table 8 describes the energy and mission time performance of the algorithms. The energy is measured by stopping the simulation scene 

(using the pause/play button of Figure 2) and taking the value of the energy consumed. The energy consumption considers various flight 

modes e.g., descending, ascending, etc., and their respective consumptions rate as derived from a physical experiment (Chapter 6). 

Similarly, the mission time is recorded together with the energy value. The redundant search measurement of Table 9 considers different 

sensing ranges to evaluate the performance. The evaluation is based on the two UAVs’ missions as describe in Figure 9. The sensing 

range is measured as the percentage of the search area.  

Table 9: Quantitative Measures Result- Redundant Search Result 

# rv Delaunay-centric 

algorithm 

Delaunay-Inspired 

Multi-agent Search 

Strategy (DIMASS)  

Lévy flight(Chawla and Duhan, 

2018) 
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The results in Table 9 show the redundant search performance (based on the number of redundant waypoints) for the flexible methods 

(i.e., the Delaunay-centric, DIMASS, and the Lévy flight methods). The intra-agents redundancy counts the number of overlapping 

waypoints among agent’s waypoints. For example, Table 12 #2 shows the number of overlapping waypoints of an agent using the 

Intra-

agent 

redunda

ncy(n/11

) 

Inter-

agent 

redunda

ncy(n/11

) 

Intra-

agent 

redundanc

y(n/11) 

Inter-

agent 

redundan

cy(n/11) 

Intra-agent 

redundancy 

μ(σ) 

10.34(7.13) 

Inter-agent 

redundancy  

μ(σ) 

10.34(7.13) 

1 5% 0 0 

0 1 

4 (2) 

 

4.7 (2.11) 

2 10% 4 1 2 2 9 (4.76) 9.8(4.80) 

3 15% 5 2 3 3 7.9 (3.75) 9.8 (4.13) 

4 20% 5 3 4 4 9.4 (3.37) 10.9 (3.11) 

5 25% 5 3 4 4 11.2 (2.48) 13.3 (2.54) 

6 30% 6 3 5 4 11.5 (3.84) 14.2 (4.09) 

7 35% 6 4 6 4 14.9 (6.89) 18.2 (8.04) 

8 40% 6 5 6 4 12.6 (3.17) 15.3 (3.89) 

9 45% 6 5 

6 5 

17.6 (3.60) 

 

18.26 (2.77) 

10 50% 6 6 6 7 18 (2.83) 21.6 (3.89) 
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Delaunay-centric algorithm when the sensor range is 5% of the search area is 4 number of waypoints. This is less effective than the 

Delaunay-Inspired Multi-agent Search Strategy (DIMASS) counterpart with 2 as the number of redundant waypoints. The Lévy flight 

shows higher redundant waypoints within the agent’s mission. As expected, increasing the sensor range keeps increasing the number of 

redundant waypoints. Similar results are expected when the search area is kept constant, and the number of agents is increased (i.e., 

based on the results in Table 9). Thus, this remains the main reason for the author’s use of two UAVs.  

Table 6 to Table 9 describes the results for various quantitative metrics across varying parameters. For example, #1 row across the tables 

describes the performance of the Delaunay-centric algorithm. In terms of coverage from Table 6, all the cells of the search area were 

covered (i.e., each of the cells of the search has at least a visit) by the agents. Remember, the coverage is measured by segmenting the 

search into cells of equal size with the sensor range. The numbers of waypoints generated were 11 which are the same as the Delaunay-

Inspired Multi-agent Search Strategy (DIMASS) approach because they utilise similar protocols. The path divergence was 834.83km2 

(measured as the sum of the area of the 11 waypoints Delaunay triangles). The cyclomatic complexity reported in is based on the author’s 

implementation and the value is 19 (measured using the eclipse metric plugin6). The experiments for the Lévy flights were repeated 15 

times due to their randomness; and the mean and standard deviation were reported accordingly. The results from Table 6 to Table 9 

show good performance of the proposed method across various parameters. 

• Qualitative Metric: Scalability  

Definition 3.2 (waypoints reflection), Definition 3.3 (waypoints refraction), and protocols provide a way of controlling the higher 

number of agents (i.e., coordination scalability based on the low number of agents interactions). The low value of cyclomatic, time, 

space, and number of agents interactions complexities shows better performance for the implementational, computational power, 

memory use, and coordination scalabilities of the proposed DIMASS solution due to the low complexities values. 

 
6 https://marketplace.eclipse.org/content/codecity 
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• Qualitative Metric: Adaptability 

Table 10 describes the adaptability results based on the number of controllable path elements of the search methods. The controllable 

path elements selected are angles, quadrants, and edge lengths. 

Table 10: Qualitative Measures Result- Algorithms Adaptability Comparison 

Algorithm  Number of 

Controllable Path 

Elements 

Controllable  Path 

Elements: 

{Quadrants, angles, 

edges} 

Comments 

Delaunay-Inspired 

Multi-agent Search 

Strategy (DIMASS)  

3 {Quadrants, angles, 

edges} 

All controllable path elements can be 

controlled 

Lévy flight (Chawla 

and Duhan, 2018) 

0 ¬{Quadrants, angles, 

edges} 

None of the controllable path 

elements can be controlled 

Parallel track 

(Bevacqua et al., 

2015; Jensen-Nau et 

al., 2021) 

1 {¬Quadrants, ¬ 

angles, edges} 

Edges can be controlled, whereas 

angles and quadrants are fixed 

because angle has to be either 90o or 

180o. 
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Creep 

lining(Bevacqua et 

al., 2015; Jensen-Nau 

et al., 2021) 

1 {¬Quadrants, ¬ 

angles, edges} 

Edges can be controlled, whereas 

angles and quadrants are fixed 

because angle has to be either 90o or 

180o. 

Sector 

search(Bevacqua et 

al., 2015; Cabreira et 

al., 2019)  

2 {¬Quadrants, angles, 

edges} 

Changing quadrants configuration of 

sector search will make it not to be in 

sector form anymore. 

Expanding squares 

(Bevacqua et al., 

2015; Cabreira et al., 

2019) 

1 {¬Quadrants, ¬ 

angles, edges} 

Edges can be controlled, whereas 

angles and quadrants are fixed 

because angle has to be either 90o or 

180o. 

Zamboni 

Search(João, 2012) 

1 {¬Quadrants, ¬ 

angles, edges} 

Edges can be controlled, whereas 

angles and quadrants are fixed 

because angle has to be either 90o or 

180o. 

 

Based on the result in Table 10, the proposed solution offers the most adaptable solution. This means it can be applied to perform many 

other tasks e.g., mapping, searching, etc. For example, roads within the search area can be tracked using the proposed solution by 

changing the angles, quadrants, and edges lengths. Probability value can be assigned to interesting k-previous waypoints (past 
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waypoints), e.g., junctions. When the agent finishes its current task, it could then return to the important k-previous location and continue 

from there. The locations priority probabilities marks could be stored in the agent’s short term, medium or long term memory based on 

the saliency of the waypoint. This process resembles the operation of simulated annealing in terms of waypoints storage in short-term, 

medium-term, and long-term memory based on importance; and smart Rapidly-exploring Random Tree (RRT) in terms of waypoints 

radius assignment (Nasir et al., 2013; Varty, 2017) i.e., during roads tracking. Thus, the proposed solution can be utilised for many other 

tasks. 

• Qualitative Metric: Predictability  

From the fixed-pattern methods of Figure 3 to Figure 7 and the Delaunay-Inspired Multi-agent Search Strategy (DIMASS) methods 

(Algorithms 1), agents' location can be estimated based on their speed and control protocols. For example, from Figure 9 (solution of 

the proposed DIMASS), if a UAV starting from waypoint 1 has a speed of 30m/s, assume the length between waypoints 1 and 2 is 

5.6KM; then, at the second minute of the UAV mission, it is expected to be 3.6KM away from the initial point (i.e., 2 x 60 x 30/1000). 

Other reports could be incorporated, e.g., upwind and downwind accelerations and retardations. The predictability can be graded further 

to consider n number of waypoints. For example, the prediction ability can span across all waypoints for the fixed pattern and the 

proposed solution (because waypoints are structured). This is not possible in the case of the Lévy flight. Thus, the predictability feature 

could help the PCs’ data collection (by arranging rendezvous). Lévy flight shows that it is purely pseudo-random; as such, predicting 

agents’ future location will be very difficult or even impossible. One could argue that limiting the Lévy flight’s seed waypoint range 

i.e., U and V of Equation 6 could help in improving predictability. Interestingly, this does not affect predictability, as described by the 

results in Table 11.  
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Table 11: Limiting the Random Number Seed Range for Levy Flight 

# Random Number Seed Range 

for U and V of Equation 6 

Avg. Path Divergence Square 

Kilometre (KM2) μ(σ) 

Avg. Number of 

Waypoints(σ) 

1 1-5 273.58(73.34) 7.6(1.16) 

2 1-10 288.39(61.75) 10.8(1.90) 

3 1-15 260.34(94.42) 6.2(1.46) 

4 1-20 275.86(119.35) 7.4(1.58) 

5 1-25 193.87(43.64) 5.1(0.64) 

6 1-30 293.29(83.3) 7.8(1.64) 

  

The Levy flight result in Table 11  was obtained similarly to the result in Table 8.  The path divergence is measured by summing the 

area of the Delaunay triangles of the waypoints plan. Table 11 shows that limiting the range of the random number seeds for the Lévy 

flight method does not affect its predictability. For example, the path divergence in #1 with range (1-5) has a higher path divergence 

better than #5 and #6 with ranges (1-25) and (1-30). This shows low structure and difficulty in predicting agents’ activities when Lévy 

flight is applied. 

3.4 Discussion and Conclusion 

Based on the results in Table 6 to Table 11, the proposed solution utilises the agent’s resources better than the existing methods, although 

in some cases, some of the existing techniques produce a good performance (e.g., the zero redundant search performance of Zamboni 

and Sector Search despite the 5% sensor range). The performance of the proposed method is based on the applied fixed protocol (i.e., 

shorter edges are half of the opposing longer edges). Thus, the best solution can be obtained by adjusting the angles, quadrants, and edge 
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configurations.  This can be done in two ways: (i) by imposing a rejection protocol on any edge that is less than the diagonal of the 

sensor range, or (ii) agents need to interact with other agents to share information on waypoints (i.e., waypoints with edges less than the 

diagonal of the sensor range). The first option reduces the number of agents’ interactions and hence improves the coordination scalability, 

although this will only solve the intra-agent redundancy. Inter-agent redundancy in this approach can be avoided by adjusting angles, 

quadrants, and edges at the premission state or using the later method. For example, based on the seed waypoints, layers inter-agent 

redundant waypoints can be detected and avoided, especially when plan generations among agents are in sequential order. That is, agent 

1 will not consider adjusting its waypoints and agent 2 will avoid redundant search with agent 1’s waypoints based on the defined seed 

waypoints and system protocols etc. The second option can resolve both intra-agent and inter-agent redundancy with the overhead of 

additional agents’ interactions for at least 1 interaction across all agents per each redundant waypoint (as described in Table 7). 

Summarily, the proposed solution proved higher performance across the quantitative and qualitative measures. The clear difference 

between the proposed method and the existing hybrid methods is that, the existing hybrid methods imposed their protocols on local 

agents instead of the whole team. The proposed solution considers system control protocols that coordinate the agent’s search activity 

and utilise their resources throughout the agents mission. The protocols also consider agents’ activities efficiency, e.g., avoiding 

redundant search instead of focusing on coordination. Thus, the proposed hybrid solution focuses more attention on the efficiency of 

the system protocols.  The discussion chapter (Chapter 9) describes how the proposed method can easily be applied on real UAVs. 

3.4.2 Further Thoughts on the Agents Search Algorithms  

The primary concern of this chapter is to obtain a resource-efficient search method based on the imposed constraints. Results proved 

the efficiency of the proposed solution on the outlined measuring parameters. Further investigation on more control theorems and 

propositions is marked as future research. Finally, for the method to be more valuable and supportive to the search mission, the question, 

"How can we manage the Situation Awareness of distributed agents?" is essential. Therefore, the objective of the following chapter is 

to address this challenge. 
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4 Chapter 4: Towards Agents Distributed Situation Awareness Modelling 

In this Chapter, the concept of DSA is applied to a team of distributed agents from Chapter 1 and extends the idea using formal properties 

of the Bayesian Belief Network (BBN). In particular, the aim is to show how BBN can define DSA and how such a network can be 

utilised to handle various DSA challenges, e.g., flexible belief measurement, prediction, uncertainty handling, DSA schemata (phenotype 

and genotype) activities etc. The outcome shows a better result than the existing methods of concept map, propositional network, fuzzy 

logic, ontology, etc. 

4.1 Introduction 

Distributed Situation Awareness (DSA) originated from Hutchins (Hutchins, 1995) concept of Distributed Cognition. This involves SA 

management from a team of distributed agents accessing various system information and playing varying roles.  For example, 

determining an aircraft’s speed (e.g., in terms of an approach to landing) involves several agents (e.g., sensors in the plane, instrument 

displays in the cockpit, flight manuals, ‘speed bugs’, pilot and co-pilot, Air Traffic Control etc.). Hutchins proposed that no single agent 

knows the speed; instead, knowledge is distributed across agents. Following this, Distributed Situation Awareness (DSA) proposes that 

one needs to take a systems-level perspective on SA (Kitchin and Baber, 2017; Rosário et al., 2021; Salmon et al., 2008). Since then,  

DSA employs concept maps (e.g., as in Figure 13), ontology, fuzzy logic, proposition networks, etc. (Nguyen et al., 2019; Salmon et 

al., 2009; Stanton et al., 2006; Stefanidi et al., 2022; Stewart et al., 2008; Suhail et al., 2022) to model the system-level SA (e.g., as 

described in Figure 13).   In this Chapter, Bayesian Belief Network was applied to address the existing methods’ challenges, such as the 

issue of the good interface, real-time system SA update, belief measurement, possibility for prediction and uncertainty handling etc.  As 

such, this chapter is aimed to answer the subquestions “how could agents’ sensor states be transformed to manage SA in a distributed 

team?” and the “how to best model the SA of the distributed agents?” as part of the main question: “RQ2. How can we manage the 

Situation Awareness of distributed agents?”. 
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Figure 13: Example of Concept Map of Fire Scenario 

One can annotate concept maps to indicate which entities use a concept, e.g., in Figure 13, fire node is linked up with the concept of 

‘fuel’ and use by different other information. However, the agents might define the concept differently. For instance, the concept “Fuel” 

could have different meanings and importance among agents, e.g., the fire spread agent would prioritise the “Fuel” concept better than 

evacuation agents (i.e., in the case when roads are available). These differences in meaning can be reflected by the context in which the 

concept is used, i.e., how it is related to other concepts. Existing methods (concepts maps, propositional network, fuzzy logic, etc.) 

provide qualitative descriptions of the ‘system SA’; created a priori (from expert knowledge or Standard Operating Procedures, SOP) 

or a posteriori (from analysis of agents' interaction logs). Consequently, these are limited by having issues with real-time system SA 

update (being post-hoc), poor or absence of prediction supports and uncertainty handling, lack of belief measurement, and lack of agents 

interaction analysis, which this Chapter aims to address by applying Bayesian Belief Network.   

 

A Bayesian Belief Network (BBN) is a directed acyclic graph G(N, E), with relations between nodes, N, and directional edges, E, which 

can be captured using adjacency matrix, Cij. Each node of the BBN (e.g., ‘Fire’ node of Figure 15) has a different set of states, (Si) iϵ[1, 
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N], (e.g., present or absent for fire node) with assigned probability values P(Si). The state’s probability values are specified using a prior 

generation algorithm, P(Si), which can be derived from sensor values (e.g., as described in Section 4.8) or Subject Matters Experts 

(SMEs) as described in Section 4.7. The BBN node states probabilities update defines the local SA, e.g., fire presence or absence based 

on the state’s probabilities. As the situation unfolds, the BBN must be updated either by introducing new nodes (this is addressed in 

Chapter 8), by altering links between nodes (discussed in Chapter 8 as well) or by changing the probabilities of the states to reflect the 

current system SA (Section 4.8).  Thus, the chapter describes how BBN can be formalised to present the system DSA. 

4.2 An Example of the System DSA using BBN 

The approach is illustrated using the thesis use case of responding to forest fires discussed in Chapters 1 and 3. Fire has been spotted at 

two locations (the polygons in the top right of Figure 14).  The agents’ mission is to find the fires, monitor them (as discussed in Chapter 

3) and manage the system SA.  In this instance, the 'Situation' is defined by the phenomena to which the network is responding, the 

location (Si) in which these phenomena occur, and the activities that can be performed in response to the phenomena. In other words, at 

the system level, the situation can be defined in terms of Search Area Phenomena and Activities.  This thesis assumes that elements of 

the situation will be known at this high level, even if their parameters are not, which will be collected by the agents (micro or mini UAVs 

of Chapter 3) using their sensors. For example, 'fire' might be defined in terms of {location, spread, fuel type, fuel condition etc., as 

described in Figure 15}.  Updates of the states of the nodes of the BBN in Figure 15 will be done by the agents’ sensors. Therefore, the 

main challenge to be addressed in this Chapter is how these Search Area Phenomena (in the form of BBN nodes from Figure 15) and 

their corresponding Activities can be presented so that agent perception models DSA in a comprehensible and predictable manner. For 

example, Figure 15 describes a BBN to present the forest fire spread behaviour. This BBN is assumed to reside at the Picture Compiler 

(PC) level and is updated by various agents. Thus, the challenge of maintaining DSA within the system needs to consider the agents’ 

capabilities and the changing nature of the search area phenomena.  
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Figure 14: AMASE Example of Search Area Situation (Replica of Figure 2 of Chapter 3) 
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Figure 15:Initial BBN  (produced in Netica) for Forest Fire Spread Monitoring 
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4.3 Performance Measures 

The performance measures were based on metrics and features that support DSA as outlined in literature. The following metrics are 

selected: 

i. Belief measurement: based on the configuration of the agents’ sensors in Chapter 1, there is a need for presenting different 

Search Area Phenomena (in form of nodes). For example, informing the model about the presence of fire not only in a 

Boolean form (e.g., fire presence or absence) but also reflects sensor reliability. This mode of belief measurement is essential 

due to multiple sensors and search area dynamism. For example, detecting fire using visual sensors during night-time is more 

reliable than during daytime due to possible confusion from fire-like objects. Thus, there is no single sensor with an absolute 

priority in all situations.  This is measured by how the SA modelling tool allows non-Boolean information presentation (i.e., 

not presenting information as present or absent only but in a flexible manner). 

ii. Prediction of plausible phenomena: the ability to incorporate different system information to predict future Search Area 

Phenomena. This is measured using the prediction error rate after model training. 

iii. Adaptable and up-to-date presentation: this is the ability to reconfigure DSA to the current situation of the search area. This 

can be measured as the ability to be reconfigured given various situations. 

iv. Uncertainty Handling: Like the prediction task, the estimation of missing or lost information relating to phenomena states 

due to hardware/software problems, sensor failure, etc., needs to be addressed. This is measured using the error rate of the 

estimation model. 

v. Knowledge reusability:  the model needs to have features for incorporating existing knowledge from both human and 

automation agents. Human understanding of Standard Operating Procedure (SOP) is beneficial to the mission operation. 

Although this thesis has no focus on the human aspects, values from documented SOP will be used. Thus, SOP knowledge 
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from the Subject Matter Experts (SMEs) is essential to the mission planning. This is measured as a qualitative feature (i.e., 

ability to incorporate the previous system information to improve the SA management). 

vi. Presentation of multiple states of a search area phenomenon: search area phenomena have different states over a period based 

on their dynamism. For example, considering the fuel type concept in Figure 15,  it is possible states could be grasses, shrubs, 

trees, and a combination of different types based on the location. Thus, the model needs to present alternative interpretations 

of the current situations based on the perceived information. This is also measured as a qualitative feature. 

vii. Heterogeneity handling: the system configuration describes a variety of sources of information from agents to cover different 

phenomena in different search area situations. Contextual understanding of the information is critical to the DSA ( Hutchins, 

1995; Merino et al., 2006; Stanton, 2016). This feature is measured by how the DSA modelling tool addresses heterogeneous 

agents conflicts. 

Therefore, the outlined features and metrics will serve as the evaluation performance measures for comparing the proposed Bayesian 

Belief Network with the outlined existing strategies. This chapter describes only the method and modelling algorithms, the evaluation 

of the metric was discussed thoroughly in Chapters 5, 7, and 8. 

4.4 Hypothesis 

It is hypothesised that an effective SA modelling tool exhibits the outlined metrics (Section 4.3) management. The experiments task is 

to prove this claim based on the use case discussed in Chapter 1 and the agents' mission of Chapter 3.  

4.5 Experiment Design and Task 

The experiment configuration remains the same as the one in Chapter 3. The task is to develop a BBN model that describes the forest 

fire phenomena and their logical relations to reflect the system DSA. The experiment is set up by modelling the scenario (e.g., elements 

of Figure 2, i.e., fires, houses, etc., using a BBN of Figure 15) and other dynamic search area phenomena such as wind speed, wind 

directions, fuel types, etc., for each location (detailed description of the modelled as described in Chapter 6).  
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4.6 BBN for DSA Modelling 

The simple UAVs will be submitting their sensor values as text keywords. For example, whenever a fire detecting UAV detects a fire, 

it will update a .csv (comma-separated values) onboard memory file with aligned time and location values; and submit this update to 

the respective PC or host. The update can be achieved simply using file read/write methods (e.g., using file handling library of Java). 

Therefore, the PC update involves simple UAVs updating their respective columns (nodes labels) of the .csv file.  

The experiment modelled the BBN using NETICA Java API7 and integrated it with AMASE using Eclipse IDE (Integrated Development 

Environment). The BBN states update follows these steps: 

i. AMASE UAVs update of sensor state using text keywords e.g., fire present or absent 

ii. The received text recording in a .csv memory file in form of columns and rows (detail description was done in Chapter 6) 

iii. The .csv file is used to update the priors of the situation BBN using sensor keywords text of (i) 

 

This chapter proposes Bayesian Belief Network (BBN) to model the system DSA.  Visually this has similarities to the concept map, 

propositional network, and ontology (in that each node represents Search Area Phenomena, and the relationship between phenomena is 

managed by the directional edge).  However, BBN assumes a hierarchical dependency (which imposes a different logic from the 

‘grammar’ that defines concept maps, ontology, or propositional network).   

Each system mission will have a high-level BBN, perhaps residing at the PC or host level.  This BBN will be an abstract version of 

‘situations-like-this’ and can be constructed a priori from SME’s knowledge of SOP or learned from the previous mission data.  Thus, 

an initial version of the BBN would involve phenomena characteristic of similar situations based on the agents' goals. As the mission 

 
7 https://www.norsys.com/netica_api.html 
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progresses, the BBN becomes specific to the developing situation based on the simple agents’ sensor information which updates the 

nodes’ states probabilities.  The basic process for constructing the BBN is as follows: 

1. Define Mission type, e.g., 'response to a forest fire monitoring' as described in Figure 15. 

2. Define the BBN Phenomena (nodes) based on the SOP. In this step, there is a need for defining the information needed to 

understand various mission activities, e.g., fire spread, etc. For this chapter, the mission goal is the understanding of forest 

fire spreading behaviour. From the simulation in Figure 14, the fire moves in response to wind direction, wind speed, location 

relation to ground (uphill or downhill) because fire moves faster uphill, based on fuel type and fuel condition (e.g., dried 

grass, wet grass). Therefore, the following Situation nodes are needed: {Fire, Fire Spreading Rate, Fire Spreading Direction, 

Wind Speed, Wind Direction, Location, Location Relation to Ground, Fuel, Fuel Condition, Fuel Type} in Figure 15. 

3. Specify the phenomena states. The state of each phenomenon needs to be identified. Again, continuous variables need to be 

discretised to allow state structuring. For example, nodes of Figure 15 can have the following states: 

{Wind Direction: North, East, South, West, Northeast, Northwest, Southeast, Southwest} 

{Fire: Present, Absent} 

{Wind speed: Very high(greater than 8m/s), High(greater than 6m/s to 8m/s), Medium (greater than 4m/s to 6m/s),   

Low(greater than 2 to 4m/s), Very Low(0-2m/s)} {Location: Cell_1, Cell_2, Cell_3, Cell_4} i.e., the environment is 

segmented into four cells. 

{Locations Relation to Ground: Uphill, Downhill} 

{Fuel: Shrubs, Trees, Grasses}  

{Fuel Condition: Dried, Wet} 

{Spread: Spreading, Not Spreading} 
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{Fire Spreading Rate: Very high (greater than 8m/s), High(greater than 6m/s to 8m/s), Medium (greater than 4m/s to 6m/s),   

Low(greater than 2 to 4m/s), Very Low(0-2m/s)} 

{Fire Spreading Direction: North, East, South, West, Northeast, Northwest, Southeast, Southwest} 

4. Initialize concepts relations i.e., the definition of the initial BBN links configurations. 

5. Specify the Conditional Probability Table (CPT) for the SOP-updating nodes (e.g., as describe in Table 12). NETICA allows 

that by selecting the node’s table option (i.e., right click on a node and selecting table option). This will automatically select 

all the dependent nodes states as the entry of the parent node. Table 12 describes an example of a CPT for “Spread” of Figure 

15. 

 

Table 12: An Example of Node CPT Entries 

#  Fire Fuel Spread Node CPT 

Spreading 

Probability 

Not 

Spreading 

Probability 

1 Present Present 100% 0% 

2 present Absent 0% 100% 

3 Absent Present 0% 100% 

4 Absent Absent 0% 100% 
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Table 12 describes the simple forest fire spread CPT definition. That is, fire spreads only if fuel is present (Breejen et al., 

1998b; Peter Hirschberger, 2016b). Thus, the probability values of the CPT are responsible for defining the situation of the 

nodes. 

4.7 Initialising Priors of the Phenomena State in BBN 

Every mission is assumed to start at the initial state level (i.e., as initialised by the SMEs or equal values for nodes in a state of ignorance). 

The agents sensor information will be used in updating the states nodes. Therefore, the priors used in the BBN can be initialised in two 

ways.  One involves a simple cold-start, and the other requires elicitation from SMEs values. This chapter considers the former, and the 

latter is explored in Chapter 5.   

For the cold-start, probabilities are initialised simply as 1/n x 100%, where n is the number of states for a given node. Thus, in the 

absence of any information, each node state, e.g., the 'Fire' node of  Figure 15 has a starting probability of ½ x 100%  = 50%. Assume 

that a UAV carrying an infrared sensor detects fire at a location. In this case, the probability of ‘fire = present’ increases (and the 

probability of ‘fire=absent’ correspondingly decreases). To derive the probability of each node from SME’s judgement, the chapter 

proposes the use of Thurstone’s paired comparison (Allen, 1994).   This should be an activity performed when SOP is written rather 

than a precursor to each situation.  In this approach, an SME is presented with pairs of element states in a BBN and asked to grade the 

relative criticality of each state.  There will be n(n-1)/2 pairs for a given set of states, where n is the number of states. The main limitation 

is that the number of pairs can quickly become exhausting, so it might be appropriate to decompose the BBN into sections and have 

groups of SMEs score small sections based on the specific SME experience, which can then be integrated.   
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To illustrate this method, Table 13 shows the SMEs' frequency for the ‘Fuel type’ node of Figure 15 evaluated by 10 SMEs respondents 

with experience in forest fire physical operations8. The number of pairs to compare is 6.  Each SME has presented with a single pair at 

a time and asked to indicate which pair is more critical (by assigning 1 to this type).  

Table 13: Example of SMEs Paired Comparison Frequency Table 

 shrubs non- 

combustibles 

grasses trees 

shrubs  10 8 2 

non- 

combustibles 

0  1 0 

grasses 2 9  2 

trees 8 10 8  

 

Once a count of values has been made, this is converted to a proportion of the number of respondents described in Table 14. For example, 

shrubs and non-combustibles proportion values are 1 (i.e., 10/10), and shrubs and grasses will be 0.8 (8/10).  Note that entries across the 

diagonal of Table 14 are replaced with 0.5 because BBN does not allow a cycle. The mean for each column is calculated, e.g., the 

‘shrubs’ column = 0.5+0.5+0.2+0.8 / 4 = 0.5, and the corresponding z-score obtained9, i.e., 0.69.  The z-score is then normalised to 1 to 

define the final weighted value as described in Table 15 (i.e., suits the CPTs probability values).  In Table 15, the elements have been 

re-ordered to reflect increasing SME values. 

 
8 As derived from the physical forest fire experiment conducted by the author in Nigeria (the experiment result was discussed in Chapter 6). 
9 This can be done from a Standard Normal Distribution Table (z-table) or uses NORM.DIST in Microsoft Excel (with the values of a From population mean, standard deviation and cumulative being 
0,1,1 and x being the calculated value of mean in table IV). 
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Table 14: Example of SMEs Paired Comparison Frequency Table 

 Shrubs Non- 

combustibles 

Grasses Trees Mean 

across 

rows 

shrubs 0.5 1.0 0.8 0.2 0.625 

non- 

combustibles 

0 0.5 1.0 0 0.375 

grasses 0.2 0.9 0.5 0.2 0.45 

trees 0.8 1.0 0.8 0.5 0.775 

 

 

Table 15:Frequencies Mean and Z-Score 

 Non- 

combustibles 

Grasses Shrubs Trees 

Z .8 .71 .69 .63 

Mean .85 .55 .5 .35 

Weight -.05 .16 .19 .28 
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Figure 16: Final Weighted Values Number Line 
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From Figure 16, the trees got a higher weight. This shows that having trees as fuel type, fire will spread faster than having other fuel 

types, e.g., grasses, shrubs, and non-combustibles. Similarly, non-combustible got the lowest weight; this means the fire will not spread 

given the non-combustible fuel type. 

Therefore, Thurstone’s paired comparison method serves as a way of merging different SMEs' contributions to define nodes' states 

probabilities. The outcome can be applied to update the BBN through the CPTs as described in  Table 12. 

