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Abstract	and	Keywords

We	discuss	recent	computational	network	models	of	elementary	number	processing.	One	key	issue	to	emerge	from
this	work	is	a	crucial	distinction	between	symbolic	and	non-symbolic	number	representation,	and	the	related
distinction	between	number-selective	and	number-sensitive	coding.	Empirical	predictions	from	the	models	were
tested,	and	are	here	summarized.	Another	issue	is	the	relation	with	task-based	decision	making	mechanisms.	In
both	lab	and	real-life	settings,	representations	are	seldomly	accessed	in	a	task-neutral	manner,	rather	subjects	are
usually	presented	with	a	task.	A	related	theme	is	the	functional	association	between	number	representations	and
working	memory.	In	these	issues	also,	both	modeling	and	neuroimaging	work	is	summarized.	To	conclude,	we
propose	that	the	combined	modeling-neuroimaging	approach	should	be	extended	to	tackle	more	complex
questions	about	number	processing	(e.g.	fractions,	development,	dyscalculia).
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1.	Introduction:	Number	in	the	human	and	animal	brain

Early	in	the	morning,	we	open	our	eyes,	and	read	off	the	time	on	our	alarm	clock.	Late	in	the	evening,	we	go	to
sleep,	perhaps	counting	how	many	nights	are	left	before	the	holidays.	On	both	occasions,	and	many	occasions	in
between,	we	are	confronted	with	numbers.	Numbers	allow	calculation,	ordering	and	planning	ahead,	and	the	ability
to	work	with	numbers	is	considered	one	of	the	principal	accomplishments	of	humanity.

Nevertheless,	the	ability	to	process	numerical	quantities	in	a	non-symbolic	format	is	shared	with	many	animal
species	(e.g.	Cantlon	and	Brannon	2006;	Hubbard	et	al.	2005).	Carefully	controlled	experiments	have	shown
repeatedly	that	many	animal	species	can	indeed	represent	number	in	an	abstract	way	(e.g.	Brannon	2006).	Human
infants	have	likewise	been	shown	to	possess	numerical	abilities	long	before	language	develops	(Feigenson	et	al.
2002;	Xu	and	Spelke	2000;	Xu	et	al.	2005).	Remarkably,	many	properties	emerge	consistently	across	species,
when	humans	and	animals	are	engaged	in	numerical	tasks	(Dehaene	et	al.	1998;	Roitman	et	al.	2007;	Whalen	et
al.	1999).	Two	of	these	omnipresent	properties	are	the	distance	and	the	size	effect.	The	distance	effect	refers	to
the	observation	that	it	is	easier	to	discriminate	between	two	numbers	as	the	numerical	distance	between	them
increases	(e.g.	sets	of	two	and	nine	dots	are	easier	to	discriminate	than	sets	of	eight	and	nine	dots;	Moyer	and
Landauer	1967).	The	size	effect	refers	to	the	observation	that	for	an	equal	numerical	distance,	small	numbers	are
easier	to	discriminate	than	large	numbers	(e.g.	sets	of	two	and	three	are	easier	to	discriminate	than	sets	of	eight
and	nine).	The	distance	and	size	effects	appear	in	humans	when	numbers	are	presented	as	Arabic	digits
(Dehaene	et	al.	1990),	as	verbal	number	words	(Koechlin	et	al.	1999)	and	as	non-symbolic	numerosities	(patterns
of	dots)	(Buckley	and	Gillman	1974,	see	also	Gebuis	and	Reynvoet,	this	volume).	This	close	correspondence
between	humans	and	non-human	animals	suggests	that	we	share	common	structures	for	number	processing
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(Feigenson	et	al.	2004),	the	characteristics	of	which	have	now	begun	to	become	uncovered.

The	first	neural	findings	describing	how	number	is	processed	in	the	brain	were	provided	by	Nieder	and	colleagues
(Nieder	et	al.	2002;	Nieder	and	Miller	2004).	These	authors	trained	macaque	monkeys	to	perform	a	delayed	match-
to-numerosity	task.	The	monkeys	were	presented	with	two	consecutive	dot	patterns,	each	containing	one	to	five
dots,	and	were	asked	to	indicate	if	the	second	display	contained	the	same	number	of	dots	as	the	first	one.	Other
features	in	the	displays	such	as	individual	dot	size	and	spatial	configuration	were	varied	randomly.	The	authors
recorded	the	neuronal	activity	of	single	cells	during	both	the	sample	and	the	test	phase.	They	observed	neurons	in
the	prefrontal	cortex	and	intraparietal	sulcus	that	are	tuned	to	numerosity:	The	neuronal	response	is	maximal	when
that	neuron’s	preferred	quantity	is	presented,	and	decreases	systematically	when	the	presented	number	of	dots	is
numerically	more	distant	from	the	preferred	numerosity	(cf.	number-selective	code	in	Figure	1).	Hence,	these
neurons	were	called	number-selective	neurons.	When	the	number	of	dots	presented	is	not	the	neuron’s	preferred
quantity,	but	numerically	close,	the	neuron	still	responds,	albeit	at	less	than	maximum.	Hence,	neuronal	activity
shows	overlap	for	two	numerosities.	This	overlap	is	larger	for	two	numerosities	with	a	small	numerical	distance,
making	it	harder	to	discriminate	between	these	numerosities.	For	two	numerosities	with	a	large	numerical	distance,
there	is	little	neural	overlap,	making	discrimination	easier.	In	this	way,	the	tuning	properties	of	number-selective
neurons	can	explain	the	distance	effect	in	the	match-to-numerosity	task.	Nieder	and	colleagues	also	observed	that
the	tuning	curves	of	the	number-selective	neurons	broaden	as	number	increases	(Nieder	et	al.	2002).
Consequently,	larger	numerosities	are	more	coarsely	represented	and	thus	harder	to	discriminate,	generating	a
size	effect.

