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Abstract: This paper presents a theoretical study of microwave remote sensing of 

vegetated surfaces. The purpose of this study is to find out if satellite bistatic radar systems 

can provide a performance, in terms of sensitivity to vegetation geophysical parameters, 

equal to or greater than the performance of monostatic systems. Up to now, no suitable 

bistatic data collected over land surfaces are available from satellite, so that the 

electromagnetic model developed at Tor Vergata University has been used to perform 

simulations of the scattering coefficient of corn, over a wide range of observation angles at 

L- and C-band. According to the electromagnetic model, the most promising configuration is 

the one which measures the VV or HH bistatic scattering coefficient on the plane that lies at 

the azimuth angle orthogonal with respect to the incidence plane. At this scattering angle, the 

soil contribution is minimized, and the effects of vegetation growth are highlighted. 

Keywords: new measurement concept; bistatic radar; crop status  

 

1. Introduction 

A bistatic radar system is defined when antennas for reception and transmission are physically 

separated [1]. In principle, the transmitting and receiving antennas could be located on ground, on an 

aircraft or on-board a spacecraft; mixed solutions are also possible, e.g., the transmitter is spaceborne, 
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while the receiver is airborne. The system could be either cooperating (transmitter and receiver 

designed for the specific bistatic application) or non-cooperating (transmitter designed independently 

of the receiver). If both receiver and transmitter, or illuminator, operate in the microwave band, the 

latter could be a radar, a communication or navigation satellite. For instance, non-cooperating systems 

can use already-existing satellite Synthetic Aperture Radars (SARs) as transmitters [2,3], as well as the 

signal transmitted by Global Positioning System (GPS) satellites [4,5]. Bistatic applications were 

investigated in the fields of target detection [6,7] and planetology [8]. As for Earth Observation, 

oceanographic studies exploiting the GPS signal were carried out, including altimetric applications 

(measure of the sea level and of the associated oceanographic features) and scatterometric applications 

(measure of the near surface wind field) [9,10], while interferometric applications were addressed in [11]. 

In consequence of the recent launch of the new generation of X-band radars (TerraSAR-X,  

COSMO-SkyMed), experiments involving X-band have been accomplished in order to evaluate the 

additional information contained in the bistatic reflectivity of targets (e.g., [12]). The TerraSAR-X 

mission has been extended into the TanDEM-X mission [13] with the purpose of generating global 

Digital Elevation Model from radar interferometry. This is the first bistatic system in orbit, and it 

successfully provided bistatic images of urban features [14]. However, its quasi-monostatic 

configuration does not appear suitable to observe vegetated surfaces whose directional scattering 

properties can be detected under large bistatic angles, as will be shown in this study.  

The effect of soil moisture (SM) and roughness on the amplitude of the incoherent backscattered 

signal was largely investigated, and the effectiveness for their retrieval by radars working in the  

low-frequency range of the microwave band (1–5 GHz) was demonstrated (e.g., [15–19]). The 

sensitivity to vegetation parameters of monostatic radar measurements was assessed in [20,21], while 

the possibility to extract quantitative information on crop height from interferometric coherence and 

phase has been exploited in [22,23]. Up to now, few works are available on the use of a bistatic radar 

configuration for measuring land bio-geophysical parameters, such as vegetation and soil parameters. 

The first attempt to retrieve soil reflectivity and dielectric constant from Global Navigation Satellite 

System (GNSS) reflected data of the SMEX02 campaign was reported by [24], while in [25], the 

Interferometric Pattern Technique has been applied to retrieve the wheat crop height. The feasibility of 

retrieving SM using bistatic radar systems was assessed in [26], where a simulation study aiming at 

identifying the best bistatic configurations, in terms of incidence angle, observation direction, 

polarization and frequency band, for soil moisture content was performed. The technical issues related 

to the configurations selected in [26] have been discussed in [27].  

As for vegetation, some airborne bistatic measurement campaigns at P-band have been carried out 

to find bistatic configurations allowing for the minimization of double bounce scattering from vertical 

trees in order to detect vehicles in forest concealment [28]. From a theoretical perspective, the 

MIMICS model was modified to allow the simulation of bistatic scattering from forests [29]. Like its 

monostatic version, Bi-MIMICS follows a first order approach, which, therefore, neglects multiple 

scattering contributions that, on the other hand, can be important at higher frequencies. The relevant 

features of scattering in the specular direction from soil covered by a vegetation canopy were 

theoretically analyzed in [30,31], on the basis of simulations carried out by using the fully polarimetric 

electromagnetic model developed at the Tor Vergata University of Rome and described in [32] 

(hereafter, the TOV model). The theoretical results indicated that such a bistatic system would 
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maintain an appreciable sensitivity to the plant water content of crops and forest biomass over a 

considerably wider range than in the monostatic operation mode [30,31], because of the attenuation 

due to vegetation of the coherent specular reflection from the soil. 

Extending the well-established TOV model to bistatic configurations different from the specular 

one, this paper investigates the bistatic radar potential in view of vegetation parameter estimation. The 

bistatic scattering simulations, provided herewith, focus on the identification of the configuration, 

which provides the most accurate crop height retrieval; in particular, corn plants are considered for this 

purpose. The sensitivity yielded by the selected bistatic configurations is compared with that of 

standard monostatic radar. Moreover, the potential of combining both measurements, considering that 

backscatter is expected to be measured by conventional SAR missions (multistatic case) is assessed. 

We have used the Cramér–Rao Lower Bound to quantify and compare the retrieval performances of 

the different configurations. 

In Section 2, a summary of the electromagnetic model used to perform the bistatic simulations will 

be given, together with a description of the parameters used for the sensitivity analysis of the bistatic 

configurations carried out in the following Section 3. The directional properties of vegetation are 

deeply investigated and, in particular, it will be shown that co-polar bistatic measurements, acquired on 

a plane orthogonal with respect to the incidence one, show an interesting sensitivity to biomass. 

Finally, a bistatic configuration will be selected on the basis of the sensitivity analysis, and its 

performance will be compared against the one of a monostatic system. 

2. The Methodology and the Selected Electromagnetic Model 

Bistatic configurations are defined in terms of frequency, polarization and transmitter-target-receiver 

relative geometry. This geometry is shown in Figure 1, in which the plane of incidence is assumed as a 

reference coordinate plane and the configuration is identified through the incidence angle (θi, red in 

Figure 1) with respect to the vertical, the zenith (θs) and azimuth (φs) scattering angles (green in Figure 1). 

