1,938 research outputs found

    Can we identify genes with increased phylogenetic reliability?

    Get PDF
    © The Author(s) 2015. Topological heterogeneity among gene trees is widely observed in phylogenomic analyses and some of this variation is likely caused by systematic error in gene tree estimation. Systematic error can be mitigated by improving models of sequence evolution to account for all evolutionary processes relevant to each gene or identifying those genes whose evolution best conforms to existing models. However, the best method for identifying such genes is not well established. Here, we ask if filtering genes according to their clock-likeness or posterior predictive effect size (PPES, an inference-based measure of model violation) improves phylogenetic reliability and congruence. We compared these approaches to each other, and to the common practice of filtering based on rate of evolution, using two different metrics. First, we compared gene-tree topologies to accepted reference topologies. Second, we examined topological similarity among gene trees in filtered sets. Our results suggest that filtering genes based on clock-likeness and PPES can yield a collection of genes with more reliable phylogenetic signal. For the two exemplar data sets we explored, from yeast and amniotes, clock-likeness and PPES outperformed rate-based filtering in both congruence and reliability

    Phylogenetic framework for coevolutionary studies: A compass for exploring jungles of tangled trees

    Get PDF
    Phylogenetics is used to detect past evolutionary events, from how species originated to how their ecological interactions with other species arose, which can mirror cophylogenetic patterns. Cophylogenetic reconstructions uncover past ecological relationships between taxa through inferred coevolutionary events on trees, for example, codivergence, duplication, host-switching, and loss. These events can be detected by cophylogenetic analyses based on nodes and the length and branching pattern of the phylogenetic trees of symbiotic associations, for example, host-parasite. In the past 2 decades, algorithms have been developed for cophylogetenic analyses and implemented in different software, for example, statistical congruence index and event-based methods. Based on the combination of these approaches, it is possible to integrate temporal information into cophylogenetical inference, such as estimates of lineage divergence times between 2 taxa, for example, hosts and parasites. Additionally, the advances in phylogenetic biogeography applying methods based on parametric process models and combined Bayesian approaches, can be useful for interpreting coevolutionary histories in a scenario of biogeographical area connectivity through time. This article briefly reviews the basics of parasitology and provides an overview of software packages in cophylogenetic methods. Thus, the objective here is to present a phylogenetic framework for coevolutionary studies, with special emphasis on groups of parasitic organisms. Researchers wishing to undertake phylogeny-based coevolutionary studies can use this review as a "compass" when "walking" through jungles of tangled phylogenetic trees.Facultad de Ciencias Naturales y Muse

    Phylogenetic framework for coevolutionary studies: A compass for exploring jungles of tangled trees

    Get PDF
    Phylogenetics is used to detect past evolutionary events, from how species originated to how their ecological interactions with other species arose, which can mirror cophylogenetic patterns. Cophylogenetic reconstructions uncover past ecological relationships between taxa through inferred coevolutionary events on trees, for example, codivergence, duplication, host-switching, and loss. These events can be detected by cophylogenetic analyses based on nodes and the length and branching pattern of the phylogenetic trees of symbiotic associations, for example, host-parasite. In the past 2 decades, algorithms have been developed for cophylogetenic analyses and implemented in different software, for example, statistical congruence index and event-based methods. Based on the combination of these approaches, it is possible to integrate temporal information into cophylogenetical inference, such as estimates of lineage divergence times between 2 taxa, for example, hosts and parasites. Additionally, the advances in phylogenetic biogeography applying methods based on parametric process models and combined Bayesian approaches, can be useful for interpreting coevolutionary histories in a scenario of biogeographical area connectivity through time. This article briefly reviews the basics of parasitology and provides an overview of software packages in cophylogenetic methods. Thus, the objective here is to present a phylogenetic framework for coevolutionary studies, with special emphasis on groups of parasitic organisms. Researchers wishing to undertake phylogeny-based coevolutionary studies can use this review as a "compass" when "walking" through jungles of tangled phylogenetic trees.Facultad de Ciencias Naturales y Muse

    Reassessing the role of morphology in bryophyte phylogenetics : combined data improves phylogenetic inference despite character conflict