Also	in	humans,	there	is	evidence	for	a	number-selective	coding	system.	In	behavioral	experiments,	Reynvoet	and
colleagues	(e.g.	Reynvoet	and	Brysbaert	2004;	Reynvoet	et	al.	2002)	presented	two	consecutive	numbers	in	each
trial,	but	only	the	second	stimulus	(the	target)	had	to	be	named.	By	varying	the	numerical	distance	between	the
first	stimulus	(the	prime)	and	the	target,	the	influence	of	the	prime	on	target	processing	was	investigated.	The
priming	effects	were	distance-dependent,	meaning	that	the	target	is	named	faster	when	the	numerical	distance
between	the	prime	and	the	target	is	small.	This	can	be	explained	by	number-selective	coding:	when	the	prime
activates	a	number	in	a	number-selective	system,	neurons	that	prefer	numbers	close	to	the	prime	number	will	also
be	somewhat	pre-activated	by	the	prime	(cf.	number-selective	code	in	Figure	1),	thereby	facilitating	the	naming	of
a	subsequent	numerically	close	target.

Neural	evidence	for	number-selective	neurons	in	humans	has	been	found	using	the	fMRI	adaptation	paradigm.	This
method	is	based	on	the	fact	that,	when	the	same	visual	stimulus	is	repeated,	the	activity	of	neurons	responsive	to
this	stimulus	is	reduced.	Therefore,	the	activity	of	number-selective	neurons	responsive	for	a	specific	quantity
should	decrease	when	this	quantity	is	repeatedly	presented.	This	is	known	as	adaptation	of	the	neuronal	response.
Piazza	et	al.	(2004)	performed	an	fMRI	adaptation	study	in	which	they	showed	adaptation	of	the	neuronal	response
in	the	anterior	part	of	the	intraparietal	sulcus	after	repeated	presentation	of	the	same	numerosity.	The	response
recovered	from	adaptation	when	a	different	numerosity	was	occasionally	presented,	but	not	when	the	same
numerosity	was	shown	with	different	shapes,	consistent	with	adaptation	of	number-selective	neurons.	Moreover,
Piazza	et	al.	(2004)	showed	that	the	recovery	of	the	response	was	larger	for	numerosities	with	a	large	distance
from	the	adapted	numerosity	than	for	numerosities	with	a	small	distance	from	the	adapted	numerosity.	This
provides	evidence	for	an	activation	profile	of	the	underlying	quantity	neurons	in	terms	of	number-selective	coding.
Indeed,	the	response	profile	of	this	coding	scheme	predicts	that	neighboring	numbers	will	also	be	activated,	and
thus	also	adapted.	By	plotting	the	recovery	of	the	BOLD	signal	as	a	function	of	the	presented	numerosity,	the
authors	obtained	tuning	curves	similar	to	those	obtained	by	Nieder	et	al.	(2002).	Like	the	tuning	curves	obtained
with	single-unit	recording	in	monkeys,	the	tuning	curves	obtained	with	fMRI	adaptation	in	humans	were	also
broader	with	increasing	numerosity.

2.	Model:	Number-sensitive	and	number-selective	coding

The	characteristics	of	the	number-selective	neurons	account	for	many	aspects	of	behavior	(Nieder	and	Miller
2004).	The	question	remains,	however,	how	visual	input	is	converted	into	a	number-selective	coding	system.	This
conversion	is	most	challenging	for	the	transformation	from	a	non-symbolic	number,	which	consists	of	a	number	of
objects	(Figure	1).	In	an	attempt	to	confront	this	issue,	the	systems	required	for	this	conversion	have	been
investigated	by	computational	modeling	(Dehaene	and	Changeux	1993;	Verguts	and	Fias	2004).
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The	models	start	with	the	representation	of	the	visual	input	(i.e.	a	set	of	objects)	on	an	object	location	map	(see
Figure	1).	An	object	location	map	is	a	spatial	neuronal	map	in	which	each	neuron	responds	to	a	specific	location.	If
an	object	is	presented	at	this	location,	the	neuron	detects	it	and	is	activated,	independent	of	the	size	or	other
visual	properties	of	the	object	(Goldberg	et	al.	2002).	Rather	than	being	specifically	devoted	to	number	processing,
this	map	has	a	more	general	function	(e.g.	supporting	visuo-spatial	short-term	memory,	Awh	and	Jonides	2001;
Srimal	and	Curtis	2008;	Roggeman	et	al.	2010).	This	map	is	already	a	highly	abstracted	transformation	of	primary
visual	cortex,	because	it	has	to	generalize	across	different	sizes	and	shapes	of	the	physical	appearance	of
individual	objects	(e.g.	Dehaene	and	Changeux	1993).	These	visual	transformation	processes	are	beyond	the
scope	of	the	current	discussion.	As	a	result	of	these	processes,	each	object	is	represented	as	‘one’	by	only	one
location	neuron.

Click	to	view	larger

Figure	1 :	Illustration	of	the	pathway	for	the	processing	of	number	from	visual	input	to	a	number-selective
code.	Left:	processing	pathway	for	non-symbolic	number;	the	non-symbolic	numerosity	is	represented	in
an	object	location	map,	which	is	transformed	to	a	number-sensitive	code	(the	hidden	layer	in	our	model).
Number-sensitive	coding	is	then	transformed	to	a	number-selective	code	to	yield	the	final	representation.
Right:	no	nonlinearity	is	involved	in	the	transformation	from	symbols	to	number-selective	neurons,	hence
symbolic	input	is	directly	connected	to	the	number-selective	neurons.