The measurement performed by a bistatic radar consists in the bistatic scattering coefficient, i.e., the 

bistatic radar cross section per unit area: 
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where 


sP  is the scattered power per unit solid angle, Pi is the power density impinging on the surface 

target and A is the considered area. It is function of system parameters (i.e., frequency, f, incident and 

observed polarizations, q and p), of the measurement geometry (θi, θs, φs) and of the target parameters (xn), 

such as vegetation height, soil moisture and roughness. q and p may be Horizontal or Vertical polarization. 

In order to identify the set of bistatic system parameters (especially geometric parameters, but also 

polarization and frequency), which optimize the sensitivity to the crop height, the adopted 

methodology is based on a set of simulations of σ
0
 carried out by running the TOV model in 

correspondence of a range of system and target parameters. For the purpose of identifying the best 

configurations in terms of polarizations, incidence and scattering angles, the retrieval accuracy is 

quantified by using the Cramér–Rao Lower Bound (CRLB), already used in [26], which is based on 

the Bayesian theory of parameter estimation. Note that, even though forecasting the retrieval accuracy 



Remote Sens. 2013, 5 867 

 

using simulations is a tricky problem, in this work, we are only interested on a relative comparison 

between the estimated retrieval performances in order to identify the optimal bistatic configurations. 

Although we cannot predict the actual accuracy without experimental data, this relative comparison is 

suitable for our purposes.  

Figure 1. Geometric elements that identify the transmitter-target-receiver (Tx-TG-Rx) 

bistatic configuration.  

 

The selected electromagnetic model is described in the next section, with additional details reported 

in the Appendix. Then, some results of the simulations performed by running the model are presented.  

The TOV model is fully polarimetric, since it can simulate the backscattering coefficient 

corresponding to any polarization of the incident and scattered power. However, in this work, 

simulations related to linear polarization only are discussed. 

This section ends by describing the parameters chosen to identify the best configurations for crop 

status monitoring. 

2.1. The Selected Electromagnetic Model 

The TOV model, which has been selected to predict the bistatic scattering coefficient of crops, is 

based on the radiative transfer theory. It adopts a discrete approach [32] in which vegetation elements 

are described as discrete dielectric scatterers and suitable electromagnetic theories [33] are used to 

compute their absorption and scattering cross sections; in their turn, the latter are calculated using 

suitable permittivity models [34]. The soil is described as a homogeneous half-space with rough 

interface, producing surface scattering, which may be subdivided into two components: a coherent and 

an incoherent one. The coherent component is computed following the theory developed in [35], which 

takes the sphericity of the wavefront into account. The derived coherent scattering coefficient of the 

soil depends not only on the surface parameters, but also on the receiving and transmitting antenna 

parameters. In this study, the beamwidth of the receiving and transmitting antennas has been supposed 

to be equal to 3°. Furthermore, in order to account for coherent phenomena outside the plane of 

incidence, the formulation in [35] has been extended to any directions. 

The incoherent bistatic scattering coefficient of soil is computed through the Integral Equation 

Model (IEM) [36]. Although several advances have been achieved in representing the statistics and the 
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electromagnetic properties of soil surfaces, soil backscattering coefficient measured at HV polarization 

is generally underestimated by surface models, IEM included. On the other hand, experimental data 

point out that the backscattering coefficients at HV and VV polarizations are highly correlated. For this 

reason, we have linked the modeled σ
0

HV of bare soil to the modeled σ
0

VV of bare soil itself. This 

correction basically consists in multiplying the σ
0

VV IEM output by the average ratio between HV and 

VV backscattering measurements over bare soil available through the ERA-ORA library 

(http://eraora.disp.uniroma2.it). The result is multiplied by the canopy transmission matrices at 

horizontal and vertical polarizations [20]. This semi-empirical correction has been applied to 

backscattering only, due to the lack of experimental bistatic data, which would be required to calculate 

the correction factor at every direction. 

In order to combine vegetation and soil contributions, the TOV model adopts the Matrix Doubling 

algorithm [32] that accounts for the multiple scattering effects that take place between vegetation 

elements and the terrain. The main steps of the extension of the TOV model to the bistatic case are 

reported in the Appendix. As for the coherent component, attenuation by the vegetation layer has been 

superimposed to the soil contribution mentioned previously. 

We recall here that model simulations showed a good fitting with polarimetric backscattering signatures 

measured over sunflower fields at L-band and two angles [32], bearing an error of about 1.5 dB at all 

polarizations over developed crops. The same model was able to explain the polarimetric features 

observed over several kinds of agricultural and forest areas at P-, L- and C-band [37]. Recently, the 

model simulated the backscattering signatures of wheat and corn at C-band [20,33], and in these cases, 

the accuracy was also good (less than 1.5 dB) for developed crops. The validation of the bistatic model 

for vegetation cannot be performed, because of the lack of suitable experimental data. Nevertheless, 

the ability of the model to predict the surface reflectivity, that is, the integral of the bistatic scattering 

coefficient over all the scattering directions, can be assessed. In fact, one minus the reflectivity 

provides the surface emissivity, which has been measured and compared with vegetation conditions in 

many experiments. Validations of the surface emissivity computed by the model have been carried out 

in [38,39], with a resulting accuracy equal to 0.02 at the L-band and to 0.04 at the C-band.  

2.2. The Corn Crop Scenario 

The reliability and accuracy of a theoretical model depends on its capacity to reproduce real 

measurements and, as just mentioned, the Tor Vergata model has been tested and validated against 

data collected under different conditions. Furthermore, a reliable model can also be used to predict 

measurements in order to evaluate the potential of a novel system. The model must then ensure the 

correct electromagnetic representation of the processes under study, but also a correct representation of 

the environmental scenario to be observed. To this end, the TOV model is made up of an 

electromagnetic module and of a growth module.  

Indeed, the TOV model takes plant height as an input parameter, and it includes equations that, for 

a given height, calculate all other vegetation parameters, which are used to model corn bistatic 

scattering, i.e., leaf area index, leaf dimensions and moisture content, twigs dimensions, density and 

moisture content, stem dimensions, density and moisture content. As a consequence, all these 

parameters vary simultaneously in a realistic way, since the regression equations implemented within 
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the TOV model have been established on the basis of ground truth measurements performed in the 

course of past various remote sensing campaigns. Most of them were derived by ground measurements 

collected during experimental campaigns carried out in the Central Plain site in Switzerland and can be 

found in table format in [33]. Therefore, the results presented in this study consist of theoretical 

simulations of bistatic measurements over a realistic corn crop scenario. 

