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Mechanisms for the Generation and Regulation 
of Sequential Behaviour 

Richard P. Cooper 
School of Psychology, 

Birkbeck, University of London 

A critical aspect of much human behaviour is the generation and regulation of sequential activities. 
Such behaviour is seen in both naturalistic settings such as routine action and language production 
and laboratory tasks such as serial recall and many reaction time experiments. There are a variety 
of computational mechanisms that may support the generation and regulation of sequential 
behaviours, ranging from those underlying Turing machines to those employed by recurrent 
connectionist networks. This paper surveys a range of such mechanisms, together with a range of 
empirical phenomena related to human sequential behaviour. It is argued that the empirical 
phenomena pose difficulties for most sequencing mechanisms, but that converging evidence from 
behavioural flexibility, error data arising from when the system is stressed or when it is damaged 
following brain injury, and between trial effects in reaction time tasks, point to a hybrid symbolic 
activation-based mechanism for the generation and regulation of sequential behaviour. Some 
implications of this view for the nature of mental computation are highlighted. 

1 Introduction 

A critical aspect of much human behaviour is the sequential generation of actions, responses or 
outputs. This can be seen in most everyday situations. For example, in language production the 
sequential ordering of words is critical to their meaning, and in routine action (such as dressing or 
preparing a meal) the order of one’s actions, though not fully rigid, is still vital to successfully 
achieving one’s goals. The sequential generation of actions is also seen in many behaviours elicited in 
the psychological laboratory, such as serial memory recall tasks and choice reaction time tasks. 

Given that generation and regulation of sequential behaviour is implicated in most activities, it is 
perhaps surprising that the area has been largely ignored by philosophical discussions about the nature 
of mental representation and mental processing. Such discussions typically focus on whether mental 
representation is propositional, symbolic and/or compositional, whether mental computation is symbol 
manipulation or can be validly described as such at some level of analysis, or the relationship between 
mental states and brain states. In doing so, there is a tendency to ignore how mental representations 
serve to guide or control behaviour. Equally, there is a tendency to oversimplify some approaches to 
mental computation (notably symbolic approaches, which are frequently argued to be Turing 
equivalent, and hence all reducible to Turing machine computation). 

Due consideration of sequential behaviour reveals that there are a number of distinct computational 
mechanisms or algorithms that may, in principle, generate and/or regulate sequential behaviour, and 
that consequently may be embodied in the neural implementation of sequential control. At one 
extreme are the prototypically symbolic mechanisms of Turing machines (Turing, 1937) and Von 
Neumann machines (Von Neumann, 1947). Turing machines have a discrete internal state, a function 
that specifies how the state changes in response to the current state and the current input, and a 
function that specifies how to act in response to the current state and the current input. Given an initial 
state and an input sequence (represented in the form of an infinite tape), a Turing machine will 
progress through a series of states, effecting a series of acts that either change the tape or change the 
region of the tape on which the machine is focussed. The Von Neumann machine represents an 
alternative mechanism for the generation of sequential behaviour. In this case, sequential behaviour is 
specified by a sequence of stored instructions, and a “fetch-execute” cycle operates on the stored 
instructions. This cycle involves fetching the current instruction and executing it, and then fetching the 
next instruction and executing it, and so on. 
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Turing and/or Von Neumann machines are frequently cited by philosophers of cognitive science as 
representing the standard model of symbolic computation within cognitive science (e.g., Bechtel & 
Abrahamsen, 1991; Frawley, 1997; Dawson, 1998; Van Gelder, 1998; Frawley, 2002). They are 
equally frequently attacked as poor models of cognitive processing. Dawson (1998) summarises the 
principal arguments against the approaches: serial processing (as effected by both approaches) is too 
slow for most cognitive behaviour; the structure/process distinction arising from the separation of the 
machine from the transition functions or program leads to brittleness that cannot capture the subtle 
effects of, for example, physical damage analogous to that resulting from minor brain injury; discrete 
symbolic processing is insufficiently flexibility to deal with continuous, noisy or graded inputs; and 
symbolic systems are biological implausible and fail to account for learning. 

Dawson’s arguments apply to Von Neumann machines and the standard interpretation of Turing 
machines, but they do not apply to all symbolic mechanisms for the generation of sequential 
behaviour. First, Wells (1998) has provided an interpretation of Turing machines that side-steps the 
arguments. Wells suggests that Turing machines provide a good model of human cognition when the 
infinite tape is viewed as a representation of the environment (as, he asserts, Turing intended it to be). 
In making this argument, Wells adopts a highly abstract view of mental processing, and while the 
argument is compelling, the highly abstract nature of the Turing sequencing mechanism entailed by 
the view provides little insight into the implementation of a sequencing mechanism at the 
representational and algorithmic level. Second, and more critically, production systems (as described 
below) provide a symbolic control mechanism that may support parallel, fine-grained cognitive 
processing, and hence that has the potential to avoid the difficulties enumerated by Dawson (1998).  

Additional alternative sequencing mechanisms that avoid Dawson’s criticisms are embodied in 
interactive activation networks (Rumelhart & Norman, 1982; McClelland, 1992) and recurrent 
connectionist networks (Jordon, 1986; Elman, 1990; Plaut & McClelland, 1993). In fact, production 
systems, interactive activation networks, and recurrent networks all provide viable mechanisms for the 
cognitive control of sequential behaviour, and these mechanisms form the principal points of departure 
for the discussion below. 

Historically, the computational mechanisms supporting sequential behaviour where first discussed by 
Lashley (1951), who contrasted approaches to behaviour based on “chaining” of actions (i.e., where 
each action acted as a cue for subsequent actions) with those based on activation or priming of actions 
(i.e., where action representations have an activation value and behaviour is triggered when a 
representation exceeds some threshold). Lashley suggested that data from, for example, errors in 
writing and speaking, supported an activation-based view, rather than a chaining view. The theory and 
practice of computation and cognitive modelling have advanced greatly since Lashley’s work, and the 
debate must now consider production systems, and be informed by the results of numerous simulation 
studies. 

So-called chaining models have also developed greatly since Lashley’s (1951) critique. Recurrent 
network models (which we identify with chaining models) have demonstrated that complex 
behaviours and error patterns can be simulated, and even acquired, using a basic chaining mechanism. 
Many of Lashley’s criticisms still hold, however. In particular, error data (from both speech and 
action) strongly imply that behavioural units are primed in anticipation of their production. It is this 
priming that recurrent networks fail to capture, but that comes naturally to interactive activation 
models. Lashley’s position has also been strengthened by the arguments and models of Houghton & 
Hartley (1996), who presented a series of gradually more complex interactive activation models 
illustrating more complex aspects of sequential behaviour. 