The	information	in	the	object	location	map	must	then	be	converted	into	a	number-selective	code.	For	example,	the
number	neuron	coding	for	‘1’,	should	be	activated	if	only	one	object	is	presented	in	the	object	location	map;	the
neuron	coding	for	‘2’	should	be	activated	if	two	objects	are	present	in	the	object	location	map,	and	so	on.
However,	because	objects	are	not	always	presented	in	the	same	spatial	configuration,	a	direct	transformation	from
the	neurons	in	the	object	location	map	to	the	number-selective	neurons	is	not	possible.	The	reason	for	this	is	that
an	activated	object	location	neuron	should	(for	example)	activate	the	number	3	neuron,	only	if	exactly	two	other
neurons	in	the	object	location	map	are	activated.	Unfortunately,	the	neuron	in	the	object	location	map	has	no	way
of	knowing	this.	It	does	not	know	how	many	other	objects	are	represented,	and	hence	cannot	know	whether	to
activate	the	number	3	neuron	or	another	number	neuron.	Technically,	this	corresponds	to	an	instance	of	the	XOR
(exclusive	OR)	rule	in	logic	(Minsky	and	Papert	1969).	These	problems	require	a	nonlinear	transformation,	which
cannot	be	achieved	in	a	single	step.	The	most	straightforward	way	to	solve	this	problem	is	to	implement	an
intermediate	processing	step,	where	the	object	location	map	information	from	different	object	location	neurons	can
be	combined.	Therefore,	a	hidden	layer	was	introduced	in	the	models	between	the	object	location	map	and	the
number-selective	coding	system.

Verguts	and	Fias	(2004)	trained	a	neural	network	with	an	object	location	map	as	input.	The	network	was	trained
with	backpropagation	to	transform	the	object	location	representation	of	the	numerosity	at	input	via	the	hidden	layer
to	a	number-selective	coding	representation	at	output.	Because	of	the	backpropagation	training	algorithm,	the
network	was	allowed	to	come	up	with	the	computationally	optimal	solution.	After	training,	it	was	found	that	the
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neurons	in	the	hidden	layer	displayed	a	monotonically	varying	activation	pattern	(i.e.	monotonously	increasing	or
decreasing)	when	more	objects	were	presented.	Hence,	the	intermediate	step	between	the	object	location	map
and	the	number-selective	coding	system	consisted	of	neurons	accumulating	(in	a	positive	or	negative	way)	the
number	of	objects	that	was	presented	at	input.	In	other	words,	the	neurons	were	sensitive	to	number	but,
importantly,	were	not	number-selective,	since	they	did	not	selectively	respond	to	a	specific	number	(cf.	number-
sensitive	code	in	Figure	1).	This	way	of	representing	number	is	known	as	number-sensitive	(in	contrast	to	number-
selective).	This	model	demonstrates	that	number-sensitive	coding	is	a	biologically	plausible	way	of	solving	the
(generalized)	XOR	problem	implied	in	mapping	from	an	object	location	map	to	number-selective	coding.

Number-sensitive	coding	also	emerged	spontaneously	from	visual	input	in	an	unsupervised	model	by	Stoianov	and
Zorzi	(2012).	Rather	than	normalize	object	size,	these	authors	presented	(unnormalized)	visual	input	representing
visual	scenes	with	different	numbers	of	objects	to	a	so-called	deep	network	model	(Hinton	2007).	The	visual	layer
projected	to	a	first	hidden	layer,	which	projected	to	a	second	hidden	layer.	Crucially,	the	model	training	was
unsupervised,	being	required	only	to	reconstruct	the	visual	layer	activation	based	on	the	hidden	layer	activation.
After	training,	neurons	in	the	first	hidden	layer	were	sensitive	to	various	visual	properties.	Crucially,	the	second
hidden	layer	contained	a	subset	of	neurons	that	responded	more	strongly	(or	more	weakly)	to	larger	numbers	of
objects	(similar	to	the	number-sensitive	code	in	Figure	1),	but	were	not	sensitive	to	total	area.	In	this	sense,	such
neurons	can	be	labeled	number-sensitive.

In	summary,	a	number-sensitive	coding	system	may	be	a	necessary	preceding	step	in	the	transformation	from	a
non-symbolic	number	to	an	abstract	number-selective	representation.	The	models	thus	suggested	that	the
cardinality	of	a	set	of	objects	is	represented	differently	in	different	stages	of	the	processing	stream:	visual	input	is
first	transformed	into	an	object	location	map,	which	activates	a	number-sensitive	coding	system,	which
subsequently	generates	a	number-selective	code	(see	Figure	1).

3.	Data:	Number-sensitive	and	number-selective	coding

The	evidence	for	number-selective	coding	was	discussed	in	the	introduction.	Inspired	by	the	computational
models,	researchers	have	recently	started	to	look	for	evidence	for	number-sensitive	coding	too.

3.1.	Single-unit	evidence	in	the	monkey

The	biological	reality	of	number-sensitive	coding	was	demonstrated	by	means	of	single-unit	recording.	Roitman	et
al.	(2007)	recorded	neurons	in	the	lateral	intraparietal	area	(LIP)	of	the	macaque	monkey.	The	monkeys	were
asked	to	plan	an	eye	movement	to	a	target.	At	the	same	time,	visual	arrays	of	2,	4,	8,	16,	or	32	dots	were
displayed	at	a	distal	location	from	the	eye-movement	target.	The	numerosity	of	the	array	predicted	the	amount	of
reward	the	monkey	would	receive	when	he	performed	the	eye	movement,	but	was	task-irrelevant	otherwise.
Activity	was	recorded	from	neurons	having	the	distal	location	of	the	numerical	display	in	their	receptive	field.	More
than	half	of	the	neurons	recorded	in	LIP	displayed	a	monotonic	response	to	the	numerosity	of	the	numerical	arrays:
the	activity	increased	or	decreased	monotonically	with	increasing	numerosity,	indicating	that	these	neurons
summated	(in	a	positive	or	negative	way)	the	number	of	elements	displayed.	This	finding	supports	the	existence	of
number-sensitive	coding	in	the	monkey	brain.