The sensitivity study carried out here is focused on the capability to retrieve plant height, from 

which it is possible to get information about the vegetation biomass. Height is related to plant water 

content in a way that depends on geographical characteristics and on working procedures of the 

agricultural site. As an example, in Figure 2, the measured plant height and water content of two corn 

sites, in Switzerland and Belgium [33], are shown together with regression lines. The reference corn 

crop scenario of this paper is the Central Plain one, and the plant heights considered for the sensitivity 

study are 50 and 100 cm. This means that the other plant parameters, such as Leaf Area Index, 

dimensions, moisture content, etc., vary in such a way to give a Plant Water Content equal to about 

0.15 and 2 kg/m
2
, respectively. 

In order to take into account different plant developments with respect to that of the Central Plain 

(like in the Belgian site reported in Figure 2), the plant coverage fraction has been introduced as an 

additional input parameter, besides plant height. In particular, a plant cover fraction increasing with 

plant height faster than at the Central Plain has been also considered in some of the examples presented 

in the following sections. This situation can correspond to more intensive agricultural practices. 

Figure 2. Plant Water Content vs. Plant Height measured on two agricultural sites. 

Diamonds: Central Plain (CH) and Loamy (B). Regression lines are also reported. 

 

2.3. Simulations Results 

The bistatic TOV model has been run in order to simulate the bistatic scattering of corn fields, and 

the results are outputted as a matrix whose rows represent the scattering azimuth angles and whose 

columns represent the scattering look angles. In order to represent the bi-dimensional scattering 

properties of this vegetation medium, a color map has been used, as that reported in Figure 3, where 

colors represent the bistatic scattering coefficient values, with shades towards the red representing 
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highest scattering and shades toward the blue the lowest scattering. In these maps, the horizontal axis 

represents the scattering look angle θs in the range [5°, 55°]; the vertical axis represents the azimuth 

scattering angle φs in the range [0°, 180°]. Due to the azimuthal symmetry of the vegetated medium, 

symmetric bistatic scattering coefficient values are expected for 180 ≤ φs ≤ 360. In the color map 

representation, the backscattering coefficient can be found on the upper side of the maps (φs = 180°;  

θs = θi), whereas the specular direction lies on the bottom (φs = 0°; θs = θi). 

Figure 3. Bistatic scattering coefficient σ
0
 (dB) of corn plants with 50 cm and 150 cm height 

(left and right column, respectively), at L-band, θi = 20°, soil roughness σz = 0.5 cm (height 

standard deviation), SM = 10%. From top to bottom: VV, HV, HH polarizations. 
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In Figure 3, the L-band is considered, and a soil characterized by SM = 10% and by a standard 

deviation of surface height (σz, representing roughness) of 0.5 cm has been assumed. Two values of corn 

height have been considered, i.e., 50 cm (low/moderate stage of growth) and 150 cm (well-developed 

plant). Looking at Figure 3, it can be noted that, in the co-polarized cases, the highest scattering is 

encountered toward the specular direction (φs = 0°; θs = θi = 20°). In this direction, coherent scattering 

from the soil is very strong, and it is only partially attenuated by the above lying vegetation. The 

lowest co-polar scattering is met at horizontal polarization on the plane orthogonal to the incidence one 

(φs = 90°), while on this same plane, the highest cross-polarized scattering occurs. This behavior is due 

to a reversal of the polarization vectors on the orthogonal plane, with respect to the polarization vectors 

defined in the plane of incidence. Indeed, the horizontal polarization vector defined in the plane of 

incidence, is seen as a vertical polarization vector on the plane with φs = 90°. Conversely, the vertical 

polarization vector defined in the plane of incidence is partially seen as a horizontal polarization vector 

on the plane with φs = 90°. 

The increase of plant height (compare right and left column of Figure 3) determines an increase of 

vegetation volume scattering and an attenuation of soil scattering. The magnitude of these two 

contributions depends on the field plant cover fraction, but the bistatic scattering directional pattern 

does not. The results presented in Figure 3 refer to cover fractions of 20% at 50 cm height and 60% at 

h = 150 cm, which were recorded in the field measurements performed in the Central Plain site [20]. It 

has been found that an increase of plant coverage means a higher attenuation of the coherent 

contribution, besides a volume scattering contribution more significant with respect to soil contribution 

(especially for the highest plant). Consequently, the bistatic scattering coefficients are larger, except 

around the specular direction, where a decrease is observed.  

The effects of increasing soil roughness or moisture content are to increase bistatic scattering in 

most of the scattering directions, due to a higher soil contribution, which is visible due the incomplete 

coverage of crop (60%) and to higher interactions between soil and vegetation. However, it has been 

found (not shown in this paper) that, around the specular direction, an increase of roughness causes a 

decrease of coherent scattering, while an increase of moisture content causes an increase in all directions. 

Changing incidence angle does not change the considerations previously drawn for θi = 20°, bearing 

in mind that the high incidence angles give rise to a lower scattering, for any soil roughness and 

moisture content. At C-band, where volume scattering is more significant and gives rise to a general 

increase of bistatic σ
0
 values (except, of course, for the specular direction, where an increase of 

attenuation produces a decrease of scattering), the angular trends are in general analogous to those at 

L-band (as it can be deduced by comparing Figure 4 and Figure 3). From Figure 4, it can be 

appreciated as at C-band the contrast between specular direction and the other directions is reduced 

(the color scale used in all these σ
0
 maps is unique, so their color can be directly compared).  
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Figure 4. Bistatic scattering coefficient σ
0
 (dB) of corn plants with 50 cm and 150 cm height 

(left and right column, respectively), at C-band, θi = 20°, soil roughness σz = 0.5 cm (height 

standard deviation), SM = 10%. From top to bottom: VV, HV, HH polarizations. 

 

 

 

2.4. Parameters for the Evaluations of the Bistatic Configurations 

The retrieval accuracy of a given relevant target parameter (here, the crop height) obviously 

depends on the sensitivity of the measurement (the bistatic scattering coefficient, in this case) to the 

parameter itself. In order to evaluate the sensitivity to plant height, the soil parameters have been kept 

constant, and the following incremental ratio has been calculated from the model output: 
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where ∆h = 100 cm. The soil parameters can assume the values SM = 10% or 25% and σz = 0.5 or 1.5 cm. 

