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SOMMARIO 
 
 
 
 
 
Il ciclo idrologico rappresenta l’insieme di tutti i fenomeni legati alla circolazione e 
alla conservazione dell’acqua sulla Terra. Il monitoraggio su scala globale dei 
fattori che concorrono a produrre e modificare tale ciclo (umidità del terreno, 
copertura vegetale, estensione e caratteristiche del manto nevoso) risulta di 
estrema importanza per lo studio del clima e dei cambiamenti globali. 
Inoltre, l’osservazione sistematica di queste grandezze è importante per prevedere 
condizioni di rischio da alluvioni, frane e valanghe come pure fare stime delle 
risorse idriche. In questo contesto Il telerilevamento da satellite gioca un ruolo 
fondamentale per le sue caratteristiche di osservazioni continuative di tutto globo 
terrestre. I sensori a microonde permettono poi di effettuare misure 
indipendentemente dall’illuminazione solare e anche in condizioni meteorologiche 
avverse. I processi idrologici, ed in particolare quelli della criosfera (la porzione di 
superficie terrestre in cui l’acqua è presente in forma solida), sono fra  quelli che 
meglio si possono investigare analizzando la radiazione elettromagnetica emessa 
o diffusa. Mediante l’utilizzo di modelli elettromagnetici che permettono di simulare 
l’emissione e lo scattering da superfici naturali è possibile interpretare le misure 
elettromagnetiche ed effettuare l’estrazione di quelle grandezze che caratterizzano 
i suoli e la loro copertura. 
In questo lavoro di dottorato si è affrontato il problema della modellistica a 
microonde dei terreni coperti da neve, sia asciutta che umida. Dopo aver preso in 
considerazione i modelli analitici maggiormente utilizzati per simulare diffusione ed 
emissione a microonde dei suoli nudi e coperti da neve si è proceduto allo sviluppo 
e implementazione di due modelli di emissività. Il primo, basato sulla teoria delle 
fluttuazioni forti, è atto a descrivere il comportamento di un manto nevoso umido.  Il 
secondo, basato sull’accoppiamento del modello di scattering superficiale AIEM 
(Advanced Integral Equation Method) con la teoria del trasferimento radiativo nei 
mezzi densi, è volto allo studio di uno strato di neve asciutta sovrastante un suolo 
rugoso. Tali modelli tengono conto degli effetti coerenti presenti nell’emissione del 
manto nevoso e non inclusi nella teoria del trasporto radiativo classico. Entrambi i 
codici sono stati validati con datasets numerici e sperimentali in parte derivati da 
archivi ed in parte ottenuti nel contesto di questo lavoro che ha previsto quindi 
anche una fase sperimentale. Quest’ultima è stata condotta con misure 
radiometriche multifrequenza su un’area di test situata sulle Alpi orientali. Le 
simulazioni ottenute con questi modelli e le conseguenti analisi hanno permesso di 
individuare la sensibilità della temperatura di brillanza ai parametri di interesse 
(spessore, equivalente in acqua e umidità del manto nevoso) in funzione di diverse 
configurazioni osservative (frequenza, polarizzazione ed angolo di incidenza). 
Questo ha consentito di migliorare la comprensione dei meccanismi di emissione 
dalle superfici innevate e di individuare le migliori condizioni osservative per un 
sistema di telerilevamento terrestre.  
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ABSTRACT 
 
 
 
 
 