The sequence generation/regulation debate mirrors a number of other debates in the cognitive 
sciences, such as that concerning the nature of mental representation (local or distributed: see Hinton 
et al., 1986; Page, 2000), whether various cognitive processes (such as word reading (Seidenberg & 
McClelland, 1989; Plaut & McClelland, 1993; Coltheart et al., 1993), or object semantics (Shallice, 
1987; Riddoch et al., 1988)) are implemented by single route or dual route mechanisms, and whether 
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the cognitive architecture is unitary (Newell, 1990) or composed of interacting functional modules 
(e.g., Shallice, 1988; Cooper & Shallice, 1995; Anderson et al., submitted). Such debates need not be 
resolved dogmatically in favour of either side (e.g., mental representation may involve both local and 
distributed representations), and the resolution proposed here of the sequence generation/regulation 
debate is a hybrid one. 

This paper adopts the following strategy. We begin by elaborating the three computational 
mechanisms for sequencing behaviour identified above. This is followed by a review of some 
empirical phenomena relating to the generation and regulation of sequential behaviour, together with a 
discussion of existing computational models of these phenomena. The review suggests a hybrid 
activation-based production system mechanism for the generation and regulation of sequential 
behaviour. The general discussion raises issues relating to this conclusion, discusses existing 
architectures which are consistent with it, highlights implications fort he connectionist/symbolic 
debate, and points to some resulting challenges. 

2 Computational Mechanisms for Sequential Behaviour 

2.1 Production System Control 

Work on human problem solving in the 1960s led to the introduction to cognitive psychology by 
Newell, Simon and colleagues of production systems (see, for example, Newell & Simon, 1972, 
Newell, 1973). A production system consists of two memories (working memory and production 
memory), and a cyclic control regime that operates on those memories (see Figure 1, left). Working 
memory elements represent discrete units of information concerning the system’s conception of the 
current state of processing. Production memory elements are rules that specify conditions under which 
existing working memory elements may be deleted or new working memory elements may be added. 
Working memory elements are typically structured (i.e., not atomic), and production rules typically 
contain variables that may match against parts of different working memory elements. As a simple 
illustration, working memory might contain elements such as: 

taller(kim, sandy) 
taller(sandy, leslie) 

 
with the intended interpretation that Kim is taller than Sandy and Sandy is taller than Leslie. 
Production memory might then contain a general rule expressing the fact that “taller” is a transitive 
relation: 

IF:  taller(X, Y) is in working memory & 
taller(Y, Z) is in working memory 

THEN:  add taller(X, Y) to working memory 
 
where X, Y and Z are variables.  

Production rules represent general ways in which the contents of working memory may be modified. 
A full-scale production system will generally have tens or even thousands of production rules. The 
purpose of the production system control regime is to find all ways of binding variables in production 
rules such that the conditions of those production rules are satisfied, to then select one instance, and 
finally to apply that production instance by modifying working memory accordingly. The control 
regime consists of two phases (see Figure 1, right). In the recognise phase the system determines all 
matching production instances and selects one instance from this set. The instance is applied or fired 
in the act phase. The process then repeats, with recognise and act phases alternating until the system is 
explicitly halted. 

Input and output are typically handled within production systems through the addition of perceptual 
modules, which may add elements to working memory, and motor modules, which either monitor 
working memory for motor commands or which are triggered directly by productions with specialised 
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actions. Processing (and motor output) may thus be controlled by the effects of one production 
triggering another production or by new input triggering a different production, effectively 
interrupting ongoing processing. 

Conflict resolution is the process by which one production instance is chosen. Production systems 
generally include a variety of principles to guide conflict resolution, such as favouring production 
instances that match many working memory elements over those that match few (on the assumption 
that such rules will correspond to special cases while rules that match few elements will correspond to 
general or default rules), and favouring rule instances that match recently created working memory 
elements over rule instances that match working memory elements that have been present for some 
time (on the assumption that new information is likely to be more relevant to current processing than 
old information). Conflict resolution plays a pivotal role within production system control because it 
dictates which production instance will be applied when multiple production instances are 
simultaneously applicable. 

Production systems have been used extensively in modelling human problem solving (e.g., Newell & 
Simon, 1972), cognitive skill (e.g., Anderson, 1993) and even cognitive development (Klahr et al., 
1987). They also form the basis of several cognitive architectures, including Soar (Laird et al., 1987; 
Newell, 1990), ACT-R (Anderson, 1993; Anderson & Lebiere, 1998; Anderson et al., submitted; see 
also Anderson, 1976), 4-CAPS (Just & Carpenter, 1992; Just et al., 1999), and EPIC (Meyer & Kieras, 
1997; Kieras & Meyer, 1997; Kieras et al., 2000), and through these architectures have been applied to 
a wide range of cognitive tasks.  

Production system control has much to recommend it with respect to cognitive control, especially 
when compared to Von Neumann and Turing control: it is flexible (there is no explicit sequencing 
specified for productions, so they may fire in response to the changing contents of working memory, 
rather than according to some hard-wired schedule), production rules can be understood as discrete 
units of knowledge, and learning can be accommodated by mechanisms which add production rules to 
production memory. The prime disadvantage is arguably the conflict resolution sub-process, which in 
its basic form can be overly rigid. This is reflected by the fact that all four cognitive architectures cited 
in the previous paragraph adopt different approaches to conflict resolution. 

Figure 1: Structure and process in a generic production system 
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2.2 Control via Interactive Activation 

Sequential behaviour may also be controlled through the mechanism of interactive activation. An 
interactive activation network consists of a set of nodes or units at least some of which correspond to 
the individual outputs or responses that the network may generate. These nodes have activation values 
that may vary, typically between zero and one. Nodes are subject to excitatory and inhibitory 
interactions with other nodes within the network. Critically, inhibitory interactions within subsets of 
nodes ensure that only one node within such a subset may be highly active at a time. Interactive 
activation networks typically employ a threshold, with behaviour being controlled by any response 
node whose activation exceeds that threshold. (See McClelland (1992) for further details.) 

To illustrate, consider the McClelland & Rumelhart (1981) interactive activation model of word and 
letter recognition. This includes feature nodes, letter nodes and word nodes. Word nodes are excited 
by those letter nodes that correspond to the letters which make up the corresponding word. Word 
nodes are also inhibited by other word nodes, by an amount proportional to the activation of the other 
word nodes. Similarly, letter nodes are activated by feature nodes that correspond to the features of the 
letter, and letters at the same position within a word inhibit each other. Figure 2 shows a schematic 
fragment of the network. 

Processing in the network is initiated by activating the feature nodes corresponding to a particular 
stimulus. Activation then propagates to letter nodes that contain those features. Inhibition between 
letter nodes at each position will normally ensure that exactly one letter node at each position within a 
word will become active. While this is happening, activation propagates from the letter nodes to the 
word nodes (and back). The propagation of activation is generally modelled through a cyclic process, 
and the number of cycles required for the network to yield a response (i.e., before a word node 
exceeds the network’s threshold) under various conditions may be related to the time taken for 
participants to identify words under equivalent conditions. 