4.8 Updating Phenomena States Priors of the BBN 

Having established a BBN for the search area, the next step is to apply this to a mission. The thesis suggests a simple algorithm that 

manages the change in state probabilities due to incoming agents' information. To illustrate this, assume a UAV has a temperature sensor 

that defines fire presence (as 1 for 'present' or 0 if the information does not exceed the temperature threshold for 'present,' i.e., absent).  

On initiation, the UAV will have a belief, B1, for its ‘fire’ element. The initial information state, I1 , has B1 = 0.5.  Assume that the sensor 

reports new information to update its belief, Bnew.  Assume that on the first report, the sensor indicates fire present.  From this, p(fire = 

present) increases from 0.5 to 0.75, i.e., p(fire = present) = B1 x I1 + 1 / I2 (I1 + 1) = 0.5 x 1+1 / 1x(1+1) = 1.5 / 2 = 0.75. On the second 

report, its sensors make another positive report. In this case, p(fire = present) increases;  (0.75 x 2 +1 ) / 3 = 0.83.  Note that this gradual 

update is for unreliable sensors. Reliable information needs to be updated directly to a value of 1. For example, if a fire is detected from 

a reliable source (say, an experienced human lookout ranger or a reliable sensor), the belief will rapidly increase to 1. The sensor 

reliability weights can be assigned using Thurstone’s paired comparison method described in Section 4.7. An intensifying factor, k, 

serving as a measure of reliability (derived from the SMEs' judgement) can be applied. Thus, the detected states’ belief (probability 

value) increases while the non-occurring states decrease (e.g., Figure 17). This allows active DSA modelling within the system (a higher 

probability identifies, i.e., winning states and as such, the current situation perception). 
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Figure 17: Example of Belief Update Transition. 

Table 16 demonstrates an example of how the “Wind Speed” node of Figure 15 changes its probability values over various sensor 

updates. This begins with no report at epoch 0 so each state {very low, low, medium, high, very high} is equally probable i.e., P(Si) = 

100%/n i.e., 100%/5. At each epoch, new information is received (indicated by the grey cells background and bold value in Table 16). 

From the formula presented, the probability at #1 is calculated as p(WindSpeed = Low) = (0.2x1+1) / 2 = 0.6 and the probability of any 

other value for windspeed will be (1 - 0.6 )/ 4 = .1.  Likewise, at #2 p(WindSpeed = High) = (0.1x2+1) / 3 = 0.4 (windspeed High will 

update to 0.4, while windspeed= Low will be 0.4,i.e., 0.6x2/3), and the other non-occurring states will be 0.066, i.e., .1x2/3. The process 

continue at every sensor value reception. 

Table 16: Estimated Probabilities for Wind Speed Data 

# 

Very 

Low Low Medium High 

Very 

High 

0 .20 .20 .20 .20 .20 



 
 

97 

1 .10 .60 .10 .10 .10 

2 .067 .40 .067 .40 .066 

3 .05 .30 .30 .30 .05 

4 .04 .44 .24 .24 .04 

 

4.9 Nodes Relations Measures 

The structure of the BBN describes the causal relations among different nodes. This allows the ability to measure the connections among 

BBN nodes using conditional independence measures. That is the depiction of "who affects who the most?” among the nodes of the 

DSA system. Depicting the relations have many benefits to the DSA system. For instance, this can be used as the basis for the network 

structural learning (as described in Chapter 8) and the identification of the most critical nodes of the system.  Measures such as entropy, 

Pearson’s correlation, and probability variance can be used (Neapolitan, 1990; Pearl, 1978). For example, Equation 7 measures the 

likelihood of Ss situation increment/decrement given findings at related entries Rr, with respective states s,r ϵ [1, N].  

 

λ(Ss | Rr) = ∑ ∑ 𝑃(𝑆2, 𝑅3)[	𝑃(𝑆2|𝑅3) − 𝑃(𝑆2)]42&0
2&(

3&0
3&(  

Equation 7:Nodes Relation 
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where Ss is the querying situation node with several states s, Rr is the related nodes with their number of states r. 

The degree of relevance λ(Ss | Rr) is the likelihood of change in the probability of querying node Ss given finding in a related node 

Rr (Equation 8). Values range from 0 to 1, with 0 meaning the lowest degree of relations and 1 means a high degree of connections. For 

example, assume the degree of the relation of the 'Fire' node with respect 'Location' node at when the initial update values are {fire 

present:0.75, location_Cell_2:0.625}, then λ(Fires | Locationr) is : 

 

λ(Fires | Locationr) = ∑ ∑ 𝑃(𝐹𝑖𝑟𝑒2, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛3)[	𝑃(𝐹𝑖𝑟𝑒2|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛3) − 𝑃(𝐹𝑖𝑟𝑒2)]42&0
2&(

3&0
3&(  

Equation 8: BBN Nodes Relevance Computation 

Expanding this, gives: 

 

λ(Fires | Locationr) = ∑ (𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡,3&0
3&(  𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛3)[𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) − 𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡)]4)+	𝑃(𝐹𝑖𝑟𝑒 =

𝐴𝑏𝑠𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛3)[𝑃(𝐹𝑖𝑟𝑒 = 𝐴𝑏𝑠𝑒𝑛𝑡|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) − 𝑃(𝐹𝑖𝑟𝑒 = 𝐴𝑏𝑠𝑒𝑛𝑡)]4 

λ(Fires | Locationr) =  𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶1)[𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶1) − 𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡)]4 + 𝑃(𝐹𝑖𝑟𝑒 =

𝐴𝑏𝑠𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶1)[𝑃(𝐹𝑖𝑟𝑒 = 𝐴𝑏𝑠𝑒𝑛𝑡|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶1) − 𝑃(𝐹𝑖𝑟𝑒 = 𝐴𝑏𝑠𝑒𝑛𝑡)]4  + 

𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶2)[𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶2) − 𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡)]4 + 𝑃(𝐹𝑖𝑟𝑒 =

𝐴𝑏𝑠𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶2)[𝑃(𝐹𝑖𝑟𝑒 = 𝐴𝑏𝑠𝑒𝑛𝑡|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶2) − 𝑃(𝐹𝑖𝑟𝑒 = 𝐴𝑏𝑠𝑒𝑛𝑡)]4  + 
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𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶3)[𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶3) − 𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡)]4 + 𝑃(𝐹𝑖𝑟𝑒 =

𝐴𝑏𝑠𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶3)[𝑃(𝐹𝑖𝑟𝑒 = 𝐴𝑏𝑠𝑒𝑛𝑡|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶3) − 𝑃(𝐹𝑖𝑟𝑒 = 𝐴𝑏𝑠𝑒𝑛𝑡)]4 

+ 

𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶4)[𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶4) − 𝑃(𝐹𝑖𝑟𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡)]4 + 𝑃(𝐹𝑖𝑟𝑒 =

𝐴𝑏𝑠𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶4)[𝑃(𝐹𝑖𝑟𝑒 = 𝐴𝑏𝑠𝑒𝑛𝑡|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶4) − 𝑃(𝐹𝑖𝑟𝑒 = 𝐴𝑏𝑠𝑒𝑛𝑡)]4 

 

From Table 16 #1, the probability values are: 

 

P(Fire = Present) = 0.75, P(Fire = Absent) =0.25, 

 P (Fire=Present, Location = C1) =  0.75x0.125 =0.0937, 

P (Fire=Present, Location = C2) = 0.75x0.0.625 = 0.468 

P (Fire=Present, Location = C3) =  0.75x0.125 =0.0937 

P (Fire=Present, Location = C4) =  0.75x0.125 =0.0937 

 

P(Fire=Absent, Location = C1) = 0.25x0.125 = 0.0312  

 P(Fire=Absent, Location = C2) = 0.25x0.625 = 0.156.  
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P(Fire=Absent, Location = C3) = 0.25x0.125 = 0.0312 

P(Fire=Absent, Location = C4) = 0.25x0.125 = 0.0312 

 

From Bayes rule, 

 

P(Fire =Present|Location =C1) = P(Fire=Present, Location=C1)/P(Location=C1) = 0.0937/0.125 = 0.0117.  

 

P(Fire =Present|Location =C2) = P(Fire=Present, Location=C2)/P(Location=C2) = 0.468/0.625 = 0.748. 

 

P(Fire =Present|Location =C3) = P(Fire=Present, Location=C3)/P(Location=C3) = 0.0937/0.125 = 0.0117. 

 

P(Fire =Present|Location =C4) = P(Fire=Present, Location=C4)/P(Location=C4) = 0.0937/0.125 = 0.0117. 

 

P(Fire =Absent|Location =C1) = P(Fire=Absent, Location=C1)/P(Location=C1) = 0.0312/0.125 = 0.249 . 
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P(Fire = Absent |Location =C2) = P(Fire= Absent, Location=C2)/P(Location=C2) =   0.156/0.625 = 0.249 

 

P(Fire =Absent|Location =C3) = P(Fire=Absent, Location=C3)/P(Location=C3) = 0.0312/0.125 = 0.249 . 

 

P(Fire = Absent |Location =C3) = P(Fire= Absent, Location=C3)/P(Location=C3) =   0.156/0.625 = 0.249 

 

P(Fire = Absent |Location =C4) = P(Fire= Absent, Location=C4)/P(Location=C4) =   0.156/0.625 = 0.249 

 

Now, substituting the values: 

 

λ(Fires | Locationr) =   0.0937(0.0117-0.75)2 + 0.0312(0.249-0.25)2 + 0.468(0.748-0.75)2 + 0.156(0.249-0.25)2 + 0.0937(0.0117-0.750)2 

+ 0.0312(0.249-0.25)2 + 0.0937(0.0117-0.750)2 + 0.0312(0.249-0.25)2 

λ(Fires | Locationr) =  (0.0937 x0.545 + 0.0312x0)+  (0.468x0+0.156x0) + (0.0937 x0.545 + 0.0312x0) + (0.0937 x0.545 + 0.0312x0) 

 

λ(Fires | Locationr) = 0.15 (15%). 
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From this, the chances of change in the belief of ‘Fire’ node given any information on location is 15%. Thus, the measure of relevance 

depicts the degree of relevance among different concepts. 

4.10 Discussion and Conclusion 

In this Chapter, the concept of how sensor information from distributed agents can be presented and managed using BBN to reflect DSA 

has been described. The aim is to illustrate how the proposed BBN could reflect DSA at a system level. The use of BBN for DSA offers 

the following beneficial features in contrast to the existing concept maps, propositional networks, fuzzy logic, and ontologies: 

i. Belief quantification: BBN quantifies belief using probabilities to present phenomena within the DSA system. Increasing or 

reducing probabilities based on the agents' perceived sensor information makes the BBN adaptable to dynamic situations. 

Section 4.8 describes the update methods and algorithm. This is very different from the concept maps, propositional 

networks, or ontologies (Nguyen et al., 2019; Salmon et al., 2009; Stanton et al., 2006; Stefanidi et al., 2022; Stewart et al., 

2008; Suhail et al., 2022). In those approaches, belief occurrence is Boolean, i.e., either occurred or not and is presented 

textually. Overall, the concept of belief measurements paves the way for controlling agents' activities transition using 

probabilities and sensor reliability allocation. For example, Bayesian learning can be applied to support prediction and 

uncertainty handling (as described in Chapter 7), agents interaction analysis (Chapter 5), and adaptable knowledge prediction 

(Chapter 8), which makes it distinguishable from other methods.  

ii. Projection of future Situation: the BBN can predict situations using Bayes conditional probability rule, expectation-

maximisation, or gradient descent algorithms (Bottou, 2010; Dempster et al., 1977; Lee et al., 2007; Mandt and Hoffman, 

2017; Romanycia, 2019). This supports Endsley’s Situation Awareness projection stage by estimating the future most likely 

values of the Search Area Phenomena. A detailed description of the process has been described in Chapter 7. 

iii. Uncertainty handling: uncertainties due to sensor faults (soft findings) can be handled by adjusting the probabilities of the 

uncertain states. Again, learning algorithms such as the Bayes rule, expectation-maximisation, gradient descent, etc., can be 



 
 

103 

applied to estimate missing values (e.g., due to hardware/software issues, etc.). The metric evaluation has been conducted 

in Chapter 7.  

iv. Adaptability: learning in dynamic environments requires a flexible BBN configuration in both parametric (value-based) and 

structural updates based on the conditional independence measures (node relations) of Section 4.9. The algorithm and 

methods described in Section 4.8 and Section allow flexible presentation of various situations based on the received 

information. Again, exceptional cases can be identified by human SMEs and treated accordingly. For instance, from Figure 

15., a fire could not spread when absent. Therefore, the joint probability p(Fire:Absent, Spread:Spreading) = 0. Normal joint 

probabilities can be derived simply as the product of their independent priors, e.g., for the update at #2 of Table 12 (assumed 

spread node value is “spreading”),  𝑝(fire:present, spread:spreading) =  0.75x0.75 ≈0.56. In terms of causal relations, we 

can say that from the BBN in Figure 15 the link between ‘Fire’ and ‘Spread’ nodes could exist only if ‘Fire=Present’. That 

is, fire will spread only if it occurs. Similarly, Chapter 8 describes adaptability of BBN in terms of the BBN structural 

learning. 

v. Infomration reusability: knowledge can be reused within the BBN models. For example, exchanging information between 

two picture compilers is possible by revising the assigned SMEs weights to conform to the receiver’s goal. To illustrate this, 

assume a fire detecting PC exchanges fire information with evacuation PC, the recipient will then revise the SMEs weight 

of the fire node to be in line with its mission goal and consider it for its future activities.  

vi. Multiple situations state presentation: as described in Figure 15 all possible states of a situation can be presented using a 

single BBN node. The winning states differ only by having higher probabilities. This is very different in the case of 

propositional networks, concept maps, or ontology, which involves reconstructing a new model. 

vii. Agents heterogeneity handling: both automation and SMEs agents have a unique way of presenting their information to 

reflect SA within the BBN. For example, Section 4.7 and Section 4.8 describe how SMEs can assign probability weights to 

states of the BBN and how UAVs information can be transformed to the BBN and reflect the system SA. 
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The above features demonstrate the potential of applying BBN toward good DSA modelling in a team of agents with varying capabilities. 

The use of BBN shows a certain level of superiority above the existing concept maps, propositional networks, fuzzy logic, ontology, 

etc., in terms of the above-outlined features. For example, prediction and uncertainty handling (SA projection) can be handled using 

Bayes rule or learning algorithms such as the expectation-maximisation algorithm, gradient descent algorithm, etc. (Bottou, 2010; 

Dempster et al., 1977; Pearl, 1988; Romanycia, 2019)  as described in Chapter 7. Summarily, the use of the Bayesian Belief Network 

to describe Distributed Situation Awareness in the team of agents provides viable solutions to the quantification of beliefs, uncertainty 

handling, prediction, and adaptability better than the outlined existing methods. More results to prove this claim was developed in 

Chapters 5, 7, and 8. 
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5 Chapter 5: Agents DSA Comprehension and Interaction 

The agents’ resources utilisations aspect of the search problem is modelled as a Distributed Constraint Optimisation Problem (DCOP) 

in Chapter 3; in this Chapter, I extend the formalisation of DCOP to the Distributed Situation Awareness (DSA) by considering the SA 

modelling discussed in Chapter 4. The aim is to take a step towards merging the concept of DSA modelling and area coverage(search) 

problems by considering agents’ interactions and the applied BBN of Chapter 4. 

5.1   Introduction 

As discussed in Chapter 4, DSA agents have different views or perceived information based on their goal of which the combination of 

agents’ current beliefs and understanding defines Situation Awareness at the system levels (Salmon et al., 2009, 2008, 2006; Stanton et 

al., 2006, 2009). This can happen only through agent interactions, i.e., information exchange (Stanton et al., 2006, 2009; Stanton, 2016). 

The interaction here is referred to as the simple agents exchanging information with the PCs or host. For instance, if the temperature 

sensor detects fire using temperature value threshold (e.g., when the temperature rises above 89oC, this indicates fire presence) while 

the visual camera and infrared sensor carrying agents use colours detection; these information needs to be contextually interpreted by 

the corresponding Picture Compiler (PC) to know which sensor to trust in a particular situation. This interaction process needs to be 

monitored to avoid unnecessary interactions, infinite message exchange, or deadlock. Remember, the decision time for most DSA 

systems in a dynamic search area is critical. For example, fire occurrence information needs to be interpreted within 5minutes of the 

detection (Ingle et al., 2011). Thus, achieving DSA effectively with minimal resources could help in tackling the time/space constraints. 

Thus, the aim of this chapter is to address the following research questions: “how can we ensure a good interaction among DSA agents?” 

and “how do agents interactions support both search plan and SA management?” as a subquestions to the main question “RQ3. How 

could agents’ search plan support SA management?” of Chapter 1.  Good interaction here means a resource utilised interaction and is 

modelled as a Distributed Constraint Optimisation (DCOP) Problem (i.e., similar to Chapter 3). 
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DCOP refers to the assignment of variables to optimise (minimise/maximise) parameters' cost functions by considering the imposed 

constraints (Fioretto et al., 2018; Hoang et al., 2017, 2016). For example, considering the use-case of multi-UAV mission for forest fire 

monitoring in Chapter 3, the UAVs are tasked to explore an environment to monitor the fires. Therefore, the DCOP refer to the 

assignment of waypoints, i.e., places to visit (waypoints), to minimise/maximise the UAV/mission cost functions, e.g., UAVs battery 

life (minimise), computational demand (minimise), mission coverage (maximise), redundant search (minimise), etc., under the imposed 

constraints as outlined in Chapter 1. This can only be achieved through good interaction among agents.  

DCOP exists in many forms such as the classical, dynamic (i.e., with changing cost functions and variables), multi-objective (i.e., DCOP 

with different cost value target optimisation, different minimisation and maximisation cost values), etc., (Fioretto et al., 2018, 2017, 

2015; Hoang et al., 2017, 2016). The choice of the application domain determines the best form to model the problem. Most real-world 

applications in dynamic environments utilises the proactive dynamic DCOP  (PD-DCOP)(Hoang et al., 2017, 2016, Hoang, 2019). PD-

DCOP is a form of DCOP in which the agents are subjected to solving a series of DCOP problems in changing forms and dynamic 

search area (Hoang, 2019; Hoang et al., 2017). Although PD-DCOP algorithms respond to changes within the agents' search area, it 

fails to handle the analysis of agents’ interactions (Fioretto et al., 2018; Hoang et al., 2016), SMEs contribution integrations, success 

measurement, and SA modelling. Therefore, these issues will be addressed in this chapter. 

5.1.1  DCOP Agent in DSA System 

The role of an agent in DCOP is to select a variable in a cost-effective manner despite the imposed constraints (outlined in Chapter 1). 

To do this effectively, the agent needs to understand its current situation (e.g., based on the sensor information and location) and act 

accordingly. This conforms to DSA perception (through sensors), comprehension (through the logical organisation of the perceived 

information as discussed in Chapters 1 and 2), and prediction (forecast of future plausible states and actions). Additionally, for adequate 

DSA formalisation with DCOP, agents’ roles, cognitive abilities, constraints, and resource parameters must be considered. This chapter 

maintains the agents’ roles and constraints configuration discussed in Chapter 1, Section 1.2.  Thus, DCOP in the DSA system is role 
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and goal-based in a dynamic, uncertain (because agents’ information could be unreliable due to sensor, hardware, software, and the 

search area dynamism issues), and multi-objective form. For example, understanding forest fire spread for the simple agents means 

acting on the sensed information only, e.g., by generating specific waypoints around the fire detection area to get the rough shape of the 

fire. This is very different at the PCs’ level due to the ability to join information from different simple UAVs. Thus, it involves the 

logical organisation and interpretation of information submitted by other simple agents, e.g., fuel type, weather report, etc.   Therefore, 

the DCOP optimisation in DSA system is based on the agent's situation, role, and mission goal.  

5.1.2 Dynamism and Multi-objectivity of DCOP in DSA System 

This Chapter adopts the definition of dynamic DCOP problem as a finite horizon, proactive, dynamic, and multi-objective PMO-DCOP 

(as in Chapter 3). As such, every set of agent situations has a particular set of optimising parameters and their respective target 

optimisation (i.e., either minimisation or maximisation), as outlined in Chapter 3, Table 5. For example, coverage needs to be maximised 

during the agents' searching task by minimising the redundant search. Similarly, coverage will not be the targeted optimising parameter 

during the fire mapping task. Therefore, finding a DCOP solution in a DSA system within the limited time/space frame signifies that 

the problem is finite-horizon (time-based) and in multi-objective form within a time limit t. DCOP finite horizon problem needs to be 

solved within the assigned time limit (Hoang et al., 2017), which conforms to the limited time/space demand for decision-making while 

managing SA. Therefore, in most DSA systems, finite horizon DCOPs will be more rampant than infinite ones. 

In terms of DCOP proactivity (prediction of future states using previous mission data) and reactivity (acting solely on current 

information), the DSA system is mostly proactive for the thesis problem. However, the problem could be reactive sometimes if the 

variables are rapidly changing in such a way that the history of perceptions has no significant effect on the current situation perception. 

For example, considering the case of generating a searching waypoint randomly using the Lévy distribution (Chawla and Duhan, 2018) 

as discussed in Chapter 3, previously generated variables have little or zero impact on future variables, i.e., based on the results in Table 



 
 

108 

7, Table 8, Table 9, and Table 11 of Chapter 3). In this situation, agents' previous information will not help in predicting plausible future 

situations; as such, the version of this DCOP is reactive. 

5.1.3 The Model  

To capture the dynamism in DCOP and DSA, I modelled the problem as a finite horizon proactive, dynamic, uncertain, and multi-

objective DCOP (PUDM-DCOP) similar to the description in Chapter 3. The slight difference is that this chapter considers measuring 

each of the agents' interactions as a way of calculating the overall resources utilisation. In contrast, Chapter 3 focuses on resources 

utilisation only. 

D = {Ai, P, T, V, ϒi , Scondition, W, Ki, αi, λ, δ, β, C, I}            

Equation 9:Agents Interaction DCOP Model 

where, 

Aij = {a11, a22, a33, ... , aij} is the set of agents i of type j , i ϵ [1,M], j ϵ [1,N]  e.g, a UAV of fire detecting type.  

P is the set of agents’ (PA) and mission’s (Pm) parameters (i.e., from Chapter 3 Table 5), and their target cost optimisation function Co.  

T is the mission time space Ti = {t1, t2, t3, …, tn}, n = 1, 2, 3, … n (e.g., t1 = 5 minutes, t2 = 10 minutes, etc.).  

V is the set of variables i.e., V={v1, v2,v 3,...,vn}. I assume V is the set of searching waypoints for the agents for the chosen use case. 

δ is the situation’s probability priors measure, such that δ:ϒi→ℝ. The value of δ is going to be updated at every agent sensor poll. 

ϒi is the set of agent’s states over time period T, defined by the Markov chain ϒi = {ϒ1 x ϒ2 x ϒ3 x … x ϒn}. The prediction of agent’s 

states from time t, can be defined by the Markov transition of probabilities P(ϒt = a | ϒt-i,..., ϒt=2, ϒt=1, ϒt=0) =p(ϒt-i,..., ϒt=2, ϒt=1, ϒt=0| ϒt 
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= a) x p(ϒt = a)/p(ϒt-n,..., ϒt=2, ϒt=1, ϒt=0). In other words, current situation of the agent is determined by its previous transition measured 

using conditional probabilities (i.e., to comply with probabilistic measures δ). 

Scondition is the set of dynamic environmental conditions that trigger target cost function switching based on the agent current information 

described by the tuple Scondition={ϒi, Sv, ti}, where Sv is the set of search area’s dynamic variables (i.e., wind speed, wind direction, fuel 

type, fuel condition, and terrain nature). The essence of the search area condition is to describe the changing nature of the operating 

environment (environmental dynamism). For instance, when an agent detects a fire, the searching pattern and cost optimisation 

parameters need to be updated to comply with the current detection. 

W is the finite set of search plan waypoints to be explored, i.e., W={w1,w2,w3,...,wn}. Thus, W ϵ Si, where Si is the search space. 

Ki is the finite set of constraints Ki={k1,k2,k3,...,kn}  imposed on the agents, e.g., limited energy, limited interaction, limited sensor range, 

uncertain target destination, and communication range.  

αi is the set of action spaces across agents, such that αi = {α1 x α2 x α3 x … x αi} is factored across each agent. That is the set of agents’ 

actions given a particular state. For example, if a fire is spotted by a simple UAV (i.e., a state), the action could make a circular pattern 

to understand its shape. The actions are defined jointly by the agent's current state and constraints, i.e., αi: ϒi x k. Other agents, e.g., the 

PCs, have various actions given their respective situations.  

β is the probability of selecting a successful variable at time tn +1 given situation and variable transitions at time t1, t2, ...., tn. i.e., β = 

P(Vi+1| V1,V2, V3,...Vi) = P(V1,V2, V3,...Vi| Vi+1)P(Vi+1)/P(V1,V2, V3,...Vi). Therefore, β can be used to measure uncertainty in forecasting 

future variables assignment. The higher the probability of selecting variable Vi at time t+1, the higher the chances of optimising the cost 

functions. The priors of the variables (situations) will be derived from previous entries. 

λ is the variable assignment function defined by λ:	V →Ai. 
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C is the real-valued cost function defined jointly by agents’ actions in every situation and cost implication, i.e., C: αi x ϒi x P→ℝ+ (as 

described in Chapter 3). Every agent’s action in a particular situation is mapped to a positive real number cost value measured using 

SMEs allocation. For example, a waypoint space distance within 1Km2, 2Km2, and 3Km2 cost 30, 20, and 10 cost values in optimising 

coverage, computational power, memory, etc.  

I is the agent’s interactions (data exchange through communication), such that the interaction between agent ai and the tuple defines ai+1 

I = {ai, ai+1, kc, Mij}, where kc is the communication range constraint, and Mij is the required information for interacting agents i and j. 

Note that, I ∈ 𝐾". 

Considering the thesis use case of forest fire monitoring, the agents (Aij) select waypoints (V) to optimize the mission costs (C) based 

on the defined parameters P during their search mission. For example, redundant waypoints need to be avoided by considering the agent 

situation (ϒi) derived from the sensor information (δ), location (W), and acting accordingly (e.g., generating a new waypoint based on 

the action, which is related to the current mission goal, αi). The action on waypoints assignment considers the situation and assigns 

waypoints using lambda that optimises the cost values C. Inter-agents interactions (I) monitor the waypoints selection considering the 

system constraints (K).  The search area situations will be predicted (e.g., when a fire will reach critical areas such as buildings) using 

β based on previous mission data and search area dynamic parameters Scondition. Note that β will be utilising the Bayes rule and the BBN 

Conditional Probability Tables (CPTs). Thus, the model describes how the agents’ mission and interactions could solve the mission goal 

with an optimised set of resources.  

5.1.4  Hypothesis 

It is hypothesised that 
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i. an efficient interaction among agents within a DSA and DCOP system always utilises the outlined resources in Table 5 in 

Chapter 3. That is, it maximises the parameters that are needed to be maximised and minimises ones with minimum agent 

interaction. 

ii. The success of agents’ interaction in solving DCOP within a DSA system depends on the search plan structure. 

iii. A larger number of agents interaction neither improves DCOP solution nor DSA management. 

5.1.5 Metrics 

The key metrics to determine the success of the proposed approach are entropy and costs (agents’ and mission parameters of Chapter 3 

Table 5). For entropy, the lower the entropy measure, the higher the effectiveness of the interaction.  

5.2 Proposed DSA-based DCOP Solution 

The main focus of the proposed solution is to describe how DCOP could be solved effectively through efficient SA modelling (Chapter 

4) and agents’ interactions based on the agent’s search plan. Therefore, this Chapter proposed the following tools and algorithms to 

address the outlined challenges. 

5.2.1 DSA Modelling for DCOP Solution 

As mentioned earlier, DCOP in most real-world systems is a dynamic (Hoang et al., 2017), in which agents are tasked with switching 

between prioritising parameters. This has been described in many DCOP algorithms such as D-DCOP (dynamic DCOP algorithms), 

PD-DCOPs (finite-horizon dynamic DCOP), IPD-DCOPs (infinite horizon dynamic DCOP) algorithms etc., (Choxi, 2007; Fioretto et 

al., 2018; Fransman et al., 2019; Hoang, 2019; Hoang et al., 2017; Kluegel et al., 2017; Le et al., 2016; Yeoh et al., 2011). However, a 

clear model of how the agent actions solve the problem (i.e., changing cost function to be optimised based on the situation), agents 

interaction analysis, and the incorporation of SMEs inputs have not been described. In this chapter, the proposed BBN of Chapter 4 will 
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be utilised to address these issues. Because agents’ interactions are at the PC or host level, a bigger BBN is used to describe the solution, 

as illustrated in Figure 18. 
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Figure 18:BBN Model for Fire Spread Concepts Presentation (NETICA Software) 

Figure 18 describes a BBN for fire monitoring at the host level. The agents’ perception (belief) of each concept (node) state is calculated 

using the prior computation algorithm described in Chapter 4, Section 4.8. The probability of the parent node states is maintained using 

the Conditional Probability Table (CPT). The CPT rows contain dependent nodes’ states combination and their final probabilities at the 

parent slot, which could monitor agents’ decisions on parameter optimisation and sensor conflict(condradiction) resolution in both 

DCOP and DSA systems. An expert can assign the CPT entries (as described in Chapter 4) or learn from the acquired mission data. For 

example, from Figure 18, the visual sensor's visibility is maintained using the "Visibility" node. Table 18 describes the "Visibility" node 

CPT entries (based on the assumption that it was received from SOP or learned from previous mission data). 