 
The hydrologic cycle represents the whole of the phenomena related to the 
circulation and preservation of the water on the Earth. The global scale monitoring 
of the factors involved in the production and modification of such cycle (e.g. soil 
moisture, vegetation cover, snow cover characteristics and extent) is extremely 
important for climatologic and global changes studies. Moreover, the systematic 
observation of such factors is important to forecast the risk of floods, landslides and 
avalanches as well as to estimate the water resources. In this context satellite 
remote sensing plays a fundamental role for its characteristic of systematic and 
continuous observation of the entire Earth’s surface. Besides, microwave sensors 
allow performing measurements independently of solar illumination and weather 
conditions. The hydrological processes, especially the ones in the cryosphere (the 
part of Earth’s surface in which the water is in solid form), are the ones which can 
be better investigated by analyzing the electromagnetic radiation emitted or 
scattered by natural surfaces. By using electromagnetic models, which simulate 
emission and scattering from natural surfaces it is possible to interpret the 
electromagnetic measurements and to perform the retrieval of the parameters that 
characterize the soil and its covers.  
This thesis deals with the microwave modeling problem of soils covered by snow 
(both dry and wet). After a detailed review of the most used analytical models for 
simulating scattering and emission from soil (both bare and covered by snow), two 
emissivity models have been developed and implemented. The first one, based on 
the Strong Fluctuation Theory, is devoted to describe the wet snowpacks behavior. 
The second one, based on the Advanced Integral Equation Method surface 
scattering model coupled with the Dense Media Radiative Transfer Theory, is 
devoted to study a layer of dry snow overlying a rough soil. Both of these models 
account for the coherent effects that take place in the emission of snowpacks and 
which are not accounted for by the conventional radiative transfer theory. The two 
snow software have been validated against numerical and experimental datasets 
derived from archives and from experimental measurements carried out during this 
thesis work. This latter activity has been worked out by means of multifrequency 
radiometric measurements taken on a test area on the Eastern Italian Alps. The 
simulations performed by means of the two models allowed us to determine the 
sensitivity of the brightness temperature to the most interesting geophysical 
parameters (thickness, water equivalent and wetness of snow) as a function of 
different observation configurations (frequency, polarization and incidence angle). 
Such work made it possible to significantly improve the knowledge of the emission 
processes of snow covered areas and to determine the best observation 
configuration for an Earth remote sensing system.  
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1. INTRODUCTION  

In the recent years there has been a growing interest in the weather global 
changes and in the management of the natural resources. The attention paid by 
the media to the climate increases every day and raises the alertness of the 
common people to the environment care. Moreover, people have been further 
scared by natural disasters like the hurricane Katrina, the Indian Ocean tsunami 
and floods in central Europe. The demand of knowledge about “what is happening 
to our planet” and “how these changes could be avoided” pushes the researchers 
to deeply investigate the natural phenomena and understand how to minimize the 
impact of the humankind on the environment.  
 
At the same time, the reasons to improve our knowledge about the Earth are also 
driven by other factors. Besides the noble spirit of understanding our planet, there 
are economic and politic motivations. For example, the possibility of predicting the 
precipitation rate during the crop growth seasons can influence the life of large 
areas of the world by adopting appropriate countermeasures against the famine 
and by the speculation of the economic lobbies. In addition, the knowledge of some 
hydrological variables such as soil moisture, vegetation cover and the quantity of 
snow deposed during the winter season on the mountains is important for the 
agriculture, to evaluate the risk of floods and avalanches and also to drive the 
energy choices of the electrical companies. 
 
In this scenario, the understanding of the Earth dynamics is very important and the 
remote sensing (RS) can play a fundamental role due to its intrinsic characteristics, 
e.g. the possibility to investigate remote and inaccessible areas and perform 
analysis very often (on daily or weekly basis). The remote sensing is based on the 
analysis of the electromagnetic (e.m.) radiation scattered or emitted by the natural 
bodies. Depending on the characteristics of the e.m. waves measured it is possible 
to deduct some features of the observed objects. The possibility to understand the 
state of an object being far from it let the remote sensing very attractive. 
 
There are several areas in which the RS can be applied successfully. Among the 
majors: weather forecasts, land classification, and study of the processes involved 
in the hydrological cycle. This latter topic is considered very important because it 
represent the basis to understand the climate and its changes. 
 
The hydrological cycle (see Fig. 1) is made up by several components. The main 
ones are: precipitations (rainfall, snowfall and hail), soil moisture, accumulation of 
snow and ice, water run-off and evaporation. Among them, one which can be 
investigated using at most the characteristics of remote sensing is the cryosphere 
(the portions of the Earth's surface where water is in a solid form). Indeed, the 
areas with snow covers are very often inaccessible and dangerous but they need 
to be accurately monitored. For instance, let us considering Antarctica which 
contains more than 95% of the fresh water on Earth and which influences the world 
climate due to its high albedo. Monitoring the Antarctic environment is very difficult 
using classical techniques. In fact the mean annual temperature is far below            
-30°C letting Antarctica be one of the most impervious place where the man can 



live and operate. Thus, the use of satellite remote sensing techniques can result 
very useful. 
 

