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Abstract

Low Rank Representations of Matrices using Nuclear Norm Heuristics

The pursuit of low dimensional structure from high dimensional data leads in many in-

stances to the finding the lowest rank matrix among a parameterized family of matrices. In its

most general setting, this problem is NP-hard. Different heuristics have been introduced for

approaching the problem. Among them is the nuclear norm heuristic for rank minimization.

One aspect of this thesis is the application of the nuclear norm heuristic to the Euclidean

distance matrix completion problem. As a special case, the approach is applied to the graph

embedding problem. More generally, semi-definite programming, convex optimization, and

the nuclear norm heuristic are applied to the graph embedding problem in order to extract

invariants such as the chromatic number, Rn-embeddability, and Borsuk-embeddability. In

addition, we apply related techniques to decompose a matrix into components which simul-

taneously minimize a linear combination of the nuclear norm and the spectral norm. In

the case when the Euclidean distance matrix is the distance matrix for a complete k-partite

graph it is shown that the nuclear norm of the associated positive semidefinite matrix can

be evaluated in terms of the second elementary symmetric polynomial evaluated at the par-

tition. We prove that for k-partite graphs the maximum value of the nuclear norm of the

associated positive semidefinite matrix is attained in the situation when we have equal num-

ber of vertices in each set of the partition. We use this result to determine a lower bound on

the chromatic number of the graph. Finally, we describe a convex optimization approach to

decomposition of a matrix into two components using the nuclear norm and spectral norm.

ii



Acknowledgements

I wish to thank my advisor, Professor Michael Kirby for guidance, support and for hav-

ing confidence in me. His creative thinking and clarity of thought were a great source of

inspiration during this time.

I would like to thank my co-advisor, Professor Christopher Peterson for guidance, support

and constant encouragement. His vision and advice helped me in all the time of research

and writing of this thesis.

Many thanks to Bryan Elder for his administrative help without which I wouldn’t have

possibly graduated.

I want to thank to my friends for encouragement and support, especially to Megan Buzby

and Dumitru Trucu.

My special thanks go toward my family Ciprian, Daria and Petru, my parents Mihail and

Maria and my family in Colorado, Leslie and Bob Mussetter for their care, unconditional

love, patience and support.

This material is based upon work partially supported by the National Science Foundation

under Grant Nos. DMS-1322508 and DMS-1228308 as well as DOD-USAF-Air Force FA9550-

12-1-0408 P00001.

This dissertation is typset in LATEX using a document class designed by Leif Anderson.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1. Optimization for Characterizing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Convex optimization and data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Contributions of this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2. The Convex optimization framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1. Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Positive semidefinite matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3. Basic Convex Analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4. Overview of interior point method for linear programs . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5. Semidefinite Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6. Semidefinite programs and their dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7. Primal dual central path algorithm for semidefinite programs . . . . . . . . . . . . . . . . . . 26

Chapter 3. Rank Minimization Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2. Nuclear norm heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3. Convex Envelope of Matrix Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4. Nuclear norm heuristic as a semidefinite program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



Chapter 4. Positive Semidefinite Cone of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1. Closed convex sets in Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2. Positive semidefinite cone: faces and extreme points . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3. Example of face of positive semidefinite cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 5. Euclidean Distance Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1. Relation with the Positive Semidefinite Cone of Matrices . . . . . . . . . . . . . . . . . . . . . . 61

5.2. Euclidean distance matrix completion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3. Solving EDM via semidefinite programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4. Relation between l1 norm of matrix D and nuclear norm of matrix Y . . . . . . . . . . 67

Chapter 6. Bounding chromatic number using convex optimization . . . . . . . . . . . . . . . . . . . 70

6.1. Nuclear norm of Y and l1 norm of D for k-partite graphs . . . . . . . . . . . . . . . . . . . . . . 71

6.2. Finding bounds for the chromatic number using nuclear norm heuristic . . . . . . . . 76

Chapter 7. Finding graph embeddings using the nuclear norm heuristic . . . . . . . . . . . . . . 81

7.1. Graph embeddings for unit distance graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2. Techniques for lowering the dimension of the embeddings . . . . . . . . . . . . . . . . . . . . . . 92

7.3. Borsuk Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 8. Variations on the Matrix Completion Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.1. Low rank and Sparse Matrix Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.2. Decompositions using nuclear norm and spectral norm . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 9. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

v



List of Tables

6.1 Norm and rank behavior for 4, 4, 4 tripartite graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Norms behaviour for 3,3,4 partite graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Norm and rank behavior for 8-partite graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



List of Figures

2.1 Conjugate function of concave parabola. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Boundary of the positive semidefinite cone S2 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Face of positive semidefinite cone that contains rank 1 matrix. . . . . . . . . . . . . . . . . . . . 57

7.1 Moser Spindle graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Butterfly graph embedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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CHAPTER 1

Optimization for Characterizing Data

1.1. Introduction

In many real world application we deal with high dimensional data. In many situations,

real life data is highly concentrated on low-dimensional, sparse, or degenerate structures

in a high-dimensional space. There is a high interest in learning and exploiting these low-

dimensional structures as they allow us to characterize and ease the ”visualization” of the

high-dimensional data. In some situations, the real life application data, like digital images,

video sequences or experimental data often contain missing observations, corruptions, or

even malicious errors which adds to the challenge of learning the low dimensional structure.

A central goal of dimensionality reduction is to obtain and exploit compact representations

of the original data to enable classification, anomaly detection, and higher-level decision

making. Many types of high dimensional data can be approached in this way:

Video Surveillance: Given a sequence of surveillance video frames, we would like to

identify activities that stand out from the background. Due to the correlation between

frames, the low rank component is usually identified with the background and the sparse

component is associated with the moving objects [6], [7].

Face Recognition: Images of a human’s face can be approximated by a low-dimensional

manifold. In many applications, such as face recognition, it is helpful to exploit this low

dimensional geometry. Basri and Jacobs, showed that convex, Lambertian objects, images

taken under distant illumination lie near an approximately nine-dimensional linear subspace

known as the harmonic plane [8]. But due to cast shadows, the images can be viewed as

having a low rank component perturbed by errors that are large in magnitude, but sparse in
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the spatial domain. The face recognition problem is one of the most active area of research

in computer vision, see, for example [9],[10],[11], [12].

Latent Semantic Indexing : The term document matrix of interest in text processing also

can be modeled using subspace geometry. In the situation when we are able to decompose

a matrix as a sum of a low-rank component and a sparse component then it is possible to

characterize common words using a low rank approximation and the unusual or rare words

using a sparse component [13].

Ranking and Collaborative Filtering : The problem of anticipating user tastes is of sig-

nificance for online commerce and advertisement. User rankings for various products, like

movies, books, games are collected with the purpose of forecasting future behavior of the

customers. Taking into account that sometimes there are incomplete rankings provided by

the users, we would like in these situations to be able to predict the preference of any given

user with respect to any of the products. This problem is typically cast as a low-rank matrix

completion problem [14].

Euclidean Distance Matrix Completion: This problem amounts to finding the missing

entries of a matrix where the entries represent the square distances between points in a

Euclidean space. The goal is to complete the matrix such that it contains all pairwise

squared distances between a collection of points in a Euclidean space. Euclidean distance

matrices have applications that cover a large range of fields from wireless sensor network

localization [15], [16], [17] to graph realizability [18], [19], [20] and molecular conformation

[16].

Maximum clique in a graph, finding a maximum edge biclique in a bipartite graph: The

maximum clique problem takes as input an undirected graph and asks for the largest clique

(i.e., a subgraph of nodes that are completely interconnected). The maximum-edge biclique
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takes as input a bipartite graph and asks for the subgraph that is a complete bipartite graph

Km,n that maximizes the product mn. Both problems can be expressed as matrix rank

minimization problems and can be approached using convex optimization programs [21].

In this thesis we are concerned with using the convex optimization framework for solving

problems related to graph embeddings with constraints. In Chapter 2 we will introduce

basic definitions and notations from linear algebra and convex analysis used throughout the

thesis and we will illustrate the concept of the convex conjugate of a function through several

examples. Also, we will provide a summary of the necessary and sufficient conditions for

optimality together with a description of the main step of the central path interior point al-

gorithm for solving semidefinite programs. Semidefinite programs contain important classes

of problems as special cases, such as linear and quadratic programming (LP and QP). But

also, important applications exist in combinatorial optimization and electrical engineering

[22]. Due to work of Nesterov and Nemirovskii [23],[24], Alizadeh [25], [26], Vandenberghe

and Boyd [27], and Todd [28] polynomial time solution strategies (interior point methods)

have emerged that allow us to efficiently solve semidefinite programs. Nesterov and Ne-

mirovskii have developed a general approach for using interior point methods for solving

convex programming problems based on the concept of p-self concordant barrier functions.

Convex optimization solvers are now widely available including (CVX, YALMIP, SeDuMI,

SDPT3) for solving semidefinite programs. In the examples from this thesis we made use of

the CVX solver [29]. CVX is designed and implemented by Michael Grant, with input from

Stephen Boyd and Yinyu Ye. CVX is implemented in MATLAB with model specifications

constructed using common MATLAB operations and functions and standard MATLAB code

can be included with these specifications. Also, it can interface to other solvers, like SDPT3

or SeDuMI solvers.
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In general, the minimization of the rank of a matrix i.e. the Rank Minimization Problem

is a difficult problem to solve, in general, it is known to be computationally intractable (NP-

hard) [27]. Different heuristics have been introduced that solve the problem approximately

but efficiently.

The nuclear norm heuristic was proposed by Fazel, Hindi and Boyd in [30] and further

explained in Fazel’s Ph.D thesis [31]. The heuristic is to replace the (non-convex) rank

objective with the sum of the singular values of the matrix, which can be proven to be the

dual of the spectral norm.

The choice of this heuristic for the rank minimization problem is justified by the fact

that the convex envelope of the rank function over a bounded set is the nuclear norm.

Chapter 3 introduces the nuclear norm heuristic and contains a complete and detailed

proof of two facts: the nuclear norm is the convex envelope of the rank function over a

bounded set and nuclear norm minimization admits a formulation as a semidefinite pro-

gram. The first result offers a justification for the replacement of the rank function with the

nuclear norm. The second result provides the tool to actually solve, in practice, optimization

problems using the nuclear norm heuristic via algorithms for semidefinite programs. The

information can be found in [30], [31], [32] and [27], [33] and was gathered in this chapter for

an easier understanding of the heuristic. The nuclear norm minimization problem admits a

formulation as a semidefinite program [30]. Chapter 4 contains an overview of the structure

of the positive semidefinite cone of matrices. In Chapter 5 we will introduce the definition,

notations and main properties of Euclidean distance matrices as well as the linear trans-

formations that characterize their close connection with the cone of positive semidefinite

matrices. Also, we will present the formulation of the Euclidean distance matrix completion

problem and its semidefinite program formulation using the nuclear norm heuristic.
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In Chapter 6 and Chapter 7 semi-definite programming, convex optimization, and the

nuclear norm heuristic are applied to the graph embedding problem in order to extract

invariants such as the chromatic number, Rn-embeddability, and Borsuk-embeddability.We

show the connection between the entries of a Euclidean distance matrix and the nuclear

norm of the matrix in the positive semidefinite cone given by the one to one correspondence

between the two cones. In the case the Euclidean distance matrix is the distance matrix for

a complete k-partite graph, we prove the nuclear norm of the associated positive semidefinite

matrix can be evaluated in terms of the second elementary symmetric polynomial evaluated

at the partition. Also, we prove that for k-partite graphs the maximum value of the nuclear

norm of the associated positive semidefinite matrix is attained in the situation when we have

equal number of vertices in each set of the partition. We use this result to determine a lower

bound on the chromatic number of the graph. We use nuclear norm minimization to find

low dimensional graph embeddings. We show that it is possible to lower the dimension of

the embedding obtained using the nuclear norm heuristic by considering larger graphs and

looking at corresponding submatrices. Chapter 8 is dedicated to matrix decompositions, it

contains a description of the low rank and sparse matrix decomposition problem presented

by [34]. Also, in Chapter 8 we study the decomposition of a full rank matrix into two

components resulting from the minimization of a linear combination of the nuclear norm

and the spectral norm.

1.2. Convex optimization and data analysis

An optimization problem can be defined through three components: variables, constraints

and an objective function. Between 1960 and 1990, optimization problems were analyzed

based on linear/non-linear contraposition. Although the simplex method was widely used
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for solving linear programs and quite an efficient algorithm in practice, in the worst case,

the method has exponential complexity in the size of the problem[35]. As an alternative,

Karmarkar’s interior point method for linear programming [36], for which he reported poly-

nomial time convergence, generated a high level of interest. Further, it was shown that there

is a connection between interior point methods and the barrier methods which were widely

used during the 1960s for problems with nonlinear constraints. As a consequence it was

understood that barrier methods could be applied to other classes of optimization problems

like semidefinite and cone programming. Driven by the large number of applications that can

be formulated as a convex optimization problem, extremely efficient interior point methods,

capable of handling nonlinear large scale problems with polynomial time complexity results,

have emerged [24],[25], [26],[27], [28]. Thus, when looking at optimization problems the

boundary shifted to convex optimization problems and non-convex optimization problems:

”In fact the great watershed in optimization isn’t between linearity and non-linearity but

convexity and non-convexity”, R.T Rockafellar(1993).

The importance of the convex optimization problems lies also in the fact that the local

solutions are global and the set of optimal solutions is a convex set.

Definition 1.2.1. A set C ⊆ Rn is a convex set if for any x, y ∈ C and any scalar

λ ∈ [0, 1] we have that λx+ (1− λ) y ∈ C . A convex set C is also a cone if it closed under

positive linear combinations.

Definition 1.2.2. A real valued function f defined on a convex set C is said to be a

convex function if for any x, y ∈ C and any scalar λ ∈ [0, 1] we have that

f (λx+ (1− λ) y) ≤ λf(x) + (1− λ)f(y)(1)

6



Definition 1.2.3. A convex optimization problem is an optimization problem of the

form

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where the objective function f0 and fi, i = 1, . . . ,m are convex functions and the functions

which define the equality constraints hi are affine.

Convex optimization problems display important properties: the local solutions are

global, the set of solutions of a convex optimization problem is a convex set, duality theory

and optimality conditions can be derived.

Theorem 1.2.1. For convex problems, any locally optimal point is globally optimal and

the optimal set i.e the set of feasible points for which the objective function achieves the

optimal value is a convex set.

Proof. Let x∗ be a local minimizer of f0 on the set X. Let y ∈ X. By definition

x∗ ∈ domf0. If f0(y) =∞ the statement is true. Now, if y ∈ domf0 let xθ = θy + (1− θ)x∗.

The feasible set is convex set because it is the intersection of the domain of the problem

D = ∩mi=1domfi which is a convex set with m convex sublevel sets {x : fi(x) ≤ 0} and p

hyperplanes {x : hi(x) = 0}. f0 is convex function. Therefore point xθ = θy + (1− θ)x ∈ X

and

(2) f0(xθ)− f0(x∗) ≤ θ(f0(y)− f0(x∗)

θ can be chosen such that the point xθ is in a small neighborhood of x∗ and as a consequence

the left side of the equation (2) is non-negative and f0(y) ≥ f0(x
∗).
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The optimal set is convex since it admits a formulation

Xopt = {x ∈ Rn : f0(x) ≤ p∗, x ∈ X}

�

Convex optimization applications are numerous. In control theory, many examples are

cataloged in [37]. Among them, to minimize the maximum eigenvalue of a matrix that

depends affinely on a variable, minimization of the condition number of a positive semidefinite

matrix, minimization of norm by scaling, and matrix completion problems.

The problem of determining the minimum volume ellipsoid that contains given points

x1, . . . , xk ∈ Rn and also the maximum volume ellipsoid contained in a given convex set can

be formulated as convex optimization problems [38].

In circuit design, many examples including signal propagation delay, minimum area sub-

ject to bound on delay, minimum power dissipation subject to bound on delay, and minimum

delay subject to area and power constraints can be cast as convex optimization problems

[38].

Convex optimization has also emerged as an important signal processing tool. For design

it is used to choose the weights or algorithm parameter which are then used in a signal

processing algorithm. Also, it can be applied to sparse reconstruction of signals [39].

In geometry, convex optimization can be used to construct convex relaxations for Eu-

clidean distance matrix completion problem [40].

In combinatorial optimization, semidefinite programming is used in the case of finding a

maximum independent set and a maximum cut in a graph [33]. In finance, [41] applies conic

optimization to the sampling error problem in portfolio optimization.
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1.3. Contributions of this thesis

One aspect of this thesis is the application of the nuclear norm heuristic to the Euclidean

distance matrix completion problem. As a special case, the approach is applied to the graph

embedding problem. More generally, semi-definite programming, convex optimization, and

the nuclear norm heuristic are applied to the graph embedding problem in order to extract

invariants such as the chromatic number, Rn-embeddability, and Borsuk-embeddability. In

addition, we apply related techniques to decompose a matrix into components which simul-

taneously minimize a linear combination of the nuclear norm and the spectral norm. The

specific contributions are as follows

• We show the connection between the entries of an Euclidean distance matrix and

the nuclear norm of the matrix in the positive semidefinite cone given by the one to

one correspondence between the two cones. In the case when the Euclidean distance

matrix is the distance matrix for a complete k-partite graph, the nuclear norm of

the associated positive semidefinite matrix can be evaluated in terms of the second

elementary symmetric polynomial evaluated at the partition.

• We prove that for k-partite graphs the maximum value of the nuclear norm of the

associated positive semidefinite matrix is attained in the situation when we have an

equal number of vertices in each set of the partition. We use this result to determine

a lower bound on the chromatic number of the graph.

• In the particular case of balanced partite graphs with edges of unit size, we can

correctly identify the chromatic number in about 30% of the cases and we can find

bounds on the chromatic number for the rest of the cases.

• We use nuclear norm minimization to find low dimensional graph embeddings. We

show that it is possible to lower the dimension of the embedding obtained using the

9



nuclear norm heuristic by considering larger graphs and looking at corresponding

submatrices.

• We describe a convex optimization approach to decomposition of a matrix into two

components using the nuclear norm and spectral norm.
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CHAPTER 2

The Convex optimization framework

In this Chapter we will define the concepts and terminology we will use in later sections.

