Chromatic equivalence classes of complete tripartite graphs

G.L. Chiaa,∗, Chee-Kit Hob

aInstitute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
bDepartment of Science & Mathematics, Universiti Tenaga Nasional, 43009 Kajang, Selangor, Malaysia

Received 8 March 2004; accepted 17 December 2007
Available online 31 January 2008

Abstract

Some necessary conditions on a graph which has the same chromatic polynomial as the complete tripartite graph $K_{m,n,r}$ are developed. Using these, we obtain the chromatic equivalence classes for $K_{m,n,n}$ (where $1 \leq m \leq n$) and K_{m_1,m_2,m_3} (where $|m_i - m_j| \leq 3$). In particular, it is shown that (i) $K_{m,n,n}$ (where $2 \leq m \leq n$) and (ii) K_{m_1,m_2,m_3} (where $|m_i - m_j| \leq 3$, $2 \leq m_i$, $i = 1, 2, 3$) are uniquely determined by their chromatic polynomials. The result (i), proved earlier by Liu et al. [R.Y. Liu, H.X. Zhao, C.Y. Ye, A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs, Discrete Math. 289 (2004) 175–179], answers a conjecture (raised in [G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs (In Honour of Prof. Roberto W. Frucht), Sci. Ser. A (1988) 27–37 (special issue)]) in the affirmative, while result (ii) extends a result of Zou [H.W. Zou, On the chromatic uniqueness of complete tripartite graphs K_{n_1,n_2,n_3} J. Systems Sci. Math. Sci. 20 (2000) 181–186].

© 2008 Elsevier B.V. All rights reserved.

Keywords: Complete tripartite graphs; Chromatic polynomials; Chromatic uniqueness

1. Introduction

We shall be concerned with finite, undirected graphs having neither loops nor multiple edges. Let G be a graph and let $P(G; \lambda)$ denote its chromatic polynomial. Then the chromatic equivalence class of G, denoted $\mathcal{C}(G)$, is defined to be the set of all graphs which have the same chromatic polynomial as G. In the event that $\mathcal{C}(G) = \{G\}$, then G is said to be chromatically unique.

Let K_{m_1,m_2,\ldots,m_k} denote the complete k-partite graph whose k (≥ 2) partite sets V_1, V_2, \ldots, V_k are such that $|V_i| = m_i$, $i = 1, 2, \ldots, k$.

The first result concerning the question of whether or not K_{m_1,m_2,\ldots,m_k} is chromatically unique seems to be attributed to Loerinc and Whitehead Jr. [8] who proved that $K_{1,\ldots,1,2,\ldots,2}$ is chromatically unique. Shortly afterwards, Chao and Novacky Jr. [1] generalized this result by proving that K_{m_1,m_2,\ldots,m_k} is chromatically unique if $|m_i - m_j| \leq 1$ for all $i, j = 1, 2, \ldots, k$.

∗ Corresponding author.

E-mail address: glchia@um.edu.my (G.L. Chia).

0012-365X/8 - see front matter © 2008 Elsevier B.V. All rights reserved.
If \(m_1 = 1 \), it is known that \(K_{1,m_2,\ldots,m_k} \) is chromatically unique if and only if \(\max\{m_2, \ldots, m_k\} \leq 2 \) (see [6]). If \(m_i \geq 2 \) for all \(i = 1, 2, \ldots, k \), it is not known in general whether or not \(K_{m_1,m_2,\ldots,m_k} \) is chromatically unique even when restricted to the case \(|m_i - m_j| \leq t \) for all \(i, j = 1, 2, \ldots, k \) where \(t \geq 2 \).

For restriction to the case \(k = 2 \), Teo and Koh [11] have shown that \(K_{m_1,m_2} \) is chromatically unique if \(2 \leq m_1, m_2 \). However, as for the complete tripartite case, not much progress has been made. The first paper addressing this problem seems to be the paper [2] (see also [5]).

In the present paper, we determine the chromatic equivalence classes for the complete tripartite graphs \(K_{m,n,n} \), where \(1 \leq m \leq n \) (Theorems 1 and 2) and \(K_{m_1,m_2,m_3} \) where \(|m_i - m_j| \leq 3 \) for all \(i, j = 1, 2, 3 \) (Theorem 3 and Proposition 1). In particular, it is shown that \(K_{m,n,n} \) is chromatically unique if \(2 \leq m \leq n \), a result established recently by Liu et al. [7]. This answers a conjecture raised in [2] in the affirmative.

The main technique used in [2] to demonstrate the chromatic uniqueness of some complete tripartite graphs \(G = K_{m,n,r} \) was to compare the numbers of triangles and chordless 4-cycles in \(G \) with those in the graph \(Y \) for any \(Y \in \mathcal{C}(G) \). In the present situation, such a technique is no longer sufficient for drawing many conclusions. In the next section, we develop some necessary conditions on \(Y \) where \(Y \in \mathcal{C}(G) \) and \(G \) is the complete tripartite graph \(K_{m,n,r} \).

2. Machinery

Let \(K_n \) denote a complete graph on \(n \) vertices. If \(m \geq 3 \), let \(C^*_m \) denote a chordless cycle on \(m \) vertices.

Let \(G \) be a graph with \(p \) vertices and \(q \) edges. Let \(P(G; \lambda) = \sum_{i=1}^{p} a_i(G)\lambda^i \). Let \(n(A, G) \) denote the number of subgraphs in \(G \) that are isomorphic to \(A \). It is well known that \(a_p(G) = 1 \), \(a_{p-1}(G) = -q \) and \(a_{p-2}(G) = \binom{q}{2} - n(K_3, G) \) (see [9]).