In this basic form, interactive activation networks allow multiple sources of excitation and inhibition 
to be weighed up in the generation of a single response. Interactive activation networks may be 
augmented to produce sequences of responses by including a mechanism to inhibit the initial response 
after it has been generated. The dynamics of activation flow will then normally lead to the generation 
of a second response. This too may be inhibited, leading to a third response, and so on. 

Figure 2: Structure and process in interactive activation control 
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The interactive activation approach has been used to model sequential behaviour in a range of 
domains, including typing (Rumelhart & Norman, 1982), language production in normals and 
neurological patients (Dell, 1986; Dell et al., 1997), sequence learning and recall (Houghton, 1990), 
memory for serial order (Burgess & Hitch, 1992; Henson, 1998), spelling (Houghton et al., 1994; 
Glasspool, 1998), short-term memory for non-words (Hartley & Houghton, 1996) and the control of 
routine action (Cooper et al., 1995; Cooper & Shallice, 2000). Interactive activation has also been 
used to control separable cognitive processes or functions. Thus, Cohen et al. (1990: see also Cohen & 
Huston, 1994) present a model of the control of reading and colour naming sub-processes in the 
Stroop task. Further interactive activation models in this and related domains are described by 
Botvinick et al. (2001) and Gilbert & Shallice (2002). 

The crux of the interactive activation approach is lateral inhibition between competing nodes: nodes 
that are mutually exclusive normally inhibit each other by an amount proportional to their own 
activation. This prevents multiple mutually exclusive nodes from becoming simultaneously active. 
There are two keys to generating sequential behaviour within an interactive activation network: the 
differential activation of response units during a task (also known as the application of an activation 
“gradient” over the response units) and the inhibition of each response node when its activation 
exceeds the network’s threshold. 

2.3 Recurrent Network Control 

Recurrent connectionist networks provide a third alternative mechanism for the controlled generation 
of sequential behaviour. A simple recurrent network consists of a series of layers of nodes (typically 
three), with nodes in each layer connected to subsequent layers, and with nodes in one layer feeding 
back to nodes in a previous layer (cf. Jordon, 1986; Elman, 1990). Processing consists of activating the 
nodes in the first layer (which represents the input), and allowing this activation to propagate through 
connections to internal layers and then to the output layer (which represents the output) using standard 
feed-forward connectionist techniques (cf. Bechtel & Abrahamsen, 1991). Feedback allows the output 
generated at any point to be dependent upon previous inputs and outputs, and learning algorithms may 
be applied to adjust connection strengths between nodes such that specified inputs result in the 
generation of specified sequences of outputs. Figure 3 shows the basic arrangement for a three-layer 
“Elman-style” net. 

Learning within an Elman net ensures that the internal layer grows to represent a kind of context. The 
network’s behaviour can then be analysed in terms of a state-dependent input/output mapping plus a 
state transition function: each input pattern generates an output which is dependent on the network’s 
state, while simultaneously altering the network’s state. Hence outputs depend on both the current 
input and previous processing. In this way, recurrent network control implements a continuous 
equivalent of Wells’ (1998) interpretation of a Turing machine. 

The simple recurrent network described above may be extended to allow feedback loops within layers 
(i.e., doing away with an explicit context layer), but regardless of such extensions, recurrent networks 
differ from interactive activation networks in two critical ways. First, representation within an 
interactive activation network is localist, whereas within a recurrent network it is distributed. Second, 
recurrent networks do not employ inhibition between competing subsets of nodes. 

Recurrent network techniques have been applied to a range of cognitive tasks, including sentence 
processing (Elman, 1990, 1993), sequence learning (Cleeremans, 1993), single-word reading and its 
disorders (Hinton & Shallice, 1991; Plaut & Shallice, 1994), and the sequential generation of actions 
(Botvinick & Plaut, 2000, submitted). They have also been used to develop a control system for a 
hybrid modular cognitive architecture (the CAP architecture of Schneider and colleagues: see 
Detweiler & Schneider, 1991; Schneider & Oliver, 1991). 
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2.4 Recurrent Networks and Interactive Activation: Equivalent Mechanisms? 

There is a correspondence between critical aspects of functioning in recurrent networks and interactive 
activation networks. With fixed input a recurrent network will generally settle into a stable state. Such 
a state is known as an attractor state. Similarly, with fixed input an interactive activation network will 
generally settle into a state where one node within any set of competing nodes is active. Attractor 
states may therefore be viewed in some sense as the recurrent network analogue of nodes within an 
interactive activation network. If this correspondence could be formalised (e.g., though a mechanistic 
procedure for converting one network to the other), then recurrent networks and interactive activation 
networks could be viewed as alternative descriptions of a single mechanism. The recurrent network 
view would then seem to offer several advantages. First, within recurrent networks attractor states (and 
hence internal representations) are acquired in response to external input and learning. They are not 
pre-specified as with interactive activation networks. Second, recurrent networks do not require an 
explicit mechanism (lateral inhibition) to ensure that they represents just one state at a time: attractor 
states are naturally disjoint. (More precisely, attractor states may develop to reflect the structure of the 
task, possibly resulting in either disjoint or additive attractors depending on the nature of the task: 
Plaut & McClelland, 1993). Lateral inhibition is required within interactive activation networks 
specifically to prevent multiple nodes from becoming simultaneously active. 

While the above correspondence suggests a potential equivalence between recurrent and interactive 
activation networks, critical to any such equivalence would be a demonstration of how representations 
could develop within recurrent networks such that a specific input would encourage the network to 
move towards a specific attractor state, in the same way that excitation of a specific node within an 
interactive activation network encourages that network to settle into a state in which that node is most 
active. However, exact equivalence (in the form of a mechanistic translation) remains to be 
demonstrated, and different properties of the two approaches (e.g., the form of error to which each is 
susceptible, as discussed below) argue against any direct mapping.  

3 Relevant Empirical Phenomena 

The computational mechanisms described in the previous section are all able to generate sequences of 
outputs. If sequential behaviour consisted only of abstract output sequences then one would not be 
able to discriminate between the mechanisms on purely behavioural grounds. However, human 

Figure 3: Structure and process in recurrent network control 
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sequential behaviour exhibits a number of characteristics that provide insight into its underlying 
computational mechanisms. First, there are insights that stem from the capabilities and weaknesses of 
the behaviour control system or systems. Sequential behaviour is susceptible, for example, to several 
characteristic types of errors, and these types of error do not naturally arise from each of the 
computational mechanisms described in the previous section. Second, there are insights that stem from 
the timing of behaviour, and in particular the effects of recent prior experience on reaction times in a 
range of laboratory tasks. Again, these effects are more easily explained under some sequential 
mechanisms than others. This section elaborates on insights from these two sources by describing a 
range of robust empirical effects and reviewing existing computational accounts of those effects. 

