7,625 research outputs found

    Basic studies in microwave remote sensing

    Get PDF
    Scattering models were developed in support of microwave remote sensing of earth terrains with particular emphasis on model applications to airborne Synthetic Aperture Radar measurements of forest. Practically useful surface scattering models based on a solution of a pair of integral equations including multiple scattering effects were developed. Comparisons of these models with controlled scattering measurements from statistically known random surfaces indicate that they are valid over a wide range of frequencies. Scattering models treating a forest environment as a two and three layered media were also developed. Extensive testing and comparisons were carried out with the two layered model. Further studies with the three layered model are being carried out. A volume scattering model valid for dense media such as a snow layer was also developed that shows the appropriate trend dependence with the volume fraction of scatterers

    GPR clutter amplitude processing to detect shallow geological targets

    Get PDF
    The analysis of clutter in A-scans produced by energy randomly scattered in some specific geological structures, provides information about changes in the shallow sedimentary geology. The A-scans are composed by the coherent energy received from reflections on electromagnetic discontinuities and the incoherent waves from the scattering in small heterogeneities. The reflected waves are attenuated as consequence of absorption, geometrical spreading and losses due to reflections and scattering. Therefore, the amplitude of those waves diminishes and at certain two-way travel times becomes on the same magnitude as the background noise in the radargram, mainly produced by the scattering. The amplitude of the mean background noise is higher when the dispersion of the energy increases. Then, the mean amplitude measured in a properly selected time window is a measurement of the amount of the scattered energy and, therefore, a measurement of the increase of scatterers in the ground. This paper presents a simple processing that allows determining the Mean Amplitude of Incoherent Energy (MAEI) for each A-scan, which is represented in front of the position of the trace. This procedure is tested in a field study, in a city built on a sedimentary basin. The basin is crossed by a large number of hidden subterranean streams and paleochannels. The sedimentary structures due to alluvial deposits produce an amount of the random backscattering of the energy that is measured in a time window. The results are compared along the entire radar line, allowing the location of streams and paleochannels. Numerical models were also used in order to compare the synthetic traces with the field radargrams and to test the proposed processing methodology. The results underscore the amount of the MAEI over the streams and also the existence of a surrounding zone where the amplitude is increasing from the average value to the maximum obtained over the structure. Simulations show that this zone does not correspond to any particular geological change but is consequence of the path of the antenna that receives the scattered energy before arriving to the alluvial depositsPeer ReviewedPostprint (published version

    Scattering from surfaces with different roughness scales, analysis and interpretation

    Get PDF
    Statistical analysis and physical interpretation of scattering from surfaces with different roughness scale

    The composite scattering model for radar sea return

    Get PDF
    A composite scattering model, suitable for explaining the behavior of measured scattering cross sections of the ocean surface, is presented. Furthermore, utilizing this scattering model, the spectrums of the small gravity, gravity-capillary, waves will be predicted for MSA/MSC, 13.3 GHz Scatterometer data

    S-193 scatterometer backscattering cross section precision/accuracy for Skylab 2 and 3 missions

    Get PDF
    Procedures for measuring the precision and accuracy with which the S-193 scatterometer measured the background cross section of ground scenes are described. Homogeneous ground sites were selected, and data from Skylab missions were analyzed. The precision was expressed as the standard deviation of the scatterometer-acquired backscattering cross section. In special cases, inference of the precision of measurement was made by considering the total range from the maximum to minimum of the backscatter measurements within a data segment, rather than the standard deviation. For Skylab 2 and 3 missions a precision better than 1.5 dB is indicated. This procedure indicates an accuracy of better than 3 dB for the Skylab 2 and 3 missions. The estimates of precision and accuracy given in this report are for backscattering cross sections from -28 to 18 dB. Outside this range the precision and accuracy decrease significantly

    Calculations of radar backscattering coefficient of vegetation-covered soils

    Get PDF
    A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees

    Modelling light scattering by absorbing smooth and slightly rough facetted particles

    Get PDF
    A method for approximating light scattering properties of strongly absorbing facetted particles which are large compared to the wavelength is presented. It consists in adding the approximated external diffraction and reflection far fields and is demonstrated for a smooth hexagonal prism. This computationally fast method is extended towards prisms with slightly rough surfaces by introducing a surface scaling factor in order to account for edge effects on subfacets forming the rough surface. These effects become more pronounced with decreasing subfacet dimension to wavelength ratio. Azimuthally resolved light scattering patterns, phase functions and degree of linear polarisation obtained by this method and by the Discrete Dipole Approximation are compared for hexagonal prisms with smooth and slightly rough surfaces, respectively.Peer reviewedSubmitted Versio

    Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Get PDF
    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest
    • …
    corecore