The incremental ratio can then be seen as the difference between the right and left column of the 

figures in the previous section, normalized to the height difference.  

Besides the sensitivity, the Cramér–Rao Lower Bound (CRLB) index has been used to better 

evaluate the potentiality of bistatic measurements and multistatic ones (that foresee the exploitation of 

the monostatic data, too, see Section 3) for retrieving the height of a corn plant. It is derived from the 

Bayes theory of parameter estimation and already used in [26]. Let us assume that we perform several 

measurements, σ
0

1,σ
0

2,…,σ
0

n (different polarizations and/or observation directions and/or frequencies), 

i.e., that we measure a n-component vector σ
0
 to estimate a given target parameter xi. The 

measurements do not depend only on xi, but also on other parameters, xj, that act as nuisance 

parameters. CRLB gives the best achievable accuracy of any unbiased estimator. By assuming a 

Gaussian measurement error with zero mean and a common variance, σn
2
, the minimum variance of the 

estimate, 
ix̂ , is defined by the following inequality [26]:  
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where J is the Jacobian matrix of the forward model, whose elements are the sensitivities of the 

measurements to the parameters. Superscripts ―T‖ and ―−1‖ indicate matrix transposition and 

inversion, respectively, and subscript ―ii‖ denotes the elements of the principal diagonal of the matrix. 

For instance, in the case of two measurements, σ
0

1 and σ
0
2, and two parameters, x1 (the target 

parameter) and x2 (the nuisance parameter), the CRLB is:  
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where the element Jij of the Jacobian matrix is the sensitivity of measurement σ
0

i to parameter xj. When 

three measurements and two parameters are available, the following formula applies:  
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(5) 

CRLB is a positive quantity; the numerator contains the sensitivity to the nuisance parameter, x2, so 

that the greater the numerator, the larger the variance of the estimator. As for the denominator, it is 

equal to the determinant of [J(x)]
T
[J(x)]. Although it could be expected an increase of the denominator 

(i.e., an improvement of the retrieval performance) if the sensitivity to the target parameter rises, this 

condition is not sufficient to achieve a reliable estimation of the x1 parameter. In fact, if the term 
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(J11J12 + J21J22)
2
 compensates for the term      

     
 

          , CRLB tends to rise. Such compensation 

occurs if the different measurements have similar sensitivity to the bio-geophysical parameter to be 

estimated (the crop height in this case), so that the determinant of [J(x)]
T
[J(x)] becomes close to zero. 

In other words, to ensure a reliable estimation of x1, the sensitivity to x1 must be high, and the various 

measurements must provide non-redundant information. The CRLB diverges to infinity when only one 

measurement is available or the Jacobian matrix is singular, since in both cases it is not possible to 

solve for the two unknowns x1 and x2. 

Note that introducing in Equation (4) a constant average value of the sensitivity, as it will be done 

in the sequel, corresponds to assuming that the forward problem is linear. If we compute the sensitivity 

around different values of the parameter (for instance computing sensitivity to plant height for small, 

medium and tall plants), we could obtain slightly different results. However, here, we are interested to 

find the bistatic configuration, which provides on average the best retrieval performance, so that the 

consideration of an average sensitivity within a large range of the target parameters is justified. 

3. Analysis of the Bistatic Configurations for Crop Height Monitoring 

3.1. Analysis of the Sensitivity of Single Polarization Data 

As previously stated, the sensitivity analysis for the vegetated target has been carried out by 

considering corn, which is one of the world most common agricultural crops. In order to explore a 

wide range of bistatic configurations (polarizations and geometry) with a reasonable number of model 

runs, the system parameters reported in Table 1 have been chosen. 

Table 1. System parameters considered for the sensitivity analysis. 

Polarization 
Incidence Angle (θi) 

[deg] 

Azimuth Scattering 

Angle (φs) [deg] 

Zenith Scattering Angle 

(θs) [deg] 

HH, VV, HV 20, 35, 50 0 to 180, step 10 0 to 60 step 10 

Furthermore, two frequencies, i.e., 1.2 GHz (L-band) and 5.3 GHz (C-band), have been considered. 

As discussed in Section 2, scattering from vegetated areas is also influenced by soil roughness and 

moisture. In order to simulate the variability of soil conditions, the parameters reported in Table 2 have 

been chosen as representative of smooth and rough soils and dry and moist soil beneath vegetation. 

The above roughness parameters meet the IEM applicability criteria (which can be found in graphical 

form in [40]) at the frequencies of interest. 

Table 2. Parameters of underneath soil considered for the sensitivity analysis. 

Soil Roughness (cm) Soil Correlation Length (cm) Soil Moisture Content (%) 

0.5, 1.5 5 (exponential autocorrelation function) 10, 25 

The following sensitivity analysis will be performed on single configuration data, that is, assuming 

that the measurement is acquired along a single observation direction. 

The sensitivity to plant height is defined by Equation (2). From the sensitivity point of view, a 

negative and a positive value of the incremental ratio, defined by Equation (2), are equivalent. For this 
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reason, the absolute value will be considered hereafter. However, it must be underlined that, around the 

specular direction (where the coherent soil component is generally predominant), a negative ∆σ
0
/∆h is 

obtained, differently from all other directions. The sensitivity maps are given in units of dB/(10 cm); 

blue represents a low sensitivity, while red corresponds to a high sensitivity.  

The above plots (Figure 5) refer to simulations carried out at L-band for two corn plant heights  

(h = 50 and 150 cm), as representative of young and well-developed corn plants, and the soil 

parameters are SM = 25% and σz = 1.5 cm. Figure 5 shows that the maximum sensitivities of bistatic σ
0
 

are shown at different directions, depending on the polarization: at horizontal polarization, it occurs on 

the scattering plane orthogonal to the incidence one, that is, for directions with φs = 90°; at vertical 

polarization for some directions with φs ~ 80°; at cross-polarization, on directions contained in the 

plane of incidence, both in the backward (φs = 180°) and forward (φs = 0°) semi-planes. All this 

happens because, on these planes, the soil contribution is very low and the vegetation growth gives rise 

to increasing volume scattering (at HH or HV polarizations) or interaction with soil (at vertical 

polarization). Among the three polarizations, the vertical one shows the maximum sensitivity that, 

depending on soil conditions and observation angle, can reach more than 0.9 dB/(10 cm), which is 

considerably higher than that exhibited for the monostatic case. The latter, corresponding to  

θs = θi = 20° and φs = 180°, exhibits a sensitivity not larger than 0.3 dB/10 cm. At other polarizations, 

the maximum obtained value is 0.5. In the case study of Figure 5, the specular configuration does not 

provide good sensitivities, because of the low cover fraction characterizing the corn field: indeed, in 

the specular direction the coherent soil contribution is the dominant one, but attenuation introduced by 

the crop is not enough to produce a significant change of σ
0
 in the specular direction. 