3.2.	Behavioral	evidence	in	humans

In	humans,	support	for	number-sensitive	coding	was	found	in	a	priming	study	by	Roggeman	et	al.	(2007).	Here,	the
effect	of	a	briefly	presented	prime	on	the	naming	of	a	subsequently	presented	target	number	was	evaluated.	Both
primes	and	targets	could	be	either	symbolic	(Arabic	digits)	or	non-symbolic	(dot	patterns)	number	stimuli.	When
primes	were	symbolic	stimuli,	naming	times	increased	with	increasing	distance	between	prime	and	target.	This	is
the	distance-dependent	priming	effect	(see	Reynvoet	et	al.	2002)	reported	above.	In	contrast,	when	primes	were
non-symbolic	stimuli,	naming	the	target	value	was	faster	whenever	the	value	of	the	prime	was	larger	than	or	equal
to	the	value	of	the	target.	This	step-like	priming	pattern	is	consistent	with	number-sensitive	coding.	Because	large
numbers	lead	to	more	activation	in	number-sensitive	coding,	a	prime	that	is	larger	than	the	target	will	activate	the
representation	of	the	target,	facilitating	the	naming	of	the	target.	If	the	prime	is	smaller	than	the	target,	the
representation	of	the	target	will	be	only	partially	activated,	and	additional	neurons	will	have	to	be	activated	to	name
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the	target,	increasing	response	time.

3.3.	Neuroimaging	evidence	in	humans

Neural	evidence	for	number-sensitive	coding	in	humans	was	provided	by	Santens	et	al.	(2010,	Experiment	1).
Participants	were	presented	with	dot	displays	containing	one	to	five	dots,	and	neural	activity	was	measured	for
each	numerosity	separately	with	event-related	fMRI.	Number-sensitive	areas	were	localized	as	areas	showing
increasing	activation	with	increasing	number.	In	order	to	be	sure	that	we	actually	detected	number-sensitive	areas
rather	than	areas	that	are	sensitive	to	physical	parameters	that	correlate	with	numerosity	(such	as	total	luminance
or	object	size),	stimuli	were	constructed	such	that	confounds	of	these	non-numerical	parameters	were	eliminated.
The	results	revealed	a	network	of	bilateral	occipital	and	parietal	areas	and	an	area	in	the	medial	frontal	gyrus.
Given	that	Roitman	et	al.	(2007)	found	number-sensitive	coding	neurons	in	monkey	area	LIP,	we	assessed	the
correspondence	of	non-symbolic	number	processing	in	the	monkey	and	the	human	brain.	We	therefore	identified
areas	that	functionally	correspond	to	monkey	LIP,	as	assessed	with	a	saccade	localizer	task.	In	the	area	obtained
by	this	localizer	task	(bilateral	posterior	superior	parietal	cortex),	number-sensitivity	was	observed.

4.	Networks	for	number	representation

Having	established	the	existence	of	number-sensitive	and	number-selective	in	the	human	brain,	we	investigated
how	these	different	stages	are	located	relative	to	one	another	in	the	human	brain,	and	how	non-symbolic	and
symbolic	number	representations	are	related.

4.1.	Stages	of	non-symbolic	number	processing

The	computational	models	proposed	three	different	stages	for	numerosity	processing.	In	the	first	stage,	the	spatial
locations	of	the	to-be-enumerated	elements	are	stored	in	an	object	location	map	(Goldberg	et	al.	2002).	This
information	is	then	transformed	into	a	number-sensitive	code	in	the	second	stage,	which	is	subsequently
transformed	into	a	number-selective	code	in	the	third	stage.	In	Santens	et	al.	(2010,	Experiment	1),	we	observed	a
larger	BOLD	signal	for	larger	numerosities	in	the	same	area.	These	areas	could	correspond	either	to	the	object
location	map	or	to	the	number-sensitive	code,	as	both	stages	show	increasing	activity	for	increasing	number	on
the	population	level.	Hence,	these	studies	did	not	allow	distinguishing	between	the	first	two	stages.

Click	to	view	larger

Figure	2 :	Activation	of	three	different	contrasts,	each	sensitive	to	one	number	processing	stage:	object
location	map	(red),	number-sensitive	code	(green),	and	number-selective	code	(blue).

To	resolve	this	issue,	we	used	fMRI	adaptation	to	identify	the	three	postulated	stages	of	numerosity	processing	and
their	anatomical	location	relative	to	one	another	(Roggeman	et	al.	2011).	We	repeatedly	presented	the	same	non-
symbolic	numerosity	(collection	of	dots)	at	the	same	locations	in	the	visual	field.	In	this	way,	neurons	involved	in
the	processing	of	this	numerosity	(object	location	map,	number-sensitive,	and	number-selective	neurons)	were
neurally	adapted.	Occasionally,	a	deviant	stimulus	with	a	deviant	number	of	dots	and/or	dots	at	deviant	locations
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was	presented.	A	factorial	design	was	created	in	the	deviant	stimuli,	which	allowed	us	to	calculate	three
independent	contrasts,	each	sensitive	to	one	of	the	three	stages.	The	main	result	was	that	the	three	different
stages,	tested	by	three	different	contrasts,	were	indeed	differently	represented	in	different	brain	areas	along	the
lines	postulated	by	the	model	(see	Figure	2).	The	activation	of	the	object	location	map	was	present	from	the	earliest
parts	of	the	occipito-parietal	processing	stream.	The	number-sensitive	coding	map	exhibited	a	primarily	nonlinear
pattern	of	activation,	with	first	increasing	and	then	decreasing	activation.	The	number-selective	coding	map
became	more	pronounced	further	along	the	occipito-parietal	processing	stream.	Such	a	posterior	to	anterior
gradient	along	the	intraparietal	sulcus	from	number-sensitive	to	number-selective	processing	is	consistent	with	the
hypothesis	that	number-sensitive	processing	is	a	necessary	intermediate	processing	step	for	non-symbolic	number
processing	between	early	visual	sensory	analysis	and	a	more	abstract	number-selective	system.	See	Figure	2	for
an	illustration	of	the	three	stages	as	localized	in	the	human	brain.