Conflict among sensor information nodes can also be resolved using their parent node’s  CPT. Conflict resolution nodes (e.g., situation 

weight assigners nodes) and parameters cost nodes (e.g., the cost optimisation grade Table 17) CPTs will be updated by the SMEs as 

described in Chapter 4 Section 4.8. The BBN nodes were categorised into cost (utility), situation (perception), and awareness 

(understanding nodes) for a better DCOP and DSA formalisation.  

a. Cost (utility) nodes: defines the cost implication of agents’ action. For example, Table 17 describes the CPT of the utility node 

(Cost Optimisation Grade node) of Figure 18. 

Table 17: Example of Cost Optimisation Grade Node CPT Entries 

# Agent Task  Waypoint Area Difference (% of 

the total searching space) 

Optimising 

Parameter 

Cost Optimisation Grade (Optimisation Weight 

Assigned by SMEs as describe Equation 11) 

1 Searching Between 0% and 10% Coverage Grade 3 (50%) 

2 Searching Between 0% and 10% Energy Grade 3(50%) 
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3 Searching Between 0% and 10% Memory Grade 3(50%) 

4 Searching Between 0% and 10% Mission Time Grade 3(50%) 

5 Searching Between 0% and 10% Redundant 

Search 

Grade l(100%) 

6 Searching Between 0% and 10% Computational 

Power 

Grade 3 (50%) 

7 Searching Between 10% and 20% Coverage Grade 2(70%) 

8 Searching Between 10% and 20% Energy Grade 2(70%) 

9 Searching Between 10% and 20% Memory Grade 2(70%) 

10 Searching Between 10% and 20% Mission Time Grade 2(70%) 

11 Searching Between 10% and 20% Redundant 

Search 

Grade 2(70%) 

12 Searching Between 10% and 20% Computational 

Power 

Grade 3(50%) 

… … … … … 

90 Waypoint Generation Above 30% Computational 

Power 

Grade 1(100%) 

 

From Figure 18, the “Cost Optimisation Grade” node has three dependents’ nodes (i.e., waypoint area difference, task, and 

optimising parameters nodes). These dependent nodes determine the success of the waypoints assignment in terms of cost 

utilisation (solving the DCOP problem in Equation 9). For example, Table 17 #1 indicates that during a searching task, if the 
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waypoint area separation difference (difference between two waypoints meant for the same task) is between 0% and 10% of the 

searching space (i.e., calibrated using the sensor range), then coverage optimisation grade is level 3.   

b. Awareness nodes: show how various nodes states could be joined to understand a particular mission concept. For example, 

consider the “Visibility Node” of Figure 18; its aim is to understand the clarity of the search area view using visual sensors grading. 

Table 18 describes an example of “Visibility Node” CPT entries. 

Table 18: Example of BBN Awareness Node 

# Fog(Laser) Mist(Laser) Operation Time Visibility 

Clear  Unclear 

1 Present Present Night Time 0% 100% 

2 Present Present Day Time 20% 80% 

3 Present Absent Night Time 10% 90% 

4 Present Absent Day Time 10% 90% 

5 Absent Present Night Time 2% 90% 

6 Absent Present Day Time 20% 80% 

7 Absent Absent Night Time 30% 70% 

8 Absent Absent Day Time 100% 0% 

 

Note that CPT entries for the awareness nodes can be obtained using SME judgment (as describe in Chapter 4 Section 4.7)  or learned 

from previous mission data (as described in Chapter 7). This can be assigned based on the search area situation. For example, the #4 
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and #6 entries of Table 18 show that fog obstructs visual sensors’ views better than the mist (i.e., because they have a larger probability 

values).  

 Similarly, sensor information conflict resolving nodes are a particular type of awareness nodes that consider the search area situation 

in prioritising sensor information. For instance, consider Figure 18, the nodes with the keywords “situational weight” in their titles 

handles sensor conflicts. The "situational weight fire sensor" node CPT resolves the conflict of the fire detection using an infrared sensor 

(fire detecting UAV with infrared sensor A1), temperature sensor (fire detecting UAV with temperature sensor A2), visual camera (fire 

detecting UAV visual camera sensor A3), and spectrum camera (fire detecting spectrum camera A4) in combination with “Visibility” 

and “Conflict resolving strategy” node. For example, if the visibility node’s active state (a state with higher probability) is “clear” (e.g., 

during a sunny day), then the temperature sensor could be selected as having higher priority, i.e., A2 (this can be done by assigning 

higher probability value at the CPT entry of the sensor type). Thus, the sensor conflict will be resolved by assigning a higher probability 

to active states given various situations.  

c. Situation node: represents the ordinary perception node belief. The probabilities of the situation node could be updated using the 

algorithm described in Chapter 4 Section 4.8 upon reception of agent entries. 

Thus, based on the nodes categorisation, the transition of the agent’s SA states of perception, comprehension, and projection state in 

every situation while solving the DCOP in the DSA system could be maintained using the BBN nodes and their CPTs. Specifically, 

DSA comprehension can be achieved by updating the BBN states priors and CPTs. 

5.2.2 Variable Generation 

As described in Figure 18, waypoints distance difference and current task determine both agent’s and mission parameters' optimisation 

grade. The waypoint generation methods will still utilise the methods discussed in Chapter 3. Although the pseudo-random method 

performs poorly in resource utilisation and agent coordination (based on the results of Chapter 3), this Chapter applied it to showcase 
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how dynamic situation probabilities can be treated. That is, a structured approach such as the proposed Delaunay-Inspired Multi-agent 

Search Strategy (DIMASS) algorithm can simply be predicted, and agents’ interactions can be monitored based on its structure (i.e., 

because it is structured, agents’ interaction can be controlled easily). Thus, the pseudorandom approach produces a dynamic behaviour, 

and as such, this chapter uses this approach.  

5.2.3 Agents Interaction Success Measurement 

Effective DSA and DCOP solutions could be achieved only through agent interaction, i.e., information exchange (Fioretto et al., 2018). 

Therefore, the efficacy of the interaction needs to be measured to separate between useful and useless interactions. To tackle this issue, 

I propose using Shannon entropy (Shannon, 1959) as applied in (Kitchin and Baber, 2017; Wiltshire et al., 2018) in combination with 

the proposed BBN CPTs entries. In this technique, agents’ interaction on a particular task (coherence interactions) and overall 

information exchange (interaction) is monitored using the Shannon entropy of Equation 10. 

E = −∑ P(S5)log6	(P(S5)5&7
5&( 		  

Equation 10:Shannon's Entropy  

where P(Si) is the probability measure of the success of an interaction (derived from the respective nodes’ CPTs), and i is the interaction 

type identified using a unique identification code, e.g., i =1,2,3, …, n, and x is the logarithm base which determines the units of the 

entropy, e.g., if x=10, then the unit is Shannons, and bits for x=2, etc. For example, suppose three UAVs (e.g., temperature sensor, 

spectrum camera, and visual camera carrying UAVs) were tasked to search for forest fires in Figure 2 of Chapter 3 (i.e., the simulated 

search area). In that case, waypoint selection interactions among these UAVs could be assigned a unique identification, e.g., #2. Thus, 

the probability of code #2 P(interaction =2) will be updated at every agent’s interaction using the algorithm described in Chapter 4 

Section 4.8. Thus, the interaction success can be measured using Equation 11. 



 
 

119 

E = −hw5PjC89:,5 llog6

5&7

5&(

w5PjC89:,5 l	 

Equation 11:Agents  Interaction Measuring  

where C89:,5  is the optimisation grading probability for each interaction as described in Table 17, and wi is the normalised (i.e., 0 to 1) 

weight for each optimisation grade as assigned by SMEs based on individual mission goal and parameter priority, e.g. grade 1= 1, grade 

2 = 0.7, and grade 3 = 0.5. Therefore, from Equation 11 the lower the value E, the higher the optimisation during the interaction. Again, 

because too much agents interaction would not guarantee an effective DSA management (Foushee and Helmreich, 1988), the proposed 

Delaunay-Inspired Multi-agent Search Strategy (DIMASS) structured waypoints (Chapter 4) method or a number of interactions 

thresholds can be used to avoid deadlock and useless agents interactions while managing the system DSA during search plan generation. 

5.3 The Proposed Agents Interaction Analysis Application Procedure 

The following steps describe the agents’ interaction measuring algorithm application procedure: 

Step 1: define agents’ situation-tasks transitions. This could be defined in BBN nodes CPTs, which are to be initialised by SMEs (as 

described in Chapter 4 Section 4.7). 

Step 2: Define nodes and CPTs updates method: define how each state’s probabilities could be updated either using the algorithm 

described in Chapter 4 or by receiving inputs from SMEs. 

Step 3: Define how agents’ interactions can be measured, e.g., the entropy-based approach (Equation 11). 

Step 4: Given the limited time frame, generate the best possible waypoint.  

Step 5: Exchange information with other agents and decide on the final best variable within the assigned time limit. 
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Step 6: Grade the success of the prediction strategies using the "Cost Optimisation Grade” node and Equation 11. 

Step 7: Apply the CPTs entries to switch between tasks and optimise every agent’s situation.  

The following steps describe an example of the waypoint generation process for step 6 of the above-outlined procedures. 

 

Algorithm 2: The Proposed DCOP Algorithm 

i. Define the agent level 

ii. Define the initial BBN entries 

iii. For each agent’s situation  

Solve for Cbest(C, Pi,	λ5)= argmin/max;[∑ ∑ (Co⃗ 5(;5
<
,&' λ5\P5))]<, i.e., from Chapter 3 DCOP problem formulation (Section 4.1) 

 

iv. Generate Co⃑ = { C89:,,&' , C89:,,&4 , C89:,,&= , … , C89:,,&7 }, i.e., using best variables, V= {v1,v2,v3,..., vn} predictions, where n is the horizon time 

limit, using p(C89:,, |C89:,,&5 ) where i = t-1, t-2, t-3,..., t=0. i.e., maximising the likelihood p(C89:,,&5 |C89:,, ). 

v. Interact with other agents 

vi. Go to step (vii) when waypoint satisfies the cost threshold otherwise go to step iv if the time limit is yet to be reached 

vii. Add variable (waypoint) to plan π if found to be the best or the number of interaction threshold has been reached. 

5.4  Evaluation 

The main aim of the experiment is to investigate how agents’ interaction can be analysed using the mission described in Chapter 3. The 

use case of four UAVs tasked to conduct forest fire search (Chapter 1) was applied. The agents’ task is to generate the best set of 

waypoints that efficiently utilise the UAV’s resources (e.g., battery, memory, computation power, etc., outlined in Table 5 of Chapter 
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3). I assume that each agent carries a different sensor for detecting the target (fire) and waypoints’ decision will happen after agents’ 

interaction. For example, UAV1 is assumed to be mounted with a temperature sensor (i.e., detecting fire based on temperature rise, e.g., 

above 890C), UAV2 is carrying infrared sensor, UAV3 has visual camera sensor, and UAV4 carries a spectrum camera. The essence of 

the sensor variation (heterogeneity) is to describe the unique contribution of each agent towards DSA management based on varying 

search area situations (e.g., night-time, daytime, cloudy, foggy, etc.). 

The experiment task is to assign non-redundant waypoints to UAVs, i.e., A1(UAV1) to A4(UAV4) of  Figure 2 Chapter 3 (i.e., the 

thesis problem). The total size of the search area is the same as the one in Chapter 3, and the redundant search area constraint is rv= 10% 

of the search area. UAV’s waypoint will be accepted if it is at least 10% of the search area apart from the other UAVs’ waypoints. Thus, 

its separation from other agents assesses the optimisation grade of the generated waypoint. For example, if the waypoint difference is 

between rv=10% to rv=20% of the search area, it is graded at level 3 (grade 3 with weight w=0.5 of Equation 11). Grade 2 and 1 has the 

threshold difference of rv=20% to rv=30% (w=0.7) and are more effective than rv=30% (w=1 most preferable) of the search space, 

respectively. That is a waypoint that satisfied grade level 1 offers the most resources. From Table 17, the optimisation grade probability 

of waypoints from grade levels 1, 2, and 3 are 1,0.7 and 0.5, respectively (an assumed SME assigned values based on the use of 

probability values to grade optimisation level, i.e., higher probability values for a better optimisation). The interaction of the agents 

involves the exchange of the generated waypoints and a redundant waypoints check. Agents contacted in the middle of their waypoint 

generations were assumed to respond after waypoint generation. The number of interactions rises when the generated waypoints fail the 

redundant search checks. Thus, an efficient waypoint is one with a lower number of interactions and is far away from other UAVs’ 

waypoints. Figure 19 describes an excerpts of the agents' interactions from the AMASE transcript.  



 
 

122 

 

Figure 19: Sample of Agents Interaction Transcripts Excerpts from AMASE 

 

From Figure 19 #2, UAV4 share its generated waypoint with UAV1, UAV2, and UAV3, and a redundant search is detected with UAV4 

and UAV2 waypoints, respectively. This results in the regeneration of a new waypoint. At #4, the regeneration process generates a 

waypoint that satisfies the redundant search area constraint (i.e., at least a distance of 10% of the search space away from other co-UAVs 

waypoints). Therefore, the number of interactions is measured to be 2 (i.e., #2 and #3). Figure 20 to Figure 27 show the UAVs’ 

optimisation entropy and the number of interactions for each UAV across all the generated waypoints of the experiment. 
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Figure 20: UAV1 Waypoints Optimisation Entropy 
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Figure 21: UAV1 Waypoints Number of Interactions  

 
From Figure 20, the first generated waypoint (Waypoint 1) has a total of 0.3 i.e.,	(0.5	x	0.5) log(0.5	x	0.5)[𝑈𝐴𝑉1 − 𝑈𝐴𝑉2] +

(0.5	x	0.5) log(0.5	x	0.5)[UAV1 − UAV3] + (1	x	1) log(1	x	1)[𝑈𝐴𝑉1 − 𝑈𝐴𝑉4]	 as the optimisation entropy and a corresponding two 

(2) number of interactions from Figure 21. That is, the waypoint is accepted and has a varying optimisation entropy between the 

generating UAV (UAV1) and the rest of the interacting UAVs (i.e., UAV2, UAV3, and UAV4). The number of interactions reported in 

Figure 21 shows the total number of interactions taken to generate an accepted waypoint (which is needed to be minimised). That is, 

lowest entropy and number of interactions are the best combinations for a generated waypoint. As such, the best waypoint of UAV1 is 
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waypoint 9 with 0 and 1 optimisation entropy and number of interactions respectively. The reported values in Figure 20 and Figure 21 

is for the total of eighteen (18) Levy flight-based generated waypoints of UAV1 within the mission time frame T. 

 
 
 

Figure 22: UAV2 Waypoints Optimisation Entropy 
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In contrast, Figure 23 and Figure 24 show the optimisation entropy and the number of interactions for UAV2 across all the eighteen (18) 
generated waypoints.  Waypoint 3 shows a situation whereby the optimisation entropy is good (i.e., a waypoint that is far away from all 

Figure 23: UAV2 Waypoints Number of Interactions 
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other UAVs’ waypoint is generated) but receives a higher number of interactions (i.e., too many agents interactions was performed 
before generating the waypoint). 

 

 

Figure 24:UAV3 Waypoints Optimisation Entropy 
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Figure 25: UAV3 Waypoints Number of Interactions 
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Figure 24 and Figure 25 show the UAV3’s waypoint optimisation entropy and number of interactions. The optimisation entropy 

shows non-best values (i.e., absence of 0 value). Note that, this is as a result of the Levy flight’s pseudorandom waypoint generation.  

 

Figure 26: UAV4 Waypoints Optimisation Entropy 
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Figure 27: UAV4 Waypoints Number of Interactions 
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The waypoints optimisation entropy of UAV4 is reported in Figure 26. In terms of optimisation entropy, waypoint 15 has the best value 

whereas there are multiple waypoints in terms of number of interactions. All the waypoints of UAV4 show unique behaviour in terms 

of the number of agent interactions (i.e., from Figure 27). 

Based on the overall agents' interactions (from Figure 20 to Figure 27), the success rate of UAV2 is lower than UAV1, UAV3, and 

UAV4 (i.e., by summing up the lower entropies and number of interaction values). Thus, the use of Lévy flight for the experiment 

demonstrates the typical operation of dynamic DCOP algorithms such as the maximum gain message (Maheswaran et al., 2004), 

distributed stochastic algorithm (Maheswaran et al., 2004; Verfaillie and Jussien, 2005; Wittenburg and Zhang, 2003), distributed 

pseudotree optimisation (Choxi, 2007; Fransman et al., 2019; Le et al., 2016), etc, and how their agents' interactions can be monitored. 

As mentioned earlier, the entropy and number of agent interactions for the fixed pattern approaches can be controlled by configuring 

the waypoints at the premission state e.g., configuring the angles, edges, and quadrants of the Delaunay-Inspired Multi-agent Search 

Strategy (DIMASS) method of Chapter 3. Thus, the outcome will be less dynamic.  

In terms of the number of agents interactions and optimisation entropy trade-off, this depends on the agents’ resource sensitivity, space, 

and time constraints. For instance, a DSA system utilising agents with very limited resources (e.g., micro UAVs) needs to prioritise the 

optimisation entropy. Again, a system with low space/time constraints needs to prioritise number of interactions optimisation. 

5.5 Discussion and Conclusion 

 This chapter describes how DSA comprehension and agents’ interactions can be analysed using the formal properties of BBN and 

Shannon entropy.  Figure 20 to Figure 27 illustrate the results of analysing four UAVs’ interactions toward a search plan generation. 

The outcome shows a non-stable behaviour due to the pseudorandom waypoint generation, which demonstrates the dynamism of the 

system. For example, considering Figure 19, the number of waypoints and entropy measures varies at each UAV interactions. However, 

the fixed-pattern method was not applied because it will give the best number of interactions (i.e., minimise the number of interactions 

because n waypoints can be generated at once and negotiation will be at once, as proved by the result of Chapter 3). The main challenges 
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of this approach are (i) message size is larger (i.e., the number of waypoints to be exchanged at once will be higher, unlike the Lévy 

flight approach) (ii) agents plan generation synchronisation needs to be managed, i.e., the matter of who generates plan first. Again, the 

number of agent interactions does not guarantee an effective solution especially with the pseudorandom strategies. 

Generally, low entropy and the number of interactions signify good interactions and resource utilisation. Therefore, the proposed way 

of measuring agents’ success in DCOP and DSA using BBN monitors how agents' activities optimised the outlined resources parameters 

within the imposed constraints. Thus, this serves as a tool for quantifying the DCOP algorithms’ success especially for incomplete 

algorithms, such as the Maximum Gain Message, Distributed Stochastic, Max-sum, etc. (Fioretto et al., 2018; Maheswaran et al., 2004). 

The results show that the number of agents interactions would not guarantee an efficient solution especially when agents generate 

variables randomly. Additionally, it describes how agents can make decisions, i.e., based on the BBN CPT entries. As such, a structured 

and non-random way of selecting variables could help to reduce the entropy values. For example, agent interactions can be structured 

and predicted using any structured search pattern e.g., the Delaunay-Inspired Multi-agent Search Strategy (DIMASS) algorithm of 

Chapter 3. Similarly, an entropy-based method of measuring DCOP and DSA success was proposed to measure the system performance. 

This form of measuring DCOP success considers agent-to-agent relations and the outcome of their interactions. For example, from 

Figure 19 transcript, #9 to #11 shows that UAV1 optimises the best cost with UAV4 (i.e., generated the perfect waypoint), whereas 

relations with UAV2 and UAV3 are at the lowest cost (i.e., 50% optimisation grades). 
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6 Chapter 6 System Model Methods  

This chapter discusses two issues (i) thesis methods, i.e., agents’ simulation modelling, use case physical experiments and their results, 

agents data acquisition and analysis, and experiments procedure. This includes how the AMASE use case phenomena simulation got 

their values from physical experiments, e.g., based on fire behaviour, UAVs operation, etc. The second issue will look at (ii) the 

relationship between the agents’ search plans in Chapter 3 and the proposed BBN as discussed in Chapters 4 and 5. The results will be 

investigated based on how the state’s priors (derived from the agent’s sensor information) could be utilised to support SA management 

within the system. Thus, this chapter will discuss all the thesis methods and the relationship between the search plan in Chapter 3 and 

the SA modelling method discussed in Chapters 4 and 5. 

6.1  Introduction 

Simulation methods serve as one of the easiest ways of modelling complex and most difficult systems with lesser costs and risks 

(Armengaud et al., 2009; F. Khan et al., 2014; Monesi et al., 2022). It is now applied in many systems models such as disaster 

management, aviation, military operations, robotics, etc. (Altameem and Amoon, 2010a; Armengaud et al., 2009; Gage and Murphy, 

2004; Hale and Zhou, 2015; Li et al., 2015; Monesi et al., 2022; Noreen et al., 2016; Reynolds, 1987; Schwab et al., 2020; Waharte et 

al., 2009). While simulation offers an advantage in terms of costs and risks, it is accompanied by many limitations such as the lack of 

realistic parameter values, reliability issues, and prone to erroneous results especially when agents are to be operating in a dynamic and 

complex environment (Afzal et al., 2021; Chappell et al., 2022; Choi et al., 2021; N. v. et al., 2017). Considering the thesis use case of 

Chapter 1, the concept of forest fire monitoring is dangerous, expensive, and challenging to be modelled entirely using physical 

experiments. As such, simulation modelling was used for the use case modelling.  The parameter values for the simulation model (i.e., 

for both the search area, UAVs, BBN, etc.) are obtained from either a physical experiment (results on this will be discussed later in this 

chapter) or a documented SOP material. Additionally, all the experiments, learning processes, and algorithm application procedures will 

be described in detail here. Therefore, this chapter focuses on the thesis methods. 
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Similarly, in Chapters 3 and 4, I discussed how agents’ search plans can be generated and how SA can be modelled using BBN. In this 

chapter, a relationship on how the structure of the search plan affects the SA model (e.g., in terms of SA projection) will be discussed. 

That is based on whether the fixed-pattern or pseudorandom methods support the system predictability and resources management (in 

terms of prediction, uncertainty handling, data collection, etc.) for the proposed BBN model. Thus, the questions to be addressed in this 

chapter are: 

i. How to effectively model a Distributed Situation Awareness system involving a team of agents? 

ii. Do agents’ search plan structure support SA management? 

These are subquestions of the main research question: “RQ3. How could agents’ search plan support SA management?” 

 

The first question will be evaluated based on how easier it is to simulate the system phenomena and how realistic, efficient, and scalable 

the simulation’s outcome is compared with a natural counterpart. The AMASE simulation framework was used based on its exceptional 

functionalities to model aerial robots, MVC feature, and is easy to use. Details on how it works and how to integrate the physical values 

were discussed in Section 6.3. For the second question, the priors values of the agent’s sensor information will be used to depict the 

information structure and how the proposed model could easily predict the plausible future states of the priors. 

6.2 Hypothesis 

It is hypothesised that 

i. The structure of the search plan affects the SA model of a structured search area 

6.3 Methods 

6.3.1 Sensor Labelling 
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Unique sensor labels will be recorded from the agents’ mission in Chapter 3. The recording could happen on various simple agents, PCs, 

or host labels. The labelling procedure requires some form of textual coding, which will be mapped with the BBN states. For this thesis, 

the labels will be initialised at the beginning of the BBN development, i.e., from the premission planning of Chapter 4. Each sensor label 

for a particular node (i.e., a representative of a BBN state) must be unique. In the case of double entries from different BBN nodes (e.g., 

the fire detecting nodes A1-A4 of the BBN in Figure 29), the columns of the .csv storing file (memory file)  will be used to identify the 

right node to be updated at the PCs or host level (e.g., as described in Figure 30). Each UAV sensor label will be mapped to a 

corresponding column (note, one node could not have two same states labels). For example, considering the BBN described in Figure 

28, each UAV’s sensor state has a corresponding label and node. Fire detecting UAV has a reporting value in the form of 

“sensor_type.state,” e.g., “fire. present”, etc.  
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Figure 28:Example of BBN for Fire Spread BBN (PC Level) 
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Figure 29:Example of Host BBN(Host Level) 

Figure 28 and Figure 29 show two BBNs for the methods demonstration process. The BBN in Figure 28 shows a small BBN for specific 

concept understanding, e.g., at the PC level and the BBN in Figure 29 describes a bigger BBN with various types of nodes (as outlined 

in Chapter 5) for the host agent. 
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6.3.2 Sensor Data Recording 

The sensor state can be recorded using the assigned labels from Section 6.3.1. Whenever an agent conducts a sensor sampling, it will 

record the sensor state, e.g., present or absent for fire detection in Figure 28 and map it to the corresponding mission time (using mission 

clock) and location. The recorded sensor data can be stored in many ways. The thesis uses an onboard .csv file for the sensor data, e.g., 

a UAV with onboard computational power, e.g., DJI matrice 100 or a mounted Raspberry pi inbuilt onboard computer. In the case of 

the AMASE simulation, the sensor records can be written to a .csv file on the PC or the console (i.e., followed by conversion to a .csv 

or .txt file). One of the key disadvantages of this approach over the latter is that the console can be reinitialised accidentally and the 

process resembles a fully centralised system. This thesis adopted the later approach due to its notion of distribution.  

The simple agents’ information exchange with the PC or host is assumed to be done wirelessly (i.e., for in mission) or manually by 

extracting the content of the agent’s memory (post hoc). Each entry will be mapped with its corresponding location and time. For the 

AMASE simulation, Java classes (controller class) with file handling methods were used for the sensor data recording. For learning and 

analysis (as discussed in Chapter 7), each recorded sensor entry will have a unique ID (as described in Figure 30). The essence of the 

ID is to allow the merging of sensor information with data records. The ID can be generated from a random number generation or a 

serial function with or without considering the UAV’s ID. For example, the ith character of the ID can represent the ID of the UAV, 

e.g., 1003, i.e., the first character of the ID, which is 1, shows that the entry comes from UAV1, which is its entry number 003. Each 

round of the agent’s ID generation round will be checked against a redundant value. Figure 30 describes an example of agents’ recorded 

sensor information for the forest fire monitoring mission described in Chapters 1 and 3. 
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Figure 30: BBN States Excerpts from AMASE UAVs Operation  

Figure 30 shows an excerpt of the recorded sensor entries. Each column represents a node in a BBN. It is assumed (as per Chapters 1 

and 4) that each situation node has a corresponding UAV responsible for submitting values for all states. For instance, an entry in #2 

shows that Fuel type UAV: “Combination”, Fuel Condition UAV: “Dried”, and Fire UAV: “Absent” with an autogenerated ID of 

1615776661.   

The reported sensor record will be mapped with the current time (measured using the mission clock, e.g., the AMASE clock) and align 

with the corresponding location (obtained from the agent GPS or structured paths cells configuration, i.e., using speed., wind speed, 

wind direction, etc. reports values). For example, Figure 30 describes an excerpt of the recorded sensors data from the simple agents 
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tasked to update the PC’s BBN in Figure 28 using an update method 𝑢𝑝𝑑𝑎𝑡𝑒(𝑥(, 𝑥4,𝑥4, … , 𝑥0) where 𝑥(, 𝑥4,𝑥4, … , 𝑥0 are the passed 

parameters for each sensor state. For example, #3 of Figure 30 shows that the update function can be like this: update(1615776661, 

Combination, Dried, Absent, Not_spreading, Flat, 1). Thus, the task of the update function is to write the parameter values in the 

corresponding .csv or .txt memory file. Note that the update function will be implemented in the controllers (e.g., Java class) and be 

invoked at the sensor poll based on the situation. 

6.3.3 Sensor Sampling 

The agent’s sensor sampling can be performed in three ways: (i) constant sampling, (ii) waypoint-based sampling (i.e., individual 

waypoints), and (iii) periodic sampling. In constant sampling, the agent’s sensor is fully activated throughout the mission. While this 

approach consumes agents’ energy (because sensor use consumes agents’ energy), it produces a more accurate presentation of the search 

area situation.  In waypoint-based sampling, agents conduct a sensor sampling after every waypoint. This approach can be inappropriate 

for the agents’ tasks, i.e., when the distance between the waypoint is long. For example, assume the implementation of a waypoint-based 

sensor sampling for the fixed-path strategies, e.g., parallel track, creeping line, Zamboni, sector search and the proposed DIMASS (as 

discussed in Chapter 3), the acquired sensor information could not present the situation of the search area whenever the plan has a 

longer-range set of waypoints.  

On the other hand, waypoint-based (location-based) sampling has an advantage in terms of energy utilisation (i.e., the sensor sampling 

frequency is low for longer edges). This method can be good for mapping tasks. Thus, waypoint-based sampling could best fit a situation 

where the target is known, e.g., the known object mapping task described in Chapter 3. In periodic sampling, agents sample after every 

period t of their mission clock, e.g., as illustrated in Figure 30. The sampling frequency can be a fixed or varying value based on the 

agent’s current situation 𝛾" . For example, during an initial search mission, the sensor sampling frequency can be fixed, e.g., after every 

20 seconds. This can be reduced when a fire is detected or expected, e.g., assuming fire is expected (based on the temperature change) 

or detected nearby, the sampling frequency can be reduced to a lower value, say 5 seconds, depending on the speed of the UAV.  
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This thesis chooses a constant sensor during agents’ search missions due to the dynamism of the search area, the presence of unknown 

targets (i.e., the location of the targets is unknown to the searching agents), and the speed of the UAVs. While the chosen sensor sampling 

rate could result in higher battery consumption, agents’ search plan efficiency (Chapter 3) would compensate. Periodic sampling is 

assumed to be applied for the mapping task (when a fire is detected).  Thus, the frequency of the sampling period can be initialised based 

on target expectation within the location (i.e., based on the previous values and other related parameters, e.g., fuel type, wind speed, 

wind direction, etc. for fire mapping, or SMEs assignment as described in Chapter 4 section 4.7).   As such, I propose the use of Equation 

12 for an adaptable sensor sampling rate based on the agent’s situation. 

α =normalize( p+si+∆t/N) 

Equation 12: Adaptable Sensor Sampling Computation 

    

where p is the probability of the situation occurring given the time interval ∆t, si is the location cell variation (i.e., a range of space that 

needs new sampling based on the location variation), and n is the number of contributing parameters.  

