109 research outputs found

    Basic studies in microwave remote sensing

    Get PDF
    Scattering models were developed in support of microwave remote sensing of earth terrains with particular emphasis on model applications to airborne Synthetic Aperture Radar measurements of forest. Practically useful surface scattering models based on a solution of a pair of integral equations including multiple scattering effects were developed. Comparisons of these models with controlled scattering measurements from statistically known random surfaces indicate that they are valid over a wide range of frequencies. Scattering models treating a forest environment as a two and three layered media were also developed. Extensive testing and comparisons were carried out with the two layered model. Further studies with the three layered model are being carried out. A volume scattering model valid for dense media such as a snow layer was also developed that shows the appropriate trend dependence with the volume fraction of scatterers

    On the use of rigorous microwave interaction models to support remote sensing of natural surfaces

    Get PDF
    A study has been undertaken which objective is to contribute to the investigation of the validity of microwave surface scattering models used in remote sensing applications, particularly when applied to realistic representations of natural surfaces. These investigations are based on recent implementations of rigorous methods (MoM and FDTD) and cover a wide range of configurations of observation (mono- and bi-static). Both land (bare soils) and sea surfaces are being investigated

    Use of Satellite Radar Bistatic Measurements for Crop Monitoring: A Simulation Study on Corn Fields

    Get PDF
    This paper presents a theoretical study of microwave remote sensing of vegetated surfaces. The purpose of this study is to find out if satellite bistatic radar systems can provide a performance, in terms of sensitivity to vegetation geophysical parameters, equal to or greater than the performance of monostatic systems. Up to now, no suitable bistatic data collected over land surfaces are available from satellite, so that the electromagnetic model developed at Tor Vergata University has been used to perform simulations of the scattering coefficient of corn, over a wide range of observation angles at L- and C-band. According to the electromagnetic model, the most promising configuration is the one which measures the VV or HH bistatic scattering coefficient on the plane that lies at the azimuth angle orthogonal with respect to the incidence plane. At this scattering angle, the soil contribution is minimized, and the effects of vegetation growth are highlighted

    Neural Network Emulation of the Integral Equation Model with Multiple Scattering

    Get PDF
    The Integral Equation Model with multiple scattering (IEMM) represents a well-established method that provides a theoretical framework for the scattering of electromagnetic waves from rough surfaces. A critical aspect is the long computational time required to run such a complex model. To deal with this problem, a neural network technique is proposed in this work. In particular, we have adopted neural networks to reproduce the backscattering coefficients predicted by IEMM at L- and C-bands, thus making reference to presently operative satellite radar sensors, i.e., that aboard ERS-2, ASAR on board ENVISAT (C-band), and PALSAR aboard ALOS (L-band). The neural network-based model has been designed for radar observations of both flat and tilted surfaces, in order to make it applicable for hilly terrains too. The assessment of the proposed approach has been carried out by comparing neural network-derived backscattering coefficients with IEMM-derived ones. Different databases with respect to those employed to train the networks have been used for this purpose. The outcomes seem to prove the feasibility of relying on a neural network approach to efficiently and reliably approximate an electromagnetic model of surface scattering

    Sensing Bare Soil and Vegetation Using GNSS-R— Theoretical Modeling

    Get PDF

    [Multi-Scale Convergence of Cold-Land Process Representation in Land-Surface Models, Microwave Remote Sensing, and Field Observations]

    Get PDF
    The cryosphere is a major component of the hydrosphere and interacts significantly with the global climate system, the geosphere, and the biosphere. Measurement of the amount of water stored in the snow pack and forecasting the rate of melt are thus essential for managing water supply and flood control systems. Snow hydrologists are confronted with the dual problems of estimating both the quantity of water held by seasonal snow packs and time of snow melt. Monitoring these snow parameters is essential for one of the objectives of the Earth Science Enterprise-understanding of the global hydrologic cycle. Measuring spatially distributed snow properties, such as snow water equivalence (SWE) and wetness, from space is a key component for improvement of our understanding of coupled atmosphere-surface processes. Through the GWEC project, we have significantly advanced our understandings and improved modeling capabilities of the microwave signatures in response to snow and underground properties

    Modeling microwave emission from snow covered soil

    Get PDF
    Il ciclo idrologico rappresenta l’insieme di tutti i fenomeni legati alla circolazione e alla conservazione dell’acqua sulla Terra. Il monitoraggio su scala globale dei fattori che concorrono a produrre e modificare tale ciclo (umidità del terreno, copertura vegetale, estensione e caratteristiche del manto nevoso) risulta di estrema importanza per lo studio del clima e dei cambiamenti globali. Inoltre, l’osservazione sistematica di queste grandezze è importante per prevedere condizioni di rischio da alluvioni, frane e valanghe come pure fare stime delle risorse idriche. In questo contesto Il telerilevamento da satellite gioca un ruolo fondamentale per le sue caratteristiche di osservazioni continuative di tutto globo terrestre. I sensori a microonde permettono poi di effettuare misure indipendentemente dall’illuminazione solare e anche in condizioni meteorologiche avverse. I processi idrologici, ed in particolare quelli della criosfera (la porzione di superficie terrestre in cui l’acqua è presente in forma solida), sono fra quelli che meglio si possono investigare analizzando la radiazione elettromagnetica emessa o diffusa. Mediante l’utilizzo di modelli elettromagnetici che permettono di simulare l’emissione e lo scattering da superfici naturali è possibile interpretare le misure elettromagnetiche ed effettuare l’estrazione di quelle grandezze che caratterizzano i suoli e la loro copertura. In questo lavoro di dottorato si è affrontato il problema della modellistica a microonde dei terreni coperti da neve, sia asciutta che umida. Dopo aver preso in considerazione i modelli analitici maggiormente utilizzati per simulare diffusione ed emissione a microonde dei suoli nudi e coperti da neve si è proceduto allo sviluppo e implementazione di due modelli di emissività. Il primo, basato sulla teoria delle fluttuazioni forti, è atto a descrivere il comportamento di un manto nevoso umido. Il secondo, basato sull’accoppiamento del modello di scattering superficiale AIEM (Advanced Integral Equation Method) con la teoria del trasferimento radiativo nei mezzi densi, è volto allo studio di uno strato di neve asciutta sovrastante un suolo rugoso. Tali modelli tengono conto degli effetti coerenti presenti nell’emissione del manto nevoso e non inclusi nella teoria del trasporto radiativo classico. Entrambi i codici sono stati validati con datasets numerici e sperimentali in parte derivati da archivi ed in parte ottenuti nel contesto di questo lavoro che ha previsto quindi anche una fase sperimentale. Quest’ultima è stata condotta con misure radiometriche multifrequenza su un’area di test situata sulle Alpi orientali. Le simulazioni ottenute con questi modelli e le conseguenti analisi hanno permesso di individuare la sensibilità della temperatura di brillanza ai parametri di interesse (spessore, equivalente in acqua e umidità del manto nevoso) in funzione di diverse configurazioni osservative (frequenza, polarizzazione ed angolo di incidenza). Questo ha consentito di migliorare la comprensione dei meccanismi di emissione dalle superfici innevate e di individuare le migliori condizioni osservative per un sistema di telerilevamento terrestre

    Microwave scattering models and basic experiments

    Get PDF
    Progress is summarized which has been made in four areas of study: (1) scattering model development for sparsely populated media, such as a forested area; (2) scattering model development for dense media, such as a sea ice medium or a snow covered terrain; (3) model development for randomly rough surfaces; and (4) design and conduct of basic scattering and attenuation experiments suitable for the verification of theoretical models
    corecore