101 research outputs found

    Chromatic equivalence classes of complete tripartite graphs

    Get PDF
    AbstractSome necessary conditions on a graph which has the same chromatic polynomial as the complete tripartite graph Km,n,r are developed. Using these, we obtain the chromatic equivalence classes for Km,n,n (where 1≤m≤n) and Km1,m2,m3 (where |mi−mj|≤3). In particular, it is shown that (i) Km,n,n (where 2≤m≤n) and (ii) Km1,m2,m3 (where |mi−mj|≤3, 2≤mi,i=1,2,3) are uniquely determined by their chromatic polynomials. The result (i), proved earlier by Liu et al. [R.Y. Liu, H.X. Zhao, C.Y. Ye, A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs, Discrete Math. 289 (2004) 175–179], answers a conjecture (raised in [G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs (In Honour of Prof. Roberto W. Frucht), Sci. Ser. A (1988) 27–37 (special issue)]) in the affirmative, while result (ii) extends a result of Zou [H.W. Zou, On the chromatic uniqueness of complete tripartite graphs Kn1,n2,n3 J. Systems Sci. Math. Sci. 20 (2000) 181–186]

    Low rank representations of matrices using nuclear norm heuristics

    Get PDF
    2014 Summer.The pursuit of low dimensional structure from high dimensional data leads in many instances to the finding the lowest rank matrix among a parameterized family of matrices. In its most general setting, this problem is NP-hard. Different heuristics have been introduced for approaching the problem. Among them is the nuclear norm heuristic for rank minimization. One aspect of this thesis is the application of the nuclear norm heuristic to the Euclidean distance matrix completion problem. As a special case, the approach is applied to the graph embedding problem. More generally, semi-definite programming, convex optimization, and the nuclear norm heuristic are applied to the graph embedding problem in order to extract invariants such as the chromatic number, Rn embeddability, and Borsuk-embeddability. In addition, we apply related techniques to decompose a matrix into components which simultaneously minimize a linear combination of the nuclear norm and the spectral norm. In the case when the Euclidean distance matrix is the distance matrix for a complete k-partite graph it is shown that the nuclear norm of the associated positive semidefinite matrix can be evaluated in terms of the second elementary symmetric polynomial evaluated at the partition. We prove that for k-partite graphs the maximum value of the nuclear norm of the associated positive semidefinite matrix is attained in the situation when we have equal number of vertices in each set of the partition. We use this result to determine a lower bound on the chromatic number of the graph. Finally, we describe a convex optimization approach to decomposition of a matrix into two components using the nuclear norm and spectral norm

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Simplicial decompositions of graphs: a survey of applications

    Get PDF
    AbstractWe survey applications of simplicial decompositions (decompositions by separating complete subgraphs) to problems in graph theory. Among the areas of application are excluded minor theorems, extremal graph theorems, chordal and interval graphs, infinite graph theory and algorithmic aspects

    On the structure of Gröbner bases for graph coloring ideals

    Get PDF
    In this thesis, we look at a well-known connection between the graph coloring problem and the solvability of certain systems of polynomial equations. In particular, we examine the connection between the structure of a graph and the structure of the Gröbner bases of the graph’s coloring ideal. From a theoretical viewpoint, we show some properties of such Gröbner bases, and we develop a polynomial-time algorithm to compute a Gröbner basis for chordal graphs. From the experimental side, we state results about specific Gröbner bases and about the Gröbner fan for a variety of graph families. Moreover, some heuristics and techniques are explored that reduce the computational complexity. The relevance of heuristic methods is justified by a section about expected intrinsic hardness of Gröbner basis computations

    Subject Index Volumes 1–200

    Get PDF
    • …
    corecore