1,173 research outputs found

    Drones on the Rise: Exploring the Current and Future Potential of UAVs

    Full text link
    Unmanned Aerial Vehicles (UAVs) have become increasingly popular in recent years due to their versatility and affordability. This article provides an overview of the history and development of UAVs, as well as their current and potential applications in various fields. In particular, the article highlights the use of UAVs in aerial photography and videography, surveying and mapping, agriculture and forestry, infrastructure inspection and maintenance, search and rescue operations, disaster management and humanitarian aid, and military applications such as reconnaissance, surveillance, and combat. The article also explores potential advancements in UAV technology and new applications that could emerge in the future, as well as concerns about the impact of UAVs on society, such as privacy, safety, security, job displacement, and environmental impact. Overall, the article aims to provide a comprehensive overview of the current state and future potential of UAV technology, and the benefits and challenges associated with its use in various industries and fields.Comment: 6 pages, IEEE Conferenc

    Development of technological capabilities through the internet of things (IoT): survey of opportunities and barriers for IoT implementation in Portugal’s agro-industry

    Get PDF
    The agro-industrial sector consumes a significant amount of natural resources for farming and meat production. By 2050, population growth is expected, generating more demand and, consequently, more consumption of scarce resources. This challenging scenario is a concern of the European Commission, revealed in the Green Deal commitment and by the United Nations’ 12th goal of sustainable development. Thus, organizations must increase productivity and be more sustainable as soon as possible. Internet of Things (IoT) is introduced as a solution to facilitate agro-food companies to be more eco-efficient, mainly facing difficulties on farms, such as food loss and waste, best efficiency in management of resources, and production. The deployment of this technology depends on the stage of maturity and potential of implementation. To assess and characterize companies, with respect of IoT implementation, a survey was applied in 21 micro, small and medium agro-food companies, belonging to milk, honey, olive oil, jams, fruticulture, bakery and pastry, meat, coffee, and wine sectors, in the central region of Portugal. As results, this paper reveals the stage of maturity, level of sophistication, potential, opportunities, solutions, and barriers for implementation of IoT. Additionally, suggestions and recommendations to improve practices are discussed.info:eu-repo/semantics/publishedVersio

    Design and construction of a low-cost remotely piloted aircraft for precision agriculture applications

    Get PDF
    ArticleThis study aimed to construct a low cost RPA capable of recording georeferenced images. For the construction of the prototype of a quadcopter type RPA, only essential materials were used to allow stable flight. A maximum total weight of 2 kg was stipulated, including frame weight, electronic components, motors and cameras. The aircraft was programmed using a low-cost microcontroller widely used in prototyping and automation research. An electronic circuit board is designed to facilitate the connection of the microcontroller with the other components of the design. Specific software was used for flight control. The prototype was built successfully, being able to lift stable and controllable flight. However, we still need to acquire equipment and programming components capable of enabling autonomous images and flights. The final cost of the RPA was on average 427.00onaverage50intheBrazilianARPmarket( 427.00 on average 50% lower than the values found in the Brazilian ARP market ( 772.81 to $ 1,288.00

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    Adaptive path planning for fusing rapidly exploring random trees and deep reinforcement learning in an agriculture dynamic environment UAVs

    Get PDF
    Unmanned aerial vehicles (UAV) are a suitable solution for monitoring growing cultures due to the possibility of covering a large area and the necessity of periodic monitoring. In inspection and monitoring tasks, the UAV must find an optimal or near-optimal collision-free route given initial and target positions. In this sense, path-planning strategies are crucial, especially online path planning that can represent the robot’s operational environment or for control purposes. Therefore, this paper proposes an online adaptive path-planning solution based on the fusion of rapidly exploring random trees (RRT) and deep reinforcement learning (DRL) algorithms applied to the generation and control of the UAV autonomous trajectory during an olive-growing fly traps inspection task. The main objective of this proposal is to provide a reliable route for the UAV to reach the inspection points in the tree space to capture an image of the trap autonomously, avoiding possible obstacles present in the environment. The proposed framework was tested in a simulated environment using Gazebo and ROS. The results showed that the proposed solution accomplished the trial for environments up to 300 m3 and with 10 dynamic objects.The authors would like to thank the following Brazilian Agencies CEFET-RJ, CAPES, CNPq, and FAPERJ. The authors also want to thank the Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança–IPB (UIDB/05757/2020 and UIDP/05757/2020), the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, and Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC) and IPB, Portugal. This work was carried out under the Project “OleaChain: Competências para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE-06-3559-FSE-000188), an operation to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF).info:eu-repo/semantics/publishedVersio