The next section will define concepts specific to vectors and matrices.

2.1. Definitions and Notations

We denote by Rn the set of n-dimensional real vectors. For any x ∈ Rn we use xi to

indicate the ith component of the vector.

The space of real n-vectors is equipped with the inner product

〈x, y〉 = xty =
∑n

i=1 xiyi.

Definition 2.1.1 (Vector norms). The Euclidean norm of a vector, or 2-norm, x =

(x1, . . . , xn) is defined as

‖x‖2 = (xtx)
1
2 = (

∑n
i=1 x

2
i )

1
2

The Maximum norm or l∞-norm is defined as

‖x‖∞ = maxi=1,...,n |xi|

and the vector l1norm is

‖x‖l1 =
∑n

i=1 |xi|

We denote by Rm×n the space of real m by n matrices. For any matrix A we use Aij to

denote its ijth element. The transpose of matrix the A is written as At and is a matrix whose

entries are given by the relation Atij = aji, j = 1, . . . , n, i = 1, . . . ,m. For any two matrices

A and B of compatible dimensions, the transpose of the product matrix (AB)t = BtAt.

Definition 2.1.2. Given a square matrix A is called a symmetric matrix if At = A.
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Definition 2.1.3 (Range, Nullspace). The range space of m by n matrix A, denoted by

R(A) is represented by the set of all vectors y ∈ Rm such that y = Ax for some x ∈ Rn. The

nullspace of A, denoted by N(A) comprises all vectors x ∈ Rn such that Ax = 0.

Definition 2.1.4. The column (row) rank of a matrix A is the dimension of the range

space of A. The rank of At is equal to the maximum number of linearly independent column

(row) vectors of A.

A matrix and its transpose have the same rank i.e the column rank and the row rank are

the same. Also, it can be shown that given two m× n matrices A and B

rank(A+B) ≤ rank(A) + rank(B)

G. Marsaglia and G. P. H. Styan [42] show that equality holds when the row and column

spaces of the two matrices intersect only at the origin.

Definition 2.1.5. Inner product on the space of m by n matrices A, B ∈ Rm×n is

defined as

〈A,B〉 = trace(AtB) =
∑m

i=1

∑n
j=1AijBij

Definition 2.1.6. The Frobenius norm of a matrix

‖A‖F =
√
〈A,A〉

is also equal to the Euclidean norm of the vector of singular values.

Definition 2.1.7. Spectral norm (operator norm or induced 2-norm) of a matrix is equal

to its largest singular value ‖A‖ = σ1(A).

Definition 2.1.8. The nuclear norm, also known as trace norm, Ky Fan norm or Schat-

ten norm, is defined as
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‖A‖∗ =
∑r

i=1 σi(A).

The relation between these three norms is characterized by the following inequality

(3) ‖A‖ ≤ ‖A‖F ≤ ‖A‖∗ ≤
√
r ‖A‖F ≤ r ‖A‖

for any matrix A of rank at most r.

Lemma 2.1.1 (Fazel, 2007, The additivity of nuclear norm). Let A and B be matrices of

the same dimensions. If ABt = 0 and AtB = 0, then

‖A+B‖∗ = ‖A‖∗ + ‖B‖∗

Proof. We can express the singular value decomposition of A and B to reflect the zero

and non-zero singular vectors

A =

[
UA1 UA2

] ΣA

0

[ VA1 VA2

]t

and

B =

[
UB1 UB2

] ΣB

0

[ VB1 VB2

]t

. Since ABt = 0 then V t
A1VB1 = 0. Similarly AtB = 0 implies U t

A1UB1 = 0. Hence, there

exist matrices UC and VC such that

[
UA1 UB1 UC

]
and

[
VA1 VB1 VC

]
are orthogonal

matrices. Thus, the following are valid singular value decompositions for A and B

A =

[
UA1 UB1 UC

]


ΣA

0

0


[
VA1 VB1 VC

]t
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and B =

[
UA1 UB1 UC

]


0

ΣB

0


[
VA1 VB1 VC

]t

Then the sum of the matrices A and B can be written as

A+B =

[
UA1 UB1

] ΣA

ΣB

[ VA1 VB1

]t

This shows that the singular values of A+B are equal to the union (with repetition) of the

singular values of A and B leading to the relation

‖A+B‖∗ = ‖A‖∗ + ‖B‖∗

�

2.2. Positive semidefinite matrices

Definition 2.2.1. Let Sn be the set of real symmetric n × n matrices. Matrix A ∈ Sn

is positive semidefinite (PSD) matrix if

xTAx ≥ 0 for any x ∈ Rn.

Theorem 2.2.1 (Spectral Theorem). Let A by any n×n symmetric matrix. There exists

a spectral decomposition of A into an orthogonal matrix U (U tU = In) and a real diagonal

matrix D such that

A = UDU t

Let ui be the ith column of U and λi denote the ith diagonal entry of D. Then {u1, . . . , un} is

an orthonormal basis consisting of eigenvectors of A and λi is the eigenvalue corresponding

to ui.
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The usual notation for a positive semidefinite matrix A is A � 0 and the set of positive

semidefinite matrices is denoted by Sn+. If the inequality above is strict, i.e if xTAx > 0 for

all x ∈ Rn, x 6= 0 then A is called a positive definite matrix.

Also, we introduce some terminology that shall be used later. We write for diag(A) ∈ Rn

the vector whose components are the diagonal elements of the matrix A. The trace of a square

matrix is given by the sum of the diagonal elements of the matrix i.e trace(A) =
∑n

i aii.

Important properties of the trace include

trace(AB) = trace(BA)

and trace(A) =
∑n

i=1 λi

where λi, i = 1, . . . , n are the eigenvalues of the matrix A ∈ Sn.

The positive semidefinite matrices can be characterized in several ways:

(1) A � 0 if an only if λmin (A) ≥ 0, where λmin (A) represents the smallest eigenvalue

of matrix A.

(2) A � 0 if an only if λi ≥ 0, i = 1, . . . , n, where λis are the eigenvalues of matrix A.

(3) A � 0 if and only if det(AI,I) ≥ 0 for any I ⊂ {1, . . . , n}, i.e., all principal sub-

determinants are non-negative.

(4) A � 0 if and only if A = P tP , where P ∈ Rr×n (r is the rank of matrix A).

(5) Schur complement characterization: Let

U =

 A B

Bt C


where A and C are symmetric matrices and A � 0. Then

U � 0 ⇔ C −BtA−1B � 0

Matrix C −BtA−1B is called the Schur complement of A in U ([43]).
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2.3. Basic Convex Analysis results

In this section we present a brief summary of basic definitions and notations from convex

analysis. The Conjugacy that characterizes the behavior of the conjugate and biconjugate

of a function is stated. We illustrate the definition of the conjugate of a function with two

simple examples were included. Our presentation is based on Bertsekas [44].

Definition 2.3.1. A set C ⊆ Rn is a convex set if for any x, y ∈ C and any scalar

λ ∈ [0, 1] we have that λx+ (1− λ) y ∈ C . A convex set C is also a cone if it closed under

positive linear combinations.

Definition 2.3.2. A point of the form θ1x1 + .... + θkxk, where θ1 + ... + θk = 1 and

θi ≥ 0, i = 1, ..., k is a convex combination of the points x1, ..., xk.

Definition 2.3.3. The convex hull of a set C , denoted convC , is the set of all convex

combinations of points in C

convC = {θ1x1 + ....+ θkxk, xi ∈ C , θi ≥ 0, i = 1, ...k, θ1 + ...+ θk = 1}

The convex hull convC is the smallest convex set that contains C .

Convexity is preserved under intersection: if S1 and S2 are convex, then S1 ∩ S2 is convex.

This statement is also valid for the intersection of an infinite number of sets.

Definition 2.3.4. A real valued function f defined on a convex set C is said to be a

convex function if for any x, y ∈ C and any scalar λ ∈ [0, 1] we have that

f (λx+ (1− λ) y) ≤ λf(x) + (1− λ)f(y)(4)

Definition 2.3.5. The α sublevel set of a function f : Rn → R is defined as
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Cα = {x ∈ domf, f(x) ≤ α}.

Sublevel sets of a convex function are convex, for any value of α, but the converse is false.

Definition 2.3.6. The graph of a function f : Rn → R is represented by the set

{(x, f(x)) , x ∈ domf}

and is a subset of Rn+1.

Definition 2.3.7. The epigraph of a function f : Rn → R is defined as

epif = {(x, t) , x ∈ domf, f(x) ≤ t}.

A function is convex if and only if its epigraph is a convex set. Also, a function is convex

if and only if it is convex when restricted to any line that intersects its domain.

Example 2.3.1 (Convex functions). All linear and affine functions are convex. Every

norm on Rn is convex function.

Among operations that preserve convexity are

• A non-negative weighted sum of convex functions is convex;

• Composition with an affine mapping is convex;

• If f1,...fm are convex functions, then their pointwise maximum is convex.

Definition 2.3.8. Let f be an extended real-valued function f : Rn → [−∞,∞]. The

function f is called closed if its epigraph, epi(f) is a closed set.

Definition 2.3.9. The convex closure or convex envelope of f is the function that has

as epigraph the closure of the convex hull of epi(f).
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Definition 2.3.10. For function f : Rn → R, its conjugate function f ∗ : Rn → R is

defined as

f ∗(y) = sup
x∈domf

(
yTx− f(x)

)
The domain of the conjugate function contains all vectors y ∈ Rn such that the supremum

is finite. The conjugate function f ∗ is a convex function as it is the pointwise supremum of

a family of convex functions of y, no matter if f is a convex function or not.

From the definition of conjugate function we obtain the Fenchel’s inequality

f(x) + f ∗(y) ≥ xty

We say that function f is proper if there exists at least one vector x such that f(x) < ∞

and f(x) > −∞ for all values of x in the domain of f . The closure of the convex hull of

the epigraph of f is the epigraph of some function, called the convex closure of f . The

following theorem characterizes the relation between the function, its conjugate and its

double conjugate.

Theorem 2.3.1 (Conjugacy Theorem, Bertsekas, Section 1.6). Let f : Rn → [−∞,∞]

be a function, let f ∗ be its convex conjugate, and consider the conjugate of f ∗

f ∗∗(x) = supλ∈Rn

{
λTx− f ∗(λ)

}
, x ∈ Rn

(a) We have f(x) ≥ f ∗∗(x), for any x ∈ Rn;

(b) If f is convex, then the properness of any of the functions f , f ∗ and f ∗∗ implies the

properness of the other two;

(c) If f is closed, proper and convex, then

f(x) = f ∗∗(x), for any x ∈ Rn

(d) Let f̂ be the convex closure of f . If f̂ satisfies f̂ ≥ −∞ for all x ∈ Rn, then

f̂ = f ∗∗(x).
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In the case that f is a convex and differentiable function with domf = Rn, let f ∗ be its

conjugate function (also called Fenchel conjugate) and let x∗ be any maximizer of ytx−f(x).

Then we have y = ∇f(x∗) and we can write the relation

f ∗(y) = x∗∇f(x∗)− f(x∗).

To illustrate the notion of conjugacy let’s consider some simple examples.

Example 2.3.2 (Conjugate and biconjugate of parabola). Let f be a parabola defined

on x ∈ [−3, 2], f(x) = −x2. Note f is a concave function. Then the conjugate is g(λ) =

supx∈[−3,2] {λx+ x2}. We are interested in the behavior of the function h(x) = λx + x2 on

[−3, 2]. It is differentiable and its derivative is h′(x) = λ+ 2x. Then

g(λ) = sup
{
h(−3), h(−λ

2
), h(2)

}
g(λ) = sup

{
−3λ+ 9, h(−λ

2
), 2λ+ 4

}
Therefore g(λ) = −3λ+ 9 on (−∞, 1] and g(λ) = 2λ+ 4 on (1,∞). Once we determine the

Figure 2.1. Conjugate function of concave parabola.

conjugate of f we can follow the same procedure to determine the biconjugate, i.e.,
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f ∗∗(p) = supλ∈R {pλ− g(λ)}.

We have the monotonicity of function s(λ) = pλ − g(λ) depends on the sign of its first

derivative. s
′
(λ) = p + 3 if λ ∈ (∞, 1) and s

′
(λ) = p − 3 for λ ∈ (1,∞). When p ranges in

R the supremum of s is finite only for values of p ∈ [−3, 2] and its value is p− 6. Therefore

the conjugate of the conjugate, i.e, biconjugate of f is f ∗∗(p) = p− 6, p ∈ [−3, 2].

Example 2.3.3. Let’s consider now a simple convex function defined as

f(x) = x2, x ∈ [−3, 2].

The conjugate of f is determined by

g(λ) = supx∈[−3,2] {λx− x2}.

We have g(λ) = −3λ− 9 on (−∞,−6), g(λ) = λ2

4
on [−6, 4], g(λ) = 2λ− 4 on (4,∞)

If we use the definition of the biconjugate and we follow a similar procedure as in the previous

example, then the conjugate of the conjugate function can be expressed as f ∗∗(p) = p2 on

x ∈ [−3, 2] which is expected since the parabola in this case it is a convex function.

2.4. Overview of interior point method for linear programs

As mentioned in the Chapter 1, convex optimization problems are important and occur

widely in applications in combinatorial optimization and electrical engineering [22]. Due to

work of Nesterov and Nemirovskii [23],[24], Alizadeh [25], [26], Vandenberghe and Boyd [27],

and Todd [28] polynomial time solution strategies (interior point methods) have emerged that

allow us to efficiently solve semidefinite programs. Nesterov and Nemirovskii developed a

general approach for using interior point methods for solving convex programming problems

based on the concept of p-selfconcordant barrier functions. Alizadeh takes a specific interior

point algorithm for linear programming (Ye’s projective potential reduction method [45])

and extends it to semidefinite programs [25]. In what follows we provide a summary of the
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necessary and sufficient conditions for optimality and the description of the main step of

the central path interior point algorithm for solving semidefinite programs. Our discussion

focuses on the primal dual path following interior point method. We begin our discussion

by outlining the main ideas of the interior point methods for linear programs.

In linear programming the goal is to maximize (or minimize) a linear function which

depends on n variables subject to linear equality and inequality constraints. The importance

of linear programs is significant since many problems in the scientific world and economics

can be cast as a linear program. Consequently, there has been a lot of interest in developing

methods for solving linear programs. Simplex method and interior point methods are the

main tools to solve linear programs. In case of simplex method the combinatorial analysis

indicates it could be quite inefficient for some problems. In their paper [35] Klee and Minty

show that, in the worst case, the method has exponential complexity in the size of the

problem.

Interior point methods use Newton’s method for solving non-linear equations, Lagrange’s

method of optimization with equality constraints, and Fiacco and McCormick’s barrier

method (1968) for optimization with inequality constraints.

Newton’s method is used to compute the zero of a function f(x) = 0. In the case when x

is a single variable, to find the zero of the function we can follow the steps: given an initial

estimate x0, a sequence is computed xk+1 = xk − f(xk)

f ′ (xk)
for k = 0, 1, 2, . . .. The stopping

criteria is |f(xk)| < ε.

If x is a n-dimensional vector and f is a function f : Rn → Rn, then the Jacobian is

given by the expression J(x) =
(
∂fi
∂xj

(x)
)

and the Newton’s step which leads to finding the

zero of the function is xk+1 = xk − [J(xk)]
−1 f(xk).
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Lagrange’s method offers transforms a constrained optimization problem with equality

constraints into a unconstrained problem. Thus, to solve the problem

minimize
x

f(x)

subject to gi(x) = 0, i = 1, 2, . . . ,m.

one forms a Lagrangian function

L(x, y) = f(x)−
∑m

i=1 yigi(x)

To minimize the function L we solve a system of n+m equations in n+m variables:

∂L
∂xj

= ∂f
∂xj

(x)−
∑m

i=1 yi
∂gi
∂xj

(x) = 0, for j = 1, . . . , n

and

∂L
∂yi

= −gi(x) = 0, for i = 1, . . . ,m.

Newton’s method can now be applied to solve these equations.

Fiacco and McCormick [46] indicate how to deal with inequality constraints. Consider a

linear program in standard form

minimize ctx, subject to Ax = b, x ≥ 0

where x is the vector of variables and matrix A and vector b are known. In case the linear

programs have inequality constraints these can be converted into equations by adding non-

negative slack variables. The inequalities that remain are the non-negativity conditions

x ≥ 0. The idea of the barrier function is to start from a point in the strict interior of

the inequalities (x0j > 0), for all j and construct a barrier that prevents any variable from

reaching the boundary (x0j = 0). One of the functions used in order to make the objective

function to increase without bound as xj approaches 0 is the function −log(xj). But, since

22



the constrained optimum lies on the boundary then we have to use a barrier parameter to

balance the contribution of the true objective function against that of the barrier function.

Therefore a minimization problem with non-negativity conditions can be written into a

sequence of unconstrained minimization problems

minimize
x

f(x)

subject to x ≥ 0.

and replaced by

minimize B(x, µ)

where B(x, µ) = f(x) − µ
∑n

j=1 log(xj). Fiacco and McCormick (1968) showed that the

minimizer x(µ)→ x∗, where x∗ is the constrained minimizer, as µ→ 0.

The main steps of the interior point algorithm for linear programs can be summarized

as follows [47]:

(1) Choose µ0 > 0, k = 0;

(2) Find element xk(µk), the minimizer of B(x, µk) using Newton’s method;

(3) If µk < ε, stop. Otherwise choose µk+1 < µk;

(4) Set k = k + 1 and go to step 2.

2.5. Semidefinite Programs

In semidefinite programming the space Rn gets replaced by the space of symmetric matri-

ces, the inner product of two vectors is replaced by the inner product between two matrices.

Let’s denote standard inner product between two matrices with X • Y = trace (X tY ). Also,

instead of condition that a variable should be positive, it gets replaced with the condition

that matrix X positive semidefinite (X � 0).
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Standard references for semidefinite programming are Nesterov and Nemirovskii [24] and

Vandenberghe and Boyd [27] which also contains a large collection of examples and applica-

tions.