Suppose \(Y \in \mathcal{C}(G) \). Then clearly, \(a_i(Y) = a_i(G) \) for each \(i = 1, 2, \ldots, p \). Thus, it follows that \(Y \) and \(G \) have the same numbers of vertices and edges, and \(n(K_3, Y) = n(K_3, G) \). Furthermore, in the event that \(G \) contains no \(K_4 \), it follows from Theorem 1 of [3] that \(n(C^*_4, Y) = n(C^*_4, G) \).

Another method of expressing the chromatic polynomial of \(G \) was introduced by Frucht [4]. A spanning subgraph is called \textit{special} if its connected components are complete graphs. Let \(s_i(G) \) denote the number of special spanning subgraphs of \(G \) with \(i \) components, \(i = 1, 2, \ldots, p \). Then

\[
P(G; \lambda) = \sum_{i=1}^{p} s_i(\overline{G})(\lambda)^i
\]

where \((\lambda)_i = \lambda(\lambda - 1) \cdots (\lambda - i + 1) \) is the falling factorial and \(\overline{G} \) is the complement of \(G \). In this case, \(P(G; \lambda) \) is said to be expressed in a \textit{factorial basis}.

Clearly, \(s_p(\overline{G}) = 1 \) and \(s_{p-1}(\overline{G}) = q \) if \(\overline{G} \) has \(q \) edges. Note that if \(G \) has chromatic number \(\chi(G) = \chi \), then \(s_i(\overline{G}) = 0 \) for all \(i < \chi \).

Clearly if \(Y \in \mathcal{C}(G) \), then \(s_i(\overline{Y}) = s_i(\overline{G}) \) for all \(\chi(G) \leq i \leq p \).

The relationship between \(a_i(G) \) and \(s_i(\overline{G}) \) is given in the next lemma. Let \(S(n, k) \) denote the number of ways of partitioning a set of \(n \) elements into precisely \(k \) non-empty subsets. The number \(S(n, k) \) is known as the \textit{Stirling number of the second kind}. Note that \(\lambda^n = \sum_{k=1}^{n} S(n, k)(\lambda)_k \) and that \(S(n, k) = 0 \) for \(n < k \).

Lemma 1. Let \(P(G; \lambda) = \sum_{i=1}^{p} a_i(G)\lambda^i = \sum_{i=1}^{p} s_i(\overline{G})(\lambda)_i \). Then

\[
s_i(\overline{G}) = \sum_{r=1}^{p} a_r(G)S(r, i).
\]

Corollary 1. Let \(G \) and \(H \) be two graphs each on \(p \) vertices and having the same number of edges. Then

\[
s_{p-2}(\overline{G}) - s_{p-2}(\overline{H}) = n(K_3, H) - n(K_3, G).
\]

Let \(G \) be the complete tripartite graph \(K_{m_1,m_2,m_3} \). Suppose \(Y \in \mathcal{C}(G) \). We shall draw up some necessary conditions on \(Y \). Since \(G \) is connected and has \(p = m_1 + m_2 + m_3 \) vertices, \(q = \sum_{i<j} m_im_j \) edges and \(m_1m_2m_3 \) triangles, the
same is true for \(Y \). Moreover, \(Y \) is a tripartite graph obtained by deleting some \(e \) edges from the complete tripartite graph \(K_{s_1,s_2,s_3} \). Here \(s_1 + s_2 + s_3 = p \) and

\[
e = \sum_{i<j} s_is_j - \sum_{i<j} m_im_j.
\]

(1)

Equivalently, \(\overline{Y} \) is a union of three complete graphs \(K_{s_1}, K_{s_2} \) and \(K_{s_3} \) with \(e \) edges joining these subgraphs. Writing \(s_i = m_i + \alpha_i \) for \(i = 1, 2, 3 \), we have

\[
\alpha_1 + \alpha_2 + \alpha_3 = 0
\]

(2)

and it follows from Eq. (3) that

\[
e = \sum_{i<j} \alpha_i\alpha_j - \sum_{i=1}^3 m_i\alpha_i.
\]

(3)

If \(e = 0 \), then by noting that the numbers of vertices, edges and triangles in \(G \) and \(Y \) are each equal, which implies that the two polynomials \(\lambda^3 + \left(\sum_{i=1}^{s_i} m_i \right) \lambda^2 + \left(\sum_{i<j} m_im_j \right) \lambda + m_1m_2m_3 \) and \(\lambda^3 + \left(\sum_{i=1}^{s_i} \alpha_i \right) \lambda^2 + \left(\sum_{i<j} \alpha_i\alpha_j \right) \lambda + s_1s_2s_3 \) are the same, we have the following.

(\(\text{O1} \)) If \(e = 0 \), then \(\{s_1, s_2, s_3\} = \{m_1, m_2, m_3\} \), in which case \(Y \) is isomorphic to \(G \).

In what follows, we shall let \(K^e(s_1, s_2, s_3) \) denote the set of all connected tripartite graphs obtained by deleting \(e \) edges from the complete tripartite graph \(K_{s_1,s_2,s_3} \).

Note that, for any graph \(Y \in K^e(s_1, s_2, s_3) \), \(\overline{Y} \) is the union of three complete subgraphs \(K_{s_1}, K_{s_2} \) and \(K_{s_3} \) with \(e \) edges joining these subgraphs. Suppose, for any triplet \((j, k, l) \) where \(\{j, k, l\} = \{1, 2, 3\} \), that there are \(a_j \) edges joining the subgraphs \(K_{s_j} \) and \(K_{s_l} \). Then

\[
e = a_1 + a_2 + a_3.
\]

(4)

\textbf{Definition.} Let \(E_i \) denote the set of all the \(a_i \) edges where \(i = 1, 2, 3 \). Two edges \(\beta \in E_r \) and \(\gamma \in E_s \), where \(r \neq s \), are said to be a \textit{coincidence pair} \(Y \) if they are incident with each other in \(\overline{Y} \).