For example, let us assume that SMEs define the probability of fire presence given a location and time to be 0.9, 200metres, and 10 

minutes respectively. The location cell variation (distance threshold that necessitates sensor sampling) is 1KM. From Equation 12, we 

can calculate α as, 

p=0.9, l=200/1000=0.2kilometres, ∆𝑡=10. 

α = 0.9+0.2+10/3 

α ≈ 3.7. 
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Therefore, the sampling rate will be 3.7 kilometres per minute per sensor sample. This approach of sensor sampling gives an adaptable 

way of moderating the agents’ sampling rate. 

 

 

Figure 31:Example of Agents Periodic Sensor Sampling. 
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From Figure 31, the marked lines on the agents’ paths roughly show the sensor sampling locations. This can be reconfigured based on 

the information or expectation of fire presence or absence as described in Equation 12. 

6.3.4 Sensor Conflict (Contradictions) Handling 

As described in Chapter 5, sensor conflict is inevitable due to the changing nature of the search area’s phenomena over time, e.g., the 

distortion of visual sensors in detecting fire by fire-like objects. This can be identified from the recorded sensor data (i.e., from the .csv 

file) by identifying two conflicting values at the same columns, location and time frames. This can be done using an if statement to 

check the entries with different values across the same row (i,e., from the CSV file). 

6.3.5 Featuring Engineering for the SA model 

Based on the described sensor labelling above, the text sensor states would not fit directly into the BBN or the processing algorithms 

(as described in Chapters 7 and 8).  This requires transformation into numeric forms (probabilities values). The transformation process 

can be achieved using the algorithm described in Chapter 4, Section 4.8. Each textual sensor outcome can be identified using if 

statements and transformed into a probabilistic prior value. An example of the transformation statement pseudocode can be if(value == 

“trees”){increment the probability of fuel type=“trees”}. In the case of two states with the same text label, e.g., the value “north” for all 

wind direction detection UAVs represented by their respective nodes in Figure 29, this can be identified by checking the column 

numbers. The columns are numbered from left to right, e.g., from Figure 30, “Fuel Type” is column number 2.  

Alternatively, another form of feature engineering for single-entry prediction algorithms is to change the equivalent states into a certain 

number, e.g., the number of each state’s entries sequentially. For example, the fire node will have present = 1 and absent = 2 etc. 

6.3.6 BBN Update to Support SA Model 
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Based on the priors update algorithm described in Chapter 4 Section 4.8, agents update their priors after every sensor poll. The update 

will then affect the BBN states probabilities, e.g., as described in Figure 28 and Figure 29.  For example, from Figure 29, we can see 

that the fire occurs and is spreading fully (i.e., measured based on the probability values as described in Chapter 5). Thus, the Java 

controllers update the BBN states priors at every sensor update to conform to the provided sensor information. This happens through a 

method call from the AMASE Java controller to the NETICA API (as implemented in this thesis, codes can be found in the supplemental 

documents). Thus, the AMASE agents update the BBN after every sensor poll. 

6.3.7 Search Area Definition 

The search area comprises both static and dynamic phenomena and their parameters. Static parameters have constant values across n 

number of missions times, for example, the location of the base station is assumed to be fixed. Dynamic parameters change their values 

across either time or location. For example, fuel type varies across locations, whereas the wind speed changes values across periods. 

The change of values of the search area’s fuel types across locations cell Si is structured e.g., C1-C20 (grasses), C1-C40 (trees), C40-

C60 (combination), etc., as described in Figure 32. 
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Figure 32:Example of Search Area Categorisation. 

6.3.8 Priors Relation with Search Pattern Experiment  

The experiment for understanding sensor information relation with search structure was implemented on the AMASE experiment 

described in Chapter 3. The candidate search methods selected were the best performing approaches of Chapter 3, i.e., Lévy flight and 

the proposed Delaunay-Inspired Multi-agent Search Strategy (DIMASS). The agents are tasked to conduct a search mission for the 

simulated search area under the same number of allocated mission times. The reported information is then collected and transformed 

into priors using the algorithms described in Chapter 4, Section 4.8. The priors are then presented visually to describe how values for 

different states change over time. The procedure is as follows: 

i. Extract each sensor state keyword of the BBN, i.e., from the .csv or txt file 

ii. Generate the priors for each state using the Algorithm described in Chapter 4, section 4.3.1. 

iii. Plot the line chart of the priors using python controllers. 

The outcome will show how the states' probabilities change values across time periods (i.e., various sensor samples) and which is mostly 

linear (for a structured search area and search plan method) or stochastic (for the dynamic and unstructured environment). The 

experiment uses 2000 values which allow the UAV to sample different configurations of the search area from its initial location. 

6.4 Fitting Real Values to Simulation 

AMASE allows the search area’s simulation in a Model-View-Controller (MVC) fashion. The views elements, e.g., fires, UAVs, wind 

speed, etc., can be developed using XML enclosed in their corresponding tags. Each element can be referenced from its controller (i.e., 

Java or python classes) using a unique identification number (ID) or a name which are to be assigned by the developer. Alternatively, 

view elements can be controlled or instantiated using the controller functions. The second option fits updated tasks better than 

initialisation. For example, wind speed values can be controlled using the controller functions, e.g., randomly or time-based values 
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change. Similarly, fire spread can be controlled using a time-based process, e.g., as described by Equation 13 using the function 

𝑙"(𝑥, 𝑦, ℎ)%?( in time difference ∆t. 

𝑙"(𝑥, 𝑦, ℎ)%?( =	 𝑙"(𝑥, 𝑦, ℎ)%x	𝑤(∆𝑡, 𝑆1(�⃑�), 𝑆1(�⃑�), 𝑆1(ℎo⃑ )) 

Equation 13: Fire Spread Modelling 

where 𝑙"(𝑥, 𝑦, ℎ)%?( is the estimated growth of the target (i.e., fire) across x,y,h axis (where h is the height) from the current position 

(𝑥, 𝑦, ℎ)%?(, ∆t is the time interval, and 𝑤 }∆𝑡, 𝑆1(�⃑�), 𝑆1(�⃑�), 𝑆1jℎo⃑ l~ is the function that defines the growth factor using the search area 

dynamic parameters, e.g., 𝑆1 (e.g., wind speed, wind direction, fuel type, etc.) and time interval. That is, each of the functions 

𝑆1(�⃑�), 𝑆1(�⃑�), 𝑆1(ℎo⃑ ) returns the velocity vector of the target (fire) mobility rate for each dimension based on the search area’s assigned 

dynamism weight, w. For example, the weight w for dried shrubs is higher than the value for a wet one (i.e., fire spreads faster around 

dried shrubs fuel type than within a marshland). Similar weight assignment is performed for the influences of other variables, e.g., wind 

speed, wind direction, location relation to the ground, etc.   

Thus, the search area’s dynamic parameters, e.g., wind speed, wind direction, fire spread, etc., can be added to the AMASE framework 

using XML based Views (in a time-based fashion) or the Java controller. The wind speed behaviour can be extracted roughly using 

Google weather report or search area’s weather monitoring experiment. For this thesis, a Google weather report was used for the fire 

spread experiments combined with direction monitoring. For example, Figure 33 shows an example of wind speed changes over time 

from the AMASE XML View file. 
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Figure 33: Example of XML Weather Report 

From Figure 33, each of the “Weather Report” elements (i.e., wind speed, wind direction, visibility, cloud ceiling, and cloud coverage) 

have their time values for a given mission clock in seconds, e.g., 3000 and 4000, from Figure 33. The value 3000 means the specified 

entries are valid for the first 3000 seconds of the mission. These values can be updated independently or jointly using Java controllers. 

All other dynamic parameters, e.g., fires, can be modelled similarly. 

6.5 Search Area and UAVs Simulation 

The thesis use case is simulated based on of a physical location and experiments. The search area consists of buildings, roads, bushes, 

and fires copied from a village in Gombe State of Nigeria (Chapter 3 Figure 2). The search area phenomena, e.g., fire spread rate, fuel 

type, wind speed, wind direction, etc., were derived from a physical forest fire experiment conducted on Liji Hill in Gombe State of 

Nigeria (Figure 34). The author acknowledges similar work published on the behaviour of forest fire spread in the United States, Europe, 

and Asia (Ingle, 2011; Merino et al., 2006; Peter Hirschberger, 2016); however, the author decided to conduct the experiment on African 

terrains due to omission and poor documentation in literature (Afolayan et al., 1979; International Forest Fire News, 2006; Van Wilgen, 

2009). Like the rest of the world, forest fires affect Africa due to human activities such as pasture clearance, oil spillage, etc., but there 

is a lack of data on the effects (International Forest Fire News, 2006).  For example, recently (on 10th August 2021), a forest fire killed 

over 65 people in Algeria10. Thus, the simulation selects the African terrain as a step toward describing the behaviour of forest fires in 

Africa. However, the outcome can be applied to other continents, e.g., the US, Canada, Turkey, etc., by varying the search area 

parameters from the AMASE XML code, i.e., fuel type, wind speed, wind direction, etc. Table 19 describes the experiment search area 

fuel configurations. 

 
10 Algeria forest fires: At least 65 people killed as fires spread - BBC News [WWW Document], 2021. URL 

https://www.bbc.co.uk/news/world-africa-58174918 (accessed 8.12.21). 
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Table 19: Experiment Location Fuel Type Sampling on Liji Hill, Gombe State of Nigeria 

Fuel 

Botanical 

Name 

Vernacular 

Name 

Classification Average 

Height (Meter) 

Average 

Population 

Density 

(Stem   per 

Meter 

Square) 

Condition 

Cassia 

occidentalis 

Rai Dore or 

Mazamfari 

Shrub 1.15 19 Mostly dried 

Cynodon 

dactylon 

Kyasuwa Grasses 0.175 

 

47 Dried 

Azadirachta 

indica 

Darbejiya Trees 9 0.01 Wet 

Pennisetum 

purpureum 

 

Halkiya Grasses 0.2 11 Combination 

of wet and 

dried 

 

The fuel types were spread across the search area in Figure 2. Each location (Si) has a particular fuel type, fuel condition, location 

relation to ground, etc. The fire spread values were obtained by setting a fire on the hill and monitoring the spread distance overtime 

period (see Figure 34) across all directions, i.e.,  north = 00, east=900, south = 1800, west = 2700, northeast >00 and <900, southeast >900 
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and <1800, southwest >1800 and <2700, and northwest >2700 and <00(3600) as defined by the American Practical Navigator (Bowditch, 

2002). All permission and safety measures were observed before starting the fire. The experiment utilises the traditional method of bush 

clearance conducted at the beginning of every dry season to allow easy access to the stone quarrying area. The experiment was conducted 

on a sunny day with an average wind speed, wind direction, and humidity values of 8KMPH, 34oC, and 12%, respectively. Figure 34 

describes one of the experiment’s scenes. 



 
 

152 

 



 
 

153 

Figure 34: Fire Spread Experiment 

The fire spread rate (from Figure 34) is measured by making marks using stones and monitoring the time the fire started and the time it 

reached the spot in consideration of other parameters, e.g., wind speed, wind direction, fuel types, etc. The results of this experiment are 

reported in the following section (i.e., Section 6.6). 

The UAV’s specifications are based on the DJI Phantom 3, Parrot Bebop, and DJI Ryze Tello drones. The energy consumption was 

measured using DJI Ryze Tello Edu drones through its Python API11. The drone is tasked with a particular flying mode (e.g., ascending) 

for 5 meters and then monitors the energy consumption rates under a stable weather. The sensor’s configuration was updated based on 

the DJI Phantom 3 camera capacity and the sensor behaviours (Alkhatib, 2014).  Values and configurations of the UAVs are described 

in the following section. 

 

6.6 Results 

The result section is segmented into two: sensor data analysis and the results of the physical forest fire experiments. For the agent’s 

priors generation, the UAV is tasked to explore the simulated search area (Chapter  3 Figure 2) using the proposed Delaunay-inspired 

(from Chapter 3) and the Lévy flight (Chawla and Duhan, 2018; Sutantyo et al., 2011). The selection of these two approaches is to 

understand the effect of the structure of the search methods on the priors’ development and, more importantly, the issues of predictions 

and uncertainties, as will be addressed in Chapter 7. 

The results in Figure 35 and Figure 36 describe the prior initial values for the BBN nodes states of Figure 28 for the range of 2000 

reported sensor values.  Thus, at each entry, the prior is generated using the algorithm described in Chapter 4 Section 4.8. For example, 

 
11 https://github.com/code4funSydney/Tello 
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assume the UAV reports fire present from its first sensor poll, then the prior will be 0.75, i.e., 0.5 (initial prior) +1)/1+1 (as described in 

Chapter 4 Section 4.8).  Thus, Figure 35 and Figure 36 describe the reported agents’ sensor values converted to priors for the Levy flight 

and the Delaunay-Inspired Multi-agent Search Strategy (DIMASS) search plans. 
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Figure 35: Priors Values for a Lévy Flight Mission (Coloured) 
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Figure 36: Priors Values for a Delaunay-Inspired Multi-agent Search Strategy (DIMASS) Mission (Coloured) 

From Figure 35 and Figure 36, each line represents the state priors of the BBN in Figure 28. The Delaunay-Inspired Multi-agent Search 

Strategy (DIMASS) priors (Figure 36) show some structure in terms of agents’ priors’ updates (i.e., linear based on the search area 

structure described in Figure 32). This allows easy situation prediction using Bayes rules (Chapter 7) or simply using interpolations (as 

discussed below). The Lévy flight-based priors (Figure 35) show random values. This is based on the pseudorandom waypoints 

generation, which provides unstructured search area exploration. This will affect the simple prediction models (as discussed below) and, 

overall, could affect the DSA projection state (i.e., by affecting prediction, which is part of projection). The Delaunay-Inspired Multi-

agent Search Strategy (DIMASS) approach of Figure 36 shows good structure, e.g., the cross of red and blue lines of trees and 

combination fuel type.  

The next section of the results discusses the forest fire physical experiment and UAV configurations. Table 20 describes the results for 

the forest fires spread rate (i.e., from the physical experiment), while Table 21 and Table 22 describe the UAVs and sensors 

configurations. The spread rates were obtained by setting fire to a quarrying area in Nigeria (Liji Hill of Gombe State). The spread 

values were obtained by making marks on the directions of the fire spread. The results depend on the search area configurations, UAVs 

used, and the sensor configuration. A different combination of search, UAVs, and sensors could give a different result. However, the 

acquired values demonstrate the realism of the system model. For the UAVs functionality values (Table 21) were taken from the DJI 

Phantom 3 and Parrot Bebop drones. However, the energy consumption was derived using DJI Ryze Tello programmable drone 

operations. For example, descending consumption rate is measured by tasking the UAV to perform a descending flight mode for a 

particular distance, and then the energy consumption is calculated as a difference of energy percentage after and before flight (i.e., Eafter 

– Ebefore ). 
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Table 20: Different Locations and Forest Fire Spread Rate 

# Spread Length (Meter per second) Time Frame (minutes) Wind Direction (mostly) 

1 0.002 14 East 

1 0.009 14 Northeast 

1 0.005 14 West 

1 0.006 14 North 

2 0.004 8 Southeast 

2 0.025 8 Northwest 

2 0.02 8 Southwest 

2 0.0135 8 South 

 

Table 21:UAVs Modelled 

UAV 

Type 

Flight 

Type 

Air 

Spee

d(m/s

) 

Vertica

l 

Speed(

m/s) 

Pitch 

Angl

e(deg

rees) 

Maximu

m Bank 

Angle(de

grees) 

Minimum/M

aximum 

Speed (m/s) 

Energy 

Consumptio

n (%/second) 

Maximum 

Altitude(m) 

Fixed

-wing 

Cruising 30 0 0 30 10/40 0.049 400 

 Loitering 20 0 5 30 10/40 0.0083 400 

Ascending 30 5 10 30 10/40 0.05 400 
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Descendin

g 

30 -5 -5 30 10/40 0.025 400 

Dashing 40 0 -2  10/40 0.019 400 

Multi

-

copter 

Cruising 20 0 0 30 0/25 0.074 400 

 Loitering 20 0 5 30 0/25 0.037 400 

Ascending 20 5 10 30 0/25 0.075 400 

Descendin

g 

20 -5 -5 30 0/25 0.05 400 

Dashing 25 0 -2 30 0/25 0.049 400 

 

Table 22:Sensor Configuration 

Sensor Type Video Stream 

Horizontal/Vertical 

Resolution (px) 

Minimum 

Horizontal/Vertical 

View 

Supported 

Wavelength 

Band 

Horizontal/Vertical 

Field of View 

 

Elevation 

Infrared 

Camera 1  

256/192 55/55 Short-wave 

infrared 

10/10 450 

Infrared 

Camera 2 

256/192 55/55 Mid-wave 

infrared 

10/10 450 
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Infrared 

Camera 3 

256/192 55/55 Mid-wave 

infrared 

10/10 450 

Spectrum 

Camera 

256/192 55/55 Electro-

optical 

10/10 450 

Thermistor 

(Temperature 

Sensor) 

- - Heat sensor 10/10 450 

 

The results in Table 20 to Table 22 were used for the AMASE simulation inserted through the XML values or the Java controllers. The 

complete simulation source codes (including all Java classes and XML) can be found in the supplemental document folder (i.e., from 

the appendix). 

6.7 Discussion and Conclusion 

Based on the results in Figure 35 and Figure 36, the structure of the search plan affects its predictability (i.e., simple predictions based 

on priors values as discussed in Chapter 3). The Lévy flights give non-organised states priors because the search method operates 

randomly in a structured search area. Structured approaches e.g., the Delaunay-Inspired Multi-agent Search Strategy (DIMASS) 

produces more organised priors values, which can simply be predicted using an interpolation (i.e., by considering how other similar co-

states evolve and estimating the target state priors based on the results in Figure 35 and Figure 36).  For instance, assume a BBN with n 

number of states and m nodes. The values of ni belief could be used to estimate the value of the nj where j ≠i. This can be done by 

considering the degree of correlation among the states’ priors.  Equation 14 describes a state prior prediction using interpolation 

approach.  
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Ni_estimation = wjnj 

Equation 14: Situation Prediction using Interpolation 

  

where Ni_estimation  is the estimated value of the uncertain variable, nj is the observed value of co-state within the BBN, and w is the 

transformation matrix that transforms the previously observed values into the predicted values. The value of w can be computed as a 

function of angle, distance difference, correlation, and the previous values to be considered as described in Equation 15. 

wj =d x ϴ x kprev x  ρ  

Equation 15: Prediction Weight  

   

where d is the distance difference, e.g., Manhattan distance (Greche et al., 2017), ϴ is the angle difference between the values, and kprev 

is the k-previous number of previous states to be considered, and ρ is the correlation measure. In other words, Equation 14 prediction 

considers the similarity of the priors trend to make predictions. For example, if the wind direction prior value for the past 10 minutes is 

0.9 and fuel type is grass:0.5, then the prediction or missing value of the wind fuel type will likely be 0.5 or any fraction of it based on 

the value of other states and their transition. That is, the prediction is based on the similarities of the trends of the prior.  Equation 15 

will likely be a good prediction for the proposed Delaunay-Inspired Multi-agent Search Strategy (DIMASS) priors based on the linearity 

and similarity of the priors’ values. For instance, the exact overlapping priors’ values from different states can predict similar values. 

Confidence in the prediction can be built by counting the number of states that suggest the same values i.e., constant previous values 

are expected to bring the values. Again, simple prediction using the Bayes rule could best work on the structured values described in 

Equation 16 due to the priors growth. 
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𝑃(𝑆"|𝐷) =
𝑃(𝐷|𝑆")𝑃(𝑆")

∫ 𝑃(𝐷|𝑆")𝑃(𝑆") 𝑑𝑆"
@&#$%&'
@&#$%&"

 

Equation 16: Bayes Rule Prediction 

Note that prediction here refers to simple prediction using parameters (similar to the one in Chapter 3). Thus, the agent’s search plan 

structure can support the prediction of the state, which overall supports the SA projection state (i.e., in the case of plausible future state 

prediction and uncertainty handling). A key limitation to this sort of prediction and uncertainty handling is when the state’s priors keep 

fluctuating due to the lack of structure in the search plans or the operating search area phenomena values. This sort of prediction requires 

iteration through the fluctuating priors. Therefore, Chapter 7 addresses the challenge using different methods such as the expectation-

maximization algorithm, Gaussian Process, and time series models. 
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7 Chapter 7 Prediction and Uncertainty Handling  

In Chapter 4, I proposed using BBN to model the system SA and described its various potential advantages. This chapter will address a 

solution to predictions and uncertainties challenges for the BBN states’ priors. The need for addressing prediction and uncertainty 

handling in DSA systems is important due to agents’ spatial differences, goals variation, possible hardware/software issues, sensor 

faults, etc. The chapter addresses single and multiple states predictions, and uncertainty handling using the Expectation-Maximisation 

(EM) algorithm, time series models, and Gaussian processes.   

7.1  Introduction 

The need for prediction and uncertain priors’ values estimation for the BBN is critical to the DSA system due to agents’ spatio-temporal 

differences, goal variation, and the search area’s dynamism (as outlined in Chapter 1). For example, the past values of wind direction 

can be beneficial in predicting (perhaps with high accuracy) its future or missing value(s) when the reporting agent is yet to submit its 

sensor information or experience some failure. This could help the system make decisions, for example, where a fire will move shortly, 

even in the absence of information or the presence of incomplete information. Thus, the aim is to suggest the best prediction and 

uncertainty handling models for the proposed SA modelling tool (i.e., the BBN in Chapter 4). Like predictions, uncertainty is defined 

as the degree of doubtness of a state of the BBN nodes (Fioretto et al., 2018; Hoang et al., 2016; Li et al., 2019; Park et al., 2016). In 

this chapter, uncertainty in a BBN state generally exists in two forms: (i) a missing value and (ii) a soft finding (incomplete) value.  A 

missing value refers to a completely unknown sensor value, for instance, due to agents or sensor failure. A soft finding refers to 

incomplete sensor information, e.g., due to sensor misbehaviour.  For example, assume that an agent responsible for wind speed detection 

submits a value of 150m/s, which is unrealistic to the search area’s values; this will generate some doubts about whether the value is 

correct or not. This sort of uncertainty is referred to as soft-finding. Therefore, based on the outlined system challenges, the uncertainties 

can be in one of the following forms: 
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i. Complete missing values: missing values due to sensor error or mission incident, e.g., UAV camera blocked by other entities, 

snow, fog, etc. 

ii. Discretised values: uncertainties in some variables can be between an interval or set of possible values based on the learnt 

knowledge or SOP. For example, temperature sensor values can be distorted by the speed or altitude of the UAV. Thus, 

probabilities can be assigned for any possible discrete value based on its occurrence likelihood, e.g., an increase of 3oC to a 

temperature value when a UAV operates at an altitude above 75meters. Alternatively, a list of possible values can be 

presented as well. The winning value will be the one with a higher likelihood.  

iii. Agents’ sensor values conflict (contradiction): Agents can report different values due to their sensing mode. For example, 

yellow dried grasses can confuse fire detecting sensor that applies image recognition (visual camera) to detect fire, i.e., a fire-

like object. This mode of contradiction requires careful analysis of the situation, which may demand input from several other 

agents (e.g., visibility reports, weather reports, etc.) or CPT consultation, as described in Chapter 5.  

iv. Update delay: occurs from information decay due to error (e.g., missing data) or data collection method. Thus, the types of 

uncertainties in (i) are missing values uncertainty, whereas (i-iv) are the soft findings. 

 

It was noted in Chapter 4 that an exciting aspect of applying Bayesian Belief Network (BBN) for system SA modelling is the depiction 

of the logical relations among nodes designated to understand a particular situation and offers a way of measuring beliefs of the search 

area phenomena using probabilities. Although BBN does not give a clear insight into how future beliefs can be forecasted based on the 

previous transitions, it does offer a benefit for applying existing prediction algorithms to handle the prediction and uncertainties issues 

(Karduni et al., 2021; Pavlin et al., 2010). It offers a possibility of considering other related concepts’ beliefs values in predicting or 

estimating a particular state prior based on the BBN logical relations and previous probabilities values, i.e., a multiple state prediction 

or uncertainty handling. Single state prediction can also be performed based on the values of the querying state. Thus, the critical 

question to be investigated is in this Chapter is: 
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How could prediction and uncertainties in the DSA system be addressed? Which is a subquestion to the main research question: “RQ2. 

How can we manage the Situation Awareness of distributed agents?” 

 

One of the critical challenges to prediction and uncertainty handling is quantifying the number of previous values needed to obtain a 

good prediction or uncertain value estimations. This varies based on the type of the priors regression (i.e., either linear or non-linear, as 

discussed in Chapter 6), the algorithm applied,  and the demanded accuracy (Romanycia, 2019). For instance, if the previously generated 

n number of entries can predict k future values with an e error rate using method A, then the time taken to generate the data (i.e., the 

quantity of the data) and error rate obtained will be used to measure training entries (i.e., to decide on prediction acceptance or rejection). 

Additionally, the chapter will consider proposing DSA-based metrics for grading the prediction and uncertainty handling issues.  

The evaluating methods were the Gaussian process, expectation maximisation algorithm, and time-series models due to their 

popularity. The evaluation process utilises the experiments described in Chapters 3, 4, 5 and 6 based on the thesis use case of 

Chapter 1. 

7.1.1 Existing Methods 

Gaussian Process (GP) and time series models [autoregressive (AR), moving average (MA), autoregressive moving average (ARMA), 

autoregressive integrated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA)] were selected as 

the participant methods for the BBN single states prediction and uncertainty handling, while expectation maximisation algorithm is the 

candidate for the multiple states one (Dempster et al., 1977; Gan et al., 2021, 2021; Leith et al., 2004; Nath et al., 2021; 

Papastefanopoulos et al., 2020; Romanycia, 2019; Shumway, 1984; Tandon et al., 2020). The reason behind the selection of the methods 

is because of their efficiency in utilising computational power, ability to handle missing variables, popularity, and the presence of 
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existing software packages to ease the application process12 (Dempster et al., 1977; Hendikawati et al., 2020; Romanycia, 2019; 

Schwaighofer et al., 2004; Tandon et al., 2020).  Although other algorithms such as Bayesian rule and conjugate gradient descent 

algorithms, could perform the same task, the justification for selecting the EM algorithm is based on its faster running speed,  popularity, 

and better performance (Mandt and Hoffman, 2017; Romanycia, 2019). 

7.1.2  Gaussian Process 

Gaussian process is a collection of values of which any arbitrary joint distribution of those values follows a normal distribution (Banfield 

and Raftery, 1993; Caywood et al., 2017; Görtler et al., 2019; Hendikawati et al., 2020; Rasmussen and Williams, 2006; Wagberg et al., 

2017). This feature makes prediction possible using the mean and standard deviation as described in  Equation 17. 

P(S|D) ~ N ( μ , ∑)  

Equation 17: Prediction using GP 

    

where S is the querying state probability, D is the training datasets defined as, D = {(x1,y1), (x2,y2),…,(xn,yn)} as described in Chapter 6 

Figure 30, ∑ is the covariance matrix (as described in  Equation 18) define by the kernel function Kij = K(xi,yi) for every states values. 

For example, the prediction of the xi variable given the training data D (previous values) is: P(xi|D) =∫ 𝑃(𝐷|𝑥")𝑃(𝑥")/𝑃(𝐷)
A&0
A&(  δD. 

Note that the value S is the current prior, and P(D) is the prior for the related states. For the BBN data to fit the Gaussian process, the 

probability transition of nodes states values is assumed to be Gaussian (i.e., based on priors update algorithm of Chapter 4 Section 4.8), 

and the joint distribution of nodes entries is also Gaussian based on the law of large numbers (LoLN) and central limit 

 
12 A Practical Implementation of Gaussian Process Regression 
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theorem(CLT)(Brosamler, 1988; Hsu and Robbins, 1947). The LoLN and CLT guarantee that the sensor information can be predicted 

effectively by considering the previous entries (Kunda, 1986). The application of Gaussian process for BBN states priors prediction and 

uncertainty handling in this thesis follow these steps: 

Step 1: Gather the agents’ sensor data in rows and columns (Chapter 6). 

Step 2: compute the variance between the data. 

Step 3: Select the kernel length, i.e., the difference in values length that determines whether two subsequent entries are related. The 

kernel length could vary based on the number of previous values (e.g., by identifying the seasonal lags using Auto-Correlation 

Function(ACF) or Partial auto-Correlation Function(PCF) as discussed below (Adhikari and Agrawal, 2013; Dama and Sinoquet, 2021; 

Tandon et al., 2020)  

Step 4: Choose the kernel. The kernel function K(Si, Sj) computes how these entries relate. Radial Basis Function, linear, and periodic 

kernel (Görtler et al., 2019) are the most popular kernels applied in literature. However, there are many other kernels and ensemble 

strategies (Lu et al., 2020; Schwaighofer et al., 2004). 

Step 5: Construct the covariance matrix for each pair of states entries  �
∑@(( ∑@()
∑@)( ∑@))

� 

Step 6: Compute the prediction probability of the state given related entries using Equation 17, i.e., P(Si|Sj) ~N(μ, Σ)   

Where Si is the querying state and Sj is the dependent state. 
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P(Si,Sj) =N( �
µ"
µB� , �

∑@(( ∑@()
∑@)( ∑@))

�)     

Equation 18:GP Equation 

    

Where, 

μ = µ" + ∑@()∑@))
+((Sj - µC)   

Equation 19:GP Mean  

   

σ = ∑@((- ∑@()∑@))
+(∑@()

$ 

Equation 20: GP Standard Deviation 

    

The priors are computed using the density function: 

p(s) =	 (
D√4

𝑒+
"
*(
+,-
. ) 

Equation 21: GP Distribution 
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The Gaussian process can estimate an uncertain value using Equation 22. 