Figure 5. Sensitivity to corn plant height [dB/(10 cm)] at L-band, θi = 20°, soil roughness 

σz = 1.5 cm, SM = 25%. On top: VV (left), HV (right); bottom: HH. 

  

 



Remote Sens. 2013, 5 876 

 

As mentioned in Section 2, a plant cover fraction of approximately 60% has been assumed for the 

tallest plant, whereas for h = 50 cm, the 20% of coverage has been assumed. We have also increased 

these fractions (to 100% and 40%, respectively), obtaining higher volume scattering and attenuation. 

The latter produces an increase of sensitivity in the specular direction, while volume scattering 

produces a general increase of sensitivity that, as it can be observed in Figure 6, is more or less 

remarkable, depending on the bistatic scattering angles. The general angular trend keeps, however, the 

same behavior. Even with this kind of phenology, the best sensitivities are presented by vertical 

polarization at φs~80° and θs~20°, besides the specular direction. 

Figure 6. Sensitivity to corn plant height [dB/(10 cm)]. Same parameters as in Figure 5, 

but for a denser vegetation cover. On top: VV (left), HV (right); bottom: HH. 

  

 

Indeed, the sensitivity in the specular configuration is connected to the attenuation by the plant 

canopy, which makes it very suitable to vegetation biomass monitoring. The scattering phenomena, 

which take place in this direction, were theoretically analyzed in [30,31], so that considerations on this 

specific configuration are excluded from the present study. 

In order to understand this behavior, we singled out the contributions originating from the various 

scattering sources along the directions, which presented the maximum variability of sensitivity, i.e., 

along the so-called ―forward scattering cone‖. In the following figures (Figure 7, corresponding to 

input parameters, as in Figure 6), scattering contribution from the vegetation volume, interactions 

between vegetation and soil—including double bounce—and the soil contribution are shown as a 

function of the azimuth scattering angle φs, once the incidence and scattering look angles have been 

fixed equal to 20°. A corn canopy in the early development (i.e., with h = 50 cm and 40% vegetation 

cover) and a fully developed one (h = 150 cm, cover of 100%) are considered on the left and right 
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columns, respectively. In backscattering (φs = 180°), soil contribution is dominant at L-band for short 

plants, as expected. For fully developed plants, volume scattering and interaction effects are important. 

In the specular direction, soil coherent scattering gives rise to a high co-polar bistatic scattering 

coefficient. However, it can be observed from the plots that the relative weights of the various 

contributions are azimuth-dependent. Volume scattering and, mainly, the soil contribution show the 

minimum value of bistatic σ
0

HH on the direction at azimuth scattering angle φs = 90°, that is, 

orthogonal with respect to the plane of incidence, and at the same scattering angle, they are maximum 

at cross-polarization. At vertical polarization, the minimum is slightly shifted toward φs ~ 80°. 

Figure 7. The scattering components along the scattering cone with s = i = 20°. L-band, 

σz = 1.5 cm, mg = 25%. Corn height = 50 cm, vegetation cover = 40% (left column) and 

150 cm, vegetation cover = 100% (right column). VV polarization (top row), HV 

polarization (middle row) and HH polarization (bottom row). 
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We can conclude that the maximum sensitivity to plant height is displayed when the soil 

contribution is very low and the plant growth can appear with the maximum contrast.  

The effects of changing incidence direction (i.e., θi = 35° and 50°) have been studied, and it has 

been observed that the considerations drawn previously still apply. In particular, the highest 

sensitivities at horizontal polarization appear on the orthogonal plane (φs = 90°) and on the backward 

plane (φs~180°) at cross-polarization. As far as the vertical polarization is concerned, a shift of the 

bistatic direction showing the best sensitivity is observed. In particular, for θi = 35°, the best sensitivity 

is shown at θs = 35°, φs = 70°. This effect is due to the fact that the direction at which the soil 

contribution shows its minimum is dependent on the incidence direction, according to the IEM 

simulations of soil bistatic scattering [36] (p. 266) We also note that the sensitivity decreases with 

increasing incidence angle. The best sensitivity to corn plant height is therefore shown at vertical 

polarization in the bistatic configuration with θi = 20° and φs = 80°, θs = 20°. 

The sensitivity to plant height has been evaluated at C-band too. Although it is reduced with respect to 

L-band, it is still significant at vertical polarization at the same angles of the lower frequency. At C-band, 

the two co-polar linear polarizations show similar values (around 0.5 dB/(10 cm)), with horizontal 

polarization showing the best sensitivity on the ―orthogonal‖ scattering plane. 

3.2. CRLB for Multipolarization Data 

In this section, it will be assumed that measurements at two polarizations, with the same bistatic 

observation direction, are available. It is understood that this analysis includes the special case of the 

observation of backscattered waves. Three different possible combinations of polarization are 

considered: bistatic measurements at VV and VH polarizations, bistatic measurements at HH and HV 

polarizations and bistatic measurements at VV and HH polarizations. To evaluate the performance of 

these multipolarized bistatic systems, the CRLB defined in Section 2 was computed. As previously 

discussed, this parameter is more powerful than just looking at the sensitivity, if one wants to analyze a 

multidimensional data set. The parameter to be monitored (x1) is the corn plant height, h, the nuisance 

parameter (x2) has been supposed to be the soil moisture content, while the soil roughness has been 

assumed to be constant (i.e., σz = 1.5 cm). The standard deviation error of the measurements σn has 

been supposed to be 1 dB.  

In the maps presented in Figure 8, the square root of the CRLB parameter is reported. In order to 

have the same scale on all the following maps, the square root of CRLB has been normalized to 10 cm, 

so that the standard deviation is expressed in tens of cm. Furthermore, for the sake of figure clarity, the 

values of the square root of CRLB have been saturated to 100 cm in the following color maps, in order 

to emphasize directions where the estimated retrieval error is lower than this value. 