The preceding discussions have lead to the following observation.

(\(\text{O2} \)) If \(G \) is the complete tripartite graph \(K_{m_1, m_2, m_3} \) and \(Y \in C(G) \), then \(Y \in K^e(s_1, s_2, s_3) \) where \(s_i, \alpha_i \) (for \(i \in \{1, 2, 3\} \) and \(e \) satisfy Eqs. (3)–(6).

\textbf{Lemma 2.} Let \(G \) and \(Y \) be as described in (\(\text{O2} \)). Suppose \(p = s_1 + s_2 + s_3 \) and \(q = s_1s_2 + s_2s_3 + s_3s_1 - e \). If \(e > 0 \), then \(|3s_i - p| < 2\sqrt{p^2 - 3q} \) for each \(i = 1, 2, 3 \).

\textbf{Proof.} Suppose the lemma is not true. Without loss of generality, suppose \(|3s_1 - p| \geq 2\sqrt{p^2 - 3q} \).

It is routine to check that this inequality simplifies to \((p - s_1)(p + s_1) - 4q \leq 0 \) which implies that \((s_2 + s_3)(4s_1 + s_2 + s_3) - 4q \leq 0 \). But then this further implies that \((s_2 + s_3)^2 - 4s_2s_3 + 4e \leq 0 \) which yields \((s_2 - s_3)^2 + 4e \leq 0 \), a contradiction because \(e > 0 \).

\textbf{Lemma 3.} Let \(G \) be the complete tripartite graph \(K_{m_1, m_2, m_3} \), \(p = m_1 + m_2 + m_3 \) and \(Y \in K^e(s_1, s_2, s_3) \) where \(s_i, \alpha_i \) (for \(i \in \{1, 2, 3\} \) and \(e \) satisfy Eqs. (3)–(6). Then for each \(j = 1, 2, 3 \),

\[
s_{p-2}(G) - s_{p-2}(\overline{Y}) \geq \prod_{i=1}^{3} (s_i - m_j) - \sum_{i=1}^{3} a_i(s_i - m_j).
\]

\textbf{Proof.} By Corollary 1, we have

\[
s_{p-2}(G) - s_{p-2}(\overline{Y}) = n(K_3, Y) - n(K_3, G).
\]

Since the number of triangles in \(Y \) is at least \(s_1s_2s_3 - (a_1s_1 + a_2s_2 + a_3s_3) \), it follows that

\[
s_{p-2}(G) - s_{p-2}(\overline{Y}) \geq s_1s_2s_3 - m_1m_2m_3 - (a_1s_1 + a_2s_2 + a_3s_3).
\]
Using the fact that \(s_1 + s_2 + s_3 = m_1 + m_2 + m_3 \) and Eq. (3), one can check that
\[
(s_1 - m_j)(s_2 - m_j)(s_3 - m_j) = s_1s_2s_3 - m_1m_2m_3 - em_j
\]
for each \(j = 1, 2, 3 \). Substituting \(e = a_1 + a_2 + a_3 \) into the above equation, the lemma follows. \(\square \)

Lemma 4. Let \(G \) and \(Y \) be as described in Lemma 3. Suppose further that \(Y \) contains no coincidence pair. Then for each \(j = 1, 2, 3 \),
\[
s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = \prod_{i=1}^{3} (s_i - m_j) - \sum_{i=1}^{3} a_i(s_i - m_j).
\]

Proof. By Corollary 1, we have
\[
s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = n(K_3, Y) - n(K_3, G).
\]
If \(Y \) contains no coincidence pair, then the number of triangles in \(Y \) is exactly \(s_1s_2s_3 - (a_1s_1 + a_2s_2 + a_3s_3) \). Applying an argument similar to that in the proof of Lemma 3, we get the conclusion of the lemma. \(\square \)

Corollary 2. Let \(G \) and \(Y \) be as described in Lemma 3. Suppose further that \(Y \) contains exactly one coincidence pair. Then for each \(j = 1, 2, 3 \),
\[
s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = \prod_{i=1}^{3} (s_i - m_j) - \sum_{i=1}^{3} a_i(s_i - m_j) + 1.
\]

Let \(J \) and \(H \) be two graphs whose chromatic polynomials are expressed in a factorial basis. Let \(J + H \) denote the join of \(J \) and \(H \). Then \(P(J + H; \lambda) = P(J; \lambda) \oplus P(H; \lambda) \), where the polynomial operator \(\oplus \) denotes the operation, known as umbral multiplication, in which factorials are multiplied as powers. (See [9,10].)

Lemma 5. Let \(G = K_{m_1,m_2,m_3} \) where \(2 \leq m_1 \leq m_2 \leq m_3 \). Let \(Y \in C(G) \). Suppose further that \(Y \cong H + \overline{K}_t \) for some bipartite graph \(H \) and some \(t \in \{m_1, m_2, m_3\} \). Then \(Y \) is isomorphic to \(G \).

