27,408 research outputs found

    Inhibition in the dynamics of selective attention: an integrative model for negative priming

    Get PDF
    We introduce a computational model of the negative priming (NP) effect that includes perception, memory, attention, decision making, and action. The model is designed to provide a coherent picture across competing theories of NP. The model is formulated in terms of abstract dynamics for the activations of features, their binding into object entities, their semantic categorization as well as related memories and appropriate reactions. The dynamic variables interact in a connectionist network which is shown to be adaptable to a variety of experimental paradigms. We find that selective attention can be modeled by means of inhibitory processes and by a threshold dynamics. From the necessity of quantifying the experimental paradigms, we conclude that the specificity of the experimental paradigm must be taken into account when predicting the nature of the NP effect

    Mechanisms for the generation and regulation of sequential behaviour

    Get PDF
    A critical aspect of much human behaviour is the generation and regulation of sequential activities. Such behaviour is seen in both naturalistic settings such as routine action and language production and laboratory tasks such as serial recall and many reaction time experiments. There are a variety of computational mechanisms that may support the generation and regulation of sequential behaviours, ranging from those underlying Turing machines to those employed by recurrent connectionist networks. This paper surveys a range of such mechanisms, together with a range of empirical phenomena related to human sequential behaviour. It is argued that the empirical phenomena pose difficulties for most sequencing mechanisms, but that converging evidence from behavioural flexibility, error data arising from when the system is stressed or when it is damaged following brain injury, and between-trial effects in reaction time tasks, point to a hybrid symbolic activation-based mechanism for the generation and regulation of sequential behaviour. Some implications of this view for the nature of mental computation are highlighted

    When the ignored gets bound: sequential effects in the flanker task

    Get PDF
    Recent research on attentional control processes in the Eriksen flanker task has focused on the so-called congruency sequence effect a.k.a. the Gratton effect, which is the observation of a smaller flanker interference effect after incongruent than after congruent trials. There is growing support for the view that in this paradigm, the congruency sequence effect is due to repetition of the target or response across trials. Here, results from two experiments are presented that separate the contributions of target, flanker, and response repetition. The results suggest that neither response repetition alone nor conflict is necessary to produce the effect. Instead, the data reveal that only flanker repetition is sufficient to produce congruency sequence effects. In other words, information that is associated with a response irrespective whether it is relevant for the current trial is bound to response representations. An account is presented in which the fleeting event files are the activated part of the task set in which flankers, targets, and response representations are associatively linked and updated through conflict-modulated reinforcement learning

    A distributional model of semantic context effects in lexical processinga

    Get PDF
    One of the most robust findings of experimental psycholinguistics is that the context in which a word is presented influences the effort involved in processing that word. We present a novel model of contextual facilitation based on word co-occurrence prob ability distributions, and empirically validate the model through simulation of three representative types of context manipulation: single word priming, multiple-priming and contextual constraint. In our simulations the effects of semantic context are mod eled using general-purpose techniques and representations from multivariate statistics, augmented with simple assumptions reflecting the inherently incremental nature of speech understanding. The contribution of our study is to show that special-purpose m echanisms are not necessary in order to capture the general pattern of the experimental results, and that a range of semantic context effects can be subsumed under the same principled account.›

    A Uniform Approach to Analogies, Synonyms, Antonyms, and Associations

    Get PDF
    Recognizing analogies, synonyms, antonyms, and associations appear to be four\ud distinct tasks, requiring distinct NLP algorithms. In the past, the four\ud tasks have been treated independently, using a wide variety of algorithms.\ud These four semantic classes, however, are a tiny sample of the full\ud range of semantic phenomena, and we cannot afford to create ad hoc algorithms\ud for each semantic phenomenon; we need to seek a unified approach.\ud We propose to subsume a broad range of phenomena under analogies.\ud To limit the scope of this paper, we restrict our attention to the subsumption\ud of synonyms, antonyms, and associations. We introduce a supervised corpus-based\ud machine learning algorithm for classifying analogous word pairs, and we\ud show that it can solve multiple-choice SAT analogy questions, TOEFL\ud synonym questions, ESL synonym-antonym questions, and similar-associated-both\ud questions from cognitive psychology

    Modelling word meaning using efficient tensor representations

    Get PDF
    Models of word meaning, built from a corpus of text, have demonstrated success in emulating human performance on a number of cognitive tasks. Many of these models use geometric representations of words to store semantic associations between words. Often word order information is not captured in these models. The lack of structural information used by these models has been raised as a weakness when performing cognitive tasks. This paper presents an efficient tensor based approach to modelling word meaning that builds on recent attempts to encode word order information, while providing flexible methods for extracting task specific semantic information

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    The unexplained nature of reading.

    Get PDF
    The effects of properties of words on their reading aloud response times (RTs) are 1 major source of evidence about the reading process. The precision with which such RTs could potentially be predicted by word properties is critical to evaluate our understanding of reading but is often underestimated due to contamination from individual differences. We estimated this precision without such contamination individually for 4 people who each read 2,820 words 50 times each. These estimates were compared to the precision achieved by a 31-variable regression model that outperforms current cognitive models on variance-explained criteria. Most (around 2/3) of the meaningful (non-first-phoneme, non-noise) word-level variance remained unexplained by this model. Considerable empirical and theoretical-computational effort has been expended on this area of psychology, but the high level of systematic variance remaining unexplained suggests doubts regarding contemporary accounts of the details of the mechanisms of reading at the level of the word. Future assessment of models can take advantage of the availability of our precise participant-level database
    corecore