4.2.	Pathways	for	symbolic	and	non-symbolic	number

The	model	above	describes	the	processing	of	non-symbolic	numbers.	The	Verguts	and	Fias	(2004)	model	also
concerned	symbolic	(e.g.	Arabic)	numbers.	To	simulate	how	initially	arbitrary	symbols	can	acquire	numerical
meaning	by	being	associated	with	non-symbolic	numerosities	during	development,	the	model	was	presented
simultaneously	with	non-symbolic	numerical	input	and	the	corresponding	symbols.	The	latter	were	directly
connected	to	the	number-selective	neurons	because	no	nonlinearity	is	involved	in	the	transformation	from	symbols
to	number-selective	neurons.	After	training,	it	was	observed	that	the	number-selective	neurons	that	were	tuned	to
a	specific	numerosity	also	responded	maximally	to	the	corresponding	symbolic	input.

However,	this	representation	is	accessed	through	different	pathways	(Figure	1).	For	non-symbolic	input,	visual
input	is	mapped	to	the	object	location	map,	is	then	followed	by	number-sensitive	coding,	and	is	finally	converted	in
number-selective	representations.	For	symbolic	input,	in	contrast,	the	mapping	from	symbol	to	number-selective
code	is	linearly	separable.	For	this	reason,	a	direct	pathway	is	possible	from	visual	input	to	number-selective
coding,	without	accessing	the	object	location	map	and	number-sensitive	coding	system	as	a	necessary
preprocessing	step.	In	Santens	et	al.	(2010,	Experiment	2),	we	performed	a	connectivity	analysis	on	separately
acquired	fMRI	data	to	test	this.	We	first	localized	areas	that	showed	an	increasing	BOLD	signal	with	increasing
numerosity,	while	tightly	controlling	for	different	visual	parameters.	We	identified	an	area	in	the	posterior	superior
parietal	cortex	(human	LIP)	as	the	neural	substrate	for	the	number-sensitive	coding	system.	As	the	neural	substrate
for	a	number-selective	representation	of	number,	we	selected	an	area	in	the	IPS	which	has	been	localized	by	both
electrophysiological	(Nieder	and	Miller	2004)	and	neuroimaging	studies	(Cantlon	et	al.	2006;	Piazza	et	al.	2004,
2007).	Piazza	et	al.	(2007)	showed	that	this	representation	is	shared	for	symbolic	and	non-symbolic	number	(but
see	Cohen	Kadosh	et	al.	2011;	Cohen	Kadosh	and	Walsh	2009).	In	our	whole-brain	analysis,	we	confirmed	that	this
portion	of	the	IPS	is	indeed	activated	by	numerical	stimuli,	regardless	of	the	input	format.	Subsequently,	we
investigated	the	functional	connectivity	of	this	area	using	structural	equation	modeling.	It	was	confirmed	that	the
area	in	the	left	IPS	to	which	the	number-selective	representation	of	quantity	was	ascribed	(Dehaene	et	al.	2003),
shows	a	different	functional	connectivity	with	visual	and	number-sensitive	areas	for	symbolic	versus	nonsymbolic
quantities.	In	particular,	the	indirect	pathway	(visual	input	to	number-sensitive	to	number-selective	coding)	was
stronger	for	non-symbolic	than	for	symbolic	stimuli.	In	contrast,	the	direct	pathway	(visual	input	to	number-
selective	coding)	was	stronger	for	symbolic	than	for	non-symbolic	numbers.	In	Roggeman	et	al.	(2011)	and
Santens	et	al.	(2010),	non-symbolic	number	activation	was	bilateral	but	more	pronounced	in	the	right	hemisphere.
The	symbolic	stimuli	used	additionally	by	Santens	et	al.	mainly	activated	a	left-hemisphere	network.	This
asymmetry	may	reflect	gradients	of	processing	symbolic	(left	hemisphere)	versus	non-symbolic	(right	hemisphere)
materials	more	generally	(Gevers	et	al.	2010;	Kosslyn	2006),	although	this	remains	to	be	tested	more	thoroughly.

Our	results	revealed	an	anatomical	distinction	between	number-sensitive	and	number-selective	cortical	regions.	A
number-sensitive	processing	area	was	shown	in	superior	parietal	cortex.	In	contrast,	the	IPS	activation	that	was
generated	by	both	symbolic	and	non-symbolic	quantities,	was	located	more	anteriorly,	at	a	location	that
corresponds	with	activity	observed	in	experiments	that	specifically	investigated	number-selective	coding	(Piazza
et	al.	2004,	2007).	An	analogous	distinction	between	number-sensitive	and	number-selective	processing	has	also
been	found	in	electrophysiological	experiments	in	monkeys.	Whereas	number-sensitive	neurons	have	been	found
in	area	LIP	(Roitman	et	al.	2007),	number-selective	neurons	are	traditionally	found	more	anteriorly	in	the	IPS	(Nieder
and	Miller	2004).
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5.	Beyond	small-number	representation:	Working	memory,	task	demands,	and	multi-digit	numbers

5.1.	The	object	location	map	as	a	visual	short-term	memory	system

The	model	of	Verguts	and	Fias	(2004)	takes	an	object	location	map	as	input.	This	is	very	similar	to	the	concept	of	a
saliency	map	known	from	the	visual	short-term	memory	literature.	A	saliency	map	is	a	two-dimensional	topographic
map	in	which	neural	activity	represents	the	salient	objects	in	the	environment	(e.g.	de	Brecht	and	Saiki	2006;	Ipata
et	al.	2006;	Itti	and	Koch	2000).	The	biological	reality	of	such	saliency	maps	has	been	shown	by	a	number	of
studies.	Bisley	and	Goldberg	(2003)	observed	that	monkey	LIP	represents	attended	locations	in	the	visual	field.	In
humans,	Connolly	et	al.	(2002)	showed	that	a	salience	map	in	the	human	homologue	of	monkey	area	LIP	(human
LIP)	holds	a	representation	of	the	location	of	targets,	similar	to	the	monkey	findings.

