16 research outputs found

    Secret Key Generation Schemes for Physical Layer Security

    Get PDF
    Physical layer security (PLS) has evolved to be a pivotal technique in ensuring secure wireless communication. This paper presents a comprehensive analysis of the recent developments in physical layer secret key generation (PLSKG). The principle, procedure, techniques and performance metricesare investigated for PLSKG between a pair of users (PSKG) and for a group of users (GSKG). In this paper, a detailed comparison of the various parameters and techniques employed in different stages of key generation such as, channel probing, quantisation, encoding, information reconciliation (IR) and privacy amplification (PA) are provided. Apart from this, a comparison of bit disagreement rate, bit generation rate and approximate entropy is also presented. The work identifies PSKG and GSKG schemes which are practically realizable and also provides a discussion on the test bed employed for realising various PLSKG schemes. Moreover, a discussion on the research challenges in the area of PLSKG is also provided for future research

    Key Generation for Internet of Things: A Contemporary Survey

    Get PDF
    Key generation is a promising technique to bootstrap secure communications for the Internet of Things (IoT) devices that have no prior knowledge between each other. In the past few years, a variety of key generation protocols and systems have been proposed. In this survey, we review and categorise recent key generation systems based on a novel taxonomy. Then, we provide both quantitative and qualitative comparisons of existing approaches. We also discuss the security vulnerabilities of key generation schemes and possible countermeasures. Finally, we discuss the current challenges and point out several potential research directions

    Key Generation for Internet of Things

    Get PDF
    Key generation is a promising technique to bootstrap secure communications for the Internet of Things devices that have no prior knowledge between each other. In the past few years, a variety of key generation protocols and systems have been proposed. In this survey, we review and categorise recent key generation systems based on a novel taxonomy. Then, we provide both quantitative and qualitative comparisons of existing approaches. We also discuss the security vulnerabilities of key generation schemes and possible countermeasures. Finally, we discuss the current challenges and point out several potential research directions

    INTER-ENG 2020

    Get PDF
    These proceedings contain research papers that were accepted for presentation at the 14th International Conference Inter-Eng 2020 ,Interdisciplinarity in Engineering, which was held on 8–9 October 2020, in Târgu Mureș, Romania. It is a leading international professional and scientific forum for engineers and scientists to present research works, contributions, and recent developments, as well as current practices in engineering, which is falling into a tradition of important scientific events occurring at Faculty of Engineering and Information Technology in the George Emil Palade University of Medicine, Pharmacy Science, and Technology of Târgu Mures, Romania. The Inter-Eng conference started from the observation that in the 21st century, the era of high technology, without new approaches in research, we cannot speak of a harmonious society. The theme of the conference, proposing a new approach related to Industry 4.0, was the development of a new generation of smart factories based on the manufacturing and assembly process digitalization, related to advanced manufacturing technology, lean manufacturing, sustainable manufacturing, additive manufacturing, and manufacturing tools and equipment. The conference slogan was “Europe’s future is digital: a broad vision of the Industry 4.0 concept beyond direct manufacturing in the company”

    Wireless Communication Networks Powered by Energy Harvesting

    No full text
    This thesis focuses on the design, analysis and optimization of various energy-constrained wireless communication systems powered by energy harvesting (EH). In particular, we consider ambient EH wireless sensor networks, wireless power transfer (WPT) assisted secure communication network, simultaneous wireless information and power transfer (SWIPT) systems, and WPT-based backscatter communication (BackCom) systems. First, we study the delay issue in ambient EH wireless sensor network for status monitoring application scenarios. Unlike most existing studies on the delay performance of EH sensor networks that only consider the energy consumption of transmission, we consider the energy costs of both sensing and transmission. To comprehensively study the delay performance, we consider two complementary metrics and analyze their statistics: (i) update age - measuring how timely the updated information at the sink is, and (ii) update cycle - measuring how frequently the information at the sink is updated. We show that the consideration of sensing energy cost leads to an important tradeoff between the two metrics: more frequent updates result in less timely information available at the sink. Second, we study WPT-assisted secure communication network. Specifically, we propose to use a wireless-powered friendly jammer to enable low-complexity secure communication between a source node and a destination node, in the presence of an eavesdropper. We propose a WPT-assisted secure communication protocol, and analytically characterize its long-term behavior. We further optimize the encoding-rate parameters for maximizing the throughput subject to a secrecy outage probability constraint. We show that the throughput performance differs fundamentally between the single-antenna jammer case and the multi-antenna jammer case. Third, exploiting the fact that the radio-frequency (RF) signal can carry both information and energy, we study a point-to-point simultaneous wireless information and power transfer (SWIPT) system adopting practical M-ary modulation for both the power-splitting (PS) and the time-switching (TS) receiver architectures. Unlike most existing studies, we take into account the receiver’s sensitivity level of the RF-EH circuit. We show several interesting results, such as for the PS scheme, modulations with high peak-to-average power ratio achieve better EH performance. Then, inspired by the PS-based SWIPT receiver, we propose a novel information receiver, which involves joint processing of coherently and non-coherently received signals, and hence, creates a three-dimensional received signal space. We show that the achievable rate of a splitting receiver provides a 50% rate gain compared to either the conventional coherent or non-coherent receiver in the high SNR regime. Last, we propose the design of WPT-based full-duplex backscatter communication (BackCom) networks for energy-constrained Internet-of-Things applications, where a novel multiple-access scheme based on time-hopping spread-spectrum (TH-SS) is designed to enable both one-way power transfer and two-way information transmission in coexisting backscatter reader-tag links. Comprehensive performance analysis of BackCom networks is presented. We show some interesting design insights, such as: a longer TH-SS sequence reduces the bit error rates (BERs) of the two-way information transmission but results in lower energy-harvesting rate at the tag; a larger number of BackCom links improves the energy-harvesting rate at the tags but also increase the BERs for the information transmission

    Pertanika Journal of Science & Technology

    Get PDF
    corecore