3.1 Routine and Non-Routine Action 

3.1.1 Action Slips and Lapses 
Routine functioning of the cognitive/behavioural control system requires that it be able to generate 
behavioural sequences such as those involved in grooming, feeding and moving around the 
environment. For example, the system must be able to control one’s behaviour whilst brushing one’s 
teeth, or control the routine for commuting between home and work. These sequences involve 
performing a series of relatively basic actions in an appropriate order and in a manner that is both 
dependent upon one’s specific goals and responsive to the immediate (changing) environment. Thus, 
the basic actions involved in brushing one’s teeth will depend upon the location of the toothbrush and 
toothpaste (which may vary from occasion to occasion), and possibly also the time available and the 
type of food recently consumed. The behavioural control system must therefore be sensitive to both 
internally generated goals and external constraints. 

While the behavioural control system is capable of generating reasonably complex behaviours, it is 
also prone to certain kinds of error. Reason (1978, 1984) and Norman (1981) conducted diary studies 
in which participants recorded their slips and lapses of action. Common errors included omission of 
steps (e.g., failing to put a teabag in the tea-pot when preparing a pot of tea), anticipatory errors (e.g., 
inserting a key in a door with one hand and then attempting to open the door with the other before 
turning the key), perseverative errors (e.g., when adding lumps of sugar to tea/coffee failing to stop 
after the intended amount), object and place substitution errors (e.g., placing a mug of freshly prepared 
coffee, instead of the milk, in the fridge) and capture errors (e.g., counting “eight,” “nine,” “ten,” 
“jack,” “queen,” “king” when counting the pages copied by a photo-copier). 

These kinds of slips and lapses provide some insight into the functioning of the behavioural control 
system. Capture errors, for instance, generally occur when there is some contextual overlap between 
the intended and capturing sequences (e.g., both include similar actions that are performed in similar 
contexts), and when both sequences are well-learnt. This suggests that the internal representation of 
well-learnt action sequences may be confused (e.g., because their representations are “close” within 
the space of cognitive representations or because performance of one effectively primes the other). 

Two computational models of the control of routine action have recently been proposed. Cooper & 
Shallice (2000: see also Cooper et al, 1995) present a hierarchically structured interactive activation 
model whereas Botvinick & Plaut (2000, submitted) present a recurrent network model. Both models 
perform a similar routine task: making a cup of instant coffee, and both models are able to perform the 
task normally (i.e., generating appropriate actions in sequence) or with occasional slips and lapses. In 
the Cooper & Shallice model slips and lapses arise either from the effects of random noise on the 
spreading of activation or from inappropriate regulation of various activation sources (e.g., insufficient 
top-down or bottom-up activation). Noise in the propagation of activation is the only factor that may 
lead to errors in the Botvinick & Plaut model. 

Notwithstanding various criticisms that may be made of the models, they demonstrate that the 
computational mechanisms underlying interactive activation and recurrent networks are in principle 
capable of controlling routine action and generating human-like slips and lapses. This contrasts with 
production systems, which in their basic, discrete, symbolic, form would appear to be at odds with 
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action lapses. However, error data cannot fully rule out production system control. It appears more 
viable when supplemented with graded condition matching and stochastic production firing, so that 
productions which don’t quite match the current state have an opportunity to fire, as, for example, in 
the ACT-R architecture (Anderson & Lebiere, 1998; Anderson et al., submitted). 

3.1.2 Disorders of Routine Action 
Errors in routine behaviour are also common in patients with certain forms of brain injury. The 
behaviour of patients with extensive frontal lesions, for example, can be grossly disorganised (Luria, 
1966; Duncan, 1986; Schwartz et al., 1991; Schwartz et al., 1995; Humphreys & Forde, 1998), with 
behaviour being dominated by errors similar to the slips and lapses of normals. Thus, Luria (1966) 
reported one patient with extensive frontal lesions who, when asked to light a candle, continued to 
strike the match even after it was lit (a perseverative error). On another occasion after lighting the 
candle a patient started to “smoke” it as if it were a cigarette (a capture error). Luria suggests that such 
behaviours result from “the gross disintegration of the ‘preliminary synthesis’ of intended actions and 
by disturbances of the process of comparison of intention and effect” (Luria, 1966, p. 238). 

Other interpretations of the difficulties of frontal patients are possible. A common view is that the 
frontal lobes are critical for the inhibition of prepotent responses (see, for example, Perret, 1974; 
Burgess & Shallice, 1996). On this view the behaviour of frontal patients is driven more by over-
learned routines and environmentally triggered behaviours than by goals or desires. Alternatively, 
Goldman-Rakic (1987) argues that the frontal lobes are primarily responsible for the maintenance of 
information in working memory. Following this position, Kimberg & Farah (1993) suggest that the 
difficulties of frontal patients, including those relating to behavioural control, are due to the weakening 
of links between related elements within working memory. This position is consistent with frontal 
behaviour resulting from “the gross disintegration of the ‘preliminary synthesis’ of intended actions”, 
but de-emphasises the role (if any) of monitoring. A related view is offered by Duncan et al. (1995), 
who suggest that frontal patients have difficulty maintaining goal information, and that action 
disorganisation of frontal patients is a consequence of goal “decay.” 

Disorganisation of routine action has been successfully modelled in both the interactive activation 
framework (Cooper et al., 1995; Cooper & Shallice, 2000) and the recurrent network framework 
(Botvinick & Plaut, 2000, submitted). Action disorganisation is simulated through the addition of 
substantial noise or through lesioning pathways between functionally distinct sets of nodes. Some 
errors of action disorganisation have also been simulated within the ACT-R production system 
architecture (Kimberg & Farah, 1993) by reducing the spread of activation between related working 
memory elements. 

A second form of neurological damage—temporo-parietal lesions of the left cerebral hemisphere—
may also lead to disorganisation of simple actions (e.g., Liepmann, 1920; Lehmkuhl & Poeck, 1981; 
DeRenzi & Lucchelli, 1988). While some aspects of behavioural breakdown in patients with such 
lesions are similar to those of frontal patients, DeRenzi & Lucchelli (1988) interpret the breakdown in 
terms of a deficit in access to an hypothesised semantic store of object/action knowledge. On this 
account, the deficit is therefore not a control deficit, but a deficit in access to the knowledge employed 
by control processes. The dissociation of control and knowledge is a problem for accounts of action in 
which control and knowledge are inter-twined, such as the recurrent network model of Botvinick & 
Plaut (2000, submitted). However, the degree of dissociation is open to debate, and recurrent network 
models cannot be ruled out until further case studies demonstrate an unequivocal dissociation between 
knowledge and control. 

A number of additional neuropsychological deficits with implications for the generation and regulation 
of sequential behaviour have been documented. For example, utilisation behaviour (Lhermitte, 1983; 
Shallice et al., 1989) arises from damage to the orbital surfaces of the inferior frontal lobes and/or the 
head of the caudate nucleus, and involves an apparent inability by afflicted patients to inhibit 
behaviours triggered by the immediate environment. Thus, Lhermitte (1983) describes a patient who, 
when confronted with a pair of spectacles, picked up the spectacles and put them on, even though he 
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was already wearing spectacles. Alien (or anarchic) hand syndrome (e.g., Della Sala et al, 1991) is a 
disorder that is in some ways related. Patients with this syndrome show an extreme form of utilisation 
behaviour but only with one hand, often such that the actions of the anarchic hand conflict with the 
actions of the “normal” hand (and the reported intentions of the patient). 