    Normalized Difference Vegetation Index Analysis to Evaluate Corn Cultivation Technology Based on Farmer Participation

    Get PDF
    An unmanned aerial vehicle (UAV), widely known as a drone, proves very effective in assessing cropping or crop cultivation. Its practical use in evaluating corn cultivation technology systems is feasible when based on farmer participation. UAV can generate the Normalized Difference Vegetation Index (NDVI) algorithm that reflects the greenness of leaves, which is a parameter related to photosynthesis and plant productivity. Therefore, the purpose of this study was to evaluate whether the participation-based UAV-derived NDVI could be effectively used to assess corn cultivation technology and determine the appropriate technology to be used in the cultivation. The research was conducted in Tarowang Village in Galesong Selatan District, Takalar Regency, South Sulawesi, Indonesia, using two plots, namely, mother trial and baby trial. The mother trial applied a randomized block design in which eight packages of corn cultivation technology were randomly assigned, whereas the baby trial consisted of eight corn plots cultivated by farmers. In the latter, each farmer received one package of the cultivation technology. The study results indicated that NDVI and yield could effectively evaluate corn cropping. Three packages, i.e., P1, P4, and P5, are recommended for corn cultivation, especially in the village observed. Nevertheless, they are expected to be also applicable to other districts in South Sulawesi to promote improvement in corn production

    Overcome the Fear Of Missing Out: Active Sensing UAV Scanning for Precision Agriculture

    Full text link
    This paper deals with the problem of informative path planning for a UAV deployed for precision agriculture applications. First, we observe that the ``fear of missing out'' data lead to uniform, conservative scanning policies over the whole agricultural field. Consequently, employing a non-uniform scanning approach can mitigate the expenditure of time in areas with minimal or negligible real value, while ensuring heightened precision in information-dense regions. Turning to the available informative path planning methodologies, we discern that certain methods entail intensive computational requirements, while others necessitate training on an ideal world simulator. To address the aforementioned issues, we propose an active sensing coverage path planning approach, named OverFOMO, that regulates the speed of the UAV in accordance with both the relative quantity of the identified classes, i.e. crops and weeds, and the confidence level of such detections. To identify these instances, a robust Deep Learning segmentation model is deployed. The computational needs of the proposed algorithm are independent of the size of the agricultural field, rendering its applicability on modern UAVs quite straightforward. The proposed algorithm was evaluated with a simu-realistic pipeline, combining data from real UAV missions and the high-fidelity dynamics of AirSim simulator, showcasing its performance improvements over the established state of affairs for this type of missions. An open-source implementation of the algorithm and the evaluation pipeline is also available: \url{https://github.com/emmarapt/OverFOMO}

    Complementary Use of Ground-Based Proximal Sensing and Airborne/Spaceborne Remote Sensing Techniques in Precision Agriculture: A Systematic Review

    Get PDF
    As the global population continues to increase, projected to reach an estimated 9.7 billion people by 2050, there will be a growing demand for food production and agricultural resources. Transition toward Agriculture 4.0 is expected to enhance agricultural productivity through the integration of advanced technologies, increase resource efficiency, ensure long-term food security by applying more sustainable farming practices, and enhance resilience and climate change adaptation. By integrating technologies such as ground IoT sensing and remote sensing, via both satellite and Unmanned Aerial Vehicles (UAVs), and exploiting data fusion and data analytics, farming can make the transition to a more efficient, productive, and sustainable paradigm. The present work performs a systematic literature review (SLR), identifying the challenges associated with UAV, Satellite, and Ground Sensing in their application in agriculture, comparing them and discussing their complementary use to facilitate Precision Agriculture (PA) and transition to Agriculture 4.0
    • …
    corecore