U = P(s)x ± (Zxσ)   

Equation 22: GP Uncertainty Measurement 

   

where U is the uncertainty measure, Z is the confidence value from Z-score table, and σ is the standard deviation. The +/- symbol 

determines the confidence level deviation across the prediction line, i.e., above and below values as described in Figure 37. The U value 

is the blue line across Figure 37.  
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Figure 37: Example of Gaussian Process Prediction and Uncertainty Handling. 

Figure 37 shows an example of GP prediction and uncertainty handling using Equation 17 to Equation 22. The dot points (in red) are 

the observed values, whereas the predicted values are blue surrounded by their confidence level. 

7.1.3 Time Series Models 

The time series models work based on parameters p,q,d, and m. The p is the k-previous trends values (where k is a positive integer), 

e.g., if the fuel condition has been “Dried Grasses” for a p collected data at time t, then it is expected to be “Dried Grass” at time t+1. 

The d is the differencing threshold value, i.e., the measure of the difference in the previous values that allows the separation of a group 

of data during prediction. If the difference in previous transitions is less than or equals to d, then the values are considered part of p. The 

variable q is the measure of error (difference in the prediction error). 
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 In the Autoregressive (AR) Model, future state priors’ prediction is computed as a linear combination of k-previous p values. The 

moving-average model (MA) considers the term q (i.e., size of the moving average differencing window) as the prediction limit. For 

instance, if q is 5, the predictors for x(t) will be x(t-1), x(t-2), x(t-3), …, x(t-5) etc. Similarly, the ARMA model considers the combined 

p and q parameters of the differenced data to make predictions. In contrast, the ARIMA model extends the ARMA model to consider d 

(differencing) windows. The SARIMA model considers the seasonal trend m (i.e., for non-linear priors’ values, e.g., for Lévy flight 

values or unstable operation of the Delaunay-Inspired Multi-agent Search Strategy (DIMASS) data as described in Chapter 6), which is 

to be determined using the Autocorreletion Function/Partial Autocorreleation Function (ACF/PCF) as described below i.e., the seasonal 

version of p, q, d as P, Q, D, i.e., seasonal hyperparameters. The P and Q are determined using the following rules13: 

i. “If the PACF of the differenced series displays a sharp cut-off and the lag autocorrelation is positive, i.e., if the series appears 

slightly "under differenced", then consider adding an AR term to the model. The lag at which the PACF cuts off is the 

indicated number of AR terms”. 

ii. “If the ACF of the differenced series displays a sharp cut-off and the lag autocorrelation is negative, i.e., if the series appears 

slightly "over differenced", then consider adding an MA term to the model. The lag at which the ACF cuts off is the indicated 

number of MA terms”. 

Figure 38 describes a visual example of identifying the hyperparameters p and q for the time series models using ACF/PCF. 

 

 
13 Identifying the orders of AR and MA terms in an ARIMA model [WWW Document], n.d. URL 

https://people.duke.edu/~rnau/411arim3.htm (accessed 6.28.21). 
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Figure 38:An Example of Hyperparameters Identification 

From Figure 38 and the above rules, the values of p and q are 1, i.e., p =1 and the q= 1. Thus, identifying the time series hyperparameters 

in DSA system may require visual analysis by the SMEs. 
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7.1.4  Expectation-Maximization Algorithm 

In joint states prediction, the whole BBN is considered as a single predictive model. Thus, states values are considered in group. The 

Expectation-Maximisation (EM) algorithm (Dempster et al., 1977) apply the following steps to make predictions or handle uncertain 

values for the joint states models:  

Step 1. Expectation State: Predict the target state using the Bayes rule (Equation 23).  

P(Si|D) = P(D|Si)P(Si)/P(D)  

Equation 23: EM Expectation State 

    

where Si is the probability of each state occurring, i.e., i= 1,2,3,…, n i.e., agent’s previous perceived data. For example, when the search 

area experience wind direction towards north for a long period of time, then it is highly probable that it is going to be north in t future 

time, thus Equation 23 will likely return north as wind direction. 

 

Step 2. Maximisation State: This step maximises the likelihood of the chosen future state using an iteration process. The algorithm 

replaces the selected value with the revised value (i.e., revised by going through the previous entries). Iteration continues until 

convergence (i.e., the difference between the previous and current values is negligible as specified by the SMEs, e.g., 0.01 or maximum 

iteration is reached), then the converged value is retrieved as the prediction. An intuitive feature of this algorithm is that during each 

iteration, the predicted value is greater than or equal to the previous value, as proved by Jensen’s inequality (Adil Khan et al., 2020). 

Thus, the iteration process is responsible for maximising the probability of the predicted value based on previous entries. Other 

algorithms, such as the counting algorithm (Romanycia, 2019) i.e., ordinary Bayes rule and gradient descent algorithm (Bottou, 2010; 

Mandt and Hoffman, 2017; Romanycia, 2019) can be applied to train the BBN. However, the counting algorithm is limited by its 
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inability to handle missing variables and gradient descent algorithm is limited by being computationally expensive, although both 

algorithms produce similar results (Romanycia, 2019). This serves as my main reason for selecting the EM algorithm. 

 

7.1.2 Hypothesis 

It is hypothesised that: 

i. Prediction and uncertainty handling of DSA system depends on the agents’ search pattern structure 

ii. Different forms of uncertainties have different behaviours in terms of prediction and uncertainty handling in DSA 

system 

The hypothesis will be tested on the agent’s mission data generated in Chapter 3 and 6. 

7.2  Performance Metrics 

Error rate counts the number of wrong predictions, i.e., after values reception, which serves as the main performance metric (i.e., the 

measure of a number of times a BBN made wrong predictions upon reception of the correct values). This is the basis for other metrics 

such as logarithm loss, Brier loss, spherical payoff, root-mean-square error, etc. (Karduni et al., 2021; Morgan and Henrion, 1993; Pearl, 

1978).  The Error rate omits the DSA-based features, i.e., the contribution of relevant nodes aims to achieve a particular goal. Therefore, 

this chapter proposes the 𝑀3HIH1J0#H
? 	metric (Equation 24) to address the challenge. 

 

𝑀3HIH1J0#H
? = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑(

∑ 𝑃(𝑆$?) + 𝜆"𝑃(𝑅"?)"&K
C&(

N ) 

Equation 24: Relevance Based Metric 
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where 𝑃(𝑆$?) and	𝑃(𝑅"?) are the probability of the correctly predicted state for the querying and related nodes entries. N is the number 

of the querying node and other related nodes, λi is the measure of relevance between the querying and related nodes (defined in Chapter 

4 Section 4.3), and i ϵ [1, N] 

 

The 𝑀3HIH1J0#H
?  value ranges from 0 to 1, where 0 means the prediction accuracy is poor, and 1 signifies a high level of prediction or 

uncertainty handling accuracy. Therefore, Equation 24 measures the degree of accuracy of the querying node's predictions/uncertain 

values estimations and reflects the contribution made by the connected nodes based on their importance. Thus, this captures the 

relationship between nodes in a DSA system (because some will be more relevant to a specific goal than others).  

 

Similarly, changes in prediction accuracy over time are important in determining how the DSA system is performing over mission 

period. This is because different nodes within a group of nodes have different prediction accuracies depending on their belief (priors’ 

values), available data, and change rate. A pivot (a point that signifies a change in the situation) can be set to check the performance of 

a node or group of nodes over time using Equation 25. Thus, based on Mtransition, an agent can decide whether to use the predicted value 

of a node based on its prediction accuracy history. This measure alerts the system about improvement or otherwise of a node’s prediction. 

Thus, Equation 25 can monitor a node's prediction accuracy before and after a pivot. 

 

Mtransition = 
∑ [N/(@01"(

1 )+	N/(@0(
1)]	(23

(2" ?	∑ [	N4(@01")
1 )+	N4(@0)

1 )])2'
)231"

0
    

Equation 25:Transition Monitoring 

where 𝑃"(𝑆%?) and 𝑃"(𝑆%?(? )  are the correct situation predictions at time t and t+1, the balance pivot (middle of the monitoring points, 

i.e., change of state’s priors trend) selects n/m =2 ∀ m ϵ n. If Mtransition is positive, then prediction accuracy from pivot to current time 
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improves, and the negative value indicates prediction is diminished from the pivot. The zero value of Mtransition signifies stable transition. 

Note that the 𝑃(𝑆$?) and 𝑃(𝑅"?) can be replaced with 𝑀3HIH1J0#H
?  , when 𝑀3HIH1J0#H

?  transition is to be monitored. 

 

To illustrate the proposed metrics, consider a prediction based on ‘spread’ as the target node. Assume the degree of relevance λ (from 

Chapter 4) is 0.23 for the "Spread” node, and fire presence is 0.2. The weights of the nodes are 0.7 for fuel type, 1 for fire presence, and 

0.8 for location relation to the ground. From this, 𝑀3HIH1J0#H
?   (Equation 24) is: 

𝑀3HIH1J0#H
?   (Spread) = ([(0.26)+(1.3x1x0.26)]+[(0.26)+(0.86x0.7x0.8)]+[(0.26)+(0.23x1x0.1)]+[(0.26)+(1.2x0.8x0.9))/(1x4) 

= 2.7466/4 

= 0.69. 

The value of Mrelevance of 0.69 (69%) indicates a good prediction accuracy of the target node with respect to the related nodes (fuel 

type, location relation to ground, and fire nodes). This signifies good prediction for both target and related nodes. Note that the 

priors will be computed using the algorithm described in Chapter 4 Section 4.8. Therefore, using the 	scoring rule, one can 

determine how the DSA system group of nodes perform in terms of projection, while the Mtransition value determines the nodes or 

group of nodes prediction transition. Therefore, the proposed scoring rules judge prediction accuracy on the degree of relatedness 

of nodes and prediction efficacy over time. Thus, the following are the performance metrics to be used in evaluating the 

performance of the algorithm 

i. Error rate: number of times the method made a wrong prediction or uncertain values estimation out of the provided 

inputs. This is measured as the proportion of the false predictions normalised to 1. 

ii. Prediction/uncertain values estimation interval: the time range of the prediction measured by the number of testing 

values (i.e., to be derived from the sensor rate, e.g., 200 samples in every 30 minutes). 
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iii. Surprise rate: number of times a prediction/uncertain value estimation was made with X% probability chance and 

found to be wrong after values reception. 

iv. Resources utilisation: this is measured using time complexity and memory use. 

v. The proposed metrics (Mrelevance and Mtransition). This can be derived from the error rate values. 

  

7.3 Evaluation 

The experiment uses the simulated UAV’s mission data using Lévy flight and the proposed Delaunay-Inspired Multi-agent Search 

Strategy (DIMASS) method described in Chapter 3. The processes for data collection and BBN construction were described in Chapters 

6 and 4, respectively. The BBNs used for the evaluation are illustrated in Figure 39 and Figure 40. The difference in sizes of the BBNs 

is to describe the effect of the BBN number of nodes and data on prediction/uncertainty handling. 
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Figure 39: Example of BBN for Fire Spread (PC level) 
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Figure 40:Larger Bayesian Belief Network (NETICA software) for SA Model at Host Level 

7.3.1 Task 

The task is to predict or estimate the values of the states of the BBN nodes in Figure 39 and Figure 40. The node “Fuel_Type” and state 

“Combination” are selected based on their dynamic priors’ values behaviours as described in Chapter 6. For the single state 

prediction/uncertainty handling, the task was to predict the future priors of the state “Combination” of the ‘Fuel_type’ node from Figure 

39. The experiment was run on a computer with 8GB RAM and an Intel(R) Core (TM) i3-6006U CPU @ 2.00GHZ. The experiment 
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results were obtained by running the Python functions (i.e., for the time series models and Gaussian Process), Java methods using 

NETICA API (i.e., for the EM algorithm), and loading the mission data in .csv (as described in Chapter 6). That is, the experiment set 

up follows the following steps: 

Step 1: load the .csv 

Step 2: load the relevant classes e.g., the Python GP plugin, NETICA BBN learning classes, or time series models Python plugin. 

Step 3: call the learning method and pass the data in form of arrays or dictionary.  

Step 4: the learning methods will then return the results 

7.3.2 Results 

This section discusses a series of experimental results on prediction and uncertainty handling for the outlined methods. 

7.3.3 Prediction Results 

Table 23 shows the performance of the models predicting the “Combination” state of fuel type node from the BBN in Figure 39 for the 

time series models and Gaussian process.  The number of predicting sensor information is 250. The number 250 is selected as the average 

data generated within 5 minutes of the agents mission, which is needed to present the situation of the forest fire (Ingle, 2011). The data 

were obtained from the AMASE agents’ mission described in Chapters 3 and 6. That is, each tuple of the data contains the agents’ sensor 

information across all the states of the nodes stored in a .csv file. The Python implementation of the algorithms (as available in the 

supplemental document) will then fetch data and perform predictions for every single entry. For example, considering the time series 

models, the parameters are defined, and the python time series plugin loads the .csv file to perform the prediction analysis. The overall 

error rate is then reported as the measure of the performance. Both search methods’ data offer the same result for the 250 entries due to 
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the configuration of the simulated search and the short range of the sensor sampling (i.e., the structure of an explored portion of the 

search area is the same due to short-range and the location of the agents). 

Table 23: Single Approaches Prediction Performance on the Agents Sensor Data 

Method Number of Predicting Sensor Information Error rate 

Autoregressive 250 0.52 

Moving Average 250 0.87 

Autoregressive 

Moving Average 

250 0.63 

Autoregressive 

Integrated 

Moving Average 

250 0.50 

 

Seasonal 

Autoregressive 

Integrated 

Moving Average 

250 0.27 

Gaussian Process 250 0.08 

 

The results in Table 23 show that the Gaussian process prediction model performs better than the time series models in terms of single 

state predictions. This is as a result of being data-driven and adaptable to the data pattern based on the mean and standard deviation of 

Equation 17.  Additionally, the implementation of the Gaussian process requires little effort in terms of parameters specifications (i.e., 

it is data-driven). That is, it does not require manual parameters definition. The time series models require the definition of 
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hyperparameters (p,d,q, P, D, Q, or m specifications) which requires SMEs judgements and could make the process post-hoc and 

inefficient (due to delays). Despite the claim for seasonal trends treatment by the SARIMA model (Adhikari and Agrawal, 2013; Dama 

and Sinoquet, 2021), the agents generated pattern was unstructured enough to make it performs poorly. This is due to having varying 

seasonal trends based on the search area generated priors. The next section of the results investigates the aspect of prediction/uncertainty 

handling concerning group of nodes and states using the EM algorithm. 

7.3.4 Multiple States Prediction 

The EM algorithm was used for the multiple states prediction on Lévy flight and Delaunay-Inspired Multi-agent Search Strategy 

(DIMASS) mission data. Similar to the single approaches to prediction/uncertainty handling, the EM algorithm loads the .csv file 

containing agents AMASE mission data. However, all the columns (entries of the states as described in Chapter 6) are considered for 

the prediction/uncertainty handling. Again, the EM consider two data samples, these are the training samples and the testing samples. 

The training samples will be used to generate the priors for the computation of the prediction and uncertainty handling. The testing data 

is the data to be predicted or estimated (i.e., the assumed missing or yet to be received values). Each of the testing data is first 

predicted/estimated based on the priors and check if the value was correct after reception. The proportion of the wrong predictions is 

reported as the error rate. That is, a learning outcome with 0 error rate is the best outcome. The EM algorithm utilises the NETICA Java 

API14 implementation of EM algorithm. That is, Java methods were used to load the BBN (i.e., developed BBN as described in Chapter 

6) and run the EM algorithm throughout the data. The final output consists of the defined performance accuracy values, e.g., error rate 

(as adopted by the thesis), logarithm loss, Brier score, etc. The experiment is repeated across varying numbers of sampling data and 

testing data obtained from different agents search patterns operating in the environment described in Chapter 6.  Table 24 and Table 25 

describe the counterpart result of training the BBN with 250 data (i.e., similar to the result in Table 23). 

 
14 https://www.norsys.com/netica-j.html 
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Table 24: Multiple States Prediction Results for Delaunay-Inspired Multi-agent Search Strategy (DIMASS) Based Data 

# Sampling Data Testing Data Error Rate 

1 2500 250 0.32 

2 2250 250 0.32 

3 2000 250 0.32 

4 1750 250 0.32 

5 1500 250 0.32 

6 1250 250 0.32 

7 1000 250 0.32 

8 750 250 0.32 

9 500 250 0.32 

10 250 250 0.32 

 

Table 25: Multiple States Prediction Results for Lévy Flight Data Based Data 

# Sampling Data Testing Data Error Rate 

1 2500 250 0 

2 2250 250 0 

3 2000 250 0 

4 1750 250 0 

5 1500 250 1 
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6 1250 250 1 

7 1000 250 1 

8 750 250 1 

9 500 250 1 

10 250 250 0.0 

 

From  Table 24 and Table 25, we can see that the multiple states prediction is more effective on stable priors inputs (i.e., the results 

with higher error rate e.g., #4 of Table 26 is due to the change in priors values), and the structure of the search method could affect 

the prediction/uncertainty (i.e., based on the variation in Table 24 and Table 25). The effect of the algorithm on the search pattern 

was based on the prioritisation of the recent entries by the EM algorithm. For example, according to EM algorithm, if wind direction 

is being north for last 10 minutes then it is probably north for the next minute (i.e., based on the Bayes rule of Equation 23), the 

maximisation state refines the prior estimation to adapt to sudden changes. Thus, before the adaptation, the performance becomes 

really poor as can be seen in #4 - #9 of Table 26. The poor performance of the Delaunay-Inspired Multi-agent Search Strategy 

(DIMASS) based data is due to being structured (i.e., new entries are always pound based on the structure of the search area and 

fuel type varies across the search area, note that, testing data are the immediate unexperienced portion of the training data). Thus, 

we can say that the EM algorithm suits unstructured data than the simple prediction based on the priors’ trends as describe in 

Chapter 6. As such, the prediction/uncertainty handling in DSA systems considers the structure of the data. For the good 

performance of the Lévy flight, this happens as a result of previous experience of the testing data from the training data i.e., cases 

of the testing data were experienced before by the EM. 

7.3.5 Uncertainty Handling 
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To understand the uncertainty effect on both training and testing datasets, I consider the following test cases combinations: 

 

i. Complete training versus complete testing datasets (prediction test, i.e., because testing datasets are not part of the training 

datasets) 

ii. Incomplete training (i.e., uncertain training datasets) and complete testing datasets 

iii. Complete training and incomplete testing datasets (i.e., uncertain datasets)  

iv. Incomplete training versus incomplete testing datasets. 

The proportion of the uncertain datasets was 25%, 50%, and 75% of the training datasets, and 24%, 50%, and 76% for testing datasets 

(i.e., to describe low, medium, and high levels). The selection of the missing data was sequential based on the assumption of occurrence 

of mission incidence, e.g., sensor failure at certain time-spaces (a portion of the datasets e.g., from 1 to 100 were complete and from 101 

to 300 were incomplete i.e., uncertain). Note that, the testing datasets are mostly immediate unseen part of the mission datasets. The 

series of the experiments are as follows: 

7.3.6 Small BBN (Figure 39) and Dataset 

This experiment investigates the effect of uncertainty handling on small BBN and varying datasets using EM algorithm and datasets 

obtained from the Delaunay-Inspired Multi-agent Search Strategy (DIMASS) agents’ mission due to their poor performance as in Table 

24. Table 26 shows the error rate across a varying number of uncertain variables. 

Table 26: EM Efficiency on Prediction and Uncertainty Handling 

# Training 

Data 

Percentage 

Missing 

Testing 

Data 

Percentage 

Missing 

Error Rate 
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1 2500 0% 250 0% 0.42 

2 2500 25% 250 0% 0.21 

3 2500 50% 250 0% 0.21 

4 2500 75% 250 0% 0.21 

5 2500 0% 250 24% 0.47 

6 2500 0% 250 50% 0.47 

7 2500 0% 250 75% 0.47 

8 2500 25% 250 0% 0.29 

9 2500 25% 250 24% 0.29 

10 2500 25% 250 50% 0.29 

11 2500 25% 250 76% 0.29 

12 2500 50% 250 0% 0.29 

13 2500 50% 250 24% 0.29 

14 2500 50% 250 50% 0.29 

15 2500 50% 250 76% 0 

16 2500 75% 250 0% 0.26 

17 2500 75% 250 24% 0.29 

18 2500 75% 250 50% 0.22 

19 2500 75% 250 75% 0 
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Based on the result in Table 26, the EM algorithm offers the potential to cope with the missing data uncertainties in both training and 

testing datasets of varying values. Note that, the high accuracy obtained when BBN is exposed to the missing training and testing 

datasets, e.g., in #19 of Table 26, is due to the maximum likelihood search of the EM algorithm (i.e., EM assumes that the missing 

entries follow the observed values patterns). Thus, unexpected events within the interval of the missing values could surprise the BBN 

as described in Table 27.  

7.3.7 Large Datasets Validation 

The essence of this experiment is to investigate the behaviour of the EM algorithm given large datasets, BBN, and different uncertainty 

types. The surprise rate was tested under large training and large testing datasets, as described in Table 27.  The reduced error rate was 

due to the previous experience of the test cases from the training data set (as discussed above). 

Table 27: BBN Large Data Validation 

# Number 

of 

Training 

Data 

Number 

of 

Testing 

Data 

Experienced 

Before 

Completeness Error 

rate 

Surprise 

Rate of 

X% 

confidence 

1 75000 250 yes yes 0.34 0 

2 75000 250 yes no (50% 

missing) 

0.0 0 

3 75000 2500 no yes 0.13 0 
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4 75000 2500 no no(50% 

missing) 

0.25 9.25% of 

10% 

confidence 

 

The larger network’s prediction and uncertainty handling behaviour is evaluated using three nodes of different types from Figure 

40. For the utility nodes, the “Cost_optimisation_grade” node was selected, i.e., based on the nodes classification of Chapter 5 

Section 5.2.1. Awareness and situation node candidates were situational_weight_fire_sensor and wind_vane_A2 (wind direction 

nodes), respectively. Table 28 describes the result on large BBN.  

Table 28: Effect of Uncertainty on Large BBN 

# BBN training 

data  

Missing 

training 

data  

Node Testing 

data 

Missing testing 

data 

Error Rate  

1 2500  0% Wind direction(Wind vane 

A1) 

10% 0% 0 

2 2500  0% Wind Speed(Wind vane A2) 10% 0% 0 

3 2500  0% Cost optimisation grade 10% 0% 0.5 

4 2500  0% Waypoint difference 10% 0% 0.5 

5 2500  0% Situational weight fire 10% 0% 1 

6 2500  0% Situational weight wind 

direction 

10% 0% 1 
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7 2500  0% Wind direction(Wind vane 

A1) 

10% 40% 0 

8 2500  0% Wind Speed(Wind vane A2) 10% 40% 0 

9 2500  0% Cost optimisation grade 10% 40% 0.5 

10 2500  0% Waypoint difference 10% 40% 0.5 

11 2500  0% Situational weight fire 10% 40% 1.0 

12 2500  0% Situational weight wind 

direction 

10% 40% 1.0 

13 2500  40% Wind direction(Wind vane 

A1) 

10% 0% 0 

14 2500  40% Wind Speed(Wind vane A2) 10% 0% 0 

15 2500  40% Cost optimisation grade 10% 0% 0.5 

16 2500  40% Waypoint difference 10% 0% 0.5 

17 2500  40% Situational weight fire 10% 0% 1 

18 2500  40% Situational weight wind 

direction 

10% 0% 1 

19 2500  40% Wind direction(Wind vane 

A1) 

10% 40% 0 

20 2500  40% Wind Speed(Wind vane A2) 10% 40% 0 

21 2500  40% Cost optimisation grade 10% 40% 0.5 

22 2500  40% Waypoint difference 10% 40% 0.5 

23 2500  40% Situational weight fire 10% 40% 1 
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24 2500  40% Situational weight wind 

direction 

10% 40% 1 

 

In Table 28, the estimation error rate at #1 consider a previously experienced values (i.e., between 2500 to 2750 of the training values). 

The accuracy was poor because EM priors update prioritises recent sensor values. Thus, the ability to predict or estimate a missing value 

is situation-based and cannot be generalised. The estimation of #2 was more accurate because the EM algorithm’s recent belief trends 

are in line with the testing datasets. Based on #4, the trained BBN was surprised a few times by low confidence (10%) because of the 

differences between the training and testing datasets.  

7.3.8 Uncertainty Types Differences Evaluation 

This experiment investigates the effect of different types of uncertainties using the large datasets for training and testing still on the 

“Fuel Type” node. Table 29 describes the result for the BBN training using 7500 datasets and 2500 testing datasets with different forms 

of uncertainties. 

Table 29: BBN Large Data Validation 

# Uncertainty Type Error 

Rate 

Surprise Rate 

1 Equal list of all cases {Combination, Grasses, Trees, Shrubs} 1 9.25% of 10% 

confidence 
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2 Equal list with two options including the right one 1 9.25% of 10% 

confidence 

3 Equal list with two options, including the right one having the 

maximum likelihood of 90%  

1 25% of 10% 

confidence 

 

Based on the results in Table 29, the entry in #1 submits uncertain states values of equal chance. This generates a high error rate because 

the outcome is against the recent training priors’ trends (i.e., the consideration of other options completely distorts the precision value, 

which is unexpected). Similar results arise at #2 and #3 despite the reduction in the number of options and likelihood probability 

specification. Note that, logical operations can be applied to states configuration, e.g., the negation of non-value options is the same as 

the exact value, e.g., for the "Fuel type " node of Figure 39, ¬[𝐺𝑟𝑎𝑠𝑠𝑒𝑠, 𝑆ℎ𝑟𝑢𝑏𝑠, 𝑇𝑟𝑒𝑒𝑠] = [𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛]. Interestingly, at #3, despite 

the maximum likelihood indication for the correct value (i.e., 90%), the BBN failed to estimate the values. This is as a result of the 10% 

likelihood consideration for the other option which deviates from the maximum likelihood computation for recent values.  

Note that, the proposed metrics (Mrelevance and Mtranstion) are based on the error rates and specific mission goals. Thus, the result is expected 

to be higher when the related nodes have higher predictions/uncertain values estimation accuracy. Thus, this depends on the error rate 

outcome of the related nodes and their degree of relevance. 

7.3.9  Resources (Computational and Memory) Demand Results 

In terms of EM and GP processing times, results from Table 23 and Table 29 show an average of 708 milliseconds for the training and 

validation process (i.e., for the small BBN in Figure 39) when executed on a computer with 8GB RAM and an Intel (R) Core (TM) i3-

6006U CPU @ 2.00GHZ.  This could support the DSA system in quick decision-making, especially in a dynamic search area (Kitchin 

and Baber, 2016; Stanton et al., 2006, 2009b). In contrast, for the large BBN of Figure 40, training with 28,000 datasets takes 9328 
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seconds. In case of an emergency system, e.g., the proposed use case of forest fire monitoring mission, this could be a delay (Ingle, 

2011), as such, huge computational power is needed for larger networks (Scanagatta et al., 2019). Table 30 describes the resource 

demand analysis. 

Table 30: Complexity Assessment 

Approach Time Complexity Memory Demand Comments 

Expectation-

Maximisation 

algorithm 

O(n x I x r) where n is the 

number of observation 

entries, r is the number of 

co-states values, and i is the 

number of iterations. 

O(n x i x m) where m 

is the average memory 

(in bytes) needed to 

store each BBN tuple 

entry. 

i. The running time grows linearly with 

the increase in the number of iterations. 

As such, the application to agents with 

a lower level of resources needs a few 

iterations. 

Gaussian 

Process 

O(n3), where n is the number 

of data entry.  

O(n2) i. Cholesky decomposition can be used to 

reduce the complexity of the 

algorithm(“A Practical Implementation 

of Gaussian Process Regression,” n.d.). 

Time Series 

Models 

O(n2m) where m is the 

number of parameters as 

discussed in Section 7.1.3. 

O(n2)  

 

 

Therefore, based on the outlined agents’ settings (Chapter 1), simple agent has a very limited computational capacity of which resource 

utilisation is very critical. Similarly, the pictures compilers (PCs) need resource utilisation to certain extent due to cruising, data 
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collection, and communication tasks. The host has abundant computational resources, of which utilisation demand is not as critical as 

simple agents (micro or mini UAVs) or PCs. Therefore, based on the outcome of Table 30, agent’s ability to handle prediction and 

uncertainty handling depends on its resources e.g., large BBN and datasets training requires large computational demand. Table 31 

describes the methods recommendation based on the agents’ capacity. 

Table 31:Agent-based Approach Recommendation 

Agents Type Recommendation for Handling Uncertainties 

EM Algorithm Gaussian 

Process 

Time Series Models 

Simple gent Medium when number 

of iterations are small 

Very low Very low 

Picture compilers Medium Low Very low 

Host High  Medium Low 

 

7.4 Discussion and Conclusion 

 

This chapter describes different methods of dealing with predictions and uncertainties in DSA system. The chapter categorises the 

approaches into single state and multiple states predictions/uncertainties handling. The evaluation considers data generated using fixed-

pattern or pseudorandom methods i.e., the proposed Delaunay-Inspired Multi-agent Search Strategy (DIMASS) method of Chapter 3 or 

Lévy flight (Chawla and Duhan, 2018; Sutantyo et al., 2011). Single states predictions/uncertainty handling shows low performance in 

terms of error rate, whereas multiple states shows higher performance due to consideration of many other states (as described by the 
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results in Table 23 and Table 29). In terms of the search patterns’ structure, the fixed pattern shows stable behaviour due to the structure 

of the search area (as discussed in Chapter 6). 

Similarly, prediction and uncertainty handling depends on the amount of data and missing values and their stability, i.e., being linear, 

as can be seen from the result in Table 25 and Table 26. This results from the Jensen’s inequality (Adil Khan et al., 2020) (Equation 26 

and Equation 27). 