 
Fig. 1 - The hydrological cycle 

 
Snow cover has the largest area extent of any component of the cryosphere and, 
except Antarctica, most of the Earth’s snow-covered area is located in the Northern 
Hemisphere, where the mean snow-cover extent ranges from 46.5 million km2 in 
January to 3.8 million km2 in August [1]. The temporal variability is dominated by 
the seasonal cycle. However, changes in the annual spatial distribution of snow 
have been observed during the last decades related to the global warming [2]. The 
terrestrial cryosphere plays a significant role in the global climate, in climate 
response to global changes and as an indicator of change in the climate system. 
Moreover, remote sensing of the melting cycle of snow has proven to be crucial to 
forecast the snow-water runoffs, floods and avalanches, besides to manage water 
resources. 

 
The remote sensing techniques are based on sensors that operate in different 
portions of the electromagnetic spectrum. For land applications, the researchers 
commonly use the optical part (which ranges from the far infrared to the ultraviolet) 
or the microwaves (electromagnetic waves with a frequency that span from 300 
MHz to 300 GHz). The interaction of the e.m. waves with the natural bodies 
happens in two different ways which are strictly related one to the other. When the 
radiation impinges on a body, it can be both absorbed and scattered away 
(depending on the geometrical and physical properties the object). According to the 
Plank’s law, in thermodynamic equilibrium the energy absorbed equals the one re-
emitted. The two phenomena, absorption/emission and scattering are bound 
together by the principle of energy conservation. Microwave sensors can be either 
passive or active and can both operate on entire frequency spectrum. Passive 
sensors (radiometers) measure scattered radiation emitted by the sun in the optical 
range, or thermal emission emitted by the Earth’s surface in the infrared and 
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microwave bands. Active sensors (lidar and radar) measure scattered radiation 
emitted by their own illuminating sources.  

 
Remote sensing of snow has traditionally been carried out mostly by using optical 
sensors [3]. Several operational services have been established to obtain snow 
cover maps from the NOAA AVHRR sensors. These sensors have a poor 
resolution (1 km), but provide a reasonable temporal coverage (daily products) 
depending on cloud conditions. Indeed this is the biggest limitation to the use of 
optical instruments. The electromagnetic waves in the visible and infrared spectra 
cannot penetrate the clouds that let the optical sensors blind. Conversely, 
microwave sensors are almost insensitive to the weather phenomena.  In general, 
there is an optimum sensor configuration (frequency range, polarization and 
incidence angle) for each observed target.  For instance, the best frequency band 
to estimate soil moisture has been identified at L-band. Conversely, the 
observation of dry snow requires the use of higher frequencies that, at present are 
available in passive sensors only. Indeed, several experiments have documented 
the ability of C-band Synthetic Aperture Radar for mapping the extent of wet snow 
only by using both ERS and RADARSAT data [4]-[6]. Automated algorithms are 
available using change detection. However, due to its high transparency at C-band, 
dry snow cannot be separated from bare soil.  

 
 

The sensitivity of microwave emission to snow type and water equivalent (SWE) 
has been pointed out in several theoretical [7]-[12] and experimental [13]-[22] 
studies which demonstrated the potential of microwave radiometers in monitoring 
snow parameters and seasonal variations in snow cover. Unfortunately, the rough 
spatial resolution of satellite sensors from satellite, such as the Special Sensor 
Microwave Imager (SSM/I), limited their effectiveness in operational use. The 
improved performance of the Advancing Microwave Scanning Radiometer (AMSR-
E) on the Earth Observing (EOS) AQUA platform helps to partially overcome this 
drawback [23]. 