A	salience	map	is	typically	modeled	as	consisting	of	a	collection	of	nodes,	with	each	node	corresponding	to	a
neuronal	population	coding	for	a	given	location	in	space.	In	working	memory	models,	this	map	is	equipped	with	an
active	maintenance	mechanism	implemented	as	recurrent	self-excitation	of	the	nodes	(e.g.	Grossberg	1980;	Usher
and	Cohen	1999;	Wong	and	Wang	2006).	In	addition,	lateral	inhibition	between	the	nodes	is	implemented	to	reduce
noise	in	randomly	activated	nodes.	This	leads	to	competitive	interactions	between	the	nodes	in	the	map.	With	an
appropriate	balance	between	recurrent	excitation	and	lateral	inhibition,	a	stable	encoding	of	spatial	structure	of	the
visual	display	can	be	created.

The	combination	of	recurrent	excitation	and	lateral	inhibition	leads	to	a	maximal	set	size	where	all	elements	are
retained.	Beyond	this	set	size,	information	in	the	map	gets	lost	because	of	mutual	competition.	We	can	think	of	this
maximum	set	size	as	the	capacity	limit	of	the	map.	Empirically,	such	a	capacity	limit	has	been	observed	both	in
fMRI	(Todd	and	Marois	2004)	and	in	EEG	(Vogel	and	Machizawa	2004;	Vogel	et	al.	2005)	signatures.	Moreover,
different	settings	of	the	lateral	inhibition	parameter	lead	to	different	set	sizes	where	the	capacity	limit	is	reached.
Furthermore,	the	inhibition	parameter	functionally	defines	a	threshold	for	neurons	to	become	activated	by	input.	If
the	threshold	(inhibition	parameter)	is	too	low,	neurons	can	be	activated	by	random	noise.	If	the	inhibition
parameter	is	too	high,	genuinely	active	neurons	will	be	inhibited.	Hence,	a	high	level	of	lateral	inhibition	leads	to
precise	representations	(no	noise),	but	also	to	a	small	capacity	of	the	map.	Lower	levels	of	lateral	inhibition	lead	to
coarser	representations	(nodes	activated	by	noise),	but	more	items	can	be	stored.

It	is	known	that	top	down	attention	is	able	to	bias	competitive	interactions	in	visual	areas	and	beyond	(e.g.	Deco
and	Rolls	2005;	Kastner	et	al.	1998).	A	method	of	controlling	lateral	inhibition	by	neurons	upstream	was	recently
described	in	stimulus-sensitive	areas,	and	was	suggested	to	be	a	principal	method	also	in	higher	cortical	areas
(Arevian	et	al.	2008).	Similarly,	Edin	et	al.	(2007)	proposed	that	the	amount	of	nonspecific	input	from	upstream	to
downstream	areas	can	determine	working	memory	capacity.

Putting	these	pieces	together,	Roggeman	et	al.	(2010)	proposed	that	the	task,	and	more	exactly	the
representational	precision	required	by	the	task,	can	top-down	modulate	the	level	of	lateral	inhibition	in	the	object
location	/	saliency	map.	The	influence	of	task	demands	on	the	activation	in	a	salience	map	was	investigated	as	a
function	of	set	size.	For	this	purpose,	the	working	memory	model	of	Usher	and	Cohen	(1999)	was	implemented	with
different	settings	(high,	medium,	and	low)	of	the	lateral	inhibition	parameter.	The	model	predictions	were	then
compared	with	the	BOLD	activation	in	human	LIP,	where	the	saliency	map	is	housed,	in	a	series	of	fMRI	experiments
in	which	the	attention	to	the	items	was	manipulated.	The	activation	in	human	LIP	in	a	task	that	required	high,
medium	or	low	attention,	respectively,	to	the	individual	items,	was	found	to	be	in	perfect	agreement	with	the
predicted	activation	of	the	model	with	a	high,	medium	or	low	inhibition	parameter.

5.2.	Symbolic	number	and	working	memory

In	the	previous	section,	we	discussed	the	object	location	map	/	saliency	map	for	locating	objects	in	space	and	as
the	basis	for	spatial	working	memory.	We	have	shown	the	mutual	dependency	between	non-symbolic	number	and
the	spatial	saliency	map.	In	the	literature,	also	the	link	between	symbolic	number	and	space	has	been	discussed
extensively.	A	very	robust	link	between	number	and	space	is	found	in	the	SNARC	effect	(Dehaene	et	al.	1993).	In
these	experiments,	it	is	found	that	small	numbers	are	responded	to	faster	with	the	left	hand	and	large	numbers	with
the	right	hand.	Given	that	numbers	are	often	represented	in	a	left-to-right	manner	in	Western	cultures,	this
observation	suggests	that	numbers	are	represented	spatially,	with	the	small	numbers	on	the	left	side	of	space,	and
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the	large	numbers	on	the	right	side	of	space.	Zorzi	et	al.	(2002)	demonstrated	that	patients	exhibiting	left-side
neglect,	who	neglect	the	left	side	of	space,	also	overestimate	the	midpoints	of	numerical	intervals	(e.g.	stating	that
the	midpoint	between	1	and	9	is	7).	In	the	left-to-right	representation	of	numbers,	this	observation	suggests	a
corresponding	neglect	of	the	small	(left)	numbers.	In	addition,	many	other	findings	point	toward	an	intimate	relation
between	number	and	space	(e.g.,	Dehaene	et	al.	1993;	Fischer	et	al.	2003).