Several authors have discussed generalizations of interior-point algorithms for linear pro-

gramming to the context of semidefinite programs. The landmark work in this direction

is due to Nesterov and Nemirovskii [24] where a general approach for using interior-point

methods for solving convex programs is proposed based on the notion of self-concordant

functions. They show that the problem of minimizing a linear function over a convex set

K can be solved in ”polynomial time” as long as a selfconcordant barrier function for K is

known. In particular, Nesterov and Nemirovskii show that linear programs, convex quadratic

programs with convex quadratic constraints, and semidefinite programs all have explicit and

easily computable selfconcordant functions, and hence can be solved in ”‘polynomial time”.

Further we will state the strong duality result for semidefinite programs. The information

in this section follows [33] which considers the standard form of the semidefinite program the

maximization of the linear function. Other authors [27] consider the semidefinite programs

in standard form given by the minimization of a linear function. The change from one form

to the other can be easily done maxf(x) = min(−f(x)).
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2.6. Semidefinite programs and their dual

A semidefinite program can be written in standard form as:

maximize 〈C,X〉

subject to 〈A1, X〉 = b1

〈A2, X〉 = b2

. . .

〈Am, X〉 = bm,

X � 0

where C and Ak, k = 1, . . . ,m are symmetric matrices. A matrix X is called a feasible

solution for the program if it is a symmetric matrix that verifies the constraints. The system

of m linear constraints can be written as only one relation A(X) = b if we let b = (b1, . . . , bm)

and A : Sn → Rm, where A(X) = (A1 •X, . . . , Am •X). With these notations we obtain

the formulation of the semidefinite program in equational form

maximize
X

C •X

subject to A(X) = b

X � 0

An optimal solution is a feasible solution X∗ such that C • X∗ ≥ C • X for all feasible

solutions X. We now include the theorem for strong duality for semidefinite programming

without proof.
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Theorem 2.6.1 (Strong duality for semidefinite programming). If the semidefinite pro-

gram

maximize
X

C •X

subject to A(X) = b

X � 0

is feasible and has a finite value γ and if there is a positive definite matrix X̃ such that

A(X̃) = b, then the dual program

minimize
y

bty

subject to
m∑
i=1

yiAi − C � 0

is feasible and has finite value β = γ.

For the proof please see [33].

2.7. Primal dual central path algorithm for semidefinite programs

In this section we state the existence and the uniqueness of the central path under suitable

conditions followed by a description of the algorithm main step.

As usual consider a semidefinite program in equational form

maximize C •X

subject to Ai •X = bi, i = 1 . . .m

X � 0
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where matrices C and Ai are symmetric matrices.

In central path interior point methods the constraint X � 0 is dropped by modifying

the objective function. In this case, it is added a barrier function such that the objective

function tends to−∞ as we approach the boundary of the set of positive semidefinite matrices

Sn+ = {X ∈ Sn, X ≥ 0}.

Let µ > 0. We consider the auxiliary problem

(5)

maximize
X

fµ(X) = C •X + µlndetX

subject to Ai •X = bi, i = 1, . . .m

X � 0.

Uniqueness of the solution: If optimization problem (5) has an optimal solution, then it

has a unique optimal solution X∗(µ). This follows from the fact that fµ is strictly concave

over the interior of Sn. To obtain necessary conditions for optimality we use the method of

Lagrange multipliers.

Lemma 2.7.1. If X∗(µ) > 0 is the optimal solution of the optimization problem (5), then

there is a vector ỹ ∈ Rm such that X∗(µ) and ỹ satisfy the equations

(6) Ai •X = bi, i = 1, 2 . . .m

(7) C + µX−1 =
m∑
i=1

yiAi

The necessary conditions for optimality result from the method of Lagrange multipliers

applied to function fµ, the constraints gi(X) = Ai • X − bi and to linear constraints that

impose the symmetry of variable X, gij(X) = xij − xji, i, j = 1, 2, . . . , n.
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Equation (6) is a consequence of the fact that X∗(µ) is feasible.

The matrix X ∈ Rm×n is positive definite and det(X) > 0, ∇lndetX = (XT )−1. Now

(7) can be derived from the condition involving the Lagrange multipliers. A complete proof

is found in [33].

Introducing a new variable S =
∑m

i=1 yiAi − C = µX−1 where S symmetric matrix it

follows that X∗(µ) satisfies the following Lagrange system for y ∈ Rm and S =
∑m

i=1 yiAi −

C = µX−1.

(8)

Ai •X = bi, i = 1, . . .m

m∑
i=1

yiAi − S = C

SX = µIn

S,X � 0.

2.7.1. A Primal Dual Interpretation. The equations (8) provide a primal feasible

solution and a dual feasible solution. The duality gap represents the difference between dual

and primal objective function value.

Lemma 2.7.2. If X̃, S̃ ∈ Rn×n, ỹ ∈ Rm satisfy the Lagrange equations (8) for some

µ > 0, then the following statements hold:

(i) The matrix X̃ is a strictly feasible solution (X � 0) of the primal semidefinite program

(9)

maximize C •X

subject to Ai •X = bi, i = 1 . . .m

X � 0
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(ii) The vector ỹ is a strictly feasible solution of the dual semidefinite program

(10)

minimize bTy

subject to
m∑
i=1

yiAi − C � 0

where strict feasibility means that
∑m

i=1 ỹiAi − C � 0.

(iii) The duality gap satisfies bT ỹ − C • X̃ = nµ

Proof. We know that X̃, S̃ satisfy the Lagrange system, then X̃, S̃ � 0 and we obtain

that X̃ is strictly feasible for the primal and ỹ is strictly feasible for the dual. For the third

statement we will use the linearity of • in the first argument and S̃X̃ = µIn:

C • X̃ =

(
m∑
i=1

ỹiAi − S̃

)
• X̃

from which it follows

C • X̃ =
m∑
i=1

ỹi

(
Ai • X̃

)
− S̃ • X̃

and then we have

C • X̃ =
m∑
i=1

ỹibi − S̃ • X̃

or

C • X̃ =
m∑
i=1

ỹibi − trace
(
S̃X̃
)
.

Taken into account the relation between S and X we obtain

C • X̃ = bT ỹ − nµ.

�
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We see that if we could compute X(µ) for a small value of µ then we would have an

almost optimal solution of the semidefinite program. Sufficient conditions on the semidefinite

program under which the Lagrange system is uniquely solvable and yields a maximum of fµ

are given by following Lemma

Lemma 2.7.3. Suppose that both the primal program (9) and the dual program (10) have

strictly feasible solutions X̃ and ỹ, respectively, and that the matrices Ai, i = 1, . . . ,m are

linearly independent as elements of the vector space SYMn.

Then for every µ > 0, the Lagrange system (8) has a unique solution X∗ = X∗(µ), y∗ =

y∗(µ), S∗ = S∗(µ). Moreover, X∗(µ) is the unique maximizer of fµ subject to Ai •X = bi,

i = 1, . . .m and X � 0.

A complete proof of the Lemma can be found in [33].

2.7.2. Central Path Step. The Lagrange system (8) can be solved for small values of

the parameter µ with the purpose to obtain the primal and dual solutions. The primal-dual

central path of the semidefinite program (9) is defined as the set

{
(X∗(µ), y∗(µ), S∗(µ)) ∈ Sn+ × Rm × Sn+ : µ > 0

}
If we consider a fixed value of µ then the central path function F defined below captures the

deviation of a given triple (X, y, S) from the central path

F : Sn × Rm × Sn → Rm × Sn × Sn

F (X, y, S) =


P (X, y, S)

Q(X, y, S)

R(X, y, S)
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where P , Q and R are defined as follows

P (X, y, S) =



A1 •X − b1

A1 •X − b1
...

Am •X − bm


,

and

Q(X, y, S) =
m∑
i=1

yiAi − S − C

and

R(X, y, S) = SX − µIn.

But we know that F (X∗(µ), y∗(µ), S∗(µ)) = (0, 0, 0). We would like to compute this zero

for small µ, in order to obtain almost optimal solutions for the primal and dual programs.

For this we use the Newton’s method. We ignore the symmetry of X and S and write

F : R2n2+m → R2n2+m. Let’s assume that we are at the step k and we denote X(k) = X̃,

y(k) = ỹ and S(k) = S̃. The goal is to compute the next iterate X(k+1) = X̃
′
, y(k+1) = ỹ

′
and

S(k+1) = S̃
′
.

As usual, let

∆X = X̃
′ − X̃, ∆y = ỹ

′ − ỹ, ∆S = S̃
′ − S̃

Then we have

DF (X̃, ỹ, S̃)


∆X

∆y

∆S

 = −F (X̃, ỹ, S̃) =


0

0

µIn − S̃X̃


Again, taking into account that function F is defined in terms of P , Q and R the matrix

DF (X, y, S) has the following block structure
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DF (X, y, S) =


DPy,S(X) 0 0

0 DQX,S(y) DQX,S(S)

DRy,S(X) 0 DRX,y(S)


where the subscripts mean that the corresponding arguments are fixed. The functions that

we need to differentiate in the blocks are linear functions and their Jacobian is equal with

the function itself. Therefore

DPy,S(X)(∆X) =



A1 •∆X

A2 •∆X

...

Am •∆X


DQX,S(y)(∆y) +DQX,y(S)(∆S) =

∑m
i=1(∆y)iAi −∆S

DRy,S(X)(∆X) +DRX,y(S)(∆S) = S(∆X) + (∆S)X

We solve for ∆X, ∆y and ∆S and we obtain the following system of equations:

(11) Ai • (∆X) = 0

(12)
m∑
i=1

(∆y)iAi − (∆S) = 0

(13) S̃(∆X) + (∆S)X̃ = µIn − S̃X̃

This system has a unique solution [33].

In our search for the next iterate of the Newton method we need a valid next iterate

which means that ∆X has to be symmetric. One choice that we have is to allow

X̃
′
= X̃ + 1

2
(∆X + (∆X)T )
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In the paper of [48] it is shown that this modified Newton step also leads to theoretical

convergence and good practical performance.

In order to start the algorithm we need a initial point. The initial point should be selected

in such way that we start sufficiently close to the central path. In case of the primal-dual

interior point algorithm, we need to embed the primal problem and the dual problem into

a ”larger” semidefinite program for which an interior point is readily available. Solving

this larger problem using the algorithm also yields approximately optimal primal and dual

solutions for the original problem. This topic is treated in [49].

To solve the system, we keep the equations (11) and (12) and equation (13) gets replaced

with

(14) X̃
−1
2 (X̃∆S + ∆XS̃)X̃

1
2 + X̃

1
2 (∆SX̃ + S̃∆X)X̃

−1
2 = 2(µIn − X̃

1
2 S̃X̃

1
2 )

where X̃
1
2 is the square root of X̃, the unique positive definite matrix whose square is X̃.

In this setting, a generic step of the short step path following algorithm displays as follows:

(1) Given the current iterate X(k), y(k), S(k) set

µk = S(k)•X(k)

n

If X(k), y(k), S(k) is on the central path then X(k) = X∗(µi)

(2) Perform one step of Newton method, where µ = σµk and σ = 1− 0.3√
n

is the centrality

parameter. This means to solve the Equations (11), (12), (14) and set

X(k+1) = X(k) + ∆X

y(k+1) = y(k) + ∆y

S(k+1) = S(k) + ∆S

to obtain the next iteration.
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CHAPTER 3

Rank Minimization Problem

3.1. Introduction

This Chapter introduces the nuclear norm heuristic. It contains a complete and detailed

proof of two results: the nuclear norm is the convex envelope of the rank function over

a bounded set and the nuclear norm minimization admits a formulation as a semidefinite

program. The first result offers a justification for the replacement of the rank function

with the nuclear norm in optimization problems. The second result provides a tool to

actually solve, in practice, optimization problems using the nuclear norm heuristic (i.e. using

algorithms for semidefinite programming). Details for this chapter can be found in [30], [31],

[32] and [27], [33]. Main results have been gathered in this chapter for an easier understanding

of the heuristic.

The minimization of the rank of a matrix over a convex set is often encountered in cases

where there is a need to look for a low dimensional matrix in high dimensional data. It is

also called the Rank Minimization Problem. It can be formulated as

(15)

minimize
X

rank(X)

subject to X ∈ C

where X ∈ Rm×n is an optimization variable and C is a convex set. Probably the most

known example of a rank minimization problem is approximating a given matrix with a

low-rank matrix in the spectral or Frobenius norm. It can be solved via the singular value

decomposition (SVD). In general, the Rank Minimization Problem problem is difficult
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to solve. In its general formulation, it is known to be computationally intractable (NP-

hard) [27]. Different heuristics lead to efficient but only approximate solutions to the Rank

Minimization Problem. In [30] and [31] it is introduced the nuclear norm heuristic.

3.2. Nuclear norm heuristic

When a matrix X is a positive semidefinite matrix, the heuristic usually used for the

Rank Minimization Problem is to replace the rank with the trace. And consequently,

to solve the following optimization problem

(16)

minimize
X

trace(X)

subject to X ∈ C,

X � 0.

The replacement is motivated by the fact that for a positive semidefinite matrix the eigen-

values are non-negative. Thus, trace minimization is the same as the minimization in the l1

norm of the vector of eigenvalues.

Minimization in the l1 norm encourages many of the eigenvalues to be zero and the

resulting matrix to be low-rank. The use of the l1 norm instead of the l0 norm of a vector

is another heuristic used often in convex optimization. The l0 norm of a vector is given by

the number of nonzero components of the vector.

The problem of minimizing the number of nonzero elements of a vector x (subject to

some constraints in x) arises in many different fields. However, except in very special cases,

it is a very difficult problem to solve numerically. Instead, the l1 norm of a vector is used as

a proxy. The approach considered is to minimize the l1 norm of x instead of minimizing its

nonzero entries, where the l1 norm of x is defined as ‖x‖l1 = |x1|+ ...+ |xn|.
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For example, compressive sensing (CS) has been one of the hot topics in the signal pro-

cessing and optimization communities. In CS theory, E. Candes in [50],[51] and Bruckstein,

Donoho and Elad in [52] show that the minimum l1 norm solution to an underdetermined

system of linear equations is also the sparsest possible solution under quite general condi-

tions. More specifically, suppose there exists an unknown signal x0 ∈ Rn, a measurement

vector b ∈ Rd such that (d < n), and a measurement matrix A ∈ Rd×n such that A is full

rank and b = Ax0. Recovering x0 given A and b, constitutes a non-trivial linear inversion

problem, since the number of measurements in b is smaller than the number of unknowns

in x0. A conventional solution to this problem is the linear least squares, which finds the

minimum l2 norm solution (or the solution of least energy) to this system. However, if x0

is sufficiently sparse and the sensing matrix A is incoherent with the basis under which x0

is sparse, then x0 can be exactly recovered by computing the minimum l1 norm solution, as

given by the following optimization problem

minimize
x

‖x‖l1

subject to Ax = b

The replacement of the rank with the trace can be applied only in the case where the matrix

is positive semidefinite. The extension to matrices that are not positive semidefinite and

also to non square matrices is made using the nuclear norm of the matrix. The nuclear norm

heuristic for the Rank Minimization Problem reduces to solving

(17)

minimize
X

‖X‖∗

subject to X ∈ C

36



The relation between the nuclear norm of a matrix and the rank of the matrix is further

explained using the notion of conjugate function and convex envelope from convex analysis.

3.3. Convex Envelope of Matrix Rank

This section presents the biconjugate for the matrix rank function. It will be shown

how the dual of the spectral norm is the convex envelope of the rank function on the set of

matrices with norm less than one. The derivation follows [30], [31] and relies on the convex

analysis and linear algebra results presented in the previous sections.

Theorem 3.3.1 (Fazel, 2002,[31]). On the set S = {X ∈ Rm×n, ‖X‖ ≤ 1}, the convex

envelope of function φ(X) = rank(X) is

φenv(X) = ‖X‖∗ =

min{m,n}∑
i=1

σi(X)(18)

Proof. Step 1: Determine conjugate of the rank function.

According to the definition of the conjugate function we have

φ∗(Y ) = sup
‖X‖≤1

(traceY tX − φ(X))

Let q = min {m,n}. According to the Von Neumann trace theorem we have that

trace(Y TX) ≤
∑q

i=1 σi(Y )σi(X)

If we let X = UXΣXV
t
X and Y = UY ΣY V

t
Y then in the relation above equality holds when

choosing

UX = UY , VX = VY .
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Function φ(X) = rank(X) is independent of UX , VX . Consider UX = UY , VX = VY and then

we can apply the Von Neumann trace theorem. Thus, the conjugate function of the matrix

rank can be expressed as

φ∗(Y ) = sup
‖X‖≤1

(
∑q

i=1 σi(Y )σi(X)− rank(X))

In case X=0 then φ∗(Y ) = 0. For the particular case when rank(X) = r the convex conjugate

is given by

φ∗(Y ) =
∑r

i=1 σi(Y )− r.