Proof. Assume without loss of generality that \(Y \cong H + \overline{K}_m \). We assert that \(H \cong K_{m_2,m_3} \). To see this, suppose on the contrary that \(H \) is not isomorphic to \(K_{m_2,m_3} \). The chromatic polynomials of \(H \) and \(K_{m_2,m_3} \) are respectively
\[
P(H; \lambda) = \sum_{i=1}^{m_3+m_3} s_i(\overline{H})(\lambda)_i
\]
and
\[
P(K_{m_2,m_3}; \lambda) = \sum_{i=1}^{m_2+m_3} s_i(\overline{K}_{m_2,m_3})(\lambda)_i.
\]
Now since the graph \(K_{m_2,m_3} \) is chromatically unique for \(2 \leq m_2 \leq m_3 \) (see [11]), we must have
\[
P(H; \lambda) \neq P(K_{m_2,m_3}; \lambda).
\]
Note that \(s_1(\overline{H}) = s_1(\overline{K}_{m_2,m_3}) = 0 \) and \(s_2(\overline{H}) = s_2(\overline{K}_{m_2,m_3}) = 1 \). Let \(k \) be the smallest positive integer such that \(s_i(\overline{H}) = s_i(\overline{K}_{m_2,m_3}) \) for \(2 \leq i < k \) but \(s_k(\overline{H}) \neq s_k(\overline{K}_{m_2,m_3}) \).

By taking the umbral multiplication and by equating the coefficients of \((\lambda)_{k+1} \) in \(P(Y; \lambda) \) and \(P(G; \lambda) \), we have \(s_{k+1}(\overline{Y}) \neq s_{k+1}(\overline{G}) \), implying that \(P(Y; \lambda) \neq P(G; \lambda) \), which is a contradiction. Therefore we conclude that \(H \cong K_{m_2,m_3} \) and \(Y \) is isomorphic to \(G \). \(\square \)

Lemma 6. Let \(G \) and \(Y \) be as described in Lemma 3. Suppose further that \(Y \cong H + \overline{K}_n \) where \(H \) is a bipartite graph and \(n \) is a positive integer. If \(H \) is disconnected, then \(s_3(\overline{Y}) > s_3(\overline{G}) \).
Proof. Let J_1, J_2, \ldots, J_t be the connected components of H where $t \geq 2$. Note that each J_i is a bipartite graph. For each $i = 1, 2, \ldots, t$, let p_i denote the number of vertices in J_i. Then

$$P(J_i; \lambda) = \sum_{j=2}^{p_i} s_j(J_i)(\lambda)_j$$

since $s_1(J_i) = 0$ and $s_2(J_i) \geq 1$ for $i = 1, 2, \ldots, t$. As a result,\n
$$P(H; \lambda) = \prod_{i=1}^{t} P(J_i; \lambda)$$

$$= \prod_{i=1}^{t} (s_2(J_i)(\lambda)_2 + s_3(J_i)(\lambda)_3 + \ldots + (\lambda)_{p_i}).$$

Since $(\lambda)_2(\lambda)_k = (\lambda)_k + 2k(\lambda)_{k+1} + k(k-1)(\lambda)_k$, we have\n
$$s_2(H) = 2^{t-1} \prod_{i=1}^{t} s_2(J_i) \geq 2^{t-1}.$$

Now, since\n
$$P(Y; \lambda) = P(H; \lambda) \oplus P(\overline{K}_n; \lambda)$$

$$= (s_2(H)(\lambda)_2 + s_3(H)(\lambda)_3 + \ldots) \oplus \sum_{i \geq 1} s_i(K_n)(\lambda)_i$$

we see that $s_3(Y) = s_2(H)s_1(K_n) \geq 2^{t-1} > 1 = s_3(G)$ and this finishes the proof. \qed

3. $K_{m,n,n}$

In this section, we shall prove the chromatic uniqueness of the graph $K_{m,n,n}$ for $2 \leq m \leq n$ and obtain its chromatic equivalence class for $m = 1$. Incidentally, we note that the chromatic equivalence class for $K_{1,1,n}$ was obtained by Whitehead Jr. earlier in [12]. Note that $\mathcal{C}(K_{1,1,n})$ is the set of all 2-trees on $n + 2$ vertices because $K_{1,1,n}$ is itself a 2-tree on $n + 2$ vertices.

Lemma 7. Let G and Y be as described in Lemma 3 and let $Y \in \mathcal{C}(G)$. Suppose further that $1 \leq m_1 < m_2 = m_3$. Then $Y \cong H + \overline{K}_{m_2}$ for some bipartite graph H.

Proof. Note that by Lemma 2, for each $i = 1, 2, 3$, we have\n
$$|3s_i - p| < 2\sqrt{p^2 - 3q}$$

where $p = m_1 + m_2 + m_3$ and $q = m_1m_2 + m_2m_3 + m_3m_1$.

Since $1 \leq m_1 < m_2 = m_3$, the inequality on the right simplifies to $2(m_2 - m_1)$. This means that $m_1 < s_i$ which implies that\n
$$\alpha_1 > 0$$

and\n
$$\alpha_i > m_1 - m_2$$

for each $i = 2, 3$.