However,	in	recent	years	controversy	has	arisen,	demonstrating	that	identification	of	number	with	space
representations	does	not	faithfully	represent	the	rich	empirical	reality.	Doricchi	et	al.	(2005)	demonstrated	that	a
double	dissociation	can	occur	between	bisection	tasks	in	physical	space	and	in	‘numerical	space’	(cf.	van	Dijck	et
al.	2011,	2012;	for	review	see	Van	Dijck	et	al.	this	volume).	Recently,	Chen	and	Verguts	(2010)	proposed	that	in
order	to	reconcile	these	findings,	it	is	necessary	to	assume	that	a	link	exists	between	symbolic	number	and	space,
but	without	assuming	an	identity	relation.	This	particular	model	was	built	on	the	earlier	Gevers	et	al.	(2006)	model,
but	added	spatial	representations,	to	which	symbolic	number	representations	were	connected.	Because	of	the
association	between	number	and	space,	right	parietal	damage	led	to	number	neglect	in	the	model	(as	in	Zorzi	et	al.
2002).	However,	because	there	was	merely	an	association,	not	an	identity	relation,	between	numbers	and	space,
dissociations	between	the	two	types	of	neglect	were	obtained	in	the	model	(as	in	Doricchi	et	al.	2005).

The	nature	of	the	associations	between	the	spatial	system	and	numbers	remains	relatively	unspecified.	One
possibility	is	that	it	is	exactly	the	same	system	that	is	also	used	for	representing	object	locations,	and	is	used	as
input	for	non-symbolic	number	representation	(Section	5.1).	Another	possibility	is	that	serial	position	in	working
memory	is	spatially	coded	and	that	it	is	this	spatial	code	that	is	linked	to	number.	This	hypothesis	is	built	on	the
observation	that	the	SNARC	effect	did	not	depend	on	a	number’s	magnitude	but	rather	on	the	position	of	that
number	in	working	memory	(van	Dijck	et	al.	2011).	Moreover,	SNARC-like	position-space	associations	can	be
established	for	non-numerical	stimuli	as	well	as	for	numbers,	with	the	size	of	the	numerical	and	non-numerical
effects	correlating	(van	Dijck	et	al.	2011).	Further	exploration	of	the	validity	of	these	and	maybe	other	possibilities
will	need	computational	and	imaging	efforts	in	the	future.

5.3.	Adding	task	demands

Until	now,	we	have	only	discussed	how	numbers	are	represented,	and	how	these	representations	may	be	coupled
to	non-numerical	representations.	However,	behavioral	and	neural	signatures	of	number	processing	are	almost
always	measured	while	subjects	are	engaged	in	a	task.	It	is	very	well	possible	that	also	task-specific	components
leave	their	signature	on	the	behavioral	and	neural	data.	This	has	been	argued	extensively	in	the	developmental
literature	by	Thelen,	Smith,	Schöner	and	others	(e.g.	Thelen	et	al.	2001).	In	particular,	these	authors	have	shown
that	claims	about	infant	representational	capacities	must	be	treated	with	great	caution,	because	infant	performance
is	very	heavily	dependent	on	task	demands.

By	computationally	modeling	the	different	tasks	used	in	the	numerical	cognition	literature,	we	have	come	to	the
similar	conclusion	that	behavioral	and	neural	effects	do	not	immediately	inform	us	about	underlying	cognitive
systems	(e.g.	Van	Opstal	and	Verguts	2011;	Verguts	et	al.	2005).	For	example,	we	have	argued	(Verguts	et	al.
2005)	that	there	are	different	types	of	distance	effects,	depending	on	how	the	distance	effect	is	measured.	The
priming	distance	effect	was	shown	(see	above)	to	emerge	from	overlap	in	number-selective	representations	(see
Nieder	et	al.	2002,	and	Nieder,	this	volume,	for	direct	evidence	on	the	existence	of	such	overlap).	In	contrast,	the
classic	comparison	distance	effect	(i.e.	measured	as	a	function	of	the	distance	between	the	relevant	numbers	in	a
comparison	task;	Moyer	and	Landauer	1967)	was	shown	not	to	emerge	from	overlap	in	representations,	but	rather
from	the	comparison	process	(at	the	decision	or	response	levels).	Although	this	is	a	rather	isolated	position	in	the
numerical	cognition	literature,	it	connects	numerical	cognition	to	related	domains,	in	which	theories	and	models
typically	ascribe	the	distance	effect	as	emerging	from	decision	or	response	processes	(e.g.	for	ordered
sequences;	Couvillon	and	Bitterman	1992;	Frank	et	al.	2003;	Leth-Steensen	and	Marley	2000).	One	prediction	is
that	these	two	distance	effects	should	in	principle	be	dissociable.	We	tested	this	(Van	Opstal	et	al.	2008)	by
comparing	the	distance	effect	in	number	comparison	with	the	distance	effect	in	letter	comparison	(for	a	similar
view,	see	Cohen	Kadosh	et	al.	2008).	The	classic	distance	effect	was,	as	predicted,	virtually	indistinguishable
across	the	two	domains;	this	was	predicted	because	a	decision/response	process	is	needed	in	both.	In	contrast,
the	priming	distance	effect	appeared	only	for	numbers,	but	not	for	letters.