Therefore we can express the conjugate of the matrix rank function as

φ∗(Y ) = max {0, σ1(Y )− 1, ..,
∑r

i=1 σi(Y )− r, ..,
∑q

i=1 σi(Y )− q}

In the set above the largest term is the one that sums all positive terms σi(Y )−1. Therefore

φ∗(Y ) = 0 if ‖Y ‖ ≤ 1,

φ∗(Y ) =
r∑
i=1

σi(Y )− r, σr(Y ) > 1 and σr+1(Y ) ≤ 1

or

φ∗(Y ) =
∑q

i=1(σi(Y )− 1)+

Step 2: Determine conjugate of the conjugate of rank function

To determine the biconjugate function we apply again the definition

φ∗∗(Z) = sup
Y

(traceZtY − φ∗(Y )

Now choose UY = UZ , VY = VZ and the biconjugate function is

φ∗∗(Z) = sup
Y

(
∑q

i=1 σi(Z)σi(Y )− φ∗(Y ))
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φ∗∗(Z) = sup
Y

(
∑q

i=1 σi(Z)σi(Y )− φ∗(Y ))

If ‖Z‖ > 1 then σ1(Y ) can be chosen large enough such that φ∗∗(Z) → ∞ because the

coefficient of σ1(Y ) is positive

φ∗∗(Z) = sup
Y

(
∑q

i=1 σi(Z)σi(Y )− (
∑r

i=1 σi(Y )− r))

Let ‖Z‖ ≤ 1. If ‖Y ‖ ≤ 1 then φ∗(Y ) = 0 and the supremum is

φ∗∗(Z) =
∑q

i=1 σi(Z) = ‖Z‖∗

If ‖Y ‖ > 1 the expression above can be re-written as:

φ∗∗(Z) =
∑q

i=1 σi(Y )σi(Z)−
∑r

i=1 (σi(Y )− 1)

Adding and subtracting the term
∑q

i=1 σi(Z) and grouping the terms in a convenient way

we obtain

φ∗∗(Z) =

q∑
i=1

σi(Y )σi(Z)−
r∑
i=1

(σi(Y )− 1)−
q∑
i=1

σi(Z) +

q∑
i=1

σi(Z)

φ∗∗(Z) =
r∑
i=1

(σi(Y )− 1)(σi(Z)− 1) +

q∑
i=r+1

(σi(Y )− 1)σi(Z) +

q∑
i=1

σi(Z)

which leads to

φ∗∗(Z) <
∑q

i=1 σi(Z)

Therefore

φ∗∗(Z) = ‖Z‖∗

over the set {Z; ‖Z‖ ≤ 1}. �
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3.4. Nuclear norm heuristic as a semidefinite program

This section explains how the minimization of the nuclear norm can be formulated as a

semidefinite program. In fact, solving the nuclear norm minimization problem

minimize
X

‖X‖∗

subject to X ∈ C

leads to solving the semidefinite program

(19)

minimize
W1,W2

1

2
(trace(W1) + trace(W2))

subject to

W1 X

XT W2

 � 0

X ∈ C

For any given norm ‖‖ in an inner product space, there exists a dual norm ‖‖d defined

‖X‖d := maxY {〈X, Y 〉 , ‖X‖ ≤ 1}

For vectors from Rn the dual norm of the lp norm is the lq norm
(

1
p

+ 1
q

= 1
)

. For matrices

the dual norm of the Frobenius norm is the Frobenius norm and the dual norm of the spectral

norm is the nuclear norm.

The proof of the duality between the spectral norm and the nuclear norm is presented in

[32] in the context of the nuclear norm heuristic representation as a semidefinite program, it

can also be found in [53].

Lemma 3.4.1 (Fazel, [32]). The dual norm of the spectral norm ‖X‖ in Rm×n is the

nuclear norm ‖X‖∗.
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Proof. Step 1 : We express ‖X‖ ≤ t as a linear matrix inequality

‖X‖ = σmax(X)

σmin(X)2I � X tX � σmax(X)2I

If ‖X‖ ≤ t then t2I −X tX � 0. We use Schur complement formula to further rewrite this

inequality.

Lemma 3.4.2 (Nonstrict Schur complement formula). Let Q and R be symmetric matri-

ces. Then the condition Q S

St R

 ≥ 0

is equivalent to the following R ≥ 0, Q− SR+St ≥ 0, S(I −RR+) = 0.

We apply the Schur complement formula for t2I −X tX � 0 and we havetIm X

X t tIn

 ≥ 0

We will prove the relation ‖X‖d ≥ ‖X‖∗. Let X = UΣV t and Y = UV t, then ‖Y ‖ = 1.

trace(XY t) =
∑r

i=1 σi(X) = ‖X‖∗

Therefore

(20) ‖X‖d ≥ ‖X‖∗ .

Having the norm inequality expressed as linear matrix inequality we can write:

‖X‖d = maxY {〈X, Y 〉 ; ‖Y ‖ ≤ 1}

as
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‖X‖d = maxY trace(X tY )

such that

Im Y

Y t In

 ≥ 0

Now, the dual form of this program is given by

minimize
W1,W2

1

2
(trace(W1) + trace(W2))

subject to

W1 X

XT W2

 � 0

Set W1 = UΣUT and W2 = V ΣV T . The triple (W1,W2, X) is feasible for the above min-

imization problem. Any feasible solution of the minimization problem provides an upper

bound for the primal program, therefore we have that

(21) ‖X‖d ≤ ‖X‖∗ .

From relations (20) and (21) we can conclude there is equality between the dual norm and

the nuclear norm. �

There is one thing left to show, the duality between the semidefinite programs. In order

to justify it is necessary to show

Lemma 3.4.3 (Fazel,2002, [31] ). For X ∈ Rm×n and t ∈ R we have ‖X‖∗ ≤ t if and

only if there exist matrices Y ∈ Rm×m and Z ∈ Rn×n such that Y X

X t Z

 � 0

and

trace(Y ) + trace(Z) ≤ 2t
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Proof. “⇐=” Suppose Y and Z satisfy the relation Y X

X t Z

 � 0

and

trace(Y ) + trace(Z) ≤ 2t

Consider X = UΣV t and let r be the rank of X. Also, we have that the trace of the product

of two positive semidefinite matrices is non-negative

trace

 UU t −UV t

−V U t V V t


 Y X

X t Z

 � 0.

Further

(22) trace(UU tY )− trace(UV tX t)− trace(V U tX) + trace(V V tZ) ≥ 0

U has orthonormal columns and we can add more to complete to a full basis. Therefore

‖UU t‖ ≤ 1. According to the Von Neumann Trace theorem

|trace(UU tY )| ≤
∑

i σi(UU
t)σi(Y ) ≤ trace(Y )

The same relation exists for the matrix V

trace(V V tZ) ≤ trace(Z) and trace(V U tX) = trace(V ΣV t) = trace(Σ)

Then, using equation (22) we have

trace(Y ) + trace(Z)− 2trace(Σ) ≥ 0

trace(Σ) ≤ 1
2
(trace(Y ) + trace(Z))

trace(Σ) = ‖X‖∗ ≤ t
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“=⇒” Suppose ‖X‖∗ ≤ t.

Define

Y = UΣU t + γI

Z = V ΣV t + γI

trace(Y ) + trace(Z) = 2trace(Σ) + γ(m+ n)

Choose γ =
2(t−‖X‖∗)
m+n

. Then

trace(Y ) + trace(Z) = 2t Y X

XT Z

 =

UΣUT UΣV T

V ΣUT V ΣV T

+ γ

I 0

0 I

 =

U
V

Σ

[
UT V T

]
+ γI

which is positive semidefinite.

�
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CHAPTER 4

Positive Semidefinite Cone of Matrices

4.1. Closed convex sets in Euclidean space

We are interested in local properties of closed convex sets in Euclidean space. A finite

dimensional closed convex set always has an interior when considered in a proper ambient

space and, therefore, has a non-trivial boundary. In [54] Barvinok explores the structure of

the boundary and defines and studies faces and extreme points. In particular the structure of

faces and extreme points of the cone of positive semidefinite matrices is studied. The convex

relaxation for the Euclidean distance matrix completion problem returns as solution points

that are on the boundary of the positive semidefinite cone. Therefore we are interested in

how to understand and make use of the structure of the boundary of the positive semidefinite

cone. The structure and properties of the positive semidefinite cone are detailed in [55], [1],

[56].

Definition 4.1.1 (Cone, Dual cone). A set K is a cone if for any x ∈ K the element

tx ∈ K, t ∈ R+. Let K be a cone. The set

K∗ = {y : xty ≥ 0, for all x ∈ K}

is called the dual cone of K.

K∗ is a cone, and is always convex, even when the original cone K is not. K = K∗∗ if

and only if K is a closed convex cone.

An element y belongs to the dual cone if −y is the normal of a hyperplane that supports

K at the origin.
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Example 4.1.1 (Positive semidefinite cone). The positive semidefinite cone Sn+ is self-

dual. Given matrices X,Y ∈ Sn we have that

trace(XY ) ≥ 0 for all X � 0⇔ Y � 0

If we consider a matrix Y such that Y /∈ Sn+ we have that qtY q = trace(qqtY ) < 0 for a vector

q ∈ Rn. Let X = qqt which is a rank 1 positive semidefinite matrix. Then trace(XY ) < 0

and Y /∈ (Sn+)∗.

Let X, Y ∈ Sn+. If X =
∑n

i=1 λiqiq
t
i where λi ≥ 0, i = 1, . . . , n it can be easily seen that

trace(Y X) =
∑n

i=1 λiq
t
iY qi ≥ 0

which shows that Y belongs to the dual cone of the positive semidefinite cone.

If V is a vector space and we consider L a subspace of V then A = L + u is an affine

subspace of V. The dimension of A is the dimension of the subspace L. The affine subspaces

of dimension 1 are straight lines. An affine hyperplane is the set of points in the space V

such that f(v) = α, where f is a linear functional f : V → R and α ∈ R. The Isolation

Theorem offers a tool to explore the structure of a convex set.

Theorem 4.1.1 (Isolation Theorem). Let V be a vector space, let A ⊂ V be an alge-

braically open convex set and let u /∈ A be a point. Then there exists an affine hyperplane H

which contains u and strictly isolates A.

Definition 4.1.2. Let A ⊂ Rd be a set. A point u ∈ A is called an interior point of A if

there exists an ε > 0 such that the open ball B(u, ε) = {x : ‖x− u < ε‖} is contained in A.

The set of all interior points of A is called the interior of A and denoted int(A). The set of

all non-interior points of A is called the boundary of A and is denoted ∂A.
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Lemma 4.1.1. Let A ⊂ Rd be a convex set and let u0 ∈ int(A) be an interior point of

A. Then, for any point u1 ∈ A and any 0 ≤ α < 1, the point uα = (1 − α)u0 + αu1 is an

interior point of A.

Corollary 4.1.2. Let A ⊂ Rd be a convex set. Then int(A) is a convex set.

Definition 4.1.3. The dimension of a convex set A ⊂ Rd is the dimension of the smallest

affine subspace that contains A. By convention, the dimension of the empty set is −1.

Definition 4.1.4. Let K ⊂ Rd be a closed convex set. A (possibly empty) set F ⊂ K

is called a face of K if there exists an affine hyperplane which isolates K and such that

F = K ∩ H. If F is a point, then F is called an exposed point of K. A non-empty face

F 6= K is called a proper face of K.

A face is a closed convex set and a face of a compact convex set is a compact convex set.

Also, it can be shown that every compact convex set is the closure of the convex hull of the

set of its exposed points. A boundary point lies in some face of a closed convex set.

Theorem 4.1.3. Let K ⊂ Rd be a convex set with a non-empty interior and let u ∈ ∂K

be a point. Then there exists an affine hyperplane H, called a support hyperplane at u, such

that u ∈ H and H isolates K.

Proof. If H is convex with non-empty interior then its interior is a convex set. We

know that u /∈ int(K). We apply the Isolation Theorem and we obtain that there is an

affine hyperplane H which contains u and isolates the int(K) and also isolates K. �

Corollary 4.1.4. Let K ⊂ Rd be a closed convex set with a non-empty interior and let

u ∈ ∂K be a point. Then there is a proper face F of K such that u ∈ F .
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Proof. Let H be a support hyperplane of K at u. Let F = H ∩K. �

Theorem 4.1.5 (Isolation Theorem for convex sets in Rd). Let A ⊂ Rd be a non-empty

convex set and let u /∈ A be a point. Then there is an affine hyperplane H ⊂ Rd such that

u ∈ H and H isolates A.

Proof. Choose the minimal affine subspace L ⊂ Rd such that A ⊂ L. If u /∈ L then we

can choose H disjoint from L. If u ∈ L then int(A) 6= ∅ is in L and u ∈ L. Then exists a

hyperplane Ĥ in L such that u ∈ Ĥ and Ĥ isolates A. Then we choose any hyperplane H

such that H ∩ L = Ĥ. �

Definition 4.1.5. Let V be a vector space and let A ⊂ V be a set. A point a ∈ A is

called an extreme point of A provided for any two points b, c ∈ A such that b+c
2

= a we must

have b = c = a. The set of all extreme points of A is denoted ex(A).

An extreme point is a point that is not an interior point of any line segment lying entirely

in A. The extreme points of a line segment are its endpoints, while the extreme points of

the unit circle together with its interior are the points from the boundary of the circle.

Theorem 4.1.6 (Barvinok). Let V be a vector space, let A ⊂ V be a non-empty set and

let f : V → R be a linear functional.

(1) Suppose that f attains its maximum (resp. minimum) on A at a unique point u ∈ A,

that is, f(u) > f(v) for all v 6= u, v ∈ A (resp. f(u) < f(v) for all v 6= u, v ∈ A). Then

u is an extreme point of A.

(2) Suppose that f attains its maximum (minimum) α on A and suppose that

B = {x ∈ A : f(x) = α} is the set where the maximum (minimum) is attained. Let u be

an extreme point of B. Then u is an extreme point of A.

48



Proof. Let’s suppose f attains its maximum on A. For u = a+b
2
f(u) = f(a)+f(b)

2
, where

f(a) ≤ f(u) and f(b) ≤ f(u). Then we have f(a) = f(b) = f(u) and a = b = u from the

uniqueness of the maximum point.

For u = a+b
2

for a, b ∈ A. Then α = f(u) = f(a)+f(b)
2

and f(a), f(b) ≤ α. We must have

then f(a) = f(b) = α, so a, b ∈ B. Then a = b = u since u is an extreme point of B. �

Note that when K ⊂ Rd is a compact set and u ∈ K is a point such that ‖u‖ ≥ ‖v‖ for

each v ∈ K then u is an extreme point of K.

Theorem 4.1.7 (M.G. Krein, D.P.Milman, 1940). Let K ∈ Rd be a compact convex set.

Then K is the convex hull of the set of its extreme points.

Proof. The proof can be obtained through induction. When d = 0 we have that K is

a point and then the conclusion takes places. Now consider the case when d > 0. When

int(K) = ∅, K lies in an affine subspace of a smaller dimension and the statement is true by

the induction hypothesis.

When int(K) 6= ∅, we have to prove that for all points in the set K they can expressed

as a convex combination of extreme points of K. For a point on the boundary of K we

can apply corollary 4.1.4 and we have that exists a face F of K such that the point belongs

to that face. But F lies in an affine subspace of a smaller dimension and we apply the

induction hypothesis u ∈ conv(ex(F )) and ex(F ) ⊂ ex(K). When point u ∈ int(K) consider

the straight line denoted by L that contains u. The intersection between L and K is an

interval [a, b] where the points a, b are on the boundary of K and u is an interior point of

this interval. For points on the boundary the statement takes place, therefore a and b can

be expressed as a convex combination of extreme points. u is a convex combination of a and

b therefore it is a convex combination of extreme points. �
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A closed and convex set has at least one extreme point if and only if it does not contain

a line.

Example 4.1.2. Let P =
{
x ∈ Rn : atjx ≤ bj, j = 1, . . . , r

}
, where aj, bj are given. A

vector v ∈ P is an extreme point of P if and only if the set Av =
{
aj; a

t
jv = bj, j = 1, . . . , r

}
contains n linearly independent vectors.

4.2. Positive semidefinite cone: faces and extreme points

The positive semidefinite cone Sn+ can be expressed as

(23)
⋂
z 6=0

{
X ∈ Sn : zTXz ≥ 0

}

For each z 6= 0, zTXz is (not identically zero) linear function ofX so the sets
{
X ∈ Sn : zTXz ≥ 0

}
are half-spaces in Sn. In this way the positive semidefinite cone is the intersection of an in-

finite number of half spaces, and so is convex.

The positive semidefinite cone of n × n matrices is isomorphic with the vector space

R
n(n+1)

2 (given by the number of free variables in a symmetric n × n matrix). There is an

isometry T from the space of symmetric matrices to R
n(n+1)

2 given by

T (X) =
(
X11,

√
2X12, . . . ,

√
2X1n, X22,

√
2X23, . . .

)
.

Definition 4.2.1 (Proper cone). A cone K is called a proper cone if it satisfies the

following

(1) K is convex

(2) K is closed

(3) K is solid, which means it has non-empty interior

(4) K is pointed, which means that it contains no line (x ∈ K, −x ∈ K ⇒ x = 0).
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A proper cone K can be used to define a generalized inequality, which is a partial ordering

on Rd defined by:

x �K y ⇔ y − x ∈ K

Similarly, it can be used to define an associated strict partial ordering.

The positive semidefinite cone is a proper cone in Sn. The associated generalized in-

equality �K is the matrix inequality X � Y which means Y −X is a positive semidefinite

matrix. The strict inequality would mean that the difference matrix is positive definite.

Lemma 4.2.1 (Matousek, Lemma 4.7.4, page 67). The Positive Semidefinite Cone is

generated by rank one matrices.

Proof. Consider the matrix M =
∑n

i=1 λiqiq
t
i , λi ≥ 0. Matrices qiq

t
i are positive semi-

definite and since the positive semidefinite cone is a convex cone, every non-negative linear

combination of such matrices is also positive semidefinite. Given a positive semidefinite ma-

trix M we can diagonalize it M = SDSt. If we denote its eigenvalues with λ1, . . . , λn, these

are non-negative. Then the matrix M can be written as

M =
∑n

i=1 λiqiq
t
i .

where qi is the ith column of S. �

Example 4.2.1. Euclidean projection on a proper cone: To project a symmetric matrix

onto the positive semidefinite cone, form its eigenvalue expansion and drop terms associ-

ated with the negative eigenvalues. This matrix is also the projection onto the positive

semidefinite cone in the l2, or spectral norm.

In S2
+ each and every ray on the boundary of the positive semidefinite cone in R3 corre-

sponds to a symmetric rank 1 matrix, but that does not hold in any higher dimension.
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Figure 4.1. Boundary of the positive semidefinite cone S2 [1].

Each and every face of the PSD cone contains the origin.

Proposition 4.2.1. Let A be an n × n positive semidefinite matrix of rankA = r. If

r = n then A is an interior point of the cone of positive semidefinite matrices. If r < n,

then A is an interior point of a face F , where dim F = r(r+1)
2

. There is a rank preserving

isometry identifying the face F with the cone of positive semidefinite r × r matrices.

Proof. If rank of A is n then A is positive definite and belongs to the interior of Sn+.

Suppose that rank A= r < n. A hyperplane H ⊂ Sn which contains A and isolates the

set Sn+ shall be constructed.

Let λ1, . . . , λr > 0 be the non-zero eigenvalues of A and U the orthogonal matrix such

that

U−1AU = D = diag(λ1, . . . , λr, 0, . . . , 0)

Let the matrix C = diag(0, . . . , 0, 1, . . . , 1) be the matrix whose first r diagonal entries

are 0 and the last n− r diagonal entries are 1. Further, define Q = UCU−1.