    Get PDF
    Morphological data has gained renewed attention and has been shown to be crucial in clarifying the phylogenetic relationship in a wide range of taxa. In the last decades, phylogenetic analyses of sequence-level data have radically modified the systematic schemes within bryophytes (early non-vascular land plants) and have revealed a widespread pattern of conflict with morphology-based classifications. Yet, a comprehensive evaluation of character conflict has not yet been performed in the context of combined matrices. In this study, we evaluate the impact of morphology on bryophyte phylogeny following a total-evidence approach across 10 published matrices. The analysed matrices span a wide range of bryophytes, taxonomic levels, gene sampling and number of morphological characters and taxa. Data conflict was addressed by measuring: (i) the topological congruence between individual partitions, (ii) changes in support values of the combined data relative to the molecular partition and (iii) clade stability. The association between these measures and the number of morphological characters per taxon (Nc/T ratio) and the proportion of non-fixed characters (i.e., inapplicable, polymorphic and missing data) was explored. In the individual partition analyses, the Nc/T ratio correlated positively with the topological congruence in six to seven datasets depending on the weighting scheme. The proportion of non-fixed cells had a minor influence on congruence between data partitions. The number of characters and proportion of non-fixed data varied significantly between morphological datasets that improved congruence between data types. This variation suggests that morphological datasets affect the results of combined analyses in different ways, depending on the taxa studied. Combined analyses revealed that, despite the low congruence values between partitions, integrating data types improves support values and stability. However, while non-fixed data had no negative effect on support values, stability was reduced as the proportion of non-fixed cells increased. Nc/T ratio was negatively associated with support values and it showed ambiguous responses in stability evaluations. Overall, the results indicate that adding morphology may contribute to the inference of phylogenetic relationships of bryophytes despite character conflict. Our findings suggest that merely comparing (a) morphology-based classifications with molecular phylogenies or (b) the outcome from individual data partitions can misestimate data conflict. These findings imply that analyses of combined data may provide conservative assessments of data conflict and, eventually, lead to an improved sampling of morphological characters in large-scale analyses of bryophytes.Peer reviewe

    PACo: A Novel Procrustes Application to Cophylogenetic Analysis

    Get PDF
    We present Procrustean Approach to Cophylogeny (PACo), a novel statistical tool to test for congruence between phylogenetic trees, or between phylogenetic distance matrices of associated taxa. Unlike previous tests, PACo evaluates the dependence of one phylogeny upon the other. This makes it especially appropriate to test the classical coevolutionary model that assumes that parasites that spend part of their life in or on their hosts track the phylogeny of their hosts. The new method does not require fully resolved phylogenies and allows for multiple host-parasite associations. PACo produces a Procrustes superimposition plot enabling a graphical assessment of the fit of the parasite phylogeny onto the host phylogeny and a goodness-of-fit statistic, whose significance is established by randomization of the host-parasite association data. The contribution of each individual host-parasite association to the global fit is measured by means of jackknife estimation of their respective squared residuals and confidence intervals associated to each host-parasite link. We carried out different simulations to evaluate the performance of PACo in terms of Type I and Type II errors with respect to two similar published tests. In most instances, PACo performed at least as well as the other tests and showed higher overall statistical power. In addition, the jackknife estimation of squared residuals enabled more elaborate validations about the nature of individual links than the ParaFitLink1 test of the program ParaFit. In order to demonstrate how it can be used in real biological situations, we applied PACo to two published studies using a script written in the public-domain statistical software R

    Tanglegrams are misleading for visual evaluation of tree congruence

    Get PDF
    Evolutionary Biologists are often faced with the need to compare phylogenetic trees. One popular method consists in visualizing the trees face to face with links connecting matching taxa. These tanglegrams are optimized beforehand so that the number of lines crossing (the entanglement) is minimal. This representation is implicitly justified by the expectation that the level of entanglement is correlated with the level of similarity (or congruence) between the trees compared. Using simulations, we show that this correlation is actually very weak, which should preclude the use of such technique for getting insight into the level of congruence between trees

    Improving the Evaluation Performance of Space-Time Trellis Code through STTC Visualisation Tool

    Full text link
    • …
    corecore