Using Lemma 3 with $j = 1$ and $j = 2$, we have, respectively,

$$s_{p-2}(G) - s_{p-2}(Y) \geq \alpha_1(m_2 - m_1 + \alpha_2)(m_2 - m_1 + \alpha_3) - a_1\alpha_1 - a_2(m_2 - m_1 + \alpha_2) - a_3(m_2 - m_1 + \alpha_3)$$

and\n
$$s_{p-2}(G) - s_{p-2}(Y) \geq (m_1 - m_2 + \alpha_1)\alpha_2\alpha_3 - a_1(m_1 - m_2 + \alpha_1) - a_2\alpha_2 - a_3\alpha_3.$$
Suppose \(\alpha_3 = 0 \). Then \(\alpha_1 + \alpha_2 = 0 \) (by Equation (4)) and this implies that \(\alpha_2 < 0 \) (because \(\alpha_1 > 0 \) by (7)) and that \(m_1 - m_2 + \alpha_1 < 0 \) (by using (8)). From (10), we have
\[
s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \geq -a_1(m_1 - m_2 + \alpha_1) - a_2\alpha_2 \geq 0. \tag{9}
\]

Since \(Y \in \mathcal{C}(G) \), equality holds in (11) and this implies that \(a_1 = a_2 = 0 \). Consequently, \(e = a_1 + a_2 + a_3 = a_3 \) and \(Y \cong J + \overline{K_{m_2}} \) for some bipartite graph \(J \).

Next, we assume that \(\alpha_3 \neq 0 \) and there are two cases to consider. In each case we show that \(s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) > 0 \), thereby establishing a contradiction because \(Y \in \mathcal{C}(G) \).

Case (1): \(\max\{s_1, s_2, s_3\} = s_3 \)

In this case, since \(s_3 \geq s_1 \) and \(s_3 \geq s_2 \), we have
\[
\alpha_1 \leq m_2 - m_1 + \alpha_3 \tag{10}
\]
and
\[
m_2 - m_1 + \alpha_2 \leq m_2 - m_1 + \alpha_3. \tag{11}
\]

Using (12) and (13) and the fact that \(e = a_1 + a_2 + a_3 \), inequality (9) reduces to
\[
s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \geq (m_2 - m_1 + \alpha_3)(\alpha_1(m_2 - m_1 + \alpha_2) - e). \tag{12}
\]

Note that, from (4) and (5), we have
\[
\alpha_1(m_2 - m_1 + \alpha_2) - e = \alpha_3^2 > 0 \tag{13}
\]
because \(\alpha_3 \neq 0 \). By (8), \(m_2 - m_1 + \alpha_3 > 0 \). Consequently, by (14), we have \(s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) > 0 \).

Case (2): \(\max\{s_1, s_2, s_3\} \neq s_3 \)

Without loss of generality, we may assume that \(s_2 \leq s_3 \) (by interchanging \(\alpha_2 \) and \(\alpha_3 \) if necessary). In this case, since \(s_2 \leq s_3 \leq s_1 \), we have
\[
\alpha_2 \leq \alpha_3 \leq m_1 - m_2 + \alpha_1. \tag{14}
\]

Suppose \(m_1 - m_2 + \alpha_1 = 0 \). Then by (16), we have \(\alpha_2 \leq 0 \) and \(\alpha_3 \leq 0 \). Note that by (16), we have \(\alpha_2 \neq 0 \) because \(\alpha_3 \neq 0 \). Therefore \(\alpha_2 < 0 \) and \(\alpha_3 < 0 \). By (10), we have
\[
s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \geq -a_2\alpha_2 - a_3\alpha_3 \geq 0. \tag{15}
\]

Since \(Y \in \mathcal{C}(G) \), equality holds in (17) and this implies that \(a_2 = a_3 = 0 \). Consequently, \(e = a_1 + a_2 + a_3 = a_1 \) and \(Y \cong J + \overline{K_{m_1+a_1}} = J + \overline{K_{m_2}} \) for some bipartite graph \(J \).

Now suppose \(m_1 - m_2 + \alpha_1 \neq 0 \). Using (16) and the fact that \(e = a_1 + a_2 + a_3 \), inequality (10) reduces to
\[
s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \geq (m_1 - m_2 + \alpha_1)(a_2\alpha_3 - e). \tag{16}
\]

Note that, from (4) and (5), we have
\[
\alpha_2\alpha_3 - e = \alpha_1(m_1 - m_2 + \alpha_1). \tag{17}
\]

Consequently, by (18), we have \(s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) > 0 \) because \(\alpha_1 > 0 \) by (7).

This completes the proof. \(\square \)

Theorem 1. The complete tripartite graph \(K_{m,n,n} \) is chromatically unique for all integers \(m \) and \(n \) such that \(2 \leq m \leq n \).

Proof. Let \(G \) be the complete tripartite graph \(K_{m,n,n} \). If \(m = n \), then as was remarked earlier in the introduction, \(G \) is chromatically unique (see [1]). Hence we assume that \(m < n \).

Let \(Y \in \mathcal{C}(G) \). Then by Lemma 7, \(Y \cong H + \overline{K_n} \) for some bipartite graph \(H \). By Lemma 5, \(Y \) is isomorphic to \(G \) and \(K_{m,n,n} \) is chromatically unique. \(\square \)

Let \(T_m \) denote the set of all trees on \(m \) vertices.
Theorem 2. For any positive integer n, the chromatic equivalence class of $K_{1,n}$ is given by $C(K_{1,n}) = \{ T + \overline{K}_n \mid T \in \mathcal{T}_{n+1} \}.$

Proof. If Y is a graph of the form $T + \overline{K}_n$ where T is a tree on $n + 1$ vertices, then $Y \in C(K_{1,n})$ because
\[
P(Y; \lambda) = P(T; \lambda) \oplus P(\overline{K}_n; \lambda) = P(K_{1,n}; \lambda) \oplus P(\overline{K}_n; \lambda) = P(K_{1,n}; \lambda).
\]

On the other hand, suppose $Y \in C(K_{1,n})$. Then by Lemmas 6 and 7, we see that $Y \cong H + \overline{K}_n$ for some connected bipartite graph H. Here, the number of edges in H is $n^2 + 2n - (1 + n)n = n$. That is, H is a connected graph on $n + 1$ vertices and n edges. Hence H is a tree and this completes the proof. \qed

4. K_{m_1,m_2,m_3} with $|m_i - m_j| \leq 3$

In this section, we prove the chromatic uniqueness of the graph K_{m_1,m_2,m_3} for $2 \leq m_1 \leq m_2 \leq m_3$ and $|m_i - m_j| \leq 3$ for any $i, j \in \{1, 2, 3\}$. This extends a result of Zou [13]. Also, we obtain its chromatic equivalence class when $m_1 = 1$.