Utilisation behaviour suggests that the sequential generation and regulation of behaviour can be 
influenced by the visual environment. Empirical studies with neurologically healthy participants (e.g., 
Rumiati & Humphreys, 1998; Tucker & Ellis, 1998) have demonstrated that the visual environment 
can effectively prime certain actions, and utilisation behaviour would appear to reflect uninhibited or 
overactive priming of this sort. This evidence further supports an activation-based action control 
system, such as that employed in the above-mentioned models of action. 

The control of action may also be affected by disorders of the dopamine system, including Parkinson’s 
disease, schizophrenia and amphetamine psychosis. Under-activity of the dopamine system (as in 
Parkinson’s disease) appears to be related to bradykinesia, a marked slowing of action initiation. In 
contrast, over-activity of the dopamine system (seen in some cases of schizophrenia and amphetamine 
psychosis: Frith, 1992) has been related to increased response rates and stereotyped behaviour (Lyons 
& Robbins, 1975; Frith, 1992). These disorders provide further support for an activation-based 
substrate underlying action control, and Cooper & Shallice (2000) explicitly demonstrate how action 
initiation and response rates vary with one parameter (the degree of self activation) within their 
interactive activation schema network. This parameter may be regarded as a loose analogue of 
dopamine concentration or receptivity. With regard to other sequence control mechanisms, one may 
speculate that a similar parameter may have a similar effect within an ACT-R production system 
model. However, this does not generalise to the only existing recurrent network model of action 
control (Botvinick & Plaut, 2000, submitted), which generates actions in sequence at a fixed rate (of 
one action per processing cycle). In order to generate response rates, this model would need to be 
augmented, perhaps through the addition of a settling process in the output layer. However, in the 
absence of an explicit demonstration it is unclear if such an augmented model would still produce the 
other target behaviours. 

3.1.3 Monitoring and Error Correction 
Slips and lapses in normal action do not go unnoticed or uncorrected. The action control system 
appears to monitor behaviour and modulate it on detection of an error. Empirical studies of action 
monitoring and error correction in routine action are rare, presumably because of the difficulties in 
eliciting errors in routine situations. One exception is that reported by Humphreys et al. (2000). In this 
study participants were required to complete a number of “everyday” tasks (such as preparing a letter 
for posting) while simultaneously completing a second, cognitively demanding, task (the Trails task, 
which requires participants to generate a verbal sequence of letters and digits according to specified 
rules). The dual task situation led to substantial error rates on the everyday tasks, with omission errors 
being most frequent. However, participants also produced a number of aborted reach actions, in which 
they began to reach to one object, but then discontinued the reach. In addition, 37 of the 74 action 
errors produced by participants occurred immediately after a self-corrected error on the Trails task. 
The occurrence of errors following self-correction on the Trails task suggests that the generation of 
responses in the Trails task is monitored, and that error correction interferes with production of actions 
in the everyday task. The suppression of actions prior to their completion (i.e., the discontinued reach 
actions) also suggests on-line monitoring of behaviour in the everyday tasks. 

Humphreys et al. (2000) thus provides empirical evidence for processes or mechanisms of monitoring 
and error correction operating alongside the sequential generation of action, and a complete account of 
the sequential generation and regulation of action must incorporate such processes or mechanisms. 
Cooper et al. (in preparation) have demonstrated how the interactive activation model of Cooper & 
Shallice (2000) may be extended with rudimentary processes of monitoring and error correction. The 
extensions make use of action preconditions and postconditions that are required within the basic 
model for action sequencing. While the resulting model is still highly reliant upon interactive 
activation for the generation of actions in sequence, it also has a strong hybrid flavour, with the flow 
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of activation being gated by discrete functions that test the model’s representation of the state of its 
environment. Monitoring and error correction are thus consistent with the basic approach of interactive 
activation. 

Monitoring and error correction would also appear to be straightforward extensions of an action 
control system developed within a graded production system architecture such as ACT-R. The 
essential element in such systems is the existence of productions that detect abnormal or unanticipated 
states and invoke error correction routines. The equivalent extensions to recurrent network control, 
however, appear problematic. While a recurrent network model might be extended to include a 
separate network for the detection of abnormal or unanticipated states, error correction appears to 
require mechanisms for interrupting the intended action sequence, invoking an appropriate, goal 
directed, error correction sequence, and eventually resuming the intended action sequence. It is 
difficult to envisage how these mechanisms might be implemented without resorting to some form of 
temporary goal store, which is incompatible with the recurrent network model of Botvinick & Plaut 
(2000, submitted). 

3.1.4 Dual Tasking, Interleaving and Responding to Interruptions 
Non-routine situations impose significant additional computational requirements on an action control 
system. Our abilities to perform two tasks concurrently (sometimes with little or no interference 
between tasks: Byrne & Anderson, 2001), to interleave multiple tasks (Burgess, 2000; Burgess et al., 
2000) and to respond to asynchronous interruptions all create difficulties for recurrent network control. 
Equally, all may be handled with little difficulty within a system based on production system control. 
Thus, Meyer & Kieras (1997), Kieras & Meyer (1997) and Kieras et al. (2000) provide models within 
the EPIC production system architecture of a range of dual task effects centred on Psychological 
Refractory Period (PRP) phenomena (see below), and Byrne & Anderson (2001) describe competing 
models within the ACT-R production system architecture. 

PRP effects generally concern the effects of dual-tasking on reaction times in laboratory tasks. 
Salvucci & Macuga (2001) describe an ACT-R model of dual tasking in a more naturalistic setting: 
dialling a mobile telephone number while driving. The model produces a good fit to both the driving 
and dialling behaviour of participants operating a driving simulator under identical conditions. The 
model incorporates mechanisms for responding to interruptions, because dialling must be interrupted 
when unanticipated events relating to the driving task occur. 

The computational demands of dual tasking, interleaving and responding to interruptions are less 
easily met by recurrent network and (pure) interactive activation models. As in the case of monitoring, 
these additional processes appear to require augmentations to the basic mechanisms of activation 
propagation. 