We remind that CRLB is inversely proportional to the sensitivity to plant height and that it gets to 

the maximum values (lower retrieval quality) when the two measurements are in some way correlated, 

while it is at minimum (higher retrieval quality) when the two available measurements are uncorrelated 

or they have opposite sensitivities. As a consequence of the semi-empirical correction applied on the 

backscattered σ
0

HV, the following CRLB maps show a high value in the backward direction (i.e., low 

retrieval quality), due to the high correlation existing between HV and VV measurements in this 
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configuration (see Section 2.1); at scattering directions with θs ≠ θi on the plane of incidence, CRLB 

presents a significant discontinuity, physically not realistic, with respect to the monostatic 

configuration, due to the fact that the empirical correction has been applied in the backscattering 

direction only.  

Figure 8. Square root of Cramér–Rao Lower Bound (CRLB) [10 cm] for a corn field. L-band, 

θi = 20°, σz = 1.5 cm. Available measurements are: bistatic σ
0
VV and bistatic σ

0
HV (upper left), 

bistatic σ
0
HH and bistatic σ

0
VH (upper right) and bistatic σ

0
HH and bistatic σ

0
VV (bottom). 

  

 

In general, horizontal and vertical polarizations are highly correlated on a wide range of bistatic 

angles, which results in high values of CRLB, as shown in the bottom map of Figure 8. Conversely, the 

lowest values of CRLB are shown when one of the two measurements is carried out at cross 

polarization. The best performances are presented in the polarization configurations σ
0

VV and σ
0

HV or 

σ
0

HH and σ
0

VH, at azimuthal angles close to φs = 90°. In this condition, the CRLB indicates that the 

estimation error standard deviation can reach a lower bound of about 10 cm. The couple of σ
0

VV and 

σ
0

HV measurements maintains this optimal condition for a larger range of scattering angles and, 

therefore, seems to be the best configuration. Note that along this direction the cross-polarized bistatic 

σ
0

HV presents its maximum, while the two co-polarized bistatic scattering coefficients reach the lowest 

values, so that the two measurements are uncorrelated, as discussed before The error on corn height 

retrieval remains above 100 cm in the monostatic case, while it may decrease to about 30 cm at the 

identified optimal bistatic configuration (reminding that the square root of CRLB has been normalized 
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to 10 cm and saturated to 100 cm in the color map). The maps obtained for corn observation at C-band 

show analogous trend than at that L-band. 

3.3. CRLB for Multistatic Configurations 

A bistatic system requires the implementation of a suitable receiver, but the monostatic data are 

expected to be available through the active SAR missions, which provide the signal. Then, we can 

assume that the monostatic measurement (θs = θi and φs = 180°) may complement the bistatic ones, 

thus setting up the so-called multistatic case. 

Like in the previous section, the CRLB parameter was estimated, and the maps of the square root of 

CRLB are here reported, with the same normalization applied in the previous plots. In each figure, two 

columns are displayed. The left one reports the ―co-polarized‖ CRLB’s, i.e., the CRLB’s calculated 

assuming that the bistatic and the monostatic measurements have the same polarization (bistatic σ
0

VV 

and monostatic σ
0

VV; bistatic σ
0

HV and monostatic σ
0

HV; bistatic σ
0

HH and monostatic σ
0

HH). The right 

column reports the ―cross-polarized‖ CRLB’s, i.e., those calculated for the following couples of 

measurements: bistaticσ0
VV and monostaticσ0

HV; bistatic σ
0

HV and monostatic σ
0

VV; bistaticσ0
HH and 

monostatic σ0
HV. We have verified that the CRLB maps concerning bistatic σ

0
HV and monostatic σ0

VV 

differ from those concerning bistatic σ
0

HV and monostatic σ
0

HH only for their values, but not for what 

concerns the dependence on the bistatic geometry. For this reason, only one map is reported.  

Note that when monostatic σ0
HV is available, also a co-polarized measurement is usually carried 

out, so that two monostatic measurements can be expected to be available from a dual polarization 

SAR simultaneously with the bistatic one. We have then estimated the CRLB parameter with three 

measurements too: again, x1 is the corn plant height, h, while the nuisance parameter, x2, has been 

supposed to be the soil moisture content and the soil roughness has been fixed toσz = 1.5 cm. σ0
1 is 

the bistatic measurement, while σ0
2 and σ0

3 are the two available measurements in the backscattering 

direction (e.g., σ0
HV and σ0

VV or σ0
HV and σ0

HH). However, it has been found that the addition of 

another monostatic measurement at L-band (see Equation (5)) does not change the CRLB maps, so that 

those obtained for the ―cross-polarized‖ CRLBs (shown below) apply for the three measurements case 

as well. As for the C-band, the addition of the third measurement improves significantly the 

performance of the retrieval only where the variance is large with two measurements. Nevertheless, the 

optimal bistatic configurations are obtained at the same azimuth and zenith angles indicated in the case 

of two measurements. For these reasons, the maps for the three measurements case are not reported. 

The maps in Figure 9 indicate that co-polarized and cross-polarized multistatic configurations (left 

and right column, respectively) behave in the same way. This is partially due to the fact that 

monostatic σ0
HV has been linked to monostatic σ0

VV, which, in its turn, is correlated to monostatic 

σ0
HH. Therefore, considering a cross-polarized or a co-polarized backscattering measurement does not 

change the CRLB maps very much.  
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Figure 9. Square root of CRLB [10 cm] for a corn field. L-band, θi = 20°, σz = 1.5 cm. 

Available measurements, first row: bistatic σ
0

VV and monostatic σ
0

VV on the left, bistatic 

σ
0

VV and monostatic σ0
HV on the right; second row: bistatic σ

0
HV and monostatic σ

0
HV on the 

left, bistatic σ
0

HV and monostatic σ
0

VV (or σ
0

HH) on the right; third row: bistatic σ
0

HH and 

monostatic σ
0

HH on the left and bistatic σ
0

HH and monostatic σ
0

VH on the right. 

 

 

At HH and VV polarizations (top and bottom plots), bistatic scattering behaves similarly to 

backscattering, as long as the azimuth scattering angle φs is far from 90°, and this correlation makes 

the values of CRLB fairly high on a large range of scattering angles. The maps suggest that the 

scattering plane orthogonal with respect to the plane of incidence shows the best performance at 
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horizontal polarization, while at vertical polarization, the direction underlined also in the previous 

sensitivity analysis (see Section 3.1) shows up, that is, φs = 80°, θs = 20° for an incidence direction 

with θi = 20°. The best achievable value of the variance of the corn height estimate is less than 20 cm, 

comparable with the one obtained for a purely bistatic configuration and two polarizations. Therefore, 

the choice between a dual polarized receiver and a receiver at single polarization complemented by a 

monostatic measurement should be only based on economic considerations (we note that, as for the 

previous example of Figure 8, the variance of the corn height estimate is larger than 100 cm in the 

monostatic dual mode).  