Lemma 8. Let G and Y be as described in Lemma 3. Suppose further that $Y \in C(G)$, $1 \leq m_1 \leq m_2 \leq m_3$ and that $Y \cong J + \overline{K}_{s_i}$ for some bipartite graph J, $i \in \{1, 2, 3\}$. Then $Y \cong H + \overline{K}_t$ for some bipartite graph H and some $t \in \{m_1, m_2, m_3\}$.

Proof. The case $m_2 = m_3$ has been settled in Lemma 7. We therefore assume that $m_2 < m_3$.

Note that, since $Y \cong J + \overline{K}_{s_i}$ for some bipartite graph J, we have $e = a_i$ for some $i = 1, 2, 3$. Hence Y contains no coincidence pair. By Lemma 4, for each $j = 1, 2, 3$, we have
\[
s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = (s_1 - m_j)(s_2 - m_j)(s_3 - m_j) - e(s_i - m_j).
\]

Note that, if $s_i = m_j$ for some j, then we are done; otherwise, since $Y \in C(G)$, we have $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = 0$ and this leads to
\[
(s_{r_1} - m_j)(s_{r_2} - m_j) = e \tag{18}
\]
where $r_1 \neq r_2$ and $r_1, r_2 \neq i$.

Substituting $j = r_1$ and $j = r_2$ into (20), we have
\[
(s_{r_1} - m_{r_1})(s_{r_2} - m_{r_1}) = (s_{r_1} - m_{r_2})(s_{r_2} - m_{r_2})
\]
which simplifies to $s_{r_1} + s_{r_2} = m_{r_1} + m_{r_2}$. This leads to $s_i = m_j$.

This completes the proof. \qed

Lemma 9. Let G and Y be as described in Lemma 3. Suppose further that $1 \leq m_1 \leq m_2 \leq m_3$ where $|m_i - m_j| \leq 3$ and $m_3 - m_2 \leq 2$. Then $e \leq 2$. Moreover equality holds if and only if $Y \in K^2(m_1 + 1, m_1 + t, m_1 + 2)$ for some $t \in \{1, 2\}$.

Proof. Since $|m_i - m_j| \leq 3$, we have $G \cong K_{m,m+r,m+s}$ where $m_1 = m$ and $0 \leq r \leq s \leq 3$. Furthermore, since $m_3 - m_2 \leq 2$, we have $s - r \leq 2$.

Now if $r = s$, then G is chromatically unique by Theorem 1 and this implies that $e = 0$ and the lemma follows.

Therefore we may assume that $0 \leq r < s \leq 3$ where $0 \leq r \leq 2$ and $1 \leq s \leq 3$ and $s - r \leq 2$.

From (4) and (5), we have
\[
e = -\alpha_2(\alpha_2 + r + \alpha_3) - \alpha_3(\alpha_3 + s). \tag{19}
\]

Now, by Lemma 2, for each $i = 1, 2, 3$ we have
\[
|3s_i - p| < 2\sqrt{p^2 - 3q}
\]
where \(p = 3m + r + s \) and \(q = 3m^2 + 2m(r + s) + rs \). The right-hand side of the above inequality simplifies to \(2\sqrt{(r+s)^2 - 3rs} \). Note that \((r+s)^2 - 3rs \leq s^2 \) (because \((r+s)^2 - 3rs > s^2 \) leads to \(r^2 - rs = r(r - s) > 0 \), which is a contradiction). This means that \(\frac{r}{3} < s_i - m < \frac{3r+s}{3} \). Consequently, we have

\[
\frac{r - 4s}{3} < \alpha_3 < \frac{r}{3}.
\]

(20)

From (22), we have \(\frac{4(r-s)}{3} < r + \alpha_3 < \frac{4s}{3} \) which implies that \(|r + \alpha_3| \leq 2 \) because \(0 \leq r \leq 2 \) and \(s - r \leq 2 \). Since the maximum value of \(-\alpha_i(\alpha_i + a) \) is \(\frac{a^2}{4} \), it follows that

\[
-\alpha_2(\alpha_2 + r + \alpha_3) \leq 1
\]

(21)

and

\[
-\alpha_3(\alpha_3 + s) \leq \frac{s^2}{4} < 3.
\]

(22)

Hence, from (19), (21) and (22), we have \(e \leq 3 \).

Now, we assert that if \(-\alpha_2(\alpha_2 + r + \alpha_3) = 1 \) then \(-\alpha_3(\alpha_3 + s) \leq 0 \). To see this, we note that, if \(-\alpha_2(\alpha_2 + r + \alpha_3) = 1 \), then either \(\alpha_2 = -1 \) and \(r + \alpha_3 = 2 \) and hence \(-\alpha_3(\alpha_3 + s) = (r - 2)(s - r + 2) \leq 0 \) (since \(r - 2 \leq 0 \)), or else \(\alpha_2 = 1 \) and \(r + \alpha_3 = -2 \) and hence \(-\alpha_3(\alpha_3 + s) = (r + 2)(s - r - 2) \leq 0 \) (since \(s - r \leq 2 \)). This proves the assertion.