Then Q is a non-zero positive semidefinite matrix and the following relation takes place

〈Q,A〉 = 〈C,D〉 = 0
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For any positive semidefinite n× n matrix X, the matrix Y = U−1XU is positive semi-

definite and

〈Q,X〉 = 〈UCU−1, UY U−1〉 = 〈C, Y 〉 ≥ 0

since the diagonal entries of Y must be non-negative. Therefore, the hyperplane

H = {X ∈ Sn : 〈Q,X〉 = 0}

isolates Sn+ and contains A.

Let us describe the corresponding face

F =
{
X ∈ Sn+ : 〈Q,X〉 = 0

}
The map X → Y = U−1XU is a non-degenerate linear transformation which maps Sn+

onto itself, maps Q onto C and A onto D. Then the face F is mapped onto a face F
′
,

containing D and consisting of all positive semidefinite matrices Y such that 〈Y,C〉 = 0.

F
′
=
{
Y ∈ Sn+ : 〈Y,C〉 = 0

}
Clearly, Y must have the last n − r diagonal entries equal to zero. Since Y is positive

semidefinite, all entries in the last n − r rows and last n − r columns must be zero. The

upper left r × r submatrix of Y can be an arbitrary positive semidefinite matrix.

Thus the face F
′
may be identified with the cone of all r×r positive semidefinite matrices

and it contains D in its interior (in particular dimF
′
= r(r+1)

2
).

Since Y → X = UY U−1 is a non-degenerate linear transformation, which maps D onto

A and the face F
′

onto F we can conclude that dimF = r(r+1)
2

and F contains A in its

interior. �

Therefore we have the following statements
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(1) The dimensions of faces F of the cone of positive semidefinite matrices are 0, 1, 3, . . . r(r+1)
2

. . ..

If F is a face and its dimension is r(r+1)
2

then there is a matrix A ∈ intF such that

rank A equals r.

(2) Let F ∈ Sn+ be a face and let r be a positive integer such that dim F< r(r+1)
2
≤ n(n+1)

2
.

There is a face F
′

of Sn+ such that F is a face of F
′

and dimF
′
= r(r+1)

2
.

(3) If r and n are two positive integers 0 < r < n and Sn+ be the cone of positive

semidefinite n × n and Sr+ the cone of positive semidefinite r × r matrices. Let

F ⊂ Sn+ be a face such that dimF = r(r+1)
2

. There exists a isometry between Sr+ and

F .

Using proposition 4.2.1 we obtain the following description of the facial structure of the

cone of positive semidefinite matrices.

Corollary 4.2.1. The faces of Sn+ ⊂ Sn are parametrized by the subspaces of Rn. For

a subspace L ⊂ Rn let

FL =
{
Y ∈ Sn+ : L ⊂ kerY

}
Then FL is a face of Sn+ and dimFL = r(r+1)

2
, where r = codimL. As L ranges over all

subspaces of codimension r, FL ranges over all faces of dimension r(r+1)
2

.

Proof. Given a subspace L of codimension r, let’s choose the coordinates such that

L = {0, . . . , 0, ξr+1, . . . , ξn}. Then FL consists of all matrices Y having the last n−r columns

and rows 0 and the upper r× r corner positive semidefinite. The supporting hyperplane for

FL is H = {X : 〈C,X〉 = 0}, where C was defined in proposition 4.2.1. If F is a face of Sn+

then F = FL, where L = kerA and A is a matrix in the interior of F . �

54



4.3. Example of face of positive semidefinite cone

Let’s consider a simple example. Consider 3 points such that the distance between the

vertices 1 and 2 is 1 and the other two distances are unknown. In this case the distance

matrix is:

D =


0 1 x

1 0 y

x y 0


Let matrix

J = I3 − 1
3
ones(3, 3).

Matrix Y is given by

Y = −1
2
TDT.

With the above notation the entries of matrix Y are

S =


2x
9
− y

9
+ 2

9
x
18

+ y
18
− 5

18
y
18
− 5x

18
+ 1

18

x
18

+ y
18
− 5

18
2y
9

+ x
9
− 2

9
x
18
− 5y

18
+ 1

18

y
18
− 5x

18
+ 1

18
x
18
− 5y

18
+ 1

18
2x
9
− 2y

18
− 1

9


The optimization problem

minimize
Y

‖Y ‖∗

subject to Yii − 2Yij + Yjj = Dij, (i, j) ∈ Ω,

Y � 0.

returns as optimal solution the distance matrix

D =


0 1 0.25

1 0 0.25

0.25 0.25 0
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i.e the points are collinear, the third one is the middle of the segment formed by the other

two.

The optimal semidefinite matrix is Y =


0.25 −0.25 0

−0.25 0.25 0

0 0 0

 of rank 1.

Then Y is an interior point of a face F , where dim F = 1(1+1)
2

= 1. There is a rank pre-

serving isometry identifying the face F with the cone of positive semidefinite 1× 1 matrices.

(i.e explicit description S1
+: x ≥ 0). Consider the decomposition of the matrix Y

Y = QΛQt

where

Q =


−0.7071 −0.4082 0.5774

0.7071 −0.4082 0.5774

0 0.8165 0.5773


The corresponding face is given by

F =


X ∈ S3

+ :

〈
Q

I −


1 0 0

0 0 0

0 0 0



Qt, X

〉
= 0



Let B = Q

I −


1 0 0

0 0 0

0 0 0



Qt and let X be a symmetric matrix

X =


x1 x2 x3

x2 x4 x5

x3 x5 x6


If X is rank 1 matrix then the following relations take place between the entries of matrix

X: x2 = αx1, x3 = βx1,x4 = α2x1, x5 = αβx1, x6 = β2x1.
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X =


x1 αx1 βx1

αx1 α2x1 αβx1

βx1 αβx1 β2x1


x1 6= 0 for X 6= 0

X = x1


1 α β1

α α2 αβ

β αβ β2



B =


0.3334 0.3334 0.3333

0.3334 0.3334 0.3333

0.3333 0.3333 0.3333



Figure 4.2. Face of positive semidefinite cone that contains rank 1 matrix.

The equation of the hyperplane, trace(BX) = 0, in R6 becomes

a1x1 + a2αx1 + a3βx1 + a4α
2x1 + a5αβx1 + a6β

2x1 = 0

a1 + a2α + a3β + a4α
2 + a5αβ + a6β

2 = 0
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where a1 = 0.3334, a2 = 0.6668, a3 = 0.6667,a4 = 0.3334, a5 = 0.6667,a6 = 0.3333. in Figure

4.2

The faces of dimension 3, where lie the rank 2 matrices, they are the 2× 2 semidefinite

cone.
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CHAPTER 5

Euclidean Distance Matrices

In this chapter we introduce the basic ideas behind the theory of Euclidean distance

matrices and their characterization in terms of positive semidefinite matrices. Also, we will

present the formulation of the low rank Euclidean distance matrix completion problem and

its semidefinite program formulation using nuclear norm heuristic.

Definition 5.0.1. Let points p1, p2, . . . , pn ∈ Rr. The matrix D ∈ Sn defined by Dij =

‖pi − pj‖22, i, j = 1, 2, . . . , n is called a Euclidean distance matrix.

From its definition it can be easily seen that the elements of the diagonal of D are all zeros

and Dij ≥ 0 for all i, j = 1, 2, . . . n. Also, we have the triangle inequality:
√
Dik +

√
Dij ≥√

Djk. Schoenberg offers the following characterization of the Euclidean distance matrices

[57]. This result is also found in a paper of Young and Householder [58].

Theorem 5.0.1 (Schoenberg). A matrix D ∈ Sn with all diagonal elements equal to

zero is a Euclidean distance matrix if and only if the matrix −1
2
JDJ is positive semidefinite,

where e is the vector of all ones and J = In− 1
n
eet. Furthermore, if D is a Euclidean distance

matrix, then the embedding dimension of D is equal with the rank of matrix −1
2
JDJ ≤ n−1.

A proof of this theorem can be found in [17].

Now, given Euclidean distance matrix D we can find the doubly centered matrix Y =

−1
2
JDJ and then recover the points that generate matrix D computing the factorization of

Y = PP t. The coordinates of points are given by the rows of matrix P . In the subspace of

symmetric matrices, the set of all Euclidean distance matrices forms a pointed closed convex

cone [1]. Cone of all Euclidean distance matrices En is the intersection of an infinite number
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(when n > 2) of halfspaces about the origin and a finite number of hyperplanes through the

origin in the vectorized variable D = (Dij) [1]. Also [1], using the argument from [59] that

any symmetric positive semidefinite matrix having a zero entry on its main diagonal must

be zero along the entire row and column to which that zero entry belongs, concludes that

there can be no positive or negative semidefinite Euclidean distance matrix except the zero

matrix. (If a positive semidefinite matrix A = (Aij) ∈ Rn×n has a zero entry Aii on its main

diagonal, then Aij + Aji = 0, for all j = 1, . . . , n.) Many authors have been interested to

describe the cone of Euclidean distance matrices and its geometry [60], [61], [62], [63].

Given a graph G with n vertices, E the set of edges, and non-negative edge weights Dij,

ij ∈ E, we call a realization of G in Rd any placement of the vertices of G in Rd such that

the Euclidean distance between the vertices connected by an edge is given by the weights

Dij. References on graph realizability include [18], [19], [20].

Applications of Euclidean Distance Matrices occur in a variety of fields. For example, a

typical sensor network consists of a large number of sensors which are densely deployed in a

geographical area. Sensors collect the local environmental information such as temperature

or humidity and can communicate to each other. The sensor network localization problem

is: assuming the accurate positions of some nodes (called anchors) are known, how to use

them and partial pair-wise distance measurements to locate the positions of all sensor nodes

in the network [15], [64], [65]. Another problem of interest relates to finding the structure

of a protein given a (partial or complete) set of approximate pairwise distances between the

atoms in the protein [16].
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5.1. Relation with the Positive Semidefinite Cone of Matrices

In [66], [67], [68], [69], [40] the geometry of the Euclidean distance matrices has been

presented in relation with the positive semidefinite cone of matrices whose geometry is un-

derstood. We will present a summary describing the mapping between the Euclidean distance

cone and the positive semidefinite cone and their main properties.

The set of all Euclidean Distance Matrices is a pointed closed convex cone. Each and

every principal submatrix of an Euclidean Distance Matrix is another Euclidean Distance

Matrix. Suppose that matrix D is the distance matrix for the points p1, p2, . . . , pn ∈ Rr. The

matrix defined as Y = PP t, where P is n× r matrix that contains the vectors pi as its rows

is usually called the Gram matrix of the points p1, p2, . . . , pn. For any i, j ∈ {1, 2, . . . , n}

there exists a relation between the entries of the matrix D and the entries of the matrix Y ,

as follows

Dij = ‖pi − pj‖22 ,

Dij = ptipi + ptjpj − 2ptipj,

Dij = Yii + Yjj − 2Yij.

Therefore we can define a linear operator K : Sn → Sn

(24) K(Y ) = diag(Y )et + ediag(Y )t − 2Y.

In the previous relation e denotes the vector of all ones. Componentwise, we have

K(Y )ij = Yii + Yjj − 2Yij, i, j = 1, . . . , n.

Also, denote De(Y ) = diag(Y )et + ediag(Y )t, for symmetric matrices Y ∈ Sn.
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In case of vectors, the same notation shall be used De(y) = diag(y)et+ediag(y)t, y ∈ Rn.

With this notation we can express

K(Y ) = De(Y )− 2Y

and its Moore-Penrose pseudoinverse

K+(D) = −1
2
JoffDiag(D)J

where J = I − 1
n
eet, offDiag(D) = D − Diag(diag(D)). Multiplying a vector by J centers

the vector by subtracting the mean of all coordinates from each coordinate, by shifting the

origin to the centroid of points. Matrix J is also called double centered distance matrix [70].

Denote with SnH = {D ∈ Sn : diag(D) = 0} and SnC = {Y ∈ Sn : Y e = 0}. In the literature

SnH is called hollow subspace and SnC is called centered subspace. The matrix J = I − 1
n
eet

represents the orthogonal projection onto the subspace of hollow matrices, the matrices that

are symmetric and have the diagonal elements equal zero [17].

In an Euclidean vector space equipped with the inner product the adjoint of a linear

transformation T is usually denoted T ∗. It satisfies the relation 〈Tx, y〉 = 〈x, T ∗y〉. In

[67],[17] it is shown that the adjoints of these linear transformations are

D∗e(D) = 2Diag(De),

K(D)∗ = 2(Diag(De)−D)

and

range(K∗) = SnC ,

null(K∗) = range(De).
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The null space of adjoint of K∗ consists of all diagonal matrices.

Then

KK+ = offDiag(D),

K+K(Y ) = JY J

Proposition 5.1.1 (Al-Homidan, Wolkowicz). The range space of the linear operator

K : Sn → Sn is given by

range(K) = SnH

Proof. Let Y ∈ Sn. The elements on the main diagonal of K(Y ) are K(Y )ii = Yii +

Yii− 2Yii = 0 which concludes that K(Y ) ∈ SnH . If we consider D ∈ SnH and Y = −1
2
D, then

K(Y ) = D. �

Proposition 5.1.2 (Al-Homidan, Wolkowicz). The null space of K is given by

null(K) = range(De)

Proof. K(Y )ij = Yii + Yii − 2Yij = 0 if and only if Yij = 1
2

(Yii + Yjj) if and only if

Y = yet + eyt = De(y), where the vector is defined as y = 1
2
diag(Y ). �

If P is a matrix of points and P̂ is the matrix obtained by translating every row of

P by the vector v then these two matrices generate the same Euclidean distance matrix.

Also, if we modify matrix P such that each row of P is rotated/reflected by the same

orthogonal transformation P̂ = PQ, where Q orthogonal matrix then they generate the same

Euclidean distance matrix and also we can notice that the Gram matrix of P is invariant

under orthogonal transformation of points. The properties of the linear operators K and

K+ and their link with the cone of Euclidean distance matrices are presented in detail in
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[17]. For example, as shown in the following theorem, the operator K in (24) gives a relation

between the entries of matrix Y and the entries of the Euclidean distance matrix D.

Proposition 5.1.3 (N.Krislock [17]). The range space and the null space of the linear

maps K and K+ are given by

range(K+) = SnC null(K+∗) = range(De)

range(K+∗) = SnH null(K+) = range(Diag)

The map K : SnC → SnH is a bijection and K+ : SnH → SnC is its inverse.

If En is the set of Euclidean distance matrices of dimension n, the map K : Sn+∩SnC → En

is a bijection and K+ : En → Sn+ ∩ SnC is its inverse.

For a proof see [17].

5.2. Euclidean distance matrix completion problem

Euclidean distance matrix completion problems can be found in, e.g., [71], [72], [73], [40],

[17]. Following [17] the Euclidean distance matrix completion (EDMC) problem means to

find a Euclidean distance matrix which is a completion of a given matrix D, where D has

all zero elements on the diagonal and some of the entries of D are known and nonnegative.

D is also called in [66], [17] a partial Euclidean distance matrix.

We can associate the entries of partial distance matrix D with the edges of graph G =

(V,E, ω).

The vertices of the graph V are given by the points that generate matrix D. Two points

are connected by an edge if the entry Dij is known. The edges weights are ωij =
√
Dij, for

all i, j ∈ E.
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In this context the Euclidean distance matrix completion problem can be formulated as

(25)

find D̂ ∈ En

subject to D̂ij = Dij, ∀ij ∈ E

Let H ∈ Sn be the adjacency matrix of G, the problem (25) can be expressed as

(26)

find D̂ ∈ En

subject to H ◦ D̂ = H ◦D, ∀ij ∈ E

where ◦ is the Hadamard (component wise) matrix product [17], [66].

Now, using the relation between the Euclidean distance matrices and the positive semi-

definite cone through the linear map K defined in (24) EDMC problem becomes

(27)

find Y ∈ Sn+ ∩ SnC

subject to H ◦ K(Y ) = H ◦D

5.3. Solving EDM via semidefinite programming

Using Schoenberg’s characterization of Euclidean distance matrices [57] and the nuclear

norm heuristic, the Euclidean Distance Matrix completion problem reduces to finding a low

rank positive semidefinite matrix Y such that

(28)

minimize
Y

‖Y ‖∗

subject to Yii − 2Yij + Yjj = Dij, (i, j) ∈ Ω,

Y � 0
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where Ω is the set of indices corresponding to the known entries in the matrix D. If we treat

the matrix D as the variable we can write this optimization problem as

(29)

minimize
D̂

∥∥∥∥−1

2
JD̂J

∥∥∥∥
∗

subject to D̂ij = Dij, (i, j) ∈ Ω,

− 1

2
JD̂J � 0.

The matrix −1
2
JD̂J is positive semidefinite, therefore the nuclear norm is equal to the trace

and an equivalent formulation of the optimization problem is

(30)

minimize
D̂

trace(−1

2
JD̂J)

subject to D̂ij = Dij, (i, j) ∈ Ω,

− 1

2
JD̂J � 0.

Semidefinite optimization for solving Euclidean distance matrix problems is studied in [71],

[67],[66]. If we use the nuclear norm heuristic to search for the minimum rank solutions Y , it

is equivalent to minimize the trace of matrix Y , since for positive semidefinite matrices the

nuclear norm is equal with the trace of the matrix. Trace of a matrix is a linear function,

therefore convex (and concave).

Given the trace of a square positive semidefinite matrix is both convex and concave we

can minimize or maximize it, depending on the context. In this context of Euclidean distance

matrix completion problem we will use it to look for low rank solutions as solutions to a

minimization problem. In Maximum Variance Unfolding [74], [75] it is used as objective

function that needs to be maximized. Given a set of points in Rn the goal of Maximum

Variance Unfolding is to find same number of points in Rk such that the distances are
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preserved for some given edge set. If this edge set is constrained to pairs of nearby points

then maximum variance unfolding finds a non-linear embedding of the points. It is a two step

procedure, first the manifold is stretched so that it is nearly linear by maximizing the trace

of a covariance matrix. This is the step that can be formulated as a semidefinite program.

5.4. Relation between l1 norm of matrix D and nuclear norm of matrix Y

In this section we develop the relationship between Euclidean distance matrix D and its

double centered form by deriving an explicit formula for the nuclear norm of matrix Y and

the entries of matrix D.