The maps concerning HV polarization (on the 2nd row) always display large values of CRLB, since 

the sensitivity of bistatic σ0
HV to plant height is rather low outside the plane of incidence (see Figure 5). 

We remind that the HV backscattering coefficient has been empirically corrected, thus yielding a large 

CRLB value in the backward direction (i.e., the monostatic configuration), much different from 

adjacent bistatic configurations in the middle plots of Figures 9 and 10.  

Figure 10. Square root of CRLB [10 cm] for a corn field. C-band, θi = 20°, σz = 1.5 cm. 

Available measurements, first row: bistatic σ
0

VV and monostatic σ
0

VV on the left, bistatic 

σ
0

VV and monostatic σ0
HV on the right; second row: bistatic σ

0
HV and monostatic σ

0
HV on the 

left, bistatic σ
0

HV and monostatic σ
0

VV (or σ
0

HH) on the right; third row: bistatic σ
0

HH and 

monostatic σ
0

HH on the left and bistatic σ
0

HH and monostatic σ
0

VH on the right. 
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Figure 10. Cont. 

 

If the incidence angle is shifted to higher values, the maps show analogous correlations between 

measurements, but with slightly higher values of CRLB than in the case of low incidence angle 

discussed previously. Obviously, the minimum CRLB for the vertical polarization moves towards  

φs = 70°, θs = 35°, appearing at bistatic directions corresponding to the maximum sensitivity to plant 

height, as observed in Section 3.1. Moreover, it has been found that, by increasing the cover 

percentage, CRLB lowers in the specular direction, where the higher coverage produces a higher 

attenuation and, hence, a higher sensitivity; at other bistatic angles CRLB trend is analogous to the one 

reported for the reference coverage.  

The simulations performed at C-band (Figure 10) indicate that the sensitivity to vegetation biomass 

in the specular configuration is quite reduced or even absent when the soil roughness is large with 

respect to wavelength and the percent coverage is low. At C-band, however, when φs is close to 90°, 

the region with low CRLB gets larger than at the lower frequency, since the vegetation contributions 

get stronger with respect to the soil ones and the sensitivity to plant height has a smoother trend with 

bistatic angle. In general, however, the lowest values of CRLB at C-band are higher than the lowest 

values at L-band. 

3.4. Optimal Bistatic Configurations for Crop Height Monitoring 

The simulation results presented in the previous sections indicate that the specular configuration 

(especially at L-band), with a tolerance of about ±5° both in aspect and azimuth, is by far the most 

sensitive to vegetation biomass. The specular configuration, however, presents some problems in terms 

of achievable geometrical resolution of a radar imaging system, as discussed in [26]. It becomes very 

interesting in the case of a GNSS-R system, as discussed, for instance, in [31,41]. Then, it is important 

to single out other interesting configurations that have emerged from this study.  

If the receiver of the bistatic system is foreseen to operate at single polarization (see Figure 5), a 

low incidence angle (θi~20°) leads to the best performances. Furthermore, bistatic measurements 

present sensitivities larger than in the monostatic configuration at vertical polarization with φs = 80°, 

θs~θi(at L-band, ∆σVV/∆h can be five-times larger than in backscattering and, at C-band, double) and at 

horizontal polarization at φs = 90° (where ∆σHH/∆h can be double that in backscattering both at L- and 
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C-band). VV polarization keeps the sensitivity larger in a wider range of bistatic angles with respect to 

other polarizations, so that, in summary, the best configuration for a receiver with single polarization is: 

 σ
0

VV at φs~80°, θs~θi 

The performance maps developed for the bistatic multipolarization configurations and for the 

multistatic configurations have shown that several bistatic configurations can provide measurements 

that are expected to yield good performances. In order to select the most significant ones, we take as a 

reference the multipolarized measurements performed in monostatic configuration, i.e., the ones, 

which can be carried out by past and currently available SARs, like ALOS/PALSAR 

ENVISAT/ASAR, Radarsat or the forthcoming Sentinel 1. We compare the CRLB in this configuration 

with the ones found in the other scattering directions. 

At L-band, the monostatic couples are very much correlated (their CRLB indicates an error standard 

deviation lower bound always higher than 100 cm, which basically means the inability to measure the 

height of corn). When two polarizations are available through the passive component of the bistatic 

system, the scattering angles showing a high sensitivity, mentioned previously, keep their high 

performances in the combination (σ
0

VV, σ0
HV) and (σ

0
HH, σ0

VH), with a lower bound of the error 

standard deviation reduced by a factor of about five with respect to the monostatic dual-pol 

configuration (see Figure 8). When a bistatic measurement is accompanied by a monostatic 

measurement, the performed simulations (Figure 9) give CRLBs that are much lower than the 

monostatic values when θi = 20°, with the following multistatic configurations: 

 σ0
VV at φs~90°, 0 < θs < 20°, together with monostatic σ0

VV or σ0
HV: this configuration shows 

the minimum CRLB (i.e., lower bound of the error standard deviation between 15 and 25 cm);  

 σ0
HH at φs~90°, 0 < θs < 20°, together with monostatic σ0

HH or σ
0

VH (lower bound of the error 

standard deviation about 25 cm). 

At C-band, the error standard deviation is between 50 and 60 cm for the three monostatic couples. 

Lower values are shown by:  

 σ0
VV at φs~90°, 0 < θs < 20°, together with monostatic σ

0
VV or σ

0
HV (error standard deviation of 

about 20 cm);  

 σ0
HH at φs~90°, 0 < θs < 20°, together with monostatic σ

0
HH or σ

0
VH (error standard deviation 

between 20 and 30 cm). 

To summarize, the configurations in Table 3 are recommended.  

Table 3. Suggested polarization combinations for θI = 20° considering a single bistatic 

polarization, a dual-polarized bistatic and a multistatic (active and passive systems at single 

polarization). The corresponding optimal bistatic geometries at L- and C-band (excluding 

the specular case) are also reported. 

Bistatic σ
0

VV Bistatic σ
0

HH 

in single configuration in single configuration 

combined with bistatic σ
0

VH combined with bistatic σ
0

HV 

combined with monostatic σ
0

VV or σ
0

VH combined with monostatic σ
0

HH or σ
0

HV 
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Table 3. Cont. 