Belief increment:  

P(∫ zB(RQ|S:))
:&R"1"
:&R"

dS ≤ ∫ zPjB(RQ|S:)ldS
:&R"1"
2&R"

      

Equation 26: EM Expectation State for Convex Entries 

Belief decrement:  

P(∫ zB(RQ|S:))
2&R"1"
:&R"

dS ≥ ∫ zP(B(RQ|S:))dS
:&R"1"
:&R"

 

Equation 27:EM Expectation State for Concave Entries 

  

where B(Ss) and B(Rr) are the probabilities of the querying and related states of the BBN, and z is the optional weight factor from 

SMEs. That is the BBN training using EM priorities recent data over old ones. In conclusion, different forms of uncertainties have 

different behaviours (based on the result in Table 28) and the choice of the approach depends on the DSA system situation. EM algorithm 

shows good prediction/uncertainty handling with some limitations in terms of a large number of uncertain variables. 
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8 Chapter 8 Adaptable DSA  

Learning the structure of Bayesian Belief Networks (BBNs) from operational data is challenging especially when it involves multiple 

structures construction and accuracy testing (score-based methods). These methods are computationally demanding and require large 

training datasets. A viable alternative is to develop a set of protocols to guide the structure development (constraint-based methods). 

The latter approach is computationally cheap with the main limitation of low accuracy. This chapter introduces a novel constraint-based 

BBN structure learning algorithm for the DSA system described in Chapters 1 and 4. The method work based on protocols derived from 

node conditional independence maximum likelihood clustering using the Gaussian Mixture Model (GMM). The aim is to ensure the 

adaptability of the BBN for DSA systems as described in Chapter 4. Results proved scalability, adaptability, integration of Subject 

Matter Experts (SMEs) and automation inputs, uncertainty quantification, and computational efficiency.  

8.1  Introduction 

Bayesian Belief Networks (BBNs) are well-known tools for modelling concepts and their relations in various systems. They were applied 

in numerous areas, such as medical diagnosis, forensic science, multi-agent system, etc. (Wang and Xu, 2014; Scanagatta et al., 2019). 

In terms of using BBN for SA modelling (as described in Chapter 4), the v-structure (links configuration) defines search area phenomena 

(as in the thesis use case) and their relations (i.e., what causes what within the system as discussed in Chapter 4). For example, Figure 

41 describes a simple BBN used to understand forest fire spreads at the PC level. This BBN simply represents the concepts of fire spread 

based on its presence or absence, fuel condition, location relation to the ground, and fuel type.  
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Figure 41:Fire Spread BBN (NETICA Software) 

 

Figure 41 is one of the BBN configurations, perhaps based on the current system information or Standard Operating Procedure (SOP) 

documentation. The configuration could change based on the newly received information. For example, consider a similar BBN 
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configuration with the absence of a link between the “Location relation to the ground” and “Spread” nodes (assume that it is obtained 

from a different location). That is, “Location relation to ground” information is independent of the “Spread” node (which means fire 

spread is independent of the search area terrain relation to ground, i.e., uphill, downhill, or flat). An autonomous (data-driven) or semi-

autonomous (which requires certain parameters or hyperparameters definition) structural learning algorithm helps to construct the 

system BBN model to address the challenge. Thus, this chapter aims to answer the research question “RQ3, how could agents search 

plan support SA management?” focusing on obtaining an adaptable DSA modelling tool based on the agent’s search mission 

information. 

Based on the thesis DSA definition (Chapter 1), different agents are tasked to perform different roles in different search area situations. 

The combination of the output of individual agents leads to the SA management at the system level. Due to the dynamism of the search 

area, SA modelling in such a system is also a dynamic (Kitchin and Baber, 2017; Stanton et al., 2006, 2009). That is, SA is context-

based. For example, from Figure 41, fire detection information interpretation depends on the sensor type and mode of operation. Thus, 

detecting a fire using a visual camera sensor during night-time could be more reliable than during daytime, when fire-like objects could 

distort the sensor’s reliability. Thus, SA management requires context-based interpretation of the agents’ situation (i.e., situation 

assessment). Therefore, this chapter aims to (i) introduce a constraint-based structural learning algorithm for the proposed BBN for DSA 

modelling and (ii) describe its application for managing DSA adaptably within the described system. 

8.1.1 Existing Methods  

BBN structural learning algorithms are generally categorised into: score-based, constraint-based, or hybrid approaches. Score-based 

methods construct n number of the BBN and select the best performing BBN (in terms of prediction) using testing i.e., testing the 

candidate network against the prediction of unseen parameters (Bregoli et al., 2021; Karduni et al., 2021; Scanagatta et al., 2019). This 

version of the algorithm produces a better outcome, but it is super-expensive (i.e., it requires large computational resources) due to a 

large number of BBN candidates generations.   
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On the other hand, constraint-based methods construct the BBN model using derived protocols, e.g., based on the Conditional 

Independence (CI, i.e., nodes degree of relevance) measure (Bari, 2011; Bregoli et al., 2021; Scanagatta et al., 2019; Zhang et al., 2020). 

The simplest version of the constraint-based structural learning algorithm is the Chow-Liu algorithm which constructs the BBN based 

on the weighted CI measure (Altarriba and Halonen, 2020; Bhattacharyya et al., 2021; Huang et al., 2003). Further improvement of this 

algorithm is the PC (Peter and Clark) algorithm which imposes BBN development based on derived protocols using CI measure, i.e., 

the BBN is first developed and restructured based on inter-nodes CI values (Spirtes et al., 1991; Bouckaert, 1995; Bregoli et al., 2021; 

Le et al., 2019; Madsen et al., 2017; Marcano et al., 2020; Scanagatta et al., 2019; Scutari, 2015; Scutari et al., 2019; Zhang et al., 2020).  

In contrast, hybrid methods combine the strategies of score-based and constraint-based methods (Bregoli et al., 2021; Le et al., 2019; Li 

et al., 2019; Scanagatta et al., 2019; Scutari, 2015; Zhang et al., 2020). That is, candidates’ networks are generated, and protocols are 

developed to guide during best network selection with no assuarance of a better performance (Scutari, 2015). This thesis contributes to 

the family of the constraint-based algorithm by developing an algorithm that clusters the CI and nodes’ goal-based weight (i.e., to reflect 

a DSA system) using Gaussian Mixture Model (GMM). The outcome fits the use case and proves resource utilisation, scalability, and 

adaptability. Additionally, the developed protocols consider various DSA system features such as the SMEs’ merging, agents’ goals 

variation, number of inputs measurement, and partial updates. 

8.1.2  BBN Structural Learning for DSA System 

 Figure 41 describes an example of a BBN structure for forest fire monitoring. The probability of the parent node’s states is defined 

jointly by the combination of dependent nodes’ states entries. For example, the probability of the state of the node “Spread” from Figure 

41 could be derived from “Fire”, “Location relation to the ground”, “Fuel type”, and “Fuel condition” nodes’ states.  The combination 

of each dependent node’s states probabilities determines the parent node entry, which is maintained by the parent node’s Conditional 

Probability Table (CPT) as described in Chapter 4.  For instance, Table 32 describes an example of CPT entry for the spread node. 
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Table 32: Example of CPT for Spread Node of Figure 41 

# Fuel 

Type 

Fire Location 

Relation 

to 

Ground 

Fuel 

Condition 

Spread 

Spreading Not_spreading 

1 Grasses Present Uphill Dried 95% 5% 

2 Grasses present Uphill Wet 70% 30% 

3 Grasses Present Uphill Semi_dried 80% 20% 

4 Grasses Present Downhill Dried 85% 15% 

… … … … … … … 

89 None Not_present Flat Semi_dried 0% 100% 

 

From Table 32, the probability measure of the dependent nodes’ states determines the CPT value of the parent node. For example, #1 

shows that the fuel type is grasses and in a dried condition, while fire is present on uphill terrain. This leads to a 95% belief of fire 

spreading (a rapid spread). The spreading belief is different when the fuel type is wet or semi-dried as in #2 and #3, respectively. 

Therefore, the CPT probability value quantifies the degree of the node’s states beliefs. Overall, all states of the BBN and their 

probablities describe the DSA of the search area.   

Similar to the BBN priors’ initialisation, the edges configuration of the BBN can be initialised based on the domain SOP or learnt from 

agents’ previous mission data. Different algorithms were proposed for the latter case. This can be categorised generally into score-based, 

constraints-based, and hybrid methods (Bari, 2011; Park et al., 2013; Scanagatta et al., 2019; Zhang et al., 2020). 
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As partially discussed above, score-based algorithms construct n number of candidates networks and then test each network’s accuracy 

in predicting unseen data (i.e., the likelihood P(D|N) where D is the data and N is the network). The best performing candidate network 

(identified using low error rate) will be recognised as the most likely network. This approach has been enhanced using different strategies 

such as Tabu search (by avoiding previous poor-performing candidates), probabilistic Tabu search version (Bouckaert, 1995), genetic 

algorithms (Larranaga et al., 1997) etc. Due to the high number of candidates generations, the score-based method requires enormous 

computational power, although it produces more accurate results (Scutari et al., 2019). 

In contrast, constraint-based strategies utilise statistically derived protocols (e.g., entropy measure, Pearson correlation, etc.) to depict 

relating nodes (Le et al., 2019; Li et al., 2019; Scanagatta et al., 2019; Scutari et al., 2019). For example, if the entropy measure between 

two nodes Vi and Vj is greater than the one between Vj and Vi, there will be a causal link from Vi to Vj, i.e., Vi→Vj. Constraint-based 

algorithms are faster with little computational demands (Scanagatta et al., 2019). This has been improved using Markov blanket (Qi et 

al., 2021; Scutari, 2015), Chow-Liu tree (Huang et al., 2003), and developed heuristics (Qi et al., 2021; Scanagatta et al., 2019). However, 

deriving effective constraints protocols is challenging (Scanagatta et al., 2019; Scutari et al., 2019). The combination of score-based and 

constraint-based methods leads to a hybrid approach (Scutari et al., 2019).  

In this chapter, I propose a constraint-based method that clusters (classify) the degree of dependency (using conditional independence) 

and inter-nodes experts assigned weights (obtained from SMEs weighting as described in Chapter 4 or SOP documentation).  The 

clustering process considers the maximum likelihood probability P(D|N) using the Gaussian Mixture Model (Banfield and Raftery, 

1993), where D is the data and N is the BBN structure (candidate network). The maximum likelihood selection is to produce a highly 

expected network. That is a network with a high chance of having a higher prediction score. Thus, the proposed approach’s target is to 

inherit the best features of the score-based and constraint-based methods in combination with DSA system formalisation. The constraints 

protocols were based on Reichenbach’s Common Cause Principle (RCCP) (Hitchcock and Rédei, 2020), i.e., if P(Vi, Vj) > P(Vi) x P(Vj) 

then the nodes Vi and Vj are inter-related. The proposed algorithm depicts the level of dependency by classifying parents, children, 
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grandchildren, etc., based on the maximum likelihood of the conditional independence and inter-nodes SMEs weights (from Chapter 4) 

using GMM. The outcome demonstrates how the proposed algorithms could help in maintaining the system’s DSA.  

8.1.3  Situations and Agents Variation across DSA System and the Need for an Adaptable DSA Model 

As outlined in Chapter 1, the simple agents (exploring agents) perform the system information acquisition tasks.  The simple agents will 

be submitting their individual information to their respective picture compilers. The picture compilers (PCs) will then report their 

information to the managing host interacting with the SMEs. Therefore, the information follows from the simple agents to PCs, host and 

finally, the SMEs. Similarly, the command from SMEs follows in an opposing direction. Thus, SA varies across agents’ levels. For 

instance, SA to the simple agent means performing the sensor poll and navigating effectively (e.g., avoiding repetitive search, collision, 

etc.). For the PCs, SA means managing the collected simple agents’ sensor information (e.g., using BBNs), sensor information conflict 

management, and situation understanding. The host maintains SA by managing multiple PCs’ SAs, uncertainty handling (missing 

information management), sensor conflicts resolutions, and SMEs commands integration. The human experts analyse the presented SA 

model logically and make decisions, e.g., where to send evacuation vehicles, where to start fighting the fire, etc. Hence, SA definition 

within the system is based on the agent’s level.  

Considering the changing nature of the search area, SA across various agents’ levels needs to be modelled in an adaptable manner. Thus, 

the structure of the BBN controlling the SA model of Chapter 4 (the proposed BBN) needs to be adaptable (i.e., responding to the current 

fed information in real-time). This can be achieved through instant priors updated based on the agents’ sensors information (as described 

in Chapter 4 Section 4.8) and the node’s relation management. 

8.1.4 Conditional Independence Measures 
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The probability of how an input at a particular node, say, Vi, could affect the probabilities of another node, say, Vj can be measured 

using conditional independence (CI) metrics. Different strategies were proposed to compute those metrics, such as the Pearson 

correlation (Karduni et al., 2021; Kumar, 2007), Shannon entropy measure (Shannon, 1959), probability variance, etc., (Karduni et al., 

2021; Kitchin and Baber, 2017; Neapolitan, 1990; Pearl, 1988). The choice of a particular measuring technique depends on the 

application domain. For example, the variance measure provides a value ranging between 0 and 1, while the entropy measure is not. The 

normalisation process is required for every set of values while using an entropy measure (Equation 28). Although the number of entropies 

conversion to the normalised value of 1 could be cumbersome, the metric measures uncertainty (Scanagatta et al., 2019; Skotarczak et 

al., 2018) and the number of data needed (as discussed in Section 8.5).  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦S(@5|U$) = −hh
𝑃(𝑆2, 𝑅3)𝐿𝑜𝑔V𝑃(𝑆2, 𝑅3)

𝑃(𝑆2)𝑃(𝑅3)

3&0

3&(

2&0

2&(

 

Equation 28:Nodes Relation Measurement using Entropy 

   

where P(Ss) and P(Rr) are the probability of the querying and related nodes with their respective states sets s, and r, P(Ss,Rr) is their joint 

probability, and x is the base for the logarithm, which determine the measuring units, e.g., Shannons if x=10 or bits if x=2 i.e., similar 

to Equation 28 of Chapter 5. 

The entropy measure quantifies the level of dependencies among the nodes. For example, assume that a fire detecting UAV reports 

“present”, and fuel condition detecting UAV reports “dried”. Therefore, based on the BBN states’ priors updating algorithm described 

in Chapter 4 Section 4.8, the CI measure will be:  
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P(Fire=Present) = 0.75, P(Fire=Absent) = 0.25, P(Fuel Condition = Dried) = 0.67, P(Fuel Condition = Wet) = 0.165, and P(Fuel 

Condition = Semi_Dried) = 0.165. 

The entropy measure between “Fire” and “Fuel Condition” nodes will be :𝜆j𝐹𝑖𝑟𝑒2|𝐹𝑢𝑒𝑙		𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛Wl =

−∑ ∑ XYZ"3H5,Z[HI		!\0A"%"\06]I\^*X(Z"3H5,Z[HI		!\0A"%"\06)
X(Z"3H5)X(Z[HI		!\0A"%"\06)

W&0
W&(

2&0
2&(    

Step 1: Expanding the second summation 

 𝜆j𝐹𝑖𝑟𝑒2|𝐹𝑢𝑒𝑙	𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛Wl = −∑ [(2&0
2&( 	X(Z"3H5,Z[HI		!\0A"%"\0&_3"HA)I\^*X(Z"3H5,Z[HI		!\0A"%"\0&_3"HA)

X(Z"3H5)X(Z[HI		!\0A"%"\0&_3"HA)
) + 

	(N(Z"3H5,Z[HI		!\0A"%"\0&`H%)I\^*X(Z"3H5,Z[HI		!\0A"%"\0&`H%)
X(Z"3H5)X(Z[HI		!\0A"%"\0&`H%)

) + (	N(Z"3H5,Z[HI		!\0A"%"\0&@HK"	_3"HA)I\^*X(Z"3H5,Z[HI		!\0A"%"\0&@HK"__3"HA)
X(Z"3H5)X(Z[HI		!\0A"%"\0&@HK"	_3"HA)

) ] 

Expanding the first summation 

 

𝜆j𝐹𝑖𝑟𝑒2|𝐹𝑢𝑒𝑙		𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛Wl = [(	X(Z"3H&X3H2H0%,			Z[HI		!\0A"%"\0&_3"HA)I\^*X(Z"3H&X3H2H0%,Z[HI		!\0A"%"\0&_3"HA)
X(Z"3H&X3H2H0%)X(Z[HI		!\0A"%"\0&_3"HA)

) + 

	(N(Z"3H&X3H2H0%,Z[HI		!\0A"%"\0&`H%)I\^*X(Z"3H&X3H2H0%,Z[HI		!\0A"%"\0&`H%)
X(Z"3H&X3H2H0%)X(Z[HI		!\0A"%"\0&`H%)

) + 

(	N(Z"3H&X3H2H0%,Z[HI		!\0A"%"\0&@HK"	_3"HA)I\^*X(Z"3H&X3H2H0%,Z[HI		!\0A"%"\0&@HK"__3"HA)
X(Z"3H&X3H2H0%)X(Z[HI		!\0A"%"\0&@HK"	_3"HA)

) ] + 

[(	X(Z"3H&bc2H0%,			Z[HI		!\0A"%"\0&_3"HA)I\^*X(Z"3H&bc2H0%,Z[HI		!\0A"%"\0&_3"HA)
X(Z"3H&bc2H0%)X(Z[HI		!\0A"%"\0&_3"HA)

) + 

	(N(Z"3H&bc2H0%,Z[HI		!\0A"%"\0&`H%)I\^*X(Z"3H&bc2H0%,Z[HI		!\0A"%"\0&`H%)
X(Z"3H&bc2H0%)X(Z[HI		!\0A"%"\0&`H%)

) + 

(	N(Z"3H&bc2H0%,Z[HI		!\0A"%"\0&@HK"	_3"HA)I\^*X(Z"3H&bc2H0%,Z[HI		!\0A"%"\0&@HK"__3"HA)
X(Z"3H&bc2H0%)X(Z[HI		!\0A"%"\0&@HK"	_3"HA)

) ] 
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Substituting the values leads to  

 

𝜆j𝐹𝑖𝑟𝑒2|𝐹𝑢𝑒𝑙		𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛Wl =	 [ (0.75x0.67log2(0.75x0.67)/0.75x0.67))+ (0.75x0.165)log2(0.75x0.165)/0.75x0.165 + 

(0.75x0.165)log2(0.75x0.165)/0.75x0.165 ]  + [ (0.25x0.67log2(0.25x0.67)/0.25x0.67))+ (0.25x0.165)log2(0.25x0.165)/0.25x0.165 + 

(0.25x0.165)log2(0.25x0.165)/0.25x0.165 ] 

 

𝜆j𝐹𝑖𝑟𝑒2|𝐹𝑢𝑒𝑙		𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛Wl = 5.42𝑏𝑖𝑡𝑠 

That is, the expected reduction in entropy of the “Fuel condition” node given a finding at the “Fire” node is 5.42bits. Note that, the lower 

the entropy value the higher the relations.  

Summarily, the choice of the statistical criteria for measuring the conditional dependency of the nodes depends on the application 

domain. For example, if the number of agents interaction, number of datasets needed, and uncertainty in entropy reduction are needs to 

be monitored, then entropy (Equation 28) is a good choice (this will be discussed in detail with a supported result in Section 8.5). 

However, when computational demands need to be utilised (e.g., UAV’s onboard processing by avoiding conversions), then probability 

variance (Chapter 4 Equation 8) or Pearson's correlation could be used to avoid multiple normalisation of values (i.e., to 1) computations. 

The proposed algorithm utilises the CI to separate the BBN nodes relations, e.g., parents, children, grandchildren, etc, of the BBN graph.  

8.2 Hypotheses 

It is hypothesised that the experiment would show that 

i. The adaptability of the proposed structural learning algorithm depends on the fed data and priors update algorithms. 
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ii. The proposed solution generates the candidate’s BBN based on the maximum likelihood priority (i.e., most probable 

candidate for the score-based methods).  

8.3 Performance Metrics 

Performance measures were based on the following: 

i. Adaptability: the ability of the approach to construct appropriate BBN based on the agents’ fed data. This is measured 

based on how the BBN changes given different datasets. 

ii. Processing time (i.e., time needed to run the algorithm). This is measured as the time taken by the algorithm to produce a 

result (i.e., BBN output). 

iii. Scalability: the ability to handle n number of nodes and m datasets with a stable processing time. This is measured using 

the processing time and the number of nodes. 

iv. SMEs-automation inputs integration (feature). This is identified as the ability to integrate both automation and SMEs 

inputs (i.e., it is a feature metric). 

8.4  Proposed Solution 

The proposed algorithm utilises the conditional independence measure (Section 8.1.4) with or without the SMEs edges (BBN causal 

links) critical weight assignment ( as described in Chapter 4 Section 4.7) to impose the learning constraints (Section 8.4.1).  Maximum 

likelihood clustering using the Gaussian Mixture Model (GMM) was used to separate the BBN links hierarchy, i.e., separate parents, 

children, grandchildren nodes etc. 

8.4.1 Constraints (Protocols) Development 
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The algorithm’s protocols were based on Reichenbach’s Common Cause Principle (RCCP)(Cartwright, 1988; Feyerabend, 1959; 

Hausman and Woodward, 1999). Summarily, RCCP states that if the joint probability of two nodes is more than their individual 

probabilities’ product, i.e., P(Vi,Vj)>P(Vi) x P(Vj), then Vi is causing Vj, or Vj is causing Vi, or both Vi and Vj are both caused by another 

node say, Vk (Hitchcock and Rédei, 2020).The proposed algorithm outcome is formed by considering the fact that the higher the CI 

measure and assigned SMEs critical weight (Chapter 4 Section 4.7), the stronger the link, and this indicates the causality direction. 
Therefore, the algorithm constructs the BBN structure based on the following protocols.  

i. Protocol 1: for all pairs of nodes (Vi, Vj) such that i≠j, if λ(Vi|Vj) > λ(Vj|Vi), then there will be a link from Vi to Vj (i.e., 

Vi→Vj), i.e., Vj is dependent on Vi subjected to the CI and critical weight clustering (protocol 3). 

Based on the relevance computation in Section 8.1.4, e.g., using entropy, probability variance, or any method, if λ(Vi|Vj) > λ(Vj|Vi), 

then receiving a piece of information for node Vi affects the Vj node. Thus, the Conditional Probability Table (CPT) of Vi, has a higher 

chance of having an entry from Vj because P(Vi|Vj)>P(Vj|Vi) based on Equation 28. Therefore, whenever λ(Vi|Vj) > λ(Vj|Vi), there will 

be a link from Vi to Vj subjected to the CI and the critical weight measure (protocol 3).  

ii. Protocol 2: if (λ(Vi|Vj) = λ(Vj|Vi) or λ(Vi|Vj) = 0, then the link is void (dead link) 

Similarly, based on Equation 28, if P(Vi|Vj) = P(Vj|Vi), findings at the Vi node have the same effect on probability at Vj, thus no causal 

relation. 

iii. Protocol 3: maximum likelihood categorisation of the CI values and critical weight segments causality strength.  The 

clustering function α, e.g., GMM assign each link ei to a cluster Ci, i.e., α :ei→Ci ∀ ei ϵE. Each link belongs to a cluster, and 

clusters are ranked based on CI measures. 

For the clustering task, the chapter utilises the Gaussian Mixture Model (GMM) (Xuan et al., 2001; Zivkovic, 2004) based on the 

assumption that the BBN states priors are Gaussian from the law of large Number and the Central Limit Theorem (Etemadi, 1981; Hsu 
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and Robbins, 1947). Again, GMM is proven to provide an outstanding clustering better than other approaches such as the k-means 

(Muñoz et al., 2021; Murray and Perera, 2022; Zhang et al., 2015; Zivkovic, 2004).  The GMM is defined by the function α(ei) = 

~	𝑁(𝜆(𝑒")|𝜇, 𝜎) where 𝑁(𝜆(𝑒")|𝜇, 𝜎) = (
d√4e

𝑒(− (S(H()+f)*

4d*	
), λ(ei) is the CI value for the edge (link) ei, μ and σ are the mean and standard 

deviation of the links CI values distribution. Whenever critical weight (w) is used, the variance σ is replaced with a covariance matrix 

Σλw for all clusters. If there exists an already assigned link ei, the algorithm mediates to one of the descendants' nodes using protocol 

(iv). 

iv. Protocol 4: mediation node selection is based on conditional independence measure, critical weight, popularity (number of 

indegree links) and authority (number of outdegree nodes) in order of preference and number of values. 

Proof. 

Relevancy and critical strength were proved in protocols i, ii, and iii above. 

However, based on the conditional probability P(Vi|Vk) = P(Vk|Vi)P(Vi)/P(Vk), where k =1,2,3,…n, and Vk is the number of 

dependent nodes (indegree node). Thus, the higher the popularity, the larger the P(Vi|Vk) and CI value λ(Vi|Vk). An interesting 

question to ask is what is the trade-off between indegree and outdegree assignment? For example, considering Figure 42, assuming 

“H” is part of the BBN, where does the mediated node ‘H” best fit? The condition is that, its link is not as strong as A→B and A→C 

based on the clustering process. That is, will the "H" node best fit B or C? 
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Figure 42: Degree of Transition Role 

 

The answer is that the mediation depends on the provision of protocol (iv). That is, if λ(H|C) > λ(H|B), then H will be attached to C, and 

vice versa. When λ(H|C) = λ(H|B), a low number of indegree or outdegree of the nodes will be used, because the higher the number of 

related nodes (indegree or outdegree), the lower the chance of conditional probability being low, e.g., it is most probable that 

P(B|E,F,G)<P(C|D) ∀ P(E,F,G)>0, although, an exception could exist when E,F,G>D.  Note that, from Bayes protocol, P(E,F,G)= 

P(E)P(E|F)P(G|E,F). 
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v. Protocol 5: reversed (links in the opposite direction) are removed based on CI and critical weight strength i.e., based on 

protocol (iv). 

vi. Protocol 6: network construction is cluster-based. i.e., the strongest link has to be considered first with higher priority. 

Proof 

Protocol (i) 

vii. Protocol 7: super-powered link (existing link but overridden by a strong link): protocol (i) will be applied based on the CI or 

critical weight values. 

The outlined protocols (i) to (vii) will be used to generate the structure of the BBN. Section 8.4.2 described the method for incorporating 

SMEs entries. 

8.4.2 SME Inputs Incorporation 

Following RCCP and protocols (i) to (vii) of Section 8.4.1 alone could be inconsistent with the search area phenomena behaviours. For 

instance, many authors have questioned the validity of the RCCP in some specific exceptional cases. In Cartwright’s factory example 

of (Cartwright, 1988 p108–109), stated “...if a factory releases P amount of pollution after ‘S’ operation, and produce a chemical C, then 

P(C,P|S)>P(C|S)P(P|S) and in reality neither C nor P causes each other”. Many other objections can be found in (Salmon, 1984; Schurz, 

2017). Therefore, as suggested by  (Glymour, 1999), the generalisation of RCCP to describe real-world situations requires more than a 

hypothetical description.  Thus, the chapter offers a process termed as exceptional cases identification for specifying the exceptions in 

the DSA model. 

The exceptional cases identification method simply means the specification of unrealistic dependent variables and mutually exclusive 

events using joint or conditional probabilities of the nodes monitored through the BBN CPTs. For example, from Figure 41, we can see 

a number of RCCP putative cases. Fire will not be spreading while it is absent, or fire will not spread while there is no fuel (i.e., based 
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on the knowledge of SOP), although the agent prior update of Chapter 4 Section 4.8 could settle this issue. Thus, these exceptions within 

a DSA system can be specified using the CPTs of the nodes. For example, P(Fire=absent |Spread=spreading) = P(Fire =absent) instead 

of P(Fire=absent |Spread=spreading) = P(Fire=absent) P(Spread=spreading)/ P(Spread=spreading)  i.e., because fire spreading depends 

on its presence. For mutually exclusive events e.g., the joint probability of the nodes can be used. For example, P(Fuel Type = none, 

Spread = spreading) = 0. Thus, regarding DSA specification, the exceptional cases identification method could help during SMEs SOP 

incorporation to control the structural learning process. The SMEs entries can be collected using the Thurstone’s paired comparison 

(Allen, 1994) method described in Chapter 4 Section 4.7. 

8.4.3 The Proposed Algorithm  

The proposed algorithm uses protocols (i) to (vii) derived from Section 8.4.1 to develop a BBN structure representing the agents SA 

model across various situations. Algorithm 3 describes the proposed structural learning algorithm. 

 

Algorithm 3. The Proposed BBN Structural Learning Algorithm 

1: Input: Agents data, nodes critical weight, CI 

values for each pair of nodes λ(Vi|Vj) ∀ i≠j, and 

configuration matrix M[]. 

2: Output: The directed BBN graph G(V,E,M) 

3: 

 

4: 

Initialise the number of edges E = 0 
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5: 

6: 

7: 

 

8: 

 

 

9: 

 

 

 

 

 

10 

 

 

 

11 

 

 

Initialize the configuration matrix e.g., 

adjacency matrix M= [] 

 

For each pair of node Vi,Vj 

       Compute λ(Vi|Vj) 

                    If  λ(Vi|Vj)> λ(Vj|Vi) // protocol (i) 

 

                     Add the link ei, such that, ei: 

[Vi→Vj]→1 to the configuration matrix M[ei]  

 

                  Else if λ(Vi|Vj)<= λ(Vj|Vi) // protocol 

(ii) 

 

 

                            Mark the link Vi→Vj as 

unsuccessful, add ei: [Vi→Vj]→0 to the 

configuration matrix M[ei] 

 

                          Merge relevance λ(Vi|Vj) for 

successful links with their corresponding 

experts' critical weight Wi if any 
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12 

 

 

13 

 

 

14 

 

 

 

 

 

 

 

15 

 

 

 

 

 

 

Select the optimal number of clusters, e.g., using 

the elbow method 

 

Identify the number of clusters C = 1,2,3,...n 

 

 

Cluster using Gaussian Mixture Model and 

obtain the cluster set C = {c1, c2, c3, ..., cn}, ci = 

{e1,e2,e3,...,en} and i ϵ[1,N] // that is each cluster 

contain set of related links, and link is defined 

jointly by the relevance value and  critical 

weight i.e., ei:λi x wi. 