3.1.5 Summary: Implications of Action Selection on Sequential Control 
Action control poses strong constraints on the computational mechanisms underlying the generation 
and regulation of sequential action. Some of these constraints can be met by interactive activation and 
recurrent network models of action control, but those models are stressed by phenomena such as 
monitoring, error correction, dual tasking, interleaving and responding to interruptions, which are 
more easily supported by production system models. It is unclear, however, how action slips and 
lapses and the errors of neurological patients might arise in simple production systems models. These 
errors appear to require an activation-based account of action control. The evidence from action 
control thus supports a hybrid account of sequence generation and regulation, involving elements of 
both spreading activation and production system control. The ACT-R architecture embodies one 
hybrid mechanism, and it may be possible to extend the interactive activation model of Cooper & 
Shallice (2000) to embody another. However, the extension of the Botvinick & Plaut (2000, 
submitted) recurrent network model appears more problematic. 
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3.2 Reaction Time Effects 

Properties of the computational mechanisms underlying the generation and regulation of sequential 
behaviour may also be adduced from reaction time studies involving relatively brief trials and 
performed under controlled laboratory settings. Findings from models of these studies provide a kind 
of micro-scale complement to the macro-scale findings derived from routine and non-routine 
behaviour. 

3.2.1 Simulating Reaction Times with Different Control Regimes 
The mechanisms of sequence generation and regulation must all be supplemented with additional 
assumptions in order to make contact with reaction time data. All approaches employ a processing 
cycle, so the natural assumption is that the number of processing cycles required by a task should 
correlate with reaction time on that task. Implicit in this is the assumption that cycle time is constant. 
With regard to production system control, several production system architectures (Soar, ACT-R, 
EPIC and 3-CAPS) have converged upon a timing of approximately 50ms per production cycle (cf. 
Anderson et al., submitted). This allows these architectures to make absolute timing predictions. These 
predictions must also take into account the speed of perception and motor processes and, at least in the 
case of ACT-R, the speed of memory retrieval, which is dependent upon a number of factors. With 
regard to interactive activation control, reaction times are generally related directly to the number of 
processing cycles between the input and generation of a response. However, the number of processing 
cycles for any particular stimulus is generally a function of numerical parameters such as lateral 
inhibition, self activation and decay. It is therefore not possible to specify a strict cycle time 
independent of a specific model. This reflects the fact that the equations governing interactive 
activation are difference equations that specify change in activation per unit time. These difference 
equations approximate differential equations, but different networks may use different degrees of 
approximation. In the case of recurrent networks, processing time is generally related to the number of 
cycles required before the network settles into a stable attractor state. Again, it is not possible to 
specify a precise cycle time, for reasons analogous to those given for interactive activation networks. 

3.2.2 The Rabbit Effect 
Rabbit (1966) analysed response times on error and non-error trials of a simple choice reaction time 
task and found that the mean reaction time on error trials was less than that on non-error trials. 
Furthermore, reaction time on non-error trials immediately following an error was greater than on 
other non-error trials. Laming (1968) reported similar results, but demonstrated that the increase in 
reaction time following an error was followed by a gradual decrease in reaction time, until a further 
error occurred, resulting in another increase in reaction time. These results may be accounted for by 
assuming that a response is made once a signal reaches a threshold. This threshold can change during 
the task. When the threshold is low responses are fast, but errors may occur. When an error occurs the 
threshold is increased, resulting in slowed reaction time on the next trial. 

Botvinick et al. (2001) have modelled the between-trial effects in Laming’s task by augmenting an 
existing interactive activation model of perceptual choice (that of Usher & McClelland, 2001). The 
highly abstract model of perceptual choice consists of two input units (one for each possible input) and 
two response units (one for each possible output), with direct connections from each input unit to their 
respective response units, lateral inhibition operating between the response units, and self activation 
operating on each response unit (in the form of response priming). When response priming is low, 
reaction times (measured in number of cycles before either response unit reaches threshold) are high 
and errors are low. When response priming is high, reaction times are low but errors are high. 
Botvinick et al.’s extension to the model consists of adding a feedback loop that monitors the degree 
of conflict between the response units (i.e., the degree to which both are simultaneously active), and 
adjusts response priming accordingly. If there is high conflict (and hence high probability of error), 
response priming is reduced. This leads to less conflict, longer reaction time and reduced probability 
of error on the next trial. If conflict is low, response priming is increased, leading to shorter reaction 
times but increased probability of error. The extended model does a good job of capturing the data, 
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and demonstrates that interactive activation control can account for the kind of between-trial effects 
observed in choice reaction time tasks. 

There are few if any competing models of the Rabbit Effect, so evaluation of other approaches to 
sequence generation and regulation is necessarily speculative. However, production system models 
with constant cycle times would appear to be unable to capture the effect. The ACT-R architecture is 
an exception, because production firing in ACT-R is dependent upon production utility (which alters 
with a production’s success or failure) and timings in ACT-R are dependent upon factors such as 
memory retrieval time (which is dependent upon how recently memory chunks have been accessed 
and how they are related to other memory chunks). Modelling the Rabbit Effect within a recurrent 
network would appear more difficult, however. Simply feeding the end state from one trial back into 
the network on the next trial, would ensure that the network’s start state varied from trial to trial, and 
could affect the settling time of the network. However it would not guarantee that settling time was 
reduced after correct trials and increased after error trials. This would require that following a correct 
trial the network starts from a state that is relatively close to an attractor state, and following an error 
trial the network starts from a state that is distant from both attractor states. Thus, while recurrent 
network control cannot be ruled out a priori, a solid case for its viability remains to be made. 

3.2.3 Between Trial Effects in the Eriksen Task 
Between trial effects also occur in Eriksen and Eriksen’s flankers task (Eriksen & Eriksen, 1974). The 
task is basically a choice reaction time task where the stimulus (e.g., the letter S) is surrounded by 
distractors that may be the same as the stimulus (in congruent trials) or different from the stimulus (in 
incongruent trials). Reaction times are faster and error rates are lower in congruent trials than 
incongruent trials. Thus, the presence of congruent distractors improves performance compared with 
the presence of incongruent distractors. More interestingly, reaction times and error rates are also 
dependent on the nature of previous trials. Thus, Gratton et al. (1992) found that performance was 
better on trial N if it was the same kind of trial as trial N-1. Incongruent trials were responded to more 
quickly and with fewer errors if they were preceded by incongruent trials, and congruent trials were 
responded to more quickly if they were preceded by congruent trials (with accuracy near ceiling in 
congruent trials). These data suggest on-line modulation of spatial attention in response to task 
demands. When performing congruent trials, it is advantageous to adopt diffuse spatial attention (so 
flankers can speed identification of the stimulus). When performing incongruent trials, it is 
advantageous to adopt focussed spatial attention (so flankers do not slow identification of the 
stimulus). The pattern of the data can be explained by these assumptions if, in addition, the breadth of 
spatial attention adjusts in response to each trial and carries across trials. 

Botvinick et al. (2001) have demonstrated that this on-line modulation of attention can be captured 
within an interactive activation model, in a way directly analogous to the modulation of response 
priming in their model of the Rabbit Effect. Other approaches to sequence generation and regulation 
have not been applied to the task. Conceivably the effects could be captured within the ACT-R and 
EPIC production system architectures, which employ separate modules (with separate processing 
times) for visual processing. Once again, however, the effects appear to be troublesome for recurrent 
network models. 