L-Band C-Band 

θi = 20° 

φs~90° ± 5°, 

0 ≤ θs ≤ 20° 

θi = 20° 

φs~90° ± 10°, 

θs~0° 

4. Conclusions 

In this paper, we have performed an investigation, based on theoretical simulations, on the potential 

of bistatic and multistatic radar measurements for retrieving crop parameters. To our knowledge, this is 

the first attempt to analyze this topic. The investigation has taken into account a single crop type  

(a corn field) and the bistatic configurations, which could be implemented having as master a SAR 

satellite system operating at one or two polarizations. The results show that, besides the observations 

around the specular direction, which are implemented, for instance, by the GNSS-R technique, bistatic 

imaging systems could provide a significant performance in retrieving corn height when looking at about 

90° in azimuth with respect to the plane of incidence. The simulations yield a corn height retrieval error 

standard deviation reduced at least by a factor of three with respect to a monostatic system.  

The sensitivity analysis indicates that the most useful responses show up when the soil contribution 

is at a minimum, so that the vegetation signature shows off with its maximum contrast. Although 

simulations reported in this paper refer to corn plants, this conclusion may apply to other vegetation 

types also. 

A preliminary analysis of the feasibility of this bistatic geometry, which has been carried out, has 

shown that the image resolution is still adequate in this geometry, and a limited, but still significant 

coverage can be ensured using an Envisat type satellite as a master [42]. These results encourage one 

to further analyze this topic. In particular, the feasibility of the proposed passive radar configuration 

and an assessment assuming as master a polarimetric SAR should be object of further investigations.  
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Appendix 

A detailed description of the active and passive version of the Tor Vergata model can be found  

in [A1,A2], respectively. Here, the main steps leading to the refinements developed to simulate the 

bistatic scattering coefficient of a corn crop will be recalled.  

In the scattering models available in the literature, contributions of the various sources of scattering 

and absorption are combined by using, basically, the Radiative Transfer theory. Nevertheless, this 

theory can be implemented using different numerical procedures; the Tor Vergata model adopts the 

Matrix doubling method [A3]. In the corn cover analyzed in this study, three main layers of the canopy 

have been identified. Predominant scatterers were identified for each one, as it is summarized in the 

following table: 

Table 4. Predominant scatterers identified for the corn cover analyzed in this study. 

Top Layer Leaves, twigs 

Middle Layer Stems 

Bottom Layer Soil 

To characterize the behavior of the vegetation medium, the vegetation layers are further subdivided 

into N elementary sublayers, thin enough to neglect interactions among scatterers within the same 

elementary layer, and where only single scattering is present. For each sublayer, both the upper and 

lower half-spaces are subdivided into Nθ discrete intervals of angular amplitude ∆θ, both in the 

incidence θi and scattering θs off-normal angles.  

Scattering from each sublayer, for a downwards propagating wave at q polarization (either H or V), 

is described by an upper half-space scattering matrix S
−
 and by a lower half-space scattering matrix S

+
. 

In [A2], it has been demonstrated that the (j,k)-th elements of the scattering matrices are:  
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where θij and θsk are, respectively, the discretized incidence and scattering directions; n is the number 

of elements filling the sublayer per unit of underlying surface and characterized by σ
−

pq(θi, θs, φs − φi) 

(that is, the bistatic scattering cross-section for a scattered wave in the upper half space at p 

polarization) and σ
+

pq(θi, θs, φs − φi) (the bistatic scattering cross-section of the lower half space at p 

polarization). Note that the dependence on the scattering angle takes the form φs − φI, since the 

structure is assumed to be symmetrical in the azimuth. If the sublayer is filled with scatterers of 

different shapes, averaging over different cross sections is performed using the scatterer density  

as a weight.  

In order to correctly include both the scattering effects and the attenuation, a transmission matrix, T, 

is defined as the sum of the downward scattered specific intensity, S
+
, and the fraction of forward 

propagating intensity affected by attenuation [A2]. This is accomplished by adding to the diagonal 

elements of the matrix, S
+

pq, a quantity equal to (1 − k
e
q(θij)), where k

e
q(θij) is the fraction of power 

traveling along the θij direction, at polarization q, which undergoes extinction in the considered sub-layer:  
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In order to achieve a considerable improvement in the fineness subdivision of the angular 

directions, without much increase in computation complexity [A3], the scattering and transmission 

matrices are Fourier transformed with respect to φs − φi. In this way, each elementary layer is 

characterized by NM pairs of matrices, Sm (previously called S
−
) and Tm, corresponding to the NM 

Fourier components through which the azimuthal dependence is expressed. 

The contributions of two adjacent thin sublayers are then combined through the Matrix doubling 

algorithm (Chapter 8 of [36]). For a pair of adjacent sublayers, characterized by matrices, S
1

m, T
1

m and 

S
2

m, T
2

m, respectively, the matrices of the combination are given by:  
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By reiterating this procedure, the N sub-layers are successively combined, and the scattering Sm
top

 

and transmission matrices, Tm
top

, of the top vegetation layer are computed. We remind that the 

doubling procedure is applied to each NM matrix, Sm and Tm, and that the elements of the matrices are 

functions of θi, θs, p and q (Spqm(θi,θs)). In the case of the corn crop canopy, the same procedure is applied 

to the middle layer of the canopy, so that the whole vegetation layer is obtained applying again the  

matrix doubling:  
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The scattering properties of the soil are expressed by the dimensionless bistatic scattering 

coefficient σ
0

gpq(θi, θs, φs − φi) , which is employed to obtain the Sgpq matrix. Similarly to the matrix of 

the vegetation elementary layer:  

sk

ij

isskijgpq

g

jkpqmS





cos4

sin
)],,([ 0


  (A5) 



Remote Sens. 2013, 5 890 

 

where   represents the Fourier transform operator with respect to φs − φi. Finally, the doubling 

between the whole vegetation layer and the soil is applied to get the overall scattering matrix:  
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Once the total matrices S
t
m are computed, the total scattering functions in the direction characterized 

by the angles φs and θs, which represents the observation angle of the bistatic system, can be obtained 

by the Fourier series:  
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In the monostatic case, only φs − φi = π needs to be considered, while, in the bistatic simulations, the 

cosine argument can assume all values between 0 and π. Following [A2], the bistatic scattering 

coefficient of the observed pixel of area A is finally obtained through:  
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