 

 

If there exists a link ei:Vi→Vj,  where i,j, ϵ Ci, 

any link attempt, say, eJ:Vi→Vm, where i ϵ Cj, 

and j<i, the, eJ will be linked to one of the 

descendants of Vi using the mediation protocol 

(iv) // a link from a lower cluster will be attached 

to a descendent of the higher cluster node using 

 



 
 

213 

16 

 

 

17 

 

 

 

 

18 

 

 

 

 

 

 

19 

           (i) relevance measure λ(Vk|Vi...n) priority 

or combined with a critical weight measure  

 

          (ii) popularity (indegree) measure and 

authority (outdegree) number of degrees// 

protocol (iv) 

 

 

If there exists a link ei:Vi→Vj, with λ(Vi|Vj) = 

X and a subsequent link eJ:Vj→Vi, with λ(Vi|Vj) 

= Y, then eJ is super-powered  if X>Y, same 

protocol for super-powering a node //protocol 

viii 

 

 

 ei → M[ei]  // add A to the list of edges 

20 Return G(V, E, M) 

 

Therefore, the application of Algorithm 3 to the DSA system follows the below steps: 

i. Define the conditional independence measuring function 

ii. Assign the critical weight, if any 
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iii. Select the optimal number of clusters algorithm, e.g., elbow method, average silhouette method, gap statistic method etc. 

iv. Apply Gaussian Mixture Model for the clustering task 

v. Apply the derived protocols of Section 8.4.1 

vi. Apply exceptional cases identification if available Section 8.4.2 (optional) 

vii. Generate the network 

Based on the controlling protocols of Section 8.4.1, the following proposition holds: 

Proposition 2: A BBN generated using Algorithm 3 receives maximum likelihood in terms of prediction compared to other randomly 

generated candidates of the score-based strategies. 

Proof:  

From the derived protocols, a link from node S to R is feasible if and only if λ(Ss | Rr)> λ(Rr | Ss), i.e., protocol 1. 

Both Log(P(R|S))+Log(P(S)) and λ(Ss | Rr) are maximal if and only if P(R|S) is maximum. Since Algorithm 3 is always looking for the 

strongest link using GMM, then P(S|R) is always maximum. Note that, P(S|R) = P(R|S)P(S)/P(R) in Equation 28. The optimal number 

of clusters (e.g., Elbow) gives the optimal number of hierarchies based on λ(Ss | Rr)  and weighting method strength. Thus, using the 

Gaussian Mixture Model (GMM) also gives the appropriate link hierarchy with maximised P(S|R). Summarily, the proposition is stating 

that a BBN generated using the proposed algorithm (Algorithm 3) is likely to be among the best-performing candidate of the score-

based approach.  

Therefore, we can conclude that the higher the number of strong nodes, the higher possibility of having BBN with good prediction (i.e., 

reduced error rate). For example, a network with the 10 most powerful nodes could have a higher prediction confidence (prediction 

score) than the one with 5 nodes.  
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8.4.4  Algorithm Application Example 

The proposed algorithm's demonstration follows the implementation of the AMASE experiment in all of the thesis chapters (i.e., the 

multi-UAV mission for forest fire monitoring). From Figure 42, fire has been spotted at two locations (the polygons in the top right as 

in Chapter 3). The task of the UAVs is to explore the environment (using the searching algorithm described in Chapter 3) and construct 

the SA model using BBN.   The UAVs utilise the proposed Delaunay-Inspired Multi-agent Search Strategy (DIMASS) algorithm 

(Chapter 3) for search plan generation. 
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Figure 43:AMASE simulation 

The PCs or hosts will generate the probability priors using the algorithm described in Chapter 4 Section 4.8 after every information 

reception from the simple agents. In this chapter, I assume the SME’s critical value described in Table 33. 

The priors are derived from the UAVs sensor data (i.e., as described in Chapter 4 Section 4.8). Therefore, the network structure 

construction using Algorithm 3 entirely depends on the prior’s current values. Table 33 describes priors for 100,000 entries from different 

simple agents at the fire spread monitoring PC level. 
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Table 33: Example of Prior Probability for States of the BBN 

Fire Node P(present)= 

0.51  

P(absent)=0.49    

Spread P(spread)=0.15 P(not_spreading)=0.85    

Fuel 

Condition 

P(dried)=0.46  P(wet)= 0.41 P(semi_dried)= 

0.13 

  

Fuel 

Type 

P(shrubs)= 

0.11 

P(trees)= 0.05 P(Combination)= 

0.70 

P(grasses)= 

0.14 

P(none)= 

0 

Location 

Relation 

to 

Ground 

P(uphill)= 0.37 P(downhill)= 0.31 P(flat)= 0.31   

 

The next step is to compute the relevance measure among nodes. This will allow us to depict the successful links. The successful links 

will then be mapped with the critical weight and apply the optimal number of clusters algorithm to get the best network hierarchy. The 

chapter selects the elbow method (Thorndike, 1953) as the optimal number of clusters finding algorithm due to its popularity. The elbow 

method algorithm cluster the inputs by computing the inertia (inter-cluster distance) and select the point where number of cluster has no 

or little effect on the inertia. For example, Figure 44 describes the elbow method outcome for the entries in Table 34. The relevance 

values of Table 34 were obtained using the states priors as described in Section 8.1.4. The critical weight are assumed SME values based 

on the forest fire SOP (as learnt from the physical experiment of Chapter 6 and documented reports). For exmple,  from #1 of Table 34, 

the “Fuel Type” node is firmly related to the “Fire” node i.e., fire is related to fuel type, as such the value of 0.9 is assign to it. Note that, 
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the elbow number of clusters and GMM execution takes in the .csv version of Table 34 and run the Python functions for the respective 

algorithms (the supplemental document folder contains an example of the source codes). 

 

Table 34: Relevance and Critical Weight Values 

Link  Type of Link Relevance 

Value (λ) 

Normalised 

Relevance 

Value(λ/λmax) 

Critical 

Weight 

Fuel Type to Fire Successful 48.58 0.60 0.9 

Fire to Location 

Relation to Ground 

successful 10.77 0.13 0.6 

Fuel Type to Spread successful 51.84 0.64 0.9 

Fuel Type to Fuel 

Condition 

successful 81.05 1 0.2 

Fuel Type to 

Location Relation to 

Ground 

successful 78.99 0.96 0 

Fuel Condition to 

Location Relation to 

Ground 

successful 21.07 0.26 0.1 

Fire to Spread dead 6.85 0.08 1 
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Fire to Fuel 

Condition 

dead 11.59 0.14 0.7 

Spread to Fuel 

Condition 

dead 13.55 0.17 0.8 

Spread to Location 

Realisation to 

Ground  

dead 12.73 0.16 0.7 

 

Figure 44:Elbow method number of BBN links hierarchy 
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From Figure 44, the optimal number of clusters is 3. Therefore, the Gaussian Mixture Model (GMM) would receive the number of 

clusters and assign each successful link to a cluster as described in Figure 45.  

 

Figure 45: Elbow method number of BBN links hierarchy 

 

The GMM outcome (Figure 45) categorises the links for each cluster (C1, C2, and C3). Figure 46 describes the produced BBN model 

based on Algorithm 1. The links from “Fuel Type” to “Spread” and “Fire” nodes (from C1) were the strongest links (in terms of CI and 
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critical weight). Note that, in the absence of critical weight, univariate clustering can be used perhaps by assigning 0 as critical weights 

to each link).  The links from “Spread” nodes to “Fuel Condition” and “Location Relation to Ground” were mediated respectively from 

the fuel type based on their relevance measure of Table 34 (although some of the links were dead, but they will be used for mediation 

and super-power nodes purposes).  
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Figure 46: The Constructed BBN 
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Figure 47: The Constructed BBN (NETICA SOFTWARE) 

 

Figure 46 and Figure 47 (NETICA version) describe the versions of Figure 41 BBN generated using Algorithm 3 and 100,000 of mission 

data. The links from “Fuel Type” to “Spread” and “Fire” nodes were the strongest links (at the top of the clusters (i.e., C1), i.e., strong 

in terms of CI and critical weights from Figure 45. The next links are the links from “Fuel type” to “Fuel Condition” and “Location 

Relation to Ground” nodes (from C2 of Figure 45 i.e., cluster 2). However, based on protocols (i) and (iii), the links were not possible 

from “Fuel Type”. That is, they have to be mediated via the children of the “Fuel Type” node because they are from a lower cluster, C2, 

which is less than C1. Based on protocols (i) and (iv), the mediation goes to the “Spread” node based on its CI measure Table 34 i.e., 

λ(Spread|Fuel Condition) and λ(Spread|Location Relation to Ground) > λ(Fire|Fuel Condition) and λ(Fire|Location Relation to Ground). 

The final links (from C3 i.e., the weakest ones) are the links from “Fire” to “Location Relation to Ground” and “Fuel” Condition to 

“Location Relation to Ground”. The link “Fire” to “Location Relation to Ground” is not possible because the cluster power is weak (i.e., 

protocol 3). Thus, the link has to be mediated. The best mediating node is “Spread” to the “Location Relation to Ground” node which 

is super-powered (protocol vii) by an existing stronger link (from a stronger cluster C2).  
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The BBN generation process in Figure 46 did not consider the exceptional cases identification method. Therefore, a different result 

could be generated by imposing the exceptional cases identification method of Section 8.4.2. For effective management of DSA, the 

BBN will be suggested to the SMEs as a SA presentation model, in which the experts could decide on its acceptance, rejection, or 

modification (using exceptional cases identification and critical weights adjustment). 

 Uncertainty and the number of data needed for the learning process can be measured based on the number of successful links generated. 

For example, using ten (10) pieces of data, the successful links of Table 34 are only 2 in number. This means there will be unconnected 

nodes, which signifies the need for more data or partial updates (i.e., few links update only). 

8.5 Algorithm Evaluation 

To evaluate the scalability of Algorithm 3, I simulated 1000 and 2000 successful links (i.e., obtained from at least 2000 and 4000 nodes, 

respectively)  and critical weights generated randomly to break the record of the existing 200 nodes (Zhang et al., 2020). Each node was 

assumed to have one million number of states. The algorithm was run on a computer with 8GB RAM and an Intel (R) Core (TM) i3-

6006U CPU @ 2.00GHZ. The evaluation process starts by clustering the relevance values and critical weights of the successful links 

(note that the computational time iterating through the number of states was considered in the result).  Table 35 describes the results for 

the optimal number of clusters process. Note that, the processing time is for both GMM and elbow process. 

Table 35: Experiment Results 

States for each 

node (variables) 

Successful links Elbow Optimal Number of 

Hierarchy 

Processing Time 

(seconds) 

1000000 1000 15 3914.21 

1000000 2000 16 20263.73 
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Based on observation, the algorithm spends most of its time computing the optimal number of clusters (i.e., inertia for each cluster). 

Therefore, I propose the use of Lemma 1 to estimate the range of the cluster. 

Lemma 1: given the normalised 0  to 1 values of standard deviation (σi and σj) and mean (μi and μj) of the relevance value and critical 

weight, and μi,μj,σi, and σj ≠0 i.e., the provided values are non-zeros.. The estimated number of clusters K is  

K ≤ n||log[( ��𝜎"	x	𝜎C�� − ||𝜇" − 𝜇C||)]|| 

Equation 29: Number of Clusters Equation 

The proof is laterally observational based on the test. Thus, I can say that the lemma works for the tested 2000 number of links. 

Although Equation 29 is based on observation and mean/standard deviation relations, it paves the way for estimating the optimal number 

of clusters without using complex calculations as in (Patil and Baidari, 2019). The data used for Table 35 is describe in Table 36. 

 

Table 36: Successful Links 

Number of 

Link 

Relevance 

Weight Mean 

(𝜎"	) 

Critical 

Weight Mean 

(𝜎C) 

Relevance 

Weight 

Standard 

Deviation (𝜇") 

Critical 

Weight 

Standard 

Deviation 

(𝜇C) 

1000 0.508478 0.493945 0.286922 0.288833 
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2000 0.497447 0.492898 0.287508 0.291099 

 

Note that the values of Table 36 are based on the randomly generated values. Therefore, the estimation for Table 35 will be: 

For 1000 links: 

K estimate will be 1000(||0.286922 x 0.288833||+||0.508478-0.493945||) 

1000(0.082872+0.014533) ≈ 97. Of course, 15 ≤  97. 

For 2000 links: 

2000(0.287508 x 0.291099+||0.497447-0.492898||) 

2000(0.083693+0.004549) ≈ 176. Of course, 16 ≤  176. Note that, the estimated values (i.e., 97 and 176 in this case) are passed as 

parameters during the elbow method computations. 

Therefore, by applying Lemma 1, the elbow algorithm will efficiently estimate the number of clusters (Table 37). Instead of iterating 

1000 or 2000 times for the total number of links, it will only iterate 97 and 176 times (as estimated) respectively and produce the same 

result (because the estimated number of clusters is higher than the real value).  

Table 37: Reduced Number of Clusters Performance Comparison 

Number 

of States 

(variables) 

Number 

of Links 

Elbow 

Outcome 

Number 

of 

Threads 

Estimated 

number 

Processing 

Time(seconds) 
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of 

clusters 

1000000 1000 15 1 97 62.94 

1000000 2000 16 1 176 195.88 

 

Therefore, based on Table 37, the application of Lemma 1 reduces the algorithm's running time. 

8.5.1 Comparison with the Existing Methods 

There are several structural learning algorithms that relied on CI measures. However, they differ from the proposed method in many 

ways. Table 38 describes the difference and novelties of the proposed method with the existing ones. 

Table 38: Comparison with the Existing Methods 

Existing Method The Proposed Method Novelty of the Propose Method over the 

existing method 

Chow-liu method (Altarriba 

and Halonen, 2020; 

Bhattacharyya et al., 2021) 

generates a CI-weighted edge 

BBN (i.e., similar to the 

propose method with the 

exception of clustering and 

The proposed method applies clustering to the CI 

and critical measures, and then apply the derived 

protocols in order to separate the nodes based on 

CI cohesion. Thus, produce a BBN with a set of 

strongest links. 

i. SMEs inputs can be merged 

i.e., using Thurstone’s paired 

comparison as discussed in 

Chapter 4. 

ii. The use of GMM clustering 

and protocols leads to a most 
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protocols) and construct the 

BBN structure. 

likely candidate BBN i.e., 

based on proposition 2. 

iii. Exceptional cases can easily 

be filtered out. 

Peter and Clark (PC) 

algorithms (Bouckaert, 1995; 

Bregoli et al., 2021; Le et al., 

2019; Madsen et al., 2017; 

Scanagatta et al., 2019; Spirtes 

et al., 1991; Zhang et al., 

2020). This approach assumes 

a connected undirected graph 

and the direction is derived 

from CI measures.  

The proposed method applied a clustering to the 

CI measure and derived protocols in order to 

separate the nodes based on CI cohesion. 

i. SMEs inputs can be merged 

ii. The use of GMM clustering 

and protocols leads to a most 

likely candidate BBN i.e., 

based on Proposition 2. 

iii. Exceptional cases can easily 

be filtered out. 

Score-based approaches (Bari, 

2011; Scanagatta et al., 2019; 

Scutari, 2015; Zhang et al., 

2020). This approach 

constructs n number of 

candidates BBN and selects the 

one with best prediction. 

The proposed method applied a clustering to the 

CI measure and derived protocols in order to 

separate the nodes based on CI cohesion. Thus, 

this is a constraint-based approach 

i. SMEs inputs can be merged 

ii. The use of GMM clustering 

and protocols leads to a most 

likely candidate BBN i.e., 

based on Proposition 2. 

iii. Exceptional cases can easily 

be filtered out. 
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iv. Computational power 

reduction as discussed in 

Section 8.3 i.e., the highest 

performing score-based 

approach handled was 200 

nodes (Zhang et al., 2020). 

Hybrid approaches (Bari, 

2011; Bregoli et al., 2021; Le 

et al., 2019; Scanagatta et al., 

2019; Scutari, 2015; Scutari et 

al., 2019; Zhang et al., 2020). 

This is a combination of score-

based technique and 

constraint-based solutions. 

That is the constraint guide the 

generation of the candidate 

BBN. 

The proposed method applied a clustering to the 

CI measure and derived protocols in order to 

separate the nodes based on CI cohesion. Thus, 

this is a constraint-based approach 

i. SMEs inputs can be merged 

ii. The use of GMM clustering 

and protocols leads to a most 

likely candidate BBN i.e., 

based on Proposition 2. 

iii. Exceptional cases can easily 

be filtered. 

iv. Computational power 

reduction as discussed in 

(Scutari et al., 2019). 
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8.6 Discussion and Conclusion 

In this Chapter, I proposed a constraint-based BBN structural learning algorithm that considers inter-nodes conditional independence 

(CI) measures and critical weight to impose the learning constraints.  The CI measure and the assigned essential weights from experts 

are clustered using GMM to obtain the network hierarchy based on the maximum likelihood of a link belonging to a cluster. The 

proposed algorithm was applied to DSA management for the thesis use case of Chapter 1. The results proved the following benefits: 

i. Computationally inexpensive: based on the result in Table 37 and Table 38, the algorithm could handle many nodes and 

states values using little computational demand.  

ii. Supports for SA projection of future situations: the proposed algorithm assigns links based on the maximum likelihood 

value (Proposition 2), which supports the situation prediction process using the Bayes rule.  

iii. Uncertainty handling: uncertainty and the number of training data needed can be measured using the utilised CI measure. 

Based on the result in Section 8.5, the higher the changes in the fed data, the higher the number of links for the candidate 

BBN. Thus, a lower number of links shows poor availability of information update (i.e., no need for new BBN 

construction) or stable situation. That is, low number of links can happen not only based on insufficient data but also in 

terms stable priors (i.e., lack of priors’ variation). 

iv. Adaptability: learning in a dynamic DSA system requires a model adaptation (Kitchin and Baber, 2017) in both parametric 

and structural updates. The proposed algorithm is adaptable because of the consideration of agents’ state priors.  That is, 

agents’ priors will only be used for the BBN construction. 

v. Scalability: based on the results in Table 37 and Table 38, the proposed algorithm handles huge numbers of nodes with 

little resources.  This is due to the efficient protocols used and the result of Lemma 1. 
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vi. SMEs-automation inputs integration and reusability: critical weight demonstrates how SMEs inputs can be integrated with 

the agents (e.g., UAVs) inputs to construct the BBN model that present the system DSA. Additionally, priors can be reused 

by other agents within the DSA system by assigning goal-based critical weights. 

Additionally, the proposed Lemma 1 could estimate the optimal number of clusters for any categorisation process such as the k-

means algorithm and so on. Regarding the DSA system, this chapter claims that the proposed algorithm would support autonomous 

(data-driven) or semi-autonomous DSA modelling, which could alert SMEs about the environmental phenomena causational 

changes. The SMEs would accept or correct the suggested network (using SMEs exceptional cases identification process or critical 

weight adjustment) to support joint SMEs-automation mission planning, i.e., human-automation joint planning. Additionally, in 

poor experts’ experience, the algorithm could handle the SA presentation task.  

 

Thus, this chapter proposed a constraint-based BBN structural learning algorithm based on maximum likelihood clustering of CI values 

among nodes of the BBN and SMEs’ critical weights assignment. The algorithm was described using a simulation of the SMEs-UAVs 

team for managing DSA in forest fire scenes (i.e., the use case described in Chapter 1). The algorithm proved adaptability, heterogeneity 

handling, scalability by handling many nodes using little computational demand.  Additionally, I proposed a lemma that could reduce 

the computational demand by estimating the expected number of clusters for the learning process. 
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9 Chapter 9 Discussion, and Conclusion 

This chapter discusses the summary of the thesis and its position in the current stage of the literature. The discussion also highlights the 

novelties of proposed methods, their contributions (theoretically and applied concepts), and how the research questions were addressed. 

Again, the limitation of the methods was outlined as the future work.  

9.1  Introduction 

Refocussing on the thesis research questions (Chapter 1), this chapter will elaborate on how these questions were answered, novelties 

and contributions of the developed methods and algorithms, and the established future research directions. The thesis is divided into 

four main pillars. The first pillar includes problem definition and literature review (Chapters 1 and 2). The second pillar addresses the 

issue of agents’ coordination for search activity and support for DSA management (Chapter 3). Chapters 4, 7, and 8 discuss how the 

agent’s information can be transformed to present the system DSA, which serves as the third pillar. This involves the issues of 

information transformation to present SA, prediction and uncertainty handling, and how SA could be modelled in a dynamic system. 

The final thesis pillar focuses attention on merging the issues of agents’ search activity coordination and the DSA management using 

the selected use case of forest fire monitoring as discussed in Chapters 5 and 6. Each of these pillars is targeted to address the outlined 

research questions. 

9.2 Recap of the Thesis Research Questions 

As outlined in Chapter 1, the thesis research questions are: 

9.2.1 RQ1. How can we obtain a constraint-based search method for agents with limited resources operating in dynamic 

search areas? 
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Chapter 3 addresses this research question (RQ1) and lays a foundation for tackling research question RQ2 (i.e., based on the search 

plan's predictability feature, which supports prediction). The chapter proposes an efficient, scalable, adaptable, and predictable algorithm 

for generating agent search plans based on the constraints outlined in Chapter 1. The algorithm was applied to the thesis use case of 

forest fire searching, and a performance comparison with the existing popular solutions was conducted. The result proved a superior 

performance over the existing methods. The focus was on resource utilisation and how the proposed method supports easy prediction 

(i.e., the basis for the SA projection support). The results were based on a clear definition of performance metrics that affect agents, 

mission, and algorithm implementation. Results proved resources utilisation (based on the defined metrics), scalability, adaptability, 

predictability, easy application on real UAVs, and feasibility for a simple agents’ situation prediction. The method adopted was a 

controllable path (flexible) and global system protocol based on the Delaunay-triangulation theorems. This produces a good search plan 

due to being flexible (easy to control based on the angle, quadrants, and edge), scalable, adaptable, and predictable (based on the overall 

control protocols as derived by the Delaunay-Inspired Multi-agent Search Strategy (DIMASS) algorithm of Chapter 3). Theoretically, 

this contributes to the set of hybrid area coverage algorithms that focuses on simplicity, system control (based on the mathematically 

derived protocols and methods as described in Chapter 3), resources utilisation, and the proposed system constraints (i.e., the version of 

DSA in the presented forest fire use case). This allows resources utilisation and easy situation prediction better than the fixed-pattern 

(in terms of adaptability and coordination) and pseudorandom (in terms of coordination, resources utilisation, and predictability) 

methods.  

Additionally, the control protocols are simple, which allows easy deployment on low-capacity agents.  The agents’ resources utilisation 

problem was modelled as a Distributed Constraint Optimisation (DCOP) with mathematical modelling of various system activities. This 

shows how DCOP operate in a very dynamic and realistic environment using the case of forest fire monitoring. The formalisation of 

DSA and DCOP shows how various DCOP challenges can be demonstrated (e.g., the issue of uncertainty, finite/infinite horizon 

concepts, practical demonstration of variables operations, and the showcase of DCOP features, e.g., multi-objectivity in DCOP 

demonstrated using parameters changing based on various mission tasks, etc). Thus, the developed method took a step towards 
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establishing resource-efficient and DSA-supported search method. This addressed the main limitations of poor coordination, DSA 

management, and resources limitations which are the main challenges of applying UAVs in various domains such as disaster 

management, surveillance, etc. (Cabreira et al., 2019, 2018; Chawla and Duhan, 2018, 2015, 2015; Jensen-Nau et al., 2021).   Exiting 

solutions focus attention only on either the resource utilisation (Bevacqua et al., 2015; Bolander et al., 2018; Cabreira et al., 2019, 2018; 

Chawla and Duhan, 2018, 2015, 2015; Jensen-Nau et al., 2021, 2021; Kappel et al., 2020; Nebel et al., 2019; Sutantyo et al., 2011; Yang 

and Suash Deb, 2009; Yang, 2012, 2010) or the agent’s local SA/DSA management (Berger et al., 2021; Heintzman et al., 2021; Ozkan 

and Kilic, 2022; Quintin et al., 2017) which limits their performance in terms of full system DSA support for agents with limited 

resources. Summarily, industries can utilise the proposed solutions and achieve agents’ coordination (especially search activity 

coordination) with little resources when compared with the existing methods. Therefore, Chapter 3 addresses the limitation by 

developing an efficient, scalable, adaptable and predictable agents search algorithm based on geometrically derived protocols. The 

solution contributes to the set of hybrid methods by considering system protocols combined with geometric theorems (theorems from 

Delaunay-triangulation). The methods performance comparison was conducted on the thesis use case (i.e., a team of distributed agents 

tasked to conduct search activity in a dynamic environment). The results proved a better solution across the outlined challenges 

(measured using the mission sensitive parameters i.e., coverage, energy, redundant search, computational power, path divergence, 

scalability, adaptability, and predictability as outlined in Chapter 3. Finally, the proposed agents’ search coordination algorithm 

demonstrates easy application on real UAVs by utilising the existing UAVs apps. The author tests it on DJI and Parrots Bebop drones 

to test its practical application. 

Implementing the proposed Delaunay-Inspired Multi-agent Search Strategy (DIMASS) algorithm (Algorithm 1 in Chapter 3) on physical 

UAVs is easy and straightforward. The process starts by selecting the seeds waypoints (e.g., the longest non-cross waypoints in Figure 

9 of Chapter 3), then a function ( in any programming language, e.g., Python, or Java) can be developed to generate the remaining 

waypoints by taking the waypoints parameters, e.g., generateWaypoint(Lx,Ly,e, q,ϴ,h,n), where Lx, Ly are the longitude and latitudes 

of the current waypoint, e is the edge length of the opposing layer,  q is the projecting quadrant (i.e., first to fourth), ϴ is the projecting 
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angle, h is the height of the waypoint (e.g., to avoid collision), and n is the number of waypoints in a layer of the solution (i.e., based on 

the Delaunay triangulations theorems discussed). In other words, the function generateWaypoint(Lx,Ly,e,q,ϴ,h,n) produce a waypoint 

based on passed location, edge generation protocol, angle protocol, and a number of waypoints in a layer. Waypoints latitudes and 

longitudes differences can be computed using the Haversine formula or Euclidean distance can be used for planar coordinates. This can 

be implemented in any programming language (e.g., Java, as provided in the supplemental documents folder).  

The generated plan can be transferred easily to the UAVs using the respective drone controlling applications downloaded from either 

Google Play Store or Appstore. The implementation can simply utilise the apps' waypoints planner function, e.g., DJI GO, DJI pilots, 

FreeFlight6, FreeFlight Pro, etc., for DJI and Parrots drones. Each UAV can be controlled by its respective application running on a 

tablet or mobile phone. For example, Figure 48 describes a single UAV plan (i.e., based on the controlling app screenshot). The plan in 

Figure 48 is created by simply clicking and dragging the waypoints from the Parrot drone and FreeFlight6 android app. Alternatively, 

waypoints can be sent to the UAVs via Python code, e.g., DJI Tello Python (i.e., for programmable drones) Application Programming 

Interface (API)15. The author tried all the mentioned methods, and the result looks similar to the simulated version (as per Figure 9 of 

Chapter 3). Parrot Bebob 1 &2 and DJI Phantom 3 Standard were used (i.e., to describe drones’ heterogeneity). Thus, a key selling 

feature of the proposed method is the use of simple agents (low capacity and cheap) UAVs to solve the area coverage problem with 

minimised cost and easy emergence of Distributed Situation Awareness (i.e., based on agent’s organisation and predictability features). 

 
15 https://github.com/code4funSydney/Tello 
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Figure 48:  Delaunay-Inspired Multi-agent Search Strategy (DIMASS) Algorithm Implementation on Real-UAV (DJI Pilot 

App) 

From Figure 48, the UAV flight starts from waypoint S (which may be the base station or any arbitrary starting point). The seed 

waypoints are S, 2, 3, and 5. The second layer waypoints are waypoints 6-9, and the third layer waypoints are waypoints 10 and 11. 

As such, the summarised answer to the research question in RQ1: 

RQ1. How can we obtain a constraint-based search method for agents with limited resources operating in dynamic search areas? 

Is by developing a search method that is scalable, adaptable, predictable and utilises the agents' resources. All these can be achieved 

using good system and individual agents’ protocols, as shown by the results of Chapter 3. Achieving a good system protocol seems to 

be very difficult; the author tried the geometrically derived protocols from the Delaunay triangulation process and this shows a good 

result for the agent’s search problem. This is due to being easy to control (based on the controllable path elements, i.e., angles, quadrants, 

and edges length). For example, the redundant search can be avoided and coverage can be maximised by adjusting waypoints. This 

allows the ability to control the path and optimise the resources parameters, e.g., by minimising redundant search, number of agent 

interactions (by being structured due to the system protocols), memory use (by being computational simple and reducing the number of 

agents interactions), computational power (by being computationally simple), mission time, energy, and maximising coverage (by 

avoiding redundant search and creating highly separable waypoints). In terms of qualitative features, predictability is maintained by 

using the system protocols derived from the Delaunay-triangulation layers and protocols. This allows Picture Compiler (PC) or host to 

predict a simple agent’s location to arrange data collection or recovery from failure. 

Similarly, scalability is maintained by utilising the applied Delaunay-triangulation theorems. For example, a protocol on layer waypoints 

reflection, refraction, and seed waypoints variations were developed to support multiple agent coordination. Thus, this coordinates the 

agent's search without too many interactions (remember, limited interaction is part of the constraints), manages the agents' computational 
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power (based on the result of low computational demand from Chapter 3), and adapts to the dynamic environment changes (e.g., paths 

can be changed to map fire shapes by changing the angles, quadrants, and edge lengths which maintains the adaptability of the search 

plan). Predictability is maintained by the structure imposed through the plan generation protocols (i.e., the Delaunay triangulation 

theorems). The predictability supports the SA management of Chapters 4, 5, 7,  and 8 by allowing simple agent situation prediction.  