3.2.4 Trial Type Frequency Effects in the Stroop Task 
Stroop interference is a well known phenomenon whereby responding to a non-dominate feature of a 
stimulus (e.g., the colour of ink in which a word is written) is affected by some more dominant feature 
of the stimulus (e.g., the phonology of the word itself). In brief, participants are slower at naming the 
colour of ink in which a word is written if the word is a colour name than if the word is not a colour 
name.  

Several researchers have found that the amount of Stroop interference depends upon the relative 
frequency of different types of trials. For example, Tzelgov et al. (1992) varied the frequency of 
congruent, incongruent and neutral trials within blocks of a Stroop task. Congruent trials consisted of a 
colour word written in ink of the corresponding colour. Incongruent trials consisted of a colour word 
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written in ink of a different colour. Neutral trials consisted of non-colour words. When neutral trials 
were common, the difference in performance between congruent and incongruent trials was larger than 
when neutral trials were rare. It appears that the cognitive subsystems implicated in performing the 
Stroop task adjust their processing to take advantage of the relative frequencies of different trial types. 
The tendency to read the stimuli does not normally have to be suppressed when neutral trials are 
common. When congruent and incongruent trials are common, however, active suppression of word 
reading is advantageous. 

Once again, Botvinick et al. (2001) have demonstrated that an existing interactive activation model 
(that of Cohen & Huston, 1994) can be extended with the inclusion of a conflict detection mechanism 
and feedback loop to modulate processing in such a way as to account for the Tzelgov et al. (1992) 
data. Again, there appear to be no other models of these data, which appear to present significant 
difficulties for most production system and recurrent network approaches to the control of behaviour. 
However, the data and the on-line modulation of performance is consistent with the ACT-R processing 
assumptions relating to adjustment of activation flow and production firing, and there is some 
possibility of ACT-R being successfully employed to account for the behaviour. 

3.2.5 Task Switching in Stroop and Related Tasks 
A second set of Stroop studies relevant to the current discussion was reported by Allport et al. (1994), 
who investigated the effects on reaction time of switching between word-reading and colour-naming. 
In one study (experiment 5) participants were required to alternate between word-reading and colour-
naming (with trial N requiring word-reading and trial N+1 requiring colour-naming). The blocks of 
alternating tasks were contrasted with blocks of pure word-reading and blocks of pure colour-naming. 
Allport et al. (1994) found that word-reading was slowed when the previous trial required colour-
naming, but that colour-naming was not slowed when the previous trial required word-reading. Thus, 
switching from the less dominant task appeared to incur a processing cost, whereas switching from the 
more dominant task did not incur such a cost. Allport et al. referred to this as an “asymmetric switch 
cost.” Allport et al. (1994) also reported “reverse Stroop interference,” whereby, when switching from 
colour-naming to word-reading, word-reading was slower for incongruent stimuli than for neutral 
stimuli. In contrast, there was no difference in reaction time between such stimuli on non-switch trials. 

Gilbert & Shallice (2002) adapted the Cohen & Huston (1994) interactive activation model of the 
Stroop task to allow the study of task carry-over effects. Two augmentations were critical: connections 
were added from input units to task units (allowing stimuli to prime tasks which were compatible with 
them), and the task unit states were allowed to persist across trials. The adapted model was able to 
account for the standard Stroop effects, as well as asymmetric switch costs and reverse Stroop 
interference. Other models of task-switching costs in other domains have been developed. The 
production system models of Kieras et al. (2000) and Sohn & Anderson (2001) are particularly 
relevant to the current discussion. They demonstrate that accounts of at least some task-switching 
phenomena can be given within suitably augmented production system architectures (EPIC and ACT-
R respectively). As in the case of the reaction time phenomena discussed above, recurrent network 
models of task switching effects remain to be developed. 

Altmann & Gray (submitted) criticise the alternating trials paradigm for investigating task switch costs 
on the grounds that it conflates the costs of starting and restarting a task. Their activation-based 
account of task switch costs is based on continuous decay of goal information and encoding costs 
involved in starting and maintaining task sets. They provide empirical evidence for the existence of 
goal decay and resulting interference between recent task sets (see also Altmann & Gray, 2002). This 
evidence would appear to present difficulties for simple interactive activation models of the Gilbert & 
Shallice (2002) variety, but Altmann & Gray (submitted) also provide an ACT-R model of behaviour 
on their task, demonstrating that an activation-based production system sequence generation 
mechanism is capable of simulating participant reaction time and error behaviour. 
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3.2.6 The Psychological Refractory Period 
A further paradigm relevant to the timing of sequential behaviour is that of the Psychological 
Refractory Period (PRP: see Meyer & Kieras (1997) for a comprehensive review). In PRP tasks 
participants are required to respond to two stimuli presented in quick succession. The common finding 
is that reaction times for the response to the second stimulus are prolonged, with smaller intervals 
between stimuli leading to longer reaction times. 

Numerous theoretical accounts of PRP effects exist, but there are relatively few computational models 
of PRP phenomena. Models that do exist make critical demands upon production system control. 
Thus, Meyer & Kieras (1997: see also Kieras & Meyer, 1997) propose a “strategic response 
deferment” theory of PRP effects, and describe supportive results from simulations within the EPIC 
production system architecture. Byrne & Anderson (1998, 2001) provide an alternative account of the 
Meyer & Kieras data within ACT-R, and demonstrate that their model is also able to account for 
additional PRP effects. The debate between the EPIC and ACT-R models is of theoretical interest in 
its own right, but for present purposes it is sufficient to note that PRP effects pose a challenge for any 
mechanism of sequence generation/regulation, and that production system control is a common 
element of all current models. 

3.2.7 Negative Priming, Attentional Blink and Inhibition of Return 
There are several further reaction time effects that are generally taken to imply the existence of 
inhibitory mechanisms operating within an activation-based attentional framework. These include 
negative priming, the attentional blink, and inhibition of return. Negative priming (see, for example, 
Tipper, 1985) occurs between trials in reaction time experiments when some feature of a stimulus 
must be ignored on one trial but responded to on the next trial. The attentional blink (Raymond, et al., 
1992) occurs during rapid serial visual presentation of stimuli, and refers to the inability of participants 
to detect one target immediately after another target if the time between targets is very small. It is as if 
processes required for further target detection are occupied or inhibited by the act of detecting a target 
for up to 500 ms. Inhibition of return (Posner & Cohen, 1984) refers to the slowing of responses to 
target stimuli that vary in location if the location of the target is cued less than 300ms before the target 
appears. Inhibition of return is usually taken to imply temporary inhibition of attention to the cued 
location. 

Inhibitory processes operating within an activation-based framework are a key element of current 
models that demonstrate these effects (see, for example, Houghton & Tipper (1994) for a model of 
negative priming, and Balkenius (2000) for a model of attentional blink). Recurrent network models of 
the phenomena are scarce (if not non-existent), as are pure production system models. Hybrid 
production system models that employ an activation-based substrate may be able to account for the 
effects, but the most plausible candidate, ACT-R, does not include any explicit inhibitory processes 
(though it does include a normalisation procedure which can mimic some characteristics of inhibition). 