Proposition 5.4.1. Let D be an Euclidean distance matrix and matrix Y = −1
2
JDJ

where J = In − 1
n
1n×n . Then

(31) ‖Y ‖∗ =
1

2n
‖D‖l1

where ‖D‖l1 is given by the sum of absolute values of entries of D = (Dij)i,j=1,2,...,n and 1n×n

is matrix with all entries equal 1.

Proof. Let Y1 = JDJ , we write the explicit relation that defines Y in terms of matrix

D

Y = −1

2

[
In −

1

n
1n×n

]
D

[
In −

1

n
1n×n

]
and Y1 is given by

Y1 =

[
In −

1

n
1n×n

]
D

[
In −

1

n
1n×n

]
We’ll use the following property of matrix Y : it is a positive semidefinite therefore its

trace is equal with the nuclear norm ‖Y ‖∗ = trace(Y ).
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Further we show that the trace(Y) can be computed in terms of the l1 norm of D.

trace(Y ) = −1

2
trace(

[
In −

1

n
1n×n

]
D

[
In −

1

n
1n×n

]
)

trace(Y1) = trace(

[
In −

1

n
1n×n

]
D

[
In −

1

n
1n×n

]
)

(32) trace(Y1) = trace(D)− 1

n
trace(1n×nD)− 1

n
trace(D1n×n) +

1

n2
trace(1n×nD1n×n)

We know that D is a distance matrix therefore trace(D) = 0. Further, we evaluate the other

three terms from the relation (32) above

1n×nD =



∑n
j=1Dj1 . . . . . .

. . .
∑n

j=1Dj2 . . .

. . . . . . . . .

. . . . . .
∑n

j=1Djn



1n×nD1n×n =



n(
∑n

j=1D1j) . . . . . .

. . . n(
∑n

j=1D2j) . . .

. . . . . . . . .

. . . . . . n(
∑n

j=1Dnj)


and trace(1n×nD) = trace(D1n×n).

Therefore, we obtain that

trace(1n×nD) = ‖D‖l1

trace(D1n×n) = ‖D‖l1

trace(1n×nD1n×n) = n ‖D‖l1
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and we use this to calculate the trace(Y )

trace(Y1) = − 2

n
‖D‖l1 +

1

n2
n ‖D‖l1

traceY1 = − 1

n
‖D‖l1

obtaining the relation between the nuclear norm of Y and entries of the matrix D

(33) ‖Y ‖∗ =
1

2n
‖D‖l1

�
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CHAPTER 6

Bounding chromatic number using convex

optimization

The chromatic number of a graph is the least number of colors required to color its

vertices without using the same color for adjacent vertices. Finding the chromatic number

of a graph is an NP-hard problem [76].

In general, a lower bound for the chromatic number of a graph is represented by the

clique number of the graph (which is the largest set of mutually adjacent vertices in the

graph). It is justified by the fact that all the vertices in the clique are mutually adjacent

therefore they each must have a different color. In the case of complete graphs (all vertices

connected with edges) with n vertices, the chromatic number is n. An upper bound for the

chromatic number is given in terms of the maximum degree of the vertex i.e every graph can

be colored with one more color than the maximum vertex degree.

In this chapter we will show that given a graph with all edges of size 1, we can determine

bounds for the chromatic number using the information offered by the matrix Y = −1
2
JD̂J

and its nuclear norm, where D̂ is an optimal solution of the convex optimization formulation

of the Euclidean distance matrix completion problem

minimize
D̂

∥∥∥∥−1

2
JD̂J

∥∥∥∥
∗

subject to D̂ij = Dij, (i, j) ∈ E,

− 1

2
JD̂J � 0.

The partial distance matrix D is given by the squares of the edge lengths of the graph.

All the graphs considered are unit graphs (i.e. all edge lengths are of length 1). In all the
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examples considered, the rank of the matrix Y is counted as the number of singular values

that are greater than 10−6.

First, we will prove that in the case of complete (a1, a2, . . . , ak) partite graphs, the nuclear

norm of the matrix Y is given by the second elementary symmetric polynomial evaluated at

the point (a1, a2, . . . , ak) divided by the number of vertices in the graph. Further, it will be

shown that the maximum value of the nuclear norm is attained in the case when each set

in the partition has the same number of vertices n
k

and is equal to nk−1
2k

. This information

can be used to determine a lower bound for the chromatic number of a given graph. The

criteria used to determine the lower bound is: if ‖Y ‖∗ > nk−1
2k

then the graph is not k-partite,

therefore its chromatic number is greater than k.

Also, for each of the examples considered we will determine the number of different points

that generate matrix Y . The number of different points that generate matrix Y offers an

upper bound for the chromatic number.

In cases where the graphs are balanced partite (same number of vertices in the partition)

we can determine the chromatic number in a large number of cases. As we remove edges

away from the complete graphs, we can still find the chromatic numbers for balanced k

partite graphs keeping roughly 70% of all possible edges.

6.1. Nuclear norm of Y and l1 norm of D for k-partite graphs

It was proven in Chapter 5

‖Y ‖∗ =
1

2n
‖D‖l1

where the l1 norm of D is given by the sum of the absolute value of the entries of D. A

k-partite graph is a graph whose vertices can be partitioned into k disjoint sets such that

no vertices within the same set are adjacent. A complete k-partite graph is a graph whose

71



vertices are connected with all the others from the rest of k− 1 sets. Any k-partite graph is

a subgraph of a complete k-partite graph. In general the adjacency matrix of a graph is not

a Euclidean distance matrix. But, for complete k-partite graphs the statement is true.

Lemma 6.1.1. The adjacency matrix of a complete k-partite graph is a Euclidean distance

matrix.

Proof. The adjacency matrix of a complete k-partite graph admits the following block

structure with a proper labelling of the nodes:

(34) D =



0a1×a1 1a1×a2 . . . 1a1×ak

1a2×a1 0a2×a2 . . . 1a2×ak

. . . . . . . . . . . .

1ak×a1 1ak × a2 . . . 0ak×ak


We have a complete k- partite graph. The first a1 nodes can be mapped to the same point

since there is no edge connecting them in the graph. Same with the next a2 points. Therefore

we can look at the complete k partite graph as a graph that is formed with only k different

points, each point connected with its k − 1 neighbours. The distance matrix for this graph

is exactly the adjacency matrix (34). �

Proposition 6.1.1. Let G be a k-partite graph with n vertices split into sets of cardinality

a1, a2, . . . , ak and let D be its adjacency matrix. The nuclear norm of matrix Y = −1
2
JDJ is

given by the second elementary symmetric polynomial evaluated at the point (a1, a2, . . . , ak)

divided by the number of vertices in the graph

(35) ‖Y ‖∗ =

∑
i 6=j aiaj

n
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Proof. Since G is a complete graph, the distance matrix D is

D =



0a1×a1 1a1×a2 . . . 1a1×ak

1a2×a1 0a2×a2 . . . 1a2×ak

. . . . . . . . . . . .

1ak×a1 1ak × a2 . . . 0ak×ak


As usual, let J = In − 1

n
1n×n. Let Y = −1

2
JDJ . The nuclear norm of Y is given by the

trace of Y .

trace(Y ) = −1

2
trace(Y1)

Y1 =

[
In −

1

n
1n×n

]
D

[
In −

1

n
1n×n

]
Y1 = D − 1

n
D1n×n −

1

n
1n×nD +

1

n2
1n×nD1n×n

trace(Y1) = 0− 1

n
trace(D1n×n)− 1

n
trace(1n×nD) +

1

n2
trace(1n×nD1n×n)

We evaluate each term in the relation above separately, for the products D1n×n and 1n×nD

we are interested in computing only the block matrices that contain the diagonal that allow

us to compute the trace



0a1×a1 1a1×a2 . . . 1a1×ak

1a2×a1 0a2×a2 . . . 1a2×ak

. . . . . . . . . . . .

1ak×a1 1ak × a2 . . . 0ak×ak


1n×n =



∑
j 6=1 aj1a1×a1 . . . . . .

. . .
∑

j 6=2 aj1a2×a2 . . .

. . . . . . . . .

. . . . . .
∑

j 6=k aj1ak×ak


Therefore

trace(D1n×n) = 2
∑

i 6=j aiaj
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and

trace(1n×nD) = 2
∑

i 6=j aiaj

Now we evaluate the product 1n×nD1n×n.

1n×nD1n×n =



t1a1×a1 . . . . . .

. . . t1a2 × a2 . . .

. . . . . . . . .

. . . . . . t1ak × ak


where t = 2(

∑
i 6=j aiaj).

Therefore

trace(1n×nD1n×n) = t(a1 + a2 + . . .+ ak)

and it follows that

trace(Y1) = − t
n
− t

n
+

1

n2
(a1 + . . .+ ak)t

trace(Y ) =
t

2n
+

t

2n
− 1

2n2
nt

trace(Y ) =
t

2n

Thus concluding that the nuclear norm of matrix Y for the case of complete k-partite graphs

is given by

‖Y ‖∗ =
∑

i6=j aiaj

n

�

Proposition 6.1.2. Let G be a k-partite graph, vertices split into sets of cardinality

a1, a2, . . . , ak. Let n be the number of vertices of the graph. The maximum value of the

nuclear norm of Y
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‖Y ‖∗ =
∑

i6=j aiaj

n

is nk−1
2k

attained for aj = n
k

, ∀j = 1, . . . , k.

Proof. We know that a1 +a2 + . . .+ak = n. Let f(a1, . . . , ak) =
∑

i 6=j aiaj. We express

f as function of k − 1 variables using the fact that ak = n− a1 − a2 − . . .− ak−1. Thus

∂f
∂aj

= n−
∑k−1

i=1 ai − aj, j = 1, . . . , k − 1.

We set all the partial derivatives equal to 0. If we add all the k − 1 equations given by the

partial derivatives equal to 0 we obtain that
∑k−1

i=1 ai = n(k−1)
k

and therefore aj = n− n(k−1)
k

=

n
k
. Value of the nuclear norm in this case is ‖Y ‖∗ =

∑
i 6=j aiaj

n
= n2

k2
(k−1 +k−2 + . . .+ 1) 1

n
=

nk−1
2k

. Now given f(a1, . . . , ak) =
∑

i 6=j aiaj we can express it as

f(a1, . . . , ak) = (
k∑
i=1

ai)
2 −

k∑
i=1

a2i

(36) f(a1, . . . , ak) = n2 −
k∑
i=1

a2i

Let u =
(
n
k
, . . . , n

k

)
. Consider the point u+ εv = n

k
(1, . . . , 1) + εv, where v is a k dimensional

vector with sum of its entries equal to 0. Then vtu = 0 and ‖v + u‖2 = ‖v‖2 + ‖u‖2.

Therefore

f(u+ εv) = n2 − ‖u+ εv‖2 = n2 − ‖u‖2 − ‖εv‖2 ≤ n2 − ‖u‖2 ≤ f(u)

We can conclude that the maximum value of f is attained at the point u =
(
n
k
, . . . , n

k

)
. �

In the next section we will show how the behavior of the nuclear norm, which was

characterized above, will lead to finding bounds for the chromatic number.
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6.2. Finding bounds for the chromatic number using nuclear norm heuristic

Example 6.2.1. Consider a tripartite graph with 4 vertices in each set, ak = 4, k = 1, 2, 3.

We generate a partial distance matrix D with the number of edges variable. To obtain it,

consider a matrix D = rand(12, 12). Set the diagonal elements equal to 0 and also 4 × 4

matrices around the diagonal to be 0. Let p ∈ (0, 1) be a density number. The remaining

entries of D greater than p were set to 0 and all those less than p were set to one. For various

values of p we solve the optimization problem (29).

The results are shown in Table 6.1. In all the cases the nuclear norm of Y ranges between

3 and 4. We compare the nuclear norm of Y with the maximum value of the nuclear norm

for bipartite graphs and we notice that we have ‖Y ‖∗ >
n
4

= 3 therefore we can say that

the graph is not bipartite and its chromatic number is greater than or equal to 3. The

upper bound for the chromatic number is given by the number in the last column. When

the graph is a complete tripartite graph we have 48 edges. In this case the upper bound for

the chromatic number is 3 which coincides with the lower bound and we can conclude the

chromatic number of the graph is 3.

As we remove edges we can still identify that we have a tripartite graph until we remove

about 30% of the edges. After this we obtain a lower bound for the chromatic number via

the nuclear norm and an upper bound given by the number of different points that generate

the matrix Y .

Example 6.2.2. Consider a graph with 25 vertices. If it were a complete graph on 25

vertices then the number of edges would be 25(25−1)
2

= 300. Choose at random 162 edges.

Use this partial matrix as input for the optimization problem 29. We obtain ‖Y ‖∗ = 9.93.

For k = 4 we have n(k−1)
2k

= 9.37 therefore we can say that the graph its not 4-partite. The
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Table 6.1. Norm and rank behavior for 4, 4, 4 tripartite graph

No of edges l1 norm of D ‖Y ‖∗ Rank of Y No of different points
48 96.000000 4.000000 2 3
47 96.000000 4.000000 2 3
46 96.000000 4.000000 2 3
45 96.000000 4.000000 2 3
44 96.000000 4.000000 2 3
43 96.000000 4.000000 2 3
42 96.000000 4.000000 2 3
41 96.000000 4.000000 2 3
38 96.000000 4.000000 2 3
37 96.000000 4.000000 2 3
36 96.000000 4.000000 2 3
35 96.000000 4.000000 2 3
34 96.000000 4.000000 2 3
33 91.668950 3.819540 2 4
31 91.668950 3.819540 2 6
29 88.000000 3.666667 3 7
28 96.000000 4.000000 3 12
27 90.996299 3.791512 4 12
26 94.166580 3.923607 6 12
24 87.804896 3.658537 4 12
23 83.217096 3.467379 4 12
22 87.710791 3.654616 4 9
21 90.096996 3.754041 5 12
20 80.571847 3.357160 4 12
19 84.870147 3.536256 5 12
18 76.078345 3.169931 2 8
17 72.430781 3.017949 2 5
16 74.510304 3.104596 4 12
15 76.054493 3.168937 5 12
14 73.097142 3.045714 4 12

matrix Y is generated by 25 different points. Now, if we increase the number of edges to 232

and we solve the semidefinite program we obtain the nuclear norm 10.92 > 256−1
12

= 10.41

therefore the graph is not 6-partite.

Example 6.2.3. Consider a tripartite graph, with 3, 3, and 4 vertices in each disjoint

set. In Table 6.2 we show the evolution of the nuclear norm of Y and l1 norm of D when

we increase the number of edges one by one starting with a minimum configuration of edges
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that makes the graph tripartite until we reach a complete tripartite graph. ‖Y ‖∗ ranges

between 3.15 and 3.3. Since ‖Y ‖∗ > 101
4

= 2.5 we can say that the graph is not bipartite in

all cases.

We can identify that the graph is tripartite as we increase the number of edges and we

approach the situation when the graph is complete tripartite. When rank of Y is equal 2 we

have only 3 different points that generate Y and we can conclude that the graph is tripartite.

Table 6.2. Norms behaviour for 3,3,4 partite graph

Number of edges ‖D‖l1 ‖Y |∗ Iterations Precision Rank Y Edge added
11 63.06 3.15 13 5.8 ∗ 10−11 5
12 63.06 3.15 15 1.2 ∗ 10−10 5 D15 = 1
13 64.54 3.23 15 2.2 ∗ 10−10 6 D16 = 1
14 64.54 3.23 16 7 ∗ 10−11 6 D18 = 1
15 64.54 3.23 16 1.6 ∗ 10−10 6 D19 = 1
16 64.54 3.23 16 6.6 ∗ 10−11 6 D24 = 1
17 64.54 3.23 16 5.8 ∗ 10−11 6 D26 = 1
18 64.91 3.24 15 2.5 ∗ 10−10 5 D27 = 1
19 64.91 3.24 15 5.6 ∗ 10−11 5 D29 = 1
20 64.91 3.24 15 2.2 ∗ 10−11 5 D2,10 = 1
21 64.91 3.24 14 4.5 ∗ 10−10 5 D34 = 1
22 64.91 3.24 16 3.7 ∗ 10−11 5 D35 = 1
23 65.33 3.27 15 1.8 ∗ 10−11 4 D37 = 1
24 65.33 3.27 14 1.4 ∗ 10−11 4 D38 = 1
25 65.33 3.27 14 6.9 ∗ 10−12 4 D3,10 = 1
26 65.33 3.27 23 6.9 ∗ 10−11 4 D48 = 1
27 65.8 3.29 19 8.1 ∗ 10−14 3 D49 = 1
28 65.8 3.29 21 6.1 ∗ 10−15 3 D4,10 = 1
29 66 3.3 17 1.5 ∗ 10−15 2 D57 = 1
30 66 3.3 15 1.1 ∗ 10−15 2 D59 = 1
31 66 3.3 17 1.8 ∗ 10−15 2 D5,10 = 1
32 66 3.3 16 3.3 ∗ 10−15 2 D67 = 1
33 66 3.3 6 7.1 ∗ 10−16 2 D68 = 1
34 69.01 3.45 15 1.5 ∗ 10−15 3 not tripartite anymore

Example 6.2.4. Consider an eight-partite graph with 6 vertices in each set, n = 48.

We generate a partial distance matrix D with the number of edges variables. To obtain it
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consider a matrix D = rand(48, 48). Set the diagonal elements equal to 0 and also 6 × 6

matrices around the main diagonal be 06×6. Let p ∈ (0, 1) be a density number. The

remaining entries of D greater than p were set to 0 and all those less than p were set to 1.

For various values of p we solve the optimization problem (29). The results are presented

in Table 6.3. The complete 8-partite graph with 6 vertices in each set of the partition

has 1008 edges. We can identify that it is an 8-partite graph: matrix Y is generated by

8 different points therefore we have an upper bound for the chromatic number and since

‖Y ‖∗ = 21 > 487−1
14

= 20.57 it is not a 7-partite graph.