Suppose \(e = 3 \). Then we have \(-\alpha_2(\alpha_2 + r + \alpha_3) = 1 \) and \(-\alpha_3(\alpha_3 + s) = 2 \). However this is impossible by the preceding assertion. Therefore \(e \leq 2 \).

Suppose \(e = 2 \). If \(-\alpha_2(\alpha_2 + r + \alpha_3) = 1 \), then \(-\alpha_3(\alpha_3 + s) = 1 \). However this is impossible because, by the previous assertion, we have \(-\alpha_3(\alpha_3 + s) \leq 0 \). Therefore \(-\alpha_2(\alpha_2 + r + \alpha_3) = 0 \) (which implies that either \(\alpha_2 = 0 \) or else \(\alpha_2 + \alpha_3 = -r \)) and \(-\alpha_3(\alpha_3 + s) = 2 \) (which implies that \(s = 3 \) and \(\alpha_3 \in \{-2, -1\} \)).

Now if \(\alpha_2 = 0 \) then \(\alpha_1 = -\alpha_3 \) and we have \(Y \in K^2(m - \alpha_3, m + r, m + 3 + \alpha_3) \). If \(\alpha_2 + \alpha_3 = -r \) then \(\alpha_1 = r \) and \(r + \alpha_2 = -\alpha_3 \) and we have \(Y \in K^2(m + r, m - \alpha_3, m + 3 + \alpha_3) \). Since \(\alpha_3 \in \{-2, -1\} \), we have \(Y \in K^2(m + 1, m + r, m + 2) \).

Since \(s = 3 \) and \(s - r \leq 2 \), we have \(1 \leq r \leq 2 \). \(\square \)

Lemma 10. Let \(G = K_{m,m+r,m+3} \) where \(1 \leq m \) and \(1 \leq r \leq 2 \) and let \(Y \) be as described in Lemma 3. If \(Y \not\cong J + \overline{K}_{s_i} \) for any bipartite graph \(J \) and for any \(i \in \{1, 2, 3\} \), then \(Y \not\in \mathcal{C}(G) \).

Proof. By Lemma 9, \(e \leq 2 \).

Since \(Y \not\cong J + \overline{K}_{s_i} \) for any bipartite graph \(J \) and for any \(i \in \{1, 2, 3\} \), it follows that \(e = 2 \).

By Lemma 9 again, we have \(Y \in K^2(m + 1, m + r, m + 2) \) for some \(r \in \{1, 2\} \). That is, \(\alpha_1 = 1 \), \(\alpha_2 = 0 \), and \(\alpha_3 = -1 \).

Suppose \(Y \in \mathcal{C}(G) \). We shall establish a contradiction by showing that \(n(C^*_4, Y) < n(C^*_4, G) \). The following identity is helpful. For each \(r \in \{1, 2\} \),

\[
\binom{m+r}{2} + 2\binom{m+1}{2}\binom{m+2}{2} + 2\binom{m+r}{2} = \binom{m}{2}\left(\binom{m+r}{2} + \binom{m+3}{2}\right) + m^2 + 2m.
\]

Let \(e_1, e_2 \in E_1 \cup E_2 \cup E_3 \).

Case (1): \(\{e_1, e_2\} \) is a coincidence pair of \(Y \).

By Corollary 2 with \(j = 2 \), we have

\[
s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = -a_1(1 - r) - a_3(2 - r) + 1.
\]

Since \(r \in \{1, 2\} \), we see that \(s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = 0 \) only if \(r = 1 \) and \(\alpha_3 = 1 \). That is, \(Y \in K^2(m + 1, m + 1, m + 2) \) where \(\overline{Y} \) is the union of three complete subgraphs \(K_{m+1}, K_{m+1} \), and \(K_{m+2} \) with one edge joining the two subgraphs \(K_{m+1} \) and \(K_{m+1} \) and another edge joining the two subgraphs \(K_{m+1} \) and \(K_{m+2} \). This is because \(Y \) contains a coincidence pair.

Now, the number of \(C^*_4 \) in \(Y \) is

\[
= \binom{m+1}{2}^2 + 2\binom{m+1}{2}\binom{m+2}{2} + \binom{m+1}{2} + \binom{m}{2} - m^2 - m(m + 1)
\]

\[
= \binom{m+1}{2}^2 + 2\binom{m+1}{2}\binom{m+2}{2} + 2\binom{m}{2} - 2m(m + 1)
\]
The chromatic equivalence class of $K_{3,3}$ (6)

Lemma 10

Let G be the graph $K_{m,m+1,m+3}$ where $2 \leq m_1 \leq m_2 \leq m_3$. Then G is chromatically unique if $|m_i - m_j| \leq 3$ for all $i, j = 1, 2, 3$.

Proof. Let $G = K_{m_1,m_2,m_3}$ and let $Y \in \mathcal{C}(G)$.

By (O2), $Y \in \mathcal{K}^c(s_1,s_2,s_3)$ where s_i, a_i (for $i \in \{1, 2, 3\}$) and e satisfy Eqs. (3)–(6).

Since the graph $K_{m,m,m+3}$ is chromatically unique for $2 \leq m$ (see [2]), we may assume that $|m_i - m_j| \leq 3$ and $m_1 - m_2 \leq 2$.

By Lemma 9, $e \leq 2$.

Now if $e = 0$, then by (O1), Y is isomorphic to G.