3.2.8 Summary: Implications of Reaction Time Effects on Sequential Control 
For the most part, reaction time effects appear to be most conducive to modelling within an interactive 
activation framework. That framework has been employed to account for many of the phenomena 
discussed above. Few recurrent network models of these phenomena have been proposed. Interactive 
activation does not appear to be the full story, however, as production system control is critical in 
current models of PRP effects and some models of task switching phenomena. The reaction time 
effects therefore suggest either a hybrid mechanism employing elements of both production system 
control and interactive activation control, or multiple mechanisms acting across different tasks. 

4 General Discussion 

There is a sense in which action control and its breakdown and the reaction time effects discussed 
above represent opposite ends of a behavioural spectrum. The examination of reaction time effects 
prompts consideration of models of action that account for millisecond effects, while action control 
and its breakdown relates more to macroscopic effects that occur at much longer time scales. Both 
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ends of the spectrum suggest that the neural mechanism or mechanisms for the generation and 
regulation of sequential behaviour is/are activation-based, with inhibitory processes playing a key role. 
This is not the complete story, however. Some effects (e.g., PRP) are best accounted for by production 
system models, and others have only been given an incomplete account within the interactive 
activation framework. Most critically, elaboration of existing models of routine action appears to 
require concepts and control structures similar to those available within the production system 
approach. Thus, the above considerations point to a hybrid sequencing mechanism based on both 
interactive activation and production system control. 

The strengths of the interactive activation mechanism are well illustrated by the models discussed 
above, but the mechanism is not without its weaknesses. Two weaknesses are of particular concern: 
limited learning capabilities and localist representation. Interactive activation in its most common 
form requires hand-specified nodes that use localist representations. Localist representations have been 
criticised as being neurophysiologically implausible and inappropriate for tasks requiring 
generalisation. (See Page (2000) for a summary of arguments against, and a defence of, localist 
representations.) Recurrent network models avoid both of these perceived difficulties. However, these 
difficulties are not necessarily critical. Interactive activation models that learn sequential information 
have been developed (e.g., Houghton, 1990; Burgess & Hitch, 1992; Houghton et al., 1994). While 
these models presuppose nodes that represent list elements (and then learn the order of those 
elements), Grossberg (1987; see also Grossberg, 1980) has shown how the basic interactive activation 
mechanisms can be extended with attentional and orienting subsystems so as to learn stable internal 
representations of elements. 

It may be suggested that the above presentation under-represents the domains in which recurrent 
network models are most successful. Recurrent network models have been applied with considerable 
success in domains such as language (Elman, 1990, 1993; Plaut & McClelland, 1993; Plaut & 
Shallice, 1993) and sequence learning (e.g., Cleeremans, 1993). These models demonstrate the 
strengths of recurrent networks noted above: learning and distributed representation However, 
interactive activation models have also been developed in each of these domains (e.g., Dell, 1986, Dell 
et al., 1997; Houghton, 1990; Burgess & Hitch, 1992; Houghton et al., 1994; Glasspool, 1998). Thus, 
the relative strength of interactive activation models over recurrent network models is not a product of 
ignoring domains in which recurrent network models are strongest. 

The crucial argument made here is that there is a role for both production system and interactive 
activation mechanisms in the control of behaviour. Interactive activation alone, for example, does not 
appear to be sufficient to account for non-routine action or PRP effects. However, systems may be 
developed which can account for these behaviours and effects by supplementing interactive activation 
(or at least spreading activation and inhibition with localist representations) with production system 
control. This kind of merging between production system and activation-based sequence generation 
and regulation is present in two existing cognitive architectures: ACT-R (Anderson, 1993; Anderson 
& Lebiere, 1998; Anderson et al., submitted) and 4-CAPS (Just & Carpenter, 1992; Just et al., 1999). 
Both architectures employ an activation-based substrate in which the conditions of a production may 
be partially matched by the contents of a working memory, with activation spreading between working 
memory elements. In addition both have recently taken up the challenge of mapping function to 
structure posed by imaging studies (Anderson et al. (submitted) and Just et al. (1999)). The principal 
difference is that ACT-R is serial in its production firing—just one production may fire on any cycle—
while 4-CAPS allows constrained parallel production firing—multiple productions may fire in 
parallel, but there is an upper-limit on the total activity in the system which acts to constrain parallel 
processing. 

In work to date ACT-R has been the more widely applied of the two architectures, but the importance 
of the differences between these systems remains to be determined. While neither system incorporates 
all features of interactive activation within their activation-based substrates, both provide plausible 
ways of combining the insights of discrete symbolic and activation-based processing, and as such both 
provide viable symbolic alternatives to Turing and Von Neumann control. These alternatives address 
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many of the frequently cited arguments against cognition as discrete symbol manipulation. They 
demonstrate that symbol manipulation does not entail serial processing, that symbol manipulation is 
compatible with learning, and that if symbol manipulation is suitably fine-grained, it need not be 
“brittle” or incapable of flexible behaviour. Distributed connectionist approaches to mental 
computation can therefore not necessarily be regarded as superior to symbolic approaches on any of 
these counts. Indeed, the evidence surveyed here raises more difficulties for distributed connectionist 
approaches than for activation-based symbolic approaches. 

5 Concluding Remarks 

The aim of this paper was to review computational models of sequential phenomena from two 
apparently unrelated areas of cognition—action selection and reaction time behaviour—and to attempt 
to draw general conclusions from these models about the cognitive mechanisms underlying the 
generation and regulation of sequential behaviour. The conclusion, that a range of effects support a 
production-system view of sequential control mediated by an activation-based substrate, is necessarily 
tentative. It could be undermined by the development of additional successful models of the various 
phenomena. Recurrent network models of between-trial effects in reaction time tasks would, for 
example, undermine the view that recurrent networks are incapable of accounting for these effects. As 
such, the phenomena reviewed here are perhaps better viewed as a challenge; as a set of phenomena to 
which those developing recurrent networks might direct their attention. Until successful models have 
been developed, however, the tentative conclusion must stand. 

The paper also identifies a number of other challenges for modelling. One set of challenges revolves 
around ACT-R and 4-CAPS. Can either or both of these architectures account for the full range of 
behaviours surveyed above, and can test phenomena be identified that will help to discriminate 
between these architectures? A second set of challenges relate to the functional similarities identified 
between interactive activation networks and recurrent networks. Can a loose mapping between the two 
be developed? Such a mapping would clarify the strengths and weakness of the two approaches, and 
possibly identify ways in which key properties of each approach (e.g., learning within recurrent 
networks and focussed excitation of concepts within interactive activation networks) might be merged 
into more plausible symbolic activation-based mechanisms for the generation and regulation of 
sequential behaviour. 
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