At	an	applied	level,	this	theoretical	distinction	may	be	important	because	the	comparison	distance	effect	is	used
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increasingly	often	as	a	signature	of	elementary	number	processing,	and	correlated	with	more	complex
mathematical	abilities	(e.g.	Halberda	et	al.	2008;	Holloway	and	Ansari	2009;	for	review	see	Gebuis	and	Reynvoet,
this	volume).	Despite	the	importance	of	this	endeavor,	many	of	the	findings	currently	seem	contradictory	(but	see
Noël	and	Rousselle	2011).	In	our	opinion,	a	research	program	looking	at	individual	differences	starting	from	a
computationally	motivated	basis,	may	shed	light	on	the	current	controversies.	This	research	program	currently
remains	to	be	carried	out	(but	see	Defever	et	al.	2011;	Sasanguie	et	al.	2011).

5.4.	Multi-digit	numbers

Finally,	a	less-studied	area	of	research,	especially	in	computational	terms,	concerns	how	multi-digit	numbers	are
represented.	Verguts	et	al.	(2005)	argued	that,	because	of	the	very	low	frequencies	of	multi-digit	numbers,	they
could	not	have	an	explicit	representation	like	small	(high-frequency)	numbers	do.	In	this	view,	multi-digit	numbers
would	be	represented	solely	by	their	single-digit	components	(for	a	review	see	Nuerk	et	al.	this	volume);	for
example,	the	number	26	would	be	represented	by	its	digit	component	2	and	its	unit	component	6.	Moeller	et	al.
(2011)	implemented	a	neural	network	based	on	this	concept	and	found	that	it	could	account	for	behavioral	data	on
multi-digit	numbers,	better	than	models	with	a	‘holistic’	component	where	multi-	(in	this	case,	two-)	digit	numbers
were	represented	as	wholes.	A	related	decomposed-multi-digit	architecture	was	proposed	by	Grossberg	and	Repin
(2003).

6.	Concluding	remarks

The	seminal	article	of	Moyer	and	Landauer	(1967)	already	ascribed	both	the	distance	and	size	effect	for	symbolic
numbers	to	a	semantic	analogue	magnitude	system.	Ever	since	this	article,	the	concept	of	an	analogue	magnitude
system	for	number	has	been	extremely	influential	in	the	numerical	cognition	literature	(e.g.	Dehaene	et	al.	1993),
up	to	the	current	day	(e.g.	Halberda	et	al.	2008).	Although	the	concept	certainly	has	its	merits,	it	is	our	opinion	that
theories	integrating	psychology,	neuroscience,	and	computational	modeling,	are	now	becoming	indispensable.
More	detailed	models	need	to	be	developed	of	how	number	is	represented	and	processed	in	the	brain.	As	a	first
step	toward	this	ambitious	goal,	we	have	developed	computational	models	of	number	processing	with	ensuing	tests
of	the	model	predictions.	The	current	chapter	reviewed	some	of	this	work.	In	the	introduction	(Section	1),	we
described	the	number-selective	coding	system,	which	is	the	currently	most	accepted	view	of	number
representation.	We	described	psychological	and	neural	evidence	for	this	representation.	In	Section	2,	we
discussed	our	models	of	core	number	representation.	We	showed	that	the	number-selective	coding	system	cannot
exist	in	separation,	and	that	a	number-sensitive	system	is	a	necessary	precursor	step	in	the	pathway	leading	up	to
a	number-selective	representation.	In	Section	3,	we	described	empirical	evidence	for	the	existence	of	a	number-
sensitive	system.	In	Section	4,	we	proposed	how	the	different	components	may	relate	to	one	another	in	brain
networks,	and	we	illustrated	the	connection	between	the	number-sensitive	and	the	number-selective	system,	both
in	symbolic	and	non-symbolic	number	processing.	Finally,	we	discussed	a	broader	connection	to	other	cognitive
structures	and	processes,	including	working	memory,	response	structures	and	multi-digit	numbers	(Section	5).

Despite	our	and	other	people’s	efforts,	the	end	goal	is	far	from	reached.	Besides	connecting	to	biology,	models
need	also	to	connect	to	complex	numerical	competencies,	such	as	counting	and	understanding	the	natural
number	system	(Ganor-Stern	2012;	Widjaja	et	al.	2011).	Such	steps	have	recently	been	taken	from	a	normative
Bayesian	point	of	view	(Lee	and	Sarnecka	2009;	Piantadosi	et	al.	2012).	Eventually,	the	model	should	be	able	to
explain	how	humans	can	work	with	concepts	of	number	and	its	derivations,	such	as	infinity,	interest	rates,	and
integral	calculus	(Rips	et	al.	2008).	Moreover,	models	need	to	incorporate	how	number	processing	relates	to	other
cognitive	domains,	such	as	working	memory	(Piazza	et	al.	2011),	attention	and	language.	Finally,	models	need	to
be	defined	and	tested	that	describe	the	development	of	the	number	domain	in	children	(Feigenson	et	al.	2002;
Piantadosi	et	al.	2012;	Spelke	2000).

Perhaps	most	importantly,	such	models	should	help	finding	out	how	number	processing	is	impaired	in	dyscalculia
(Piazza	et	al.	2010)	and	related	afflictions.	By	way	of	comparison,	computational	models	of	the	basal	ganglia	and
their	impairment	in	Parkinson’s	disease	have	helped	understanding	aspects	of	the	disease	and	its	remediation
(Frank	2005;	Frank	et	al.	2004).	Ultimately,	our	goal	should	be	to	develop	diagnostic	tests	to	probe	people	and
children	for	a	failure	in	the	system	in	very	early	stages,	before	it	leads	to	observable	defects.	Early	and	directed
intervention	can	then	be	developed	for	these	people,	in	an	attempt	to	remedy	problems	before	they	even	arise.
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