For the graph with 778 edges we have that ‖Y ‖∗ = 20.94 > 487−1
14

= 20.57 therefore it is

not a 7-partite graph. An upper bound for the chromatic number in this case is 9.
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Table 6.3. Norm and rank behavior for 8-partite graph

No of edges l1 norm of D ‖Y ‖∗ Rank of Y No of different points
1008.000000 2016.000000 21.000000 7 8
999.000000 2016.000000 21.000000 7 8
993.000000 2016.000000 21.000000 7 8
978.000000 2016.000000 21.000000 7 8
971.000000 2016.000000 21.000000 7 8
970.000000 2016.000000 21.000000 7 8
956.000000 2016.000000 21.000000 7 8
940.000000 2016.000000 21.000000 7 8
934.000000 2016.000000 21.000000 7 8
915.000000 2016.000000 21.000000 7 8
902.000000 2016.000000 21.000000 8 10
876.000000 2016.000000 21.000000 7 8
862.000000 2016.000000 21.000000 7 8
846.000000 2016.000000 21.000000 8 14
841.000000 2016.000000 21.000000 7 8
840.000000 2016.000000 21.000000 7 8
838.000000 2016.000000 21.000000 8 10
824.000000 2016.000000 21.000000 8 10
809.000000 2016.000000 21.000000 7 8
798.000000 2016.000000 21.000000 9 16
795.000000 2016.000000 21.000000 8 10
778.000000 2010.204453 20.939630 7 9
777.000000 2016.000000 21.000000 9 15
757.000000 2015.997394 20.999973 30 48
756.000000 2009.678647 20.934153 8 15
726.000000 2016.000000 21.000000 8 23
707.000000 2015.969498 20.999682 28 48
699.000000 2011.225968 20.950270 28 48
684.000000 2003.285580 20.867558 27 48
652.000000 2007.905434 20.915682 27 48
666.000000 2001.012876 20.843884 27 48
680.000000 2007.120782 20.907508 27 48
636.000000 1989.123562 20.720037 26 48
665.000000 1998.637279 20.819138 27 48
621.000000 1991.571369 20.745535 26 48
604.000000 1981.442624 20.640027 25 48
608.000000 1975.434746 20.577445 25 48
595.000000 1974.399113 20.566657 25 48
574.000000 1954.548251 20.359878 23 48
555.000000 1955.254664 20.367236 24 48
532.000000 1938.948665 20.197382 22 48
509.000000 1925.111398 20.053244 21 48
517.000000 1922.759725 20.028747 22 48
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CHAPTER 7

Finding graph embeddings using the nuclear norm

heuristic

7.1. Graph embeddings for unit distance graphs

Given a graph G = (V,E) consisting of a set V of vertices, a set of edges E and a

set of distances associated with each edge, the graph realization problem is to assign to

each vertex coordinates in Rk such that the Euclidean distance between any two neighboring

nodes matches the size of that edge. Graph realization is equivalent to the Euclidean distance

matrix completion problem [18], [19], [20].

In this chapter we look for graph embeddings using the semidefinite optimization for-

mulation of the Euclidean distance matrix completion problem. We aim to find low rank

solutions using the nuclear norm heuristic i.e. minimization of the nuclear norm of the double

centered matrix D such that the points that generate the distance matrix are all different.

The examples considered partial distance matrices with the known entries equal to one, i.e.,

the edges of the graph are all equal one.

Let D be a partial distance matrix of dimension n×n with known entries that corresponds

to the square distances between edges of a graph G = (V,E). Then we use the semidefinite

program

(37)

minimize
Y

‖Y ‖∗

subject to Yii − 2Yij + Yjj = Dij, (i, j) ∈ Ω,

Y � 0.
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to find the embedding dimension and the distances between the rest of the vertices. If a

solution Y of the problem (37) has rank k and is generated by n distinct points, then we have

a Euclidean distance matrix completion of D with embedding dimension k; this is possible

even if D has a completion with a lower embedding dimension r. If the solution Y of (37) is

not generated by distinct points we will add an additional constraint to the problem given

by Dij ≥ 0.01, ∀ i 6= j which guarantees that the solution is generated by different points.

The rank of matrix Y reflects the dimension of the embedding. So, basically we look for

solutions of the following optimization problem

(38)

minimize
Y

‖Y ‖∗

subject to Yii − 2Yij + Yjj = Dij, (i, j) ∈ Ω,

Yii − 2Yij + Yjj > 0.01,∀i 6= j

Y � 0.

We evaluate the rank of matrix Y as the number of singular values of matrix Y that are

greater than 10−6. The Euclidean distance matrix D resulted from the optimal solution Y

is given by the relation D = diag(Y )11×n + 1n×1diag(Y )t − 2Y.

Several convex optimization solvers are available (CVX, YALMIP, SeDuMI, SDPT3) to

solve semidefinite programs. In our examples we made use of existing solver software i.e

CVX solver [29].

Example 7.1.1. The Moser Spindle As a unit distance graph, the Moser Spindle is

formed by two rhombi, so that the sides and short diagonals of the rhombi form equilateral

triangles. The eleven edges of the graph are the eight rhombus sides, the two short diagonals

of the rhombi, and the edge between the unit-distance pair of acute-angled vertices. We
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build the partial distance matrix associated with its edges D12 = D16 = D17 = 1, D23 =

D25 = D26 = 1, D34 = D35 = 1, D45 = D47 = 1, D67 = 1. The optimization problem (37)

Figure 7.1. Moser Spindle graph.

has a solution Y of rank 4 generated by 7 different points in R4, therefore we obtain an

embedding of the graph into R4.

Example 7.1.2 (Butterfly graph). The butterfly graph is a graph with 5 vertices and

edges D12 = D13 = D14 = D15 = 1, D25 = 1, D34 = 1. The solution of the problem (37)

has a positive semidefinite matrix Y = −1
2
JDJ of rank 3, generated by 5 different points.

Therefore we obtain an embedding of the graph into R3 (Figure 7.2).

Example 7.1.3 (Möbius Kantor graph). We consider the partial distance matrix asso-

ciated with the Möbius Kantor graph, a graph with 16 vertices and 24 edges (Figure 7.3).
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Figure 7.2. Butterfly graph embedding.

The solution Y of the optimization problem (37) is rank one, generated only by two different

Figure 7.3. Möbius Kantor graph [2].

points confirming that this graph is a bipartite graph.

If we impose the condition that Dij > 0.01, i.e., points to be non-overlapping for all i 6= j

we obtain an embedding of the graph into R5.
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Example 7.1.4. Consider 4 points in the plane such that the points form a square and

each of the sides of the square has length 1 as in the Figure 7.4 below. The distance matrix

Figure 7.4. Example: 4 points in the plane.

for this case is

D =



0 1 2 1

1 0 1 2

2 1 0 1

1 2 1 0


.

Then we set the entry that corresponds to the distance between vertex 1 and vertex 3 to be

variable and we use this distance matrix as a input for the optimization problem.

Schoenberg results states that given a symmetric matrix with elements on the main

diagonal equal zero, this matrix is a Euclidean distance matrix if and and only if matrix

defined as Y = −1
2
JDJ is positive semidefinite matrix, where J = In − 1

n
1n×n. In this case
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distance matrix

D =



0 1 x 1

1 0 1 2

x 1 0 1

1 2 1 0


gives us a corresponding matrix Y . We solve the optimization problem (37). We obtain

that the rank of Y is 2, x = 0. We plot the points in the plane and we obtain points in

Figure 7.5, therefore without imposing the condition that the entries in the matrix D should

be strictly positive outside the main diagonal we don’t obtain an embedding into R2, but

a mapping. Nuclear norm of Y for variable x = 0 is 1.84. Nuclear norm of matrix Y for

the initial distance matrix, with 4 different points arranged in the square is 2.4. Now, let’s

choose another point in the plane as in Figure 7.6 such that the distance matrix for these 5

points has the following entries

Figure 7.5. Configuration of points obtained via nuclear norm minimization.
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D =



0 1 2 1 1

1 0 1 2 2

2 1 0 1 5

1 2 1 0 4

1 2 5 4 0



Figure 7.6. Example: 5 points in the 2-dimensional plane.

Let of one the entries be unknown

D =



0 1 x 1 1

1 0 1 2 2

x 1 0 1 5

1 2 1 0 4

1 2 5 4 0
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The optimization problem 37 returns as optimal value x = 2. Same, if we let a second

distance be unknown

D =



0 1 x 1 1

1 0 1 2 2

x 1 0 1 5

1 2 1 0 y

1 2 5 y 0


we get as optimal solution x = 2, y = 4. If we let a third distance be variable, with the

notation

D =



0 1 x 1 1

1 0 1 z 2

x 1 0 1 5

1 z 1 0 y

1 2 5 y 0


the optimal solution gives x = 2, y = 2, z = 0. If we plot the points that generate this

distance matrix we obtain Figure 7.7, where point 5 gets mapped as a vertex of the square

and points 2 and 4 coincide.

The nuclear norm of matrix Y in this case is 3.2 while nuclear norm for matrix Y for our

initial configuration of points is 4.

Example 7.1.5. McGee unit graph is a graph with 24 vertices and 36 edges. Its

chromatic number is 3, i.e., we can color its vertices with three colors such that no two

adjacent vertices have the same color. Its vertices can be split into three disjoint sets of

cardinality 4,10,10. We write the partial distance matrix D such that the known entries are

equal with one. Using the CVX solver [29] for the optimization problem with the constraints

given by the length of the edges, we obtain as solution a positive semidefinite matrix of rank
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Figure 7.7. Solution of the optimization problem for the 5 points example.

5, generated by 24 different points in R5, we obtain an embedding into R5. Nuclear norm of

matrix Y is 6.64 and l1 norm of matrix D is 318.5.

Example 7.1.6. The Heawood graph is an undirected graph with 14 vertices and 21

edges (Figure 7.8). The Heawood graph is a unit distance graph: it can be embedded in

the plane such that adjacent vertices are exactly at distance one apart, with no two vertices

embedded to the same point and no vertex embedded into a point within an edge. The

chromatic number of the Heawood graph is 2. It is a bipartite graph, its vertices can be

divided into two disjoint sets such that every edge connects a vertex in one set to one in the

other set. We follow a similar procedure, using the partial distance matrix given by the edges

of the graph as input for the optimization problem (37), the constraints given by the length

of the edges, we obtain as solution a positive semidefinite matrix of rank 1, generated only

by 2 different points in R, we obtain an mapping into R, which confirms that the chromatic

number of the graph is 2. In this case, nuclear norm of matrix Y is 3.5 and l1 norm of
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Figure 7.8. The Heawood graph [3].

matrix D is 98. Now, if we are looking to find an embedding we need to impose that the

only zero elements of matrix D should be the ones on the diagonal. With the condition that

Dij > 0.01 for all i 6= j we obtain a solution Y for problem (37) of rank 7, therefore an

embedding into R7.

Example 7.1.7. The Cubical graph: For this graph (Figure 7.9) the optimal solution

of (37) has rank 1. We determine the points that generate this distance matrix and we obtain

2 different points, therefore the chromatic number of the graph is 2.

If we impose the condition that all entries of matrix D to be greater equal that 0.01 we

obtain a matrix of rank 4 which gives us an embedding of the graph into R4.

Example 7.1.8. Claw graph: We consider the partial distance matrix D for the claw

graph in Figure 7.10 and the optimization problem (37) which minimizes the nuclear norm

of the associated positive definite matrix Y . If we let the other entries of the matrix D as

free variables we obtain a rank 1 matrix Y that is generated by 2 distinct points, chromatic

number of the graph is 2. If we impose the condition that all entries of matrix D to be
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Figure 7.9. Cubical graph.

Figure 7.10. Claw graph [4].

greater equal 0.01 which implies that we have distinct points we obtain a matrix of rank 3.

All entries in matrix D are less or equal 1.

Example 7.1.9. The Utility graph: We consider the partial distance matrix for the

utility graph, also known as Thomsen graph or K3,3. It is a complete bipartite graph.

When allowing for overlapping points we obtain a rank 1 matrix S that is generated by

2 distinct points and therefore we have a bipartite graph. If we impose the condition that

all entries of matrix D to be greater equal that 0.01 we obtain a matrix S of rank 5, an

embedding into R5. All entries in matrix D are less or equal 1.
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Example 7.1.10. The Franklin graph: We consider the partial distance matrix D for

Figure 7.11. Franklin graph [5].

Franklin graph in Figure 7.11. When allowing for overlapping points we obtain a rank 1

matrix that is generated by 2 distinct points, therefore chromatic number 2. If we impose

the condition that all entries of matrix D to be greater equal that 0.01 we obtain a matrix

of rank 6. All entries in matrix D are less or equal 1.

7.2. Techniques for lowering the dimension of the embeddings

In this section we will show how to obtain a lower rank embedding for graphs when

using the following heuristic: we have the partial distance matrix given by the edges of a

graph, we consider two copies of the graph which we connect by a long edge and we use

this partial distance matrix as input for the optimization problem. Then we analyze the

information given by the submatrices corresponding to one copy of the graph. We compare

the dimension of the embeddings with the dimension of the embedding resulted from the

convex optimization problem corresponding to the partial distance matrix of the initial graph.

In this way we can lower the dimension of the embedding by at least 1.
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Example 7.2.1. McGee unit graph Previously we obtained an embedding of the

McGee graph into R5 as a unit distance graph. This graph with 24 nodes, 36 edges and

chromatic number 3 can be embedded as a unit distance graph in the plane. Now consider

two copies of the McGee unit graph connected with a long edge, 10 times longer than the

edges of the graph. We build the partial distance matrix for this new graph that has 48

vertices and 73 edges and we use it as input for the optimization problem (7.1.5). We obtain

that rank of Y is 8 and the euclidean distance matrix D is generated by 48 different points.

Consider the distance matrices corresponding to one copy of the McGee graph D1 and D2

and T = I24 − 1
24
124×24. Matrices Yi = −1

2
TDiT , i = 1, 2 have rank 5 and 4. Rank 4 matrix

Y1 is generated by 24 different points therefore we obtain an embedding of the McGee graph

into R4.

Example 7.2.2. The Heawood graph. The Heawood graph is among the graphs that

admit an embedding in the Euclidean plane in such a way that vertices correspond to points

in the plane and adjacent vertices are connected with edges of size 1. It was only in 2008

that Gerbracht [77] presented 11 unit distance embeddings of the Heawood graph in the

plane. Between 1972 and 2008 it was thought that such an embedding is not possible. In

1972 Chvatal [78] presented 37 open research problems from combinatorics. In [78] one of

the open problems was related to the graphs obtained by assigning vertices to all the points

and lines of a projective plane by joining a point-vertex to a line vertex if and only if the

line passes through the point. The smallest example of these graphs is the Heawood graph.

The Heawood graph is a point-line incidence graph of the Fano plane. An incidence graph is

a bipartite graph associated with an incidence structure. An incidence structure consists of

a set P of points and a set L of lines along with an incidence relation consisting of ordered

pairs of points and lines. The graph has two types of vertices consisting of the points (one
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color) and lines (the second color) with a point joined to a line if it is incident with it in

S. The relation of incidence can be used in relation with points, lines or planes. Instead of

saying that ”‘two lines meet” we may express the situation as ”two lines are both incident

with the same point”, ”‘two points determine a line”’ may be expressed as ”‘two points are

both incident with some line”. The Fano plane is defined as finite projective plane of order

2 with the smallest possible number of points and lines, 7 each, with 3 points on every line

and 3 lines through every point. Chvatal’s conjecture was that these graphs were not unit

distance embeddable in the plane.

Previously we obtained an embedding of the Heawood graph into R7. Now we consider

Heawood graph and one copy of it. We form a graph with 28 vertices. In addition we connect

vertices 1 and 22 with a long edge of size 10. Therefore we have one known entry of matrix

D 100 times larger than the rest of the other entries while all the other edges are of size

1. We are looking for Euclidean distance matrix completion of matrix D. 37 in this case

returns a postive semidefinite matrix Y of size 28 by 28 of rank 3, generated by 18 distinct

points, therefore a mapping into R3. The submatrices corresponding to one copy of the

Heawood graph have rank 3 and is generated by 14 different points and rank 1, generated

by 4 different points. Therefore we obtain an embedding into R3 for the Heawood graph. A

plot of the points that generate the rank three submatrix is presented in Figure 7.12. If we

impose the condition that all entries in the matrix Dij ≥ 0.01 i.e edges all greater than 0.1

we obtain an embedding for this bigger graph in R8. We analyze the rank of the positive

semidefinite submatrices corresponding to each copy of the graph. They have rank 3 and

rank 6. The condition Dij ≥ 0.01 ensures that we have no overlapping points and therefore

we obtain also in this case an embedding of the Heawood graph in R3.
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Figure 7.12. Heawood graph embedding in R3.

Example 7.2.3. Consider a tripartite graph with 15 vertices, same number of vertices

in the partition and 58 edges chosen at random.

We are looking for an embedding using (37). We impose the additional condition that

Di,j ≥ 0.01 for all i 6= j. The solution Y has rank 10, therefore we obtain an embedding into

R10.

Consider two copies of this graph connected by a long edge. We build the partial distance

matrix 30× 30, D∗ = [D 015×15;015×15 D] and then we connect the copies with a long edge

D∗12,20 = D∗20,12 = 100. We impose the condition that D∗ij ≥ 0.01 and we solve the Euclidean

distance matrix completion problem 37. The positive semidefinite submatrices corresponding

to one copy of the graph have both rank 9, therefore we obtain an embedding into R9.
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7.3. Borsuk Embeddings

In this section we formulate the problem of finding graph embeddings for unit diameter

graphs establishing in this way a connection with the Borsuk problem which asks if a set of

points in Rn can be split into n+ 1 parts of smaller diameter.

Definition 7.3.1. The diameter of a set S ⊂ Rn is supx,y∈S ‖x− y‖

Let b(n) be the minimal number such that any bounded set in Rn consisting of at least

2 points can be partitioned into b(n) parts of smaller diameter. In 1933 Borsuk conjectured

that every bounded set in the n dimensional Euclidean space is the union of n + 1 sets of

smaller diameter [79], therefore b(n) = n+ 1. The Borsuk conjecture is true in dimensions 2

and 3. In 1993 Kalai and Kahn [80] presented an counterexample showing that b(n) > 1.2
√
n

for large n. Their construction implied that b(n) > n+ 1 for n = 1325 and for all n > 2014

([81]). In the next years improvements on the smaller dimension were reached b(n) > n+ 1

for n = 946 [82], n = 561 [83], n = 560 [84], n = 323 [85] and n = 321 [86]. In 2003 Hinrichs

and Richter constructed finite sets in Rn, n ≥ 298, which cannot be partitioned into n+ 11

parts of smaller diameter thus decreasing the smallest dimension in which Borsuk conjecture

is known to be false [87]. In 2013 it was shown that b(65) ≥ 84 [81].