The success of the search plan was measured using the defined metrics, and a clear description of how this can be done was made. In 

summary, a clear answer to this research question (RQ1) is to develop a search plan generation method that is simple (i.e., in terms of 

memory use, control, and computational power), adaptable, predictable, and scalable. The proposed method results from Chapter 3 

(DIMASS) proved the achievement of resource utilisation (by producing waypoints with minimal redundant search and higher 

coverage), scalability, predictability (to support agents' situation prediction), and adaptability. Thus, the proposed method suggests that, 

instead of tasking agents to conduct complex search activities (e.g., waypoints processing via complex interactions), why not make their 

tasks simple using system protocols.   

9.2.2 How can we manage the Situation Awareness of distributed agents?  

In order to support how the search mission information can be presented to reflect the system SA, Chapter 4 proposes using Bayesian 

Belief Network (BBN). This is in contrast to the existing static and non-dynamic approaches of propositional networks, ontologies, 

fuzzy logics, and concept maps. The thesis develops algorithms and methods, application process, sensor information transformation to 

reflect the system SA, system SA modelling, and how agents’ contributions can be integrated using Thurstone’s paired comparison all 

using the thesis use case. Chapters 4, 7, and 8 describe the application of BBN to the system’s use case DSA management and the 

potential for a better method than the existing use of the propositional network, ontology, fuzzy logic, and concepts maps in terms of 

the outlined DSA features as discussed below (Berger et al., 2021; Bouvry et al., 2016; Burov, 2021; Galton and Worboys, 2011; Lohia 

et al., 2019; Salmon and Plant, 2022; Stanton et al., 2006, 2009; Kethavarapu and Saraswathi, 2016; Zhang et al., 2021). The outlined 

advantages of using BBN are (i) phenomena multiple states presentations, (ii) good interface (similar to the ontology, concept maps, 
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and propositional network), (iii) measuring phenomena states using probabilities, (iv) ability to handle predictions and uncertainties 

using learning algorithms (v) agents’ heterogeneity handling, (vi) adaptability management based on states probabilities, and (vii) search 

area information reusability (by revising the states priors). Thus, Chapter 4 proposes a flexible and adaptable method of modelling the 

system DSA and describes various DSA/BBN the concepts, and Chapters 7 and 8 support the outlined advantages claims with 

experiments and results.  

Chapter 7 describes how prediction and uncertainties (in the form of missing information or soft findings) can be handled to support the 

SA projection. The issues were addressed in terms of single or multiple states (i.e., a combination of different BBN states), prediction, 

and uncertainty handling. The result from the application of expectation-maximisation (EM) algorithms shows good performance for 

unstructured data in comparison with time series models and Gaussian process not only in terms of prediction/uncertain values estimation 

accuracy but also in terms of DSA management in a system with varying agents (i.e., by considering agents role to minimise agents’ 

interactions and parameters definition). The chapter proposes DSA-based metrics based on the error rates to reflect mutual information 

relation and agents’ goals variation. Thus, the proposed metrics fit the DSA system better than the accuracy metrics such as the logarithm 

loss, Brier score, spherical payoff, etc. The proposed method is tested against different forms of uncertainties, varying sizes of mission 

data, and resources management.  

Chapter 8 builds on Chapter 4 to describe how an adaptive DSA model using BBN can be emerged within the system. A structural 

learning algorithm was developed and applied based on the BBN state’s priors and SME’s goal-based weights. The priors and SMEs 

weights are clustered using Gaussian Mixture Model (GMM) and then passed to derived protocols. The protocols are based on the BBN 

node’s conditional independence, which is an additional advantage to the existing strategies of concept map, propositional network, 

ontology, and fuzzy logic. The algorithm contributes to the classes of constraint-based BBN structural learning algorithms and 

demonstrates how it can improve the DSA adaptability, resource efficiency, and scalability. The chapter also proposes a lemma to 

increase the scalability of the structural learning algorithms. Existing solutions of constraint-based methods, such as the PC-algorithm 
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(Bouckaert, 1995; Huang et al., 2003; Le et al., 2019; Levin et al., 2000; Madsen et al., 2017; Qi et al., 2021; Sanz-Pena et al., 2021; 

Scanagatta et al., 2019) focus only on the conditional independence protocols whereas the propose solution pays attention to respective 

agents contributions, DSA management, and resources utilisation (remember, the reason is due to the use of simple UAVs). The proposed 

method allows exceptional case filtering (based on the SMEs’ judgment) to avoid a pure probabilistically derived structure as in the 

score-based methods (Bregoli et al., 2021; Scanagatta et al., 2019; Zhang et al., 2020). Finally, the results proved scalability, adaptability, 

and resource management better than the existing methods, and a lemma was proposed to reduce the computational demand. Thus, 

Chapter 8 formalises the concept of BBN structural learning with DSA in a team of varying agents. Remember, all the outlined 

contributions were in consideration of agents’ resource utilisation due to the use of micro and mini UAVs as discussed in Chapter 1. 

Collectively, Chapters 4, 7, and 8) contribute to a number of theories and methods in DSA. These are outlined as follows: 

i. Step-by-step depiction of Endsley’s three stages of SA (perception, comprehension, and projection as in (Endsley, 1995)) in 

DSA and their assimilation with DSA’s phenotype and genotype schemata. Based on the proposed BBN method discussed 

in Chapter 4, 7, and 8, the Endsley’s stages of perception is flexibly (not statically) presented by the BBN’s states 

probabilities. For example, the detection of fire by a simple UAV leads to the update of fire present state probability (which 

is a measure of belief) of the fire node within the BBN based on sensor reliability weight e.g., 40%, 90%, or 100% etc., as 

demonstrated in Chapter 4. This is at the simple agent’s level (phenotype level), which could be very different at the genotype 

level (e.g., the picture compilers or host level). For instance, if the reporting UAV is using a visual camera and the operating 

time is day-time, the PC or host can perceive fire absence even if the UAV reported fire presence based on the fact that the 

UAV’s sensor is confused by a fire-like object, e.g., yellow building or dried grasses. Thus, perception at the genotype level 

is emerged by considering other contributing information and their contextual weight (derived from the logical understanding 

of the combined information).  Similarly, the comprehension and projection for the simple agents could be making small 

jumps to map the fire and controlling the jumps based on the predicted rule-based fire spread (perhaps using simple inbuilt 

fire spread protocols). This is very different with the PC and host levels. At the PC level, other environmental phenomena 
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e.g., wind direction, wind speed, and other agents sensor information (e.g., infrared, temperature, etc. sensors) need to be 

considered (based on their states probabilities values) to understand the fire spread and make predictions, e.g., where the fire 

will move next (i.e., at host level), when to send firefighters (i.e., at host level based on the complex analysis of large system 

phenomena). Thus, this shows how various versions of SAs from varying agents with varying goals and situations can be 

managed within the DSA system using BBN. As such, managing the BBN states’ probabilities across nodes at genotype and 

phenotype levels demonstrate the process of emerging DSA of the system at both hierarchies and heterarchies. It is beyond 

any reasonable doubt that the existing tools of ontology, concept maps, propositional networks, and fuzzy logic lack these 

flexibility features. 

ii. Flexible situation presentation: existing methods of concept maps, propositional networks, ontologies, and fuzzy logics 

present the environment situation in a static fashion, e.g., fire presence or absence (i.e., Boolean). The use of BBN opens 

doors for flexible belief presentation in the form of probabilities. The flexible belief presentation is guided by the existing 

probabilities and conditional probabilities theorems. 

iii. Prediction and uncertainty handling: Chapter 7 discusses some methods that can be applied to handle prediction and 

uncertainty handling in DSA. EM algorithm shows good performance in handling the prediction and uncertainty issues in a 

data-driven fashion (i.e., with minimal specifications of parameters). Thus, this not only describes how DSA can be managed 

using BBN but also how the issues of prediction and uncertainty can be dealt with.  

iv. BBN structure update to manage the system DSA: one of the key features of applying BBN to DSA management is the ability 

to update not only the priors of the states as in (i) above but also the update of the structure of the BBN to represent current 

situation-based states priors. In Chapter 8, the thesis develops a method that considers the link strength of the BBN and 

accommodate agents’ (both automation and Subject Matter Experts) contributions during BBN structural updates. 

Therefore, a summarised answer to the research question: 
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RQ2. How can we manage the Situation Awareness of distributed agents?  

Based on the results of Chapters 4, 7, and 8, the answer is to develop a DSA modelling tool that allows agents’ contributions integration 

(e.g., using probabilities and the Thurstone’s paired comparison as described in Chapter 4), flexibly measures agents’ beliefs (priors 

update algorithm of Chapter 4), allows predictions and uncertainty handling (using various learning algorithms of Chapter 7 or simple 

predictions as described in Chapters 3 and 7), and is adaptable to various environmental situations using structural learning algorithm 

of Chapter 8. BBN demonstrates an ability to provide these features as described in Chapters 4, 7, and 8. Algorithms and methods were 

developed to show how each aspect will be addressed. The prediction and uncertainty handling issues were addressed using learning in 

either a single aspect or combined system information. Of course, the learning has to be efficient and fast enough to produce the 

prediction of the dynamic environment, and the Expectation-Maximisation (EM) algorithm and Gaussian Process demonstrate good 

results in addressing the issues. The aspect of the adaptable SA model was addressed using the developed structural learning algorithm. 

9.2.3 RQ3. How could agents’ search plan support SA management? 

In addition to the DCOP formalisation with DSA, Chapter 5 discusses two things: (i) how to manage conflicts in agents' data and (ii) 

how to monitor agents' interactions. The BBN Conditional Probability Table (CPT) addresses the agents' sensor conflict using 

probability measures, which derived its values from various states’ priors’ combinations or SMEs assignment. Thus, the CPTs receive 

updates based on the priors generation algorithm or SMEs weight allocation (Chapter 4). Each agent’s corresponding situation has a 

candidate entry within the BBN. In terms of agents' interactions to utilise resources, Shannon’s entropy and the BBN state priors were 

applied to handle the challenge. This ensures a measurable agents interactions technique (i.e., based on resource utilisation), unlike the 

focus on interaction monitoring as in (Kitchin and Baber, 2017; Wiltshire et al., 2018) or unmonitored interactions as in (Amador et al., 

2014; Fioretto et al., 2017; Hoang et al., 2016; Maheswaran et al., 2004). The proposed method also describes how agents’ activities 

(i.e., transitions of situation-actions) can be coordinated using BBN CPTs. This concept of agents’ interaction was modelled as DCOP 
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and formalised with DSA. Thus, this provides answers on how agents’ situations and actions transitions can be handled (i.e., from sensor 

information perception to CPTs consultation and actions).  To my knowledge, this is the first time DCOP is formalised with DSA 

systems (i.e., based on the DSA-DCOP concepts of Chapters 3 and 5). The benefit of the formalisation is the efficient situation 

understanding with minimal resources. 

Chapter 6 discusses modelling methods for agents and search area modelling, dynamic phenomena modelling, sensor data collection 

and analysis, physical experiments to improve the credibility of the simulation, learning methods, and the relationship between the 

search planning methods and data collection. Results of physical experiments using real forest fires and UAVs operation were discussed. 

This is to address the issues of poor simulation and system models, as complained by many authors (Altameem and Amoon, 2010b; 

Ayub et al., 2020; Bevilacqua et al., 2017; Gage and Murphy, 2004; Galland et al., 2014, 2013; Heintzman et al., 2021; Rathbun et al., 

2002). The relation between search plan and information shows that structured search plans (e.g., the proposed DIMASS strategy of 

Chapter 3) offer organised data in a barely structured search area based on the result in Chapter 6. This allows simple prediction which 

could support the SA projection (i.e., prediction of plausible future state and uncertainty handling). In the case of SA projection for 

unorganised data (obtained from pseudorandom strategies), Chapter 7 addresses that using expectation-maximisation algorithm learning 

Thus, the summarised answer to the research question: 

RQ3. How could agents’ search plan support SA management? 

Is by providing a search plan that supports SA management features (e.g., supports belief measurement, information organisation to 

present SA, prediction and uncertainty handling). Results from Chapter 6 shows that structured search plans generate organised data 

(i.e., data that follows a certain structure) in a structured search area. Thus, having organised data eases the SA aspect of prediction (e.g., 

simply using interpolation or Bayes rule as described in Chapter 6). In the case of an unorganised search area, the EM algorithm 

demonstrates an ability to address the prediction and uncertainty handling (as shown in Chapter 7). Based on the result of Chapter 5, a 
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good search plan can support SA without much agents interactions (i.e., too much agents interactions do not guarantee good SA 

management and resource utilisation). Thus, it is part of the support of a search plan method for SA management to demand less number 

of interactions (as discussed in Chapter 3). For example, from the result of Chapter 5, some smaller numbers of agent interactions are 

more fruitful than larger ones in terms of resources utilisation and SA management (i.e., agreement on the waypoints to be selected as 

described in Chapter 6). Thus, the chapter’s (Chapter 6) proposes a way of managing the interactions of agents during search plan and 

how this could support the system DSA management. 

9.3 Methods Application Adaptability 

The methods describe in this thesis focus attention on the complex issue of forest fire monitoring. This allows dynamic system modelling 

and potential for numerous application in other fields. This is based on the fact that, solutions to forest fire scenes’ problems could be 

extended to addressed issues in various dynamic and complex systems (Weick 1995).  The key features need for the application of the 

thesis methods and algorithms to other systems is the presence of (i) distributed agents, (ii) outlined constraints e.g., limited energy, 

communication range, etc. (fully outlined in Chapter 1 Section 1.1) (iii) dynamic environment, and (iv) the need for SA management 

across agents levels (both phenotype and genotype schemata).  This conforms to various number of systems’ specifications such as other 

disaster management e.g., flood control, avalanche management, etc., patrol system, banking system, wireless sensor network, ad hoc 

communication using a team of distributed agents, collision avoidance, Simultaneous Localisation and Mapping (SLAM) problems, 

multi-robots coordination, etc., (Alkhatib et al., 2014; Bouvry et al., 2016; Bevacqua et al., 2015; Bolander et al., 2018; Cabreira et al., 

2019, 2018; Chawla and Duhan, 2018, 2015; Ghamry and Zhang, 2016; Jensen-Nau et al., 2021; João, 2012; Muñoz et al., 2021; Nebel 

et al., 2019; Nurzaman et al., 2009; Ozkan and Kilic, 2022).  For instance, the solutions to agents’ area coverage problem addressed in 

Chapter 3 can be extended to address the problem of ad hoc communication management (e.g., during disaster management) by a team 

of UAVs, wireless sensor distribution, etc. Similarly, the DSA management concept using BBN can be addressed by configuring the 

nodes and states probabilities to conform with the specified problems e.g., the nodes can be changed to address network presence, 

network load, etc., instead of the current fire presence or absence (remember this can be in line with considering the agents coordination 
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using the proposed solution in Chapter 3) for the ad hoc communication system. As such, the approach of DSA management in 

consideration of agents’ coordination provides a wider range of solutions to the system control and information processing to the extent 

that simplest agents can be applied (i.e., the overall system cost is reduced). Merging the system control and effective information 

processing using DSA promotes the system’s efficiency by reducing cost and risks ( as can be seen in the thesis described use case of 

forest fire monitoring which reduce cost and risks by utilising simple UAVs). However, the solutions provided by this thesis targeted 

one of the most complex systems which could be applied to other less complex problems. For example, in the event of wireless sensor 

area coverage, they are non-mobile agents; as such, the solution provided in Chapter 3 can address the challenge without applying the 

agents’ positioning (e.g., the concept of reflection discussed in Chapter 3) protocols while maintaining scalability (i.e., the concept of 

agents' reflection or refraction). Despite the large number of potential applications offered by the thesis methods and algorithms, some 

very simple approaches can utilise the existing alternatives. For example, the basic concept of depicting the relationship among system 

phenomena in psychology (i.e., non-dynamic and less complex representation) could require just a demo, e.g., using concept maps by 

applying a pern and paper sketch 

Similar to the propositional networks, ontologies, concept maps, and fuzzy logic, BBN can be initialised by using the SMEs’ knowledge 

and a simple sketch of environmental phenomena, perhaps using pen and paper (as discussed in Chapter 4). However, BBN has a large 

number of design softwares such NETICA16, Bayes server17, etc. These softwares provide not only an easy interface for developing 

BBN but also an ability to apply learning algorithms for predictions, uncertainty handling, and structural learning. They, however, 

provide an API for integration with other softwares e.g., integration with the AMASE (agents simulation software adopted by the thesis) 

and IDEs (integrated Development Environments) such as Eclipse, Netbeans, etc. 

  

 
16 https://www.norsys.com/netica.html 
17 https://www.bayesserver.com/ 
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9.4 Positioning the Research in Current Literature 

The first part of the thesis addresses the issue of agents’ search mission coordination under the imposed constraints. This tackles the 

thesis’s first objective, i.e., “Develop an efficient way of coordinating the automation agents to conduct search activity”. Many 

researchers address the problem in consideration of resource utilisation using fixed-pattern, pseudorandom, or hybrid methods 

(Bevacqua et al., 2015; Bolander et al., 2018; Cabreira et al., 2019, 2018; Chawla and Duhan, 2018, 2015; Ghamry and Zhang, 2016; 

Jensen-Nau et al., 2021; João, 2012; Muñoz et al., 2021; Nebel et al., 2019; Nurzaman et al., 2009; Ozkan and Kilic, 2022; So and Ye, 

2005; Sutantyo et al., 2011; Vasile and Zuiani, 2011; Vincent and Rubin, 2004; Waharte et al., 2009b; Yang and Suash Deb, 2009; 

Yang, 2010; Yanmaz et al., 2011; Zhang et al., 2005); however, this thesis focuses attention not only on resources utilisation but also 

considers DSA support features through focusing on adaptable, scalable and predictable agents’ activities. Although few researchers 

(Berger et al., 2021; Heintzman et al., 2021; Quintin et al., 2017) believed that it is a novel direction, clear definition of the metrics, 

model operation in a dynamic environment, mathematical modelling, DSA-support methods and algorithms, and resources utilisation 

model (as formalised using DCOP) was only developed in this thesis. The thesis suggested new success measuring metrics and system-

based protocols (i.e., contrary to the local agent’s rule) that allow agents’ situation prediction and support for SA management. The 

protocols were built on top of the Delaunay-triangulation theorems and derived as search plan protocols (control rules). Regarding the 

model, to my knowledge, this is the first attempt to formalise DCOP with DSA and agent’s search activity. Thus, this shows a practical 

application of DCOP in a dynamic environment and agents’ operation to manage the system DSA (as described in Chapters 3 and 5). 

 

The thesis objectives derived from RQ2 and RQ3 were addressed by proposing a Bayesian Belief Network to model the system SA. 

Learning algorithms were applied for unstructured agents’ information prediction and uncertainty handling. Existing works used 

propositional networks, ontologies, concept maps, and fuzzy logics (Baader et al., 2020; Burov, 2021; D’Aniello et al., 2018, 2015; 

Galton and Worboys, 2011; Kokar et al., 2009; Li et al., 2018; Liu et al., 2013; Lohia et al., 2019; Stanton et al., 2006; Stanton, 2016; 

Uma Pavan Kumar Kethavarapu and S. Saraswathi, 2016; Zhang et al., 2021). However, the use of BBN demonstrates additional 
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advantages in terms of multiple states presentation, belief measurement, prediction ability, uncertainty handling, and adaptability (as 

discussed in Chapters 4,5,7, and 8). The outlined specific concepts were first developed in this thesis. Algorithms were developed to 

describe how agents’ sensor information can update the BBN at various levels. To illustrate its feasible application in a dynamic system, 

the thesis uses a case study of a team of agents’ mission for forest fire monitoring based on simulations and physical experiments. This 

form of simulation looks more realistic in presenting a dynamic and complex system (Ayub et al., 2020; Bevilacqua et al., 2017; Galland 

et al., 2014, 2013). To my knowledge, this is the first time BBN was applied to formally describe agents DSA. The adopted direction 

seems attractive to researchers within the field of DSA (Rosário et al., 2021).  However, the thesis approach can be distinguished by the 

following novel features: 

i. DSA model and its adaptability: this is modelled using BBN’s formal properties that allow belief measure and presentation, 

situation-based BBN configuration using structural learning, and agent interactions analysis. In terms of the belief 

measurement, the existing approaches of the propositional network, concept map,  ontology, and fuzzy logic offer only a 

single presentation per situation (Baader et al., 2020; Burov, 2021; Galton and Worboys, 2011; Kokar et al., 2009; Liu et al., 

2013; Lohia et al., 2019; Stanton et al., 2001;N Stanton et al., 2001; Stanton, 2016; Stanton et al., 2009, 2006; Stefanidi et 

al., 2022; Uma Pavan Kumar Kethavarapu and S. Saraswathi, 2016). Thus, these approaches provide only the qualitative 

presentation of how agents access information within a DSA system and omit the agents' efforts toward DSA management. 

ii. Multiple state interface: in addition to the belief measurement, BBN is similar to existing methods in terms of interface and 

provides measurable state presentations which could easily be updated by SMEs or automation agents. 

iii. Prediction and uncertainty handling: the thesis took a step toward addressing the concept of prediction and uncertainty 

handling (as part of the DSA projection) within a DSA system using learning. Various learning algorithms and methods were 

applied to describe how predictions and uncertainties can be handled concerning the DSA system constraints. The prediction 

issue was segmented into simple parameters based on prediction (estimation, e.g., as described in Chapter 3) whenever 

possible and learning algorithms for unstructured data. The outcomes uniquely investigate how predictions and different 
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forms of uncertainties can be addressed based on mission learning. This significantly contributes to the aspects of 

understanding the concepts of prediction and uncertainty handling in the DSA system, especially involving varying agents. 

This is different from the existing methods that look at independent states of the node predictions, such as the work of 

(Murray and Perera, 2022; Sulistyawati et al., 2011; Wang et al., 2021; Zhao et al., 2021). Again, we proposed measuring 

metrics to grade predictions and uncertain values estimation based on agents’ goals. 

iv. Adaptable SA management: the thesis proposes a novel structural learning algorithm for SA model presentation based on 

the varying situation. The algorithm uniquely considered clustering the CI measures among nodes and internodes assigned 

weights using the Gaussian mixture model and Bayesian-derived protocols (Chapter 8). The outcome contributes to 

constraints-based structural learning, which I believe better suits the DSA system. This is different from the CI-weighted 

approaches (e.g., Chow-Liu tree) or pure PC (Peter and Clark) algorithms (Bari, 2011; Bouckaert, 1995; Bregoli et al., 2021; 

Dama and Sinoquet, 2021; Le et al., 2019; Madsen et al., 2017; Marcano et al., 2020; McCaskey et al., 2020; Meloni et al., 

2009; Sathe et al., 2013; Scutari, 2015; Zhang et al., 2020) because related nodes can easily be identified using the CI 

measures. 

v. Monitorable agents’ interactions: Chapter 5 describes how agent interactions can be measured in terms of resource utilisation 

using Shannon’s entropy augmented with the formal properties of the proposed Bayesian Belief Network (BBN). 

Additionally, the BBN CPTs update process was described in detail. This allows agents to transit between various actions 

and differentiate between useful and useless agents’ interactions, unlike the approaches in (Kitchin and Baber, 2017; 

Wiltshire et al., 2018). Overall, this provides a way of managing DSA in a resource-efficient manner. 

vi. Sensor information conflict resolution: conflicts in agents’ information can be addressed using the CPT of the BBN through 

learning or SMEs allocation as described in Chapter 5. This reduces the number of agent interactions as in interaction-based 

methods, e.g., publish-subscribe technique, consensus etc.(Ghamry and Zhang, 2016; Haksar and Schwager, 2018; Merino 

et al., 2010; Salerno et al., 2005). All agents’ situation-action transitions are monitored using the BBN CPTs.  
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vii. Reusability: the developed model can be reused for varying missions by changing the nodes' priors and CI measures. This is 

very different from the existing methods. 

viii. Resources utilisation: the proposed methods consider agents resources utilisation to allow easy application. 

Generally, the thesis took the direction of managing DSA within a team of varying agents in a cost effective manner. This combines the 

fields of DSA management for a team of agents and resource utilisation. 

9.5 Future Work 

The research presented in this thesis leads to a number of research fields worthy of investigation. For instance, different routes can be 

taken in terms of BBN formalisation with the concept of DSA e.g., in Human Factors and Ergonomics fashion, large agents coordination, 

schema-based performance analysis, SA factors (memory, workload, etc) consideration and performance analysis, etc. Exploring these 

could lead to a number of interesting research questions. For instance, the question of “How BBN supports Subject Matter Experts 

(SMEs) operating in dynamic and uncertain situations?”, “Does SMEs and other agents organisation using BBN. support DSA 

management?”, “How BBN promotes SMEs and UAVs cooperation in managing the system’s DSA?”, “To what extend BBN supports 

system control?”, “Does BBN reduce the effect of large number of agents’ coordination? etc. Indeed, this generates a number of 

interesting research areas toward understanding the concept of agents’ coordination, DSA management, and system resources utilisation 

especially when involving large scale of heterogeneous agents. I know these challenges were triggered by the adoption of BBN to model 

systems’ DSA and they can be addressed in many ways. For instance, one of the obvious approaches to address the BBN adoption in 

human-automation team is to assess the SMEs’ performance using any of the SA assessment techniques e.g., Situation Presence 

Assessment Measurement (SPAM), Situation Awareness Rating Technique (SART), Situation Awareness Global Assessment 

Technique (SAGAT) with respect to similar system settings (Kitchin and Baber 2016; Endsley 2000).  
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The limited number of agents, collected data, and BBN concepts must, as in SA studies, be acknowledged. Further research could look 

at the challenges of large-scale agents coordination, collected data, and BBN representations (which, perhaps have a large number of 

limitations, such as BBN structural learning management for large networks, SMEs weight allocations, constructions, etc.). For example, 

the issues of SMEs' weight assignment for a large number of nodes need to be addressed. One of the possible solutions is to approach 

the problem in a divide-and-conquer fashion i.e., by dividing the number of nodes into small portions and assigning SMEs weights to 

groups. Similarly, the issue of exceptional cases monitoring using CPTs’ will require a similar divide-and-conquer technique, especially 

for the large BBNs. 

Furthermore, although the thesis focuses attention on the use of BBN to model DSA, extending this to other models of SA, e.g., shared 

SA, team SA, situated SA, sense-making etc., could expand our understanding of the theories of SA. Although I can not suggest how 

these can be achieved, but the application in the field of DSA (as adopted by the thesis) could help in expanding the application of BBN 

not only in the field of DSA, but also at the general level of SA research tree. 

Again, one of the limitations of the proposed agent’s coordination method is a large number of agents to be controlled over n dimensions. 

For example, assume a number of 50 UAVs to be coordinated using the proposed DIMASS method of Chapter 3; the number of distinct 

control protocols over n dimension will be difficult to develop. Thus, the definitions and propositions proposed in Chapter 3 require 

further extension to accommodate a large number of agents as well as customisation to fit various systems settings based on their features 

e.g., wireless sensor network coverage problems, ad hoc communication relay problems, other disaster management, etc. Similarly, 

searching for the best solution, i.e., by adjusting the edges, angle, and quadrants of the search plan involving many agents, will be very 

difficult due to a large number of waypoints and agents. Although solving these issues could require complex mathematical derivations  

(as seen from work done in Chapter 3), this will pave the way for simplifying agent coordination tasks and overall DSA emergence. 

Again, collision avoidance for a large number of agents will require sense and avoid or waypoints altitudes variations. Still, achieving 

this for many agents will be very difficult to maintain.  
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The aspect of the real-time human configuration of BBN and analysis of how supportive the presented BBN will be to individual SMEs 

based on their goals need further evaluation. This is to understand the changing nature of the environment and how SMEs’ activities are 

affected by those changes in the presented BBN.  

Overall, since the thesis focuses attention on the technical aspect of DSA management for the human-automation team (with a higher 

focus on the automation aspect), resources utilisation, and search mission coordination, future work can pay attention to the human 

factors and how the developed models, methods, and algorithms support the SMEs decisions and action in DSA or other models of SA. 

This could lead to dozens number of problems concerning DSA and agents’ coordination. For instance, considering the thesis use case 

(i.e., forest fire monitoring), an assessment study can be made to analyse the effect of SMEs' decision on agents coordination and DSA 

management, DSA presence evaluation and emergence latency, factors promoting or demoting the DSA management when BBN is 

adopted, etc. 
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Appendices 

 

Appendix A 

 

Delaunay-centric Algorithm 

1: Input: seed waypoints (W) 

2: Output: Waypoints plan (π) 

3: 

4: 

5: 

 

 

6: 

 

 

 

7: 

 

 

 

For all ai ∈ A do // i.e. for all simple agents 

assigned to a picture compiler 

Find π1 ∈ Π find 

πi ∈ argmin/maxπ ∈Πi Uπ (U is the optimised 

set of waypoints policies as defined by 

equation 3)  using 

 

While count(τi) ≤ 2 

τi: ai →wi Select the agents' first-layer 

waypoints as seed points, e.g., using longest 

non-crossed jumps of Figure 9 etc. 
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8: 

 

 

9: 

 

10 

 

11 

 

12 

Triangulate the seed waypoints using 

Delaunay triangulations. 

 

Find the centre of each triangle at every layer 

and mark it as the seed for the upper layer. 

 

w 1 → τ 1   // Add waypoint to layer 

 

Repeat the process  //go to 6 

 

τ1 → πi  // Add the layers to the plan. 

13 Return πi 

  

 

 



 
 

276 

 

Supplemental Files 

Step-by-step instructions and sample code to apply the proposed algorithm in any team of agents search problem, e.g., the described 

forest fire searching, missing person finding, etc., can be found in https: 

//www.dropbox.com/s/1ebdr20b5zwzr6n/Supplimental%20Documents.zip?dl=0. 

 

 



 

 