If $e = 1$, then $Y \cong J + \overline{K}_{s_i}$ for some bipartite graph J and some $i \in \{1, 2, 3\}$. By Lemmas 5 and 8, again we have that Y is isomorphic to G. Therefore $e = 2$. By Lemma 9, $Y \in \mathcal{K}^2(m_1 + 1,m_1 + t,m_1 + 2)$ for some $t \in \{1, 2\}$.

Alternatively, we may write $G = K_{m,m+r,m+3}$ where $0 \leq r \leq s \leq 3$ and $2 \leq m$. By the conditions imposed on the m_i’s, we see that $1 \leq r \leq s \leq 3$ and $4 \leq r + s \leq 5$.

By Theorem 1, the graph $K_{m,m+r,m+3}$ is chromatically unique. Hence we need only consider the case where G is the graph $K_{m,m+r,m+3}$ where $r \in \{1, 2\}$.

If $Y \not\cong J + \overline{K}_{s_i}$ for any bipartite graph J and for any $i \in \{1, 2, 3\}$, then by Lemma 10, $Y \not\in \mathcal{C}(G)$. Therefore $Y \cong J + \overline{K}_{s_i}$ for some bipartite graph J and some $i \in \{1, 2, 3\}$. By Lemmas 5 and 8, we have Y is isomorphic to G.

Proposition 1. The chromatic equivalence class of $K_{1,r,4}$, where $r \in \{2, 3\}$, is given by $\mathcal{C}(K_{1,r,4}) = \{T + \overline{K}_2 \mid T \in \mathcal{T}_5\}$ and $\mathcal{C}(K_{1,4}) = \{T + \overline{K}_3, S + \overline{K}_4 \mid T \in \mathcal{T}_5, S \in \mathcal{T}_4\}$.

Proof. Suppose Y is isomorphic to $T + \overline{K}_r$ or $S + \overline{K}_4$ where $r \in \{2, 3\}$, $T \in \mathcal{T}_5$ and $S \in \mathcal{T}_4$. Then $Y \in \mathcal{C}(K_{1,r,4})$. This can be verified directly by computing the chromatic polynomials of these graphs.

On the other hand, suppose $Y \in \mathcal{C}(K_{1,r,4})$. Then, by (O2), $Y \in \mathcal{K}^c(s_1,s_2,s_3)$ where s_i, a_i (for $i \in \{1, 2, 3\}$) and e satisfy Eqs. (3)–(6).

Now, if $Y \not\cong J + \overline{K}_{s_i}$ for any bipartite graph J and for any $i \in \{1, 2, 3\}$, then by Lemma 10, $Y \not\in \mathcal{C}(K_{1,r,4})$, a contradiction. Therefore $Y \cong J + \overline{K}_{s_i}$ for some bipartite graph J and some $i \in \{1, 2, 3\}$. By Lemma 8, $Y \cong H + \overline{K}_t$ for some bipartite graph H and some $t \in \{1, r, 4\}$.

Note that, by Lemma 9, $e \leq 2$.

Suppose $e = 2$. Then by Lemma 9, we have $Y \in \mathcal{K}^2(2,r,3)$. Since $Y \cong J + \overline{K}_{s_i}$, Y contains no coincidence pair.
Since \(\alpha_2 = 0 \), by using Lemma 4 with \(j = 2 \), we have
\[
s_{p-2}(G) - s_{p-2}(\overline{Y}) = -a_1(2-r) - a_3(3-r).
\]

Since \(r \in \{2, 3\} \), we see that \(s_{p-2}(G) - s_{p-2}(\overline{Y}) = 0 \) only if either \(r = 2 \) and \(a_3 = 0 \) or else \(r = 3 \) and \(a_1 = 0 \).
This implies that, for each \(r \in \{2, 3\} \), \(Y \cong H + \overline{K}_r \) where \(H \) is a bipartite graph on five vertices and four edges. By Lemma 6, \(H \) is connected and hence is a tree.

Suppose \(e = 1 \).

Suppose \(Y \cong H + \overline{K}_1 \). Then \(H \) is a bipartite graph with \(r + 4 \) vertices and \(4r \) edges. In fact, \(H \) is the complete bipartite graph \(K_{s,t} \) with an edge deleted. Here \(s + t = r + 4 \) and \(st = 4r + 1 \). Since \(r \in \{2, 3\} \), the only possible solution is \(s = 3 = t \) with \(r = 2 \). However, this implies that \(n(C^*_4, Y) = 5 < 6 = n(C^*_4, K_{1,2,4}) \), a contradiction because \(Y \in C(K_{1,2,4}) \). Hence \(Y \not\cong H + \overline{K}_1 \).

If \(Y \cong H + \overline{K}_r \) then \(H \) is a bipartite graph on five vertices and four edges. By Lemma 6, \(H \) is connected and hence is a tree.

If \(Y \cong H + \overline{K}_4 \) then \(H \) is a bipartite graph on \(r + 1 \) vertices and \(r \) edges. By Lemma 6, \(H \) is connected and hence is a tree.

Suppose \(e = 0 \). Then by (O1), \(Y \) is isomorphic to \(K_{1,r,4} \).
This completes the proof. \(\square \)

Suppose \(2 \leq m < n \). Let \(\mathcal{J}(m, n) = \{T + \overline{K}_m, S + \overline{K}_n \mid T \in \mathcal{T}_{n+1}, S \in \mathcal{T}_{m+1}\} \). Then it is easy to see that \(\mathcal{J}(m, n) \subseteq C(K_{1,m,n}) \). However, we do not know whether or not equality holds. So, we end this paper by posing the following problem.

Question. What is the chromatic equivalence class for the graph \(K_{1,m,n} \) where \(2 \leq m < n \)?

References