Theorem 7.3.1 (Bondarenko, 2013). There is a two-distance subset {x1, . . . , x416} of the

unit sphere S64 ⊂ R65 such that 〈xi, xj〉 = 1
5

or − 1
15

for i 6= j which cannot be partitioned

into 83 parts of smaller diameter.

A two distance set is a set of points in Rn for which all pairwise distances there are only

two possible distances. Brouwer uses the example from [81] and shows that the conjecture

is false in dimension n = 64 [88]. The set considered is a 64 dimensional set with 352 points
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which cannot be split into fewer than 71 parts of smaller diameter. The image of the set of

points can be seen as an image of a unit diameter graph in Rn.

Definition 7.3.2 (Unit diameter graph). A unit diameter graph is a graph G = (V,E)

where V is a set of points from Rn, the set of the edges E = {(i, j) : ‖xi − xj‖ = 1} and

Euclidean distance between non-adjacent vertices is strictly less than 1.

All edges of the unit diameter graph have the same length and are given by the maximum

distance between the points in the set V . The rule that defines the edges is given by the

largest distance, i.e., we connect vertices in the graph with an edge only if their distance is

equal to one, the maximum distance between the points in the set V . Therefore all non-edges

have smaller length. The minimum number of parts of smaller diameter into which the set

V can be partitioned equals the chromatic number of the graph G. We can generalize this

definition to quasi-unit diameter graphs

Definition 7.3.3 (Quasi-unit diameter graph). Given V a set of points, the quasi-unit

diameter distance graph G is the graph that has the points in V as vertices and all the edges

of distance 1 and for the non-adjacent vertices the Euclidean distance between them may be

less or equal 1.

Definition 7.3.4 (Borsuk embedding). A Borsuk embedding of a graph G = (V,E) in

Rn is a one to one mapping such that each vertex of the graph is mapped into Rn and the

resulted graph is a unit diameter graph.

With this setting, Borsuk’s problem can be also posed as follows: let the graph G = (V,E)

and its chromatic number n+ 2, is there a Borsuk embedding into Rn such that G is a unit

diameter graph? To be more concrete, we are interested in assigning to each node of the
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graph a coordinate in Rn, such that nodes that are neighbors in the graph have Euclidean

distance 1 and nodes that are not neighbors have the Euclidean distance strictly less than 1.

Let G be unit distance graph. If we build the distance matrix between vertices of G

we have that the Euclidean distance between the adjacent vertices in G is equal to one.

Therefore Dij = 1, i 6= j, (i, j) ∈ E. Now we can look for a completion of the distance

matrix D such that the rest of the entries are strictly less than 1 when Y = −1
2
JDJ is low

rank.

(39)

minimize
D̂

∥∥∥∥−1

2
JD̂J

∥∥∥∥
∗

subject to D̂ij = Dij, (i, j) ∈ E,

− 1

2
JD̂J � 0,

D̂ii = 0, i = 1, . . . , n

D̂ij < 1, (i, j) /∈ E,

D̂ij ≥ 0.01∀i 6= j

Example 7.3.1. Consider a graph with 15 vertices and 52 edges of size 1, edges placed

random. With the optimization problem (39) we can determine a Borsuk embedding into

R7. The graph has lower bound 2 for the chromatic number and the upper bound is 15.

Example 7.3.2. Let G be a eight-partite graph with 6 vertices in each set of the partition

and 503 edges. This graph has chromatic number 8. We can obtain a Borsuk embedding

into R23.
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CHAPTER 8

Variations on the Matrix Completion Problem

Another class of applications where the nuclear norm heuristic reveals its use is in de-

composing a matrix into two components, one of the components being low rank. In Section

8.1 we illustrate the decomposition into a low rank and sparse component. This decomposi-

tion was studied in detail in [89]. In Section 8.2 we study the decomposition of a full rank

matrix into two components using a convex optimization problem which minimizes a linear

combination of the nuclear norm and the spectral norm.

8.1. Low rank and Sparse Matrix Decomposition

This section outlines the recovery of the low rank and sparse components from a given

matrix. The references [34] and [89] provide a convex optimization formulation for splitting a

matrix into its low rank and sparse components and also sufficient conditions that guarantee

exact recovery of the components.

In many important applications when the input data has a significant size we wish to

learn some condensed information from it. The case is that in many instances the data can

be seen as being a sum of two components, a low rank and a sparse component [34], [89].

Intuitively, the problem of recovering the low rank and the sparse component is hard

because of the ambiguity given by the fact that some very sparse matrices are also low rank.

For a low rank matrix with entries ”perturbed” by a sparse matrix and also with the

entries of arbitrary magnitude, the recovery of the initial low rank matrix is in general NP-

hard. But, using convex relaxations and formulating the problem as a semidefinite program,

under certain conditions, we can obtain exact recovery of the components by solving a

semidefinite program.
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In formulating the convex optimization problem for the recovery of the sparse component

the l1 norm is used, while for the recovery of the low rank component the nuclear norm [31]

is used. The problem of recovering a sparse vector, by minimizing the l1 norm under linear

equality constraints, has received much attention, especially in the work of Candes and

his collaborators [50], [90], [91], [92], Donoho [93], and Boyd and Vandenberghe [53]. The

use of the l1 norm as a heuristic for sparsity is justified by the fact that the l1 norm is

also the convex envelope of the cardinality function over the set {x ∈ Rn : ‖x‖∞ ≤ 1}. The

cardinality function of the vector x, denoted by card(x), represents the number of non-zero

entries in the vector x.

Relying on the nuclear norm heuristic and on the l1 norm heuristic Chandrasekaran [34]

considers the convex problem which minimizes a mixture of nuclear norm and l1 norm to

obtain a split of a given matrix C into an unknown sparse matrix and an unknown low rank

matrix. Thus the paper [34] analyzes the convex optimization problem which minimizes a

combination of the l1 norm and the nuclear norm of the components.

Optimization problems involving the rank of a matrix determined the necessity to develop

convex relaxations for these problems. As it was shown in the Chapter 5, Chapter 6 and

Chapter 7 rank minimization is also of interest because of its variety of applications (including

the matrix completion problem and embedding in Euclidean spaces).

This Section illustrates the convex optimization problem presented by Chandrasekaran

in [34]. Suppose that we are given a matrix C = A∗+B∗ with A∗ an unknown sparse matrix

and B∗ an unknown low rank matrix.

The convex relaxation used in practice to solve this problem can be stated as a mini-

mization problem. We would like to decompose a matrix C into a sparse and a low rank

component. Therefore the objective function of this problem is represented by a combination
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between the l1 norm and the nuclear norm of the matrix variables A and B.

(40)

minimize
A,B

γ ‖A‖l1 + ‖B‖∗

subject to C = A+B

In this case γ represents a regularization parameter that provides a trade-off between the

components. More, this convex optimization problem can be formulated as a semidefinite

program. As shown in Chapter 3 the minimization of the nuclear norm can be written as a

semidefinite program

(41)

minimize
W1,W2

1

2
(traceW1 + traceW2)

subject to

W1 B

BT W2

 � 0

The l1 norm minimization in (40 ) can be formulated as a linear program. As usual,

the l1 norm of a matrix A is represented by the sum of the absolute values of all entries of

A. Therefore, the low rank and sparse decomposition problem can be written as a convex

optimization problem i.e as a semidefinite program in the following form:

(42)

minimize
A,B,W1,W2

1

2
trace(W1) +

1

2
trace(W2) + γtrace(Z1n×n)

subject to

W1 B

BT W2

 � 0

− Zi,j ≤ Ai,j ≤ Zi,j, for any i,j

A+B = C
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where the third constraint is written component-wise and it must be satisfied for all entries

of A. Further we’ll show how the l1 minimization problem admits a formulation as a linear

program. Thus, let A be a matrix and b a vector. The optimization problem

minimize ‖Ax− b‖1

admits an equivalent formulation

(43)

minimize
y

∑
i

yi

subject to − y ≤ Ax− b ≤ y

or using the standard form for the linear program

(44)

minimize c̃T x̃

subject to Ãx̃ ≤ b̃

where we have the following notations x̃ =

x
y

, c̃ =

0

1

, Ã =

 A −I

−A −I

, b̃ =

 b

−b

.

For the low rank and sparse minimization problem, the l1 norm of a matrix can be viewed

as the l1 norm of the vector obtained by stacking the columns of the matrix on top of each

other. Thus, we obtain the semidefinite formulation used in equation (42). The references

[34] and [89] study the additional conditions that are required in order to ensure that there

exists a unique decomposition into sparse and low-rank matrices. The characterization of

the unique decomposition from [34] involves the development of the notion of rank sparsity

incoherence to ensure that the low rank matrix is not too sparse. The condition is based on

quantities involving the tangent spaces to the algebraic variety of sparse matrices and the

algebraic variety of low rank matrices. An algebraic variety is the solution set of a system
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of polynomial equations. The set of matrices of rank less than or equal to a fixed number k

is an algebraic variety defined by the vanishing of all (k + 1)× (k + 1) minors.

There are classes of random matrices such that when matrices are chosen from these

classes we have exact recovery with very high probability. Following [34] we illustrate how

we can find the decomposition in case the matrices have incoherent row/column spaces. All

simulations were produced using the CVX solver [29]. Consider a slightly modified version

of equation (40):

(45)

minimize
A,B

t ‖A‖l1 + (1− t) ‖B‖∗

subject to C = A+B

There is a one to one correspondence between equation (40) and and (45). The sparse

component is generated as a 25 × 25 matrix with 25 sparse entries. Support(A∗) is chosen

uniformly at random from the collection of all support sets of size 25. Matrix B∗ is chosen

to be rank 2 such that B = XY T , where X, Y ∈ R25×2 with independent and identically

distributed Gaussian entries. To determine the stopping criteria we need to define

tolγ =
‖Â−A∗‖

F

‖A∗‖ +
‖B̂−B∗‖

F

‖B∗‖

We consider a parameter t ∈ [0, 1] and choose a small step ε. We compute the difference

between solutions at step t and t− ε as follows:

difft =
∥∥∥Ât−ε − Ât∥∥∥

F
+
∥∥∥B̂t−ε − B̂t

∥∥∥
F

Whenever the recovery is successful i.e the tolt is small, the value of difft also tends to be zero.

If a good guess for the parameter value is not available, one could solve the optimization

problem for a range of γ and choose a solution corresponding to a value in the range where

the diffγ is stable and near zero.
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Figure 8.1. Comparison between toll (‘r’) and diff (‘g’) for a randomly gen-
erated example.

8.2. Decompositions using nuclear norm and spectral norm

Let M be a square n dimensional matrix, with singular decomposition M = UΣV T and

singular values ordered in decreasing order: σ1 > σ2 > . . . > σn where it is assumed that all

singular values have multiplicity one.

Let λ ∈ (0, 1) be a positive real number. Consider the nuclear norm ‖‖∗ and the spectral

norm ‖‖.

Consider the convex optimization problem where the objective function is a convex com-

bination between the nuclear norm and the spectral norm

(46)

minimize
A,B

λ ‖A‖∗ + (1− λ) ‖B‖

subject to M = A+B
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The semidefinite formulation of the problem is

(47)

minimize
A,B,t,W1,W2

λ
1

2
(traceW1 + traceW2) + (1− λ)t

subject to

W1 A

AT W2

 ,
tIn B

Bt tIn

 � 0

M = A+B

Given matrices A and B, A + B and their singular values σi(A), σi(B), σi(A + B) in

general the statement σi(A+B) = σi(A) + σi(B), i = 1, 2, . . . is false.

To illustrate it we may consider matrices A =


1 2 3

1 3 7

0 4 5

 and B =


−1 9 3

2 0 5

9 1 0


The singular values of matrixA are 10.55, 1.47 and 0.71. The singular values ofB are 9.75,

9.25 and 4.61. The sum A+B has singular values 18.60, 7.82, 6.54. But 10.55+9.75 6= 18.60.

Example 8.2.1. Consider the full rank matrix

M =



4.3377 8.3897 0.9421 0.3532 0.6491

0.9001 8.2417 28.9561 1.8212 0.7317

1.3692 0.4039 4.5752 0.0154 0.6477

0.1112 8.0965 12.0598 20.0430 0.4509

2.7803 2.1320 6.2348 9.1690 20.5470


with singular values 37.7371, 21.2944, 15.5373, 8.6418, 1.3318. We solve the optimization

problem 46 for different values of parameter λ. For values of the parameter λ between 0 and

1 we plot the singular values of the matrix A, the component corresponding to the nuclear

norm term in Figure 8.2.
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Figure 8.2. Singular values of matrix A, optimal solution for 46.

Example 8.2.2. Let matrix T1 =



10.3377 0.3897 0.9421 0.3532 0.6491

0.9001 10.2417 0.9561 0.8212 0.7317

0.3692 0.4039 10.5752 0.0154 0.6477

0.1112 0.0965 0.0598 10.0430 0.4509


In Figure 8.3 we present an evolution of the singular values of the optimal solutions for

various values of the parameter λ. We obtain non-zero solutions A only for values of the

parameter λ ≤ 0.5. As the parameter λ ranges between 0 and 0.5 the solution B is always

full rank while the rank of non-zero solutions A ranges between 4 and 1. These solutions

display the following property σi(A+B) = σi(A) + σi(B), i = 1, 2, . . . , 5

Example 8.2.3. Consider matrices of different dimensions, all full rank up to rank 13,

singular values with multiplicity 1. For values of the parameter between (0, 0.5] we obtain

non-zero solutions A. When we count the number of different solutions we obtain 2 solutions
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Figure 8.3. An example of evolution of singular values of the optimal solu-
tions A and B.

of rank 1, 1 solution of rank 2, 2 solutions of rank 3, 2 solutions of rank 4, 1 solution of rank 5,

1 solution of rank 6. We sampled the interval and took up to 2000 values for the parameter.

The rank of the solutions A display the following pattern 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1 . . .
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Conjecture: Let M be a full rank n× n matrix, all singular values having multiplicity

1. Consider the optimization problem

minimize
A,B

λ ‖A‖∗ + (1− λ) ‖B‖

subject to M = A+B

Consider the non-zero solutions A of the optimization problem and the corresponding ma-

trices B. The following statements take place

(1) σi(M) = σi(A) + σi(B), i = 1, . . . , n where σi(M), σi(A), σi(B) are singular values

of matrix M , respectively A and B.

(2) As the values of the parameter vary, there is a pattern between the number of

solutions: 2,1,2,2,1,1,2,1,2,2,1,1 and the rank of the solution A:1,2,3,4,5,......There

is a unique solution of rank k, k ≤ n when the remainder of the division by 6 of k

is 0, 2 or 5. For the rest of the cases, when the remainder is 1,3 and 4 we have 2

different solutions of rank k.

(3) There exists a value of the parameter that returns solution A of rank 1 such that

the singular values of corresponding matrix B satisfy the relation σi(B) = σi(M),

i = 2, ..n and σ1(B) = σ2(B).

(4) There exists a value of the parameter that returns solution A of rank k such that

the singular values of corresponding matrix B satisfy the relation: σi(B) = σi(M),

i = k + 1, ..n and σ1(B) = σ2(B) = ... = σk+1(B).
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CHAPTER 9

Conclusions and Future Work

In this dissertation we studied the application of the nuclear norm heuristic to the prob-

lem of finding low rank representations of matrices, and, in particular, for solving the Eu-

clidean distance matrix completion problem. As a special case, we considered the low-rank

embedding of incomplete graphs, again using the nuclear norm heuristic. We demonstrated

how a number of interesting variations of the graph embedding problem could be explored

using convex optimization, i.e., semidefinite programming. We have proposed two formula-

tions of the graph embedding problem as constrained semidefinite programs. In this setting

the nuclear norm heuristic leads to closed form optimal solutions for k-partite graphs on

n nodes. These results are shown to provide useful insights into the computation of the

chromatic number. This framework also lends itself naturally to the construction of unit dis-

tance graphs. Further, the Borsuk problem is formulated and examples of embeddings found

numerically. Lastly, we applied related techniques to decompose a matrix into components

which simultaneously minimize a linear combination of the nuclear norm and the spectral

norm. The results of this thesis have opened up possibilities for future work:

We have demonstrated that low rank graph embeddings may be found using the nuclear

norm heuristic and improved by exploring additional constraints. We have illustrated how

one can use convex optimization to provide information concerning the properties of a graph,

including chromatic number. Preliminary results have been presented to suggest that convex

optimization may be applied to open problems in graph theory, such as the Borsuk conjecture

related to unit diameter graphs.
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We have observed that the use of the nuclear norm heuristic has some unanticipated

consequences as a proxy for rank minimization. In particular, we have found specific ex-

amples where the nuclear norm approach fails to find solutions of minimum rank and that

additional constraints are required to overcome this. We have explored possible solutions to

this problem such as maximizing the distance between subsets sets of points on the graph.

It has also proven effective to add carefully selected virtual points to further reduce the

rank of the embedding. Note that although we use the minimum nuclear norm heuristic

as a proxy to to minimize the rank of the configuration of points, the explicit goal of this

objective function is to minimize the variance of the points in the graph subject to auxiliary

constraints. As a result this approach has a tendency to collapse data points in the embed-

ded configuration. While we have seen that this is a positive feature for the computation of

chromatic number, it runs counter the goal of the graph embedding problem. Future work

needs to be done to address the potentially conflicting goals of the objective function in the

optimization problem.

The framework of convex optimization has been shown to be quite powerful for addressing

questions relating to graph embeddings and the low rank completion of Euclidean distance

matrices. We would like to further investigate this framework to determine mechanisms for

further reducing rank. We are particularly interesting in exploring the case of graphs with

high chromatic number and high girth. It is possible that the log-det heuristic, introduced

in [31], could prove to be a useful alternative to the solution of the rank minimization

problem. It would be interesting to explore the graph embedding problems described in this

dissertation using this approach. In addition, other combinations of convex objective criteria

could prove useful.
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Although in this dissertation we have focused on the decomposition of matrices, clearly

there are opportunities to extend this work to the construction of low rank tensor decom-

positions. The problem of tensor completion appears to be an interesting direction; see also

[94]. Progress may be made by exploring unfoldings of tensors to matrices. Alternatively,

one can search for convex envelopes related to definitions of the rank of a tensor.
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