 
Radiation emitted at the lower frequencies of the microwave band (lower than 
about 10 GHz), by soil covered with a shallow layer of dry snow is mostly 
influenced by the soil conditions below the snow pack and by snow layering. At 
higher frequencies, however, the role played by volume scattering increases, and 
microwave emission becomes sensitive to snow cover [14],[15]. In general, high 
frequency microwave emission from dry snow decreases as snow depth (SD) 
increases, although SSM/I measurements taken within the former Soviet Union 
during the 1987–1988 winter period showed significant deviations from this pattern 
[21].  If snow melts, the presence of liquid water in the surface layer causes an 
increase in emission. The average spectra of the brightness temperature show that 
emission of dry and refrozen snow decreases with frequency, whereas emission 
from wet snow displays an opposite trend.  Experiments carried out in the Swiss 
Alps by Hofer and Mätzler [15], by using ground-based sensors demonstrated that 
microwave radiometers can separate three snow conditions (winter, spring and 
summer) representative of the seasonal development of snow cover. These trends 
were interpreted by Schanda et al. [16], who pointed out the dominant role played 
by the Rayleigh scattering, and confirmed by other experiments (e.g. [18]). Further 
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investigations pointed out the importance of the snow crust, which can build up due 
to the night-time refreezing [24], [25].   

 
 

The most important snow quantities to be monitored for applications are: extent of 
snow cover, snow liquid water content, and snow water equivalent. Regarding the 
liquid water content of snow (LWC) several retrieval algorithms have been 
developed. For instance, in [26] an algorithm based on polarimetric C-band SAR 
data is shown. Fully polarimetric information is needed to separate the effects of 
surface roughness from the effects of LWC. Since Envisat-ASAR only has dual 
polarization it has not been possible to study LWC solely from SAR. However, a 
combination of SAR and in situ measurements from synoptic weather 
measurements in Finland has revealed promising results.  

 
The determination of the beginning of the snow melting is crucial in flood forecast 
and avalanche prevention. The potential of microwave radiometers in measuring 
snow wetness has been pointed out in [22]. Snow water equivalent (SWE) is the 
most important and highest valued snow parameter from a hydrological point of 
view. It is computed by the product between snow density and snow depth. Usually 
the SWE is defined for dry snowpack and it indicates the whole amount of water 
that will run-off to the valley during the spring season. As stated above, the retrieval 
of SWE from C-band SAR backscattering is very problematic, although some 
interesting result has been obtained over relatively smooth surfaces in cold regions 
[27]. A new approach to retrieve information on the changes in SWE from repeat 
pass interferometric phase changes was introduced by Guneriussen et al. [6] and 
tested in a drainage area in Norway. The method invokes advanced delta-k 
processes to avoid phase wrapping. Data were calibrated with corner reflectors not 
covered by snow. 

 
 
To analyze experimental measurements and understand the interaction between 
electromagnetic waves and targets, models which describe the emission and 
scattering must be used. Depending on the degree of approximations of physical 
laws and on the method to calculate some parameters it is possible to obtain 
several kind of models which span from the empirical (the simplest but the less 
accurate to describe the observed medium) to the physical ones which are based 
on the electromagnetic theory and are the most complex. 
To describe the electromagnetic emission or scattering from snow-covered surface, 
two models must be used: one for the soil and one for the snow. These models will 
be described in the following section. 

 
This work is organized as follows: a comprehensive review of the state of the art for 
scattering and emission models for bare soil and snow is given in section two. 
Section three includes the description of the models developed to simulate the 
electromagnetic emission from Alpine snowpack, pointing out the improvements 
obtained in this work and the critical points. A comparison of model simulations 
with experimental data is outlined in section four. 
 
 



2. STATE OF THE ART 

A crucial problem of remote sensing is the retrieval of geophysical parameters from 
the measured electromagnetic radiation. This is an inversion problem that requires 
the use of appropriate direct models. In the last decades several models and 
techniques have been developed to analyze and simulate the interaction between 
microwaves and snow-covered surfaces. Depending on the approach followed to 
describe the electromagnetic behavior of the snowpack or to retrieve physical 
parameters, the models used to predict microwave emission and scattering can be 
divided in the following three groups: empirical, semi-empirical and theoretical. The 
choice of the method is closely related to the final application. 
  
The empirical models are based on experimental relationships between remote 
sensing and ground data, and make use of regressions (or other kind of statistical 
analysis) to estimate soil and snow parameters [28]-[32]. The important matter is to 
have a large dataset of both electromagnetic measurements (or simulated data) 
and snow and soil physical parameters.  
 
For instance in [33] the SD is estimated by 

( )HH TTSD 371859.1 −=   (1) 

Where   and   are respectively the 18 GHz and 37 GHz horizontally 
polarized brightness temperatures, and 1.59 is a constant obtained by a linear 
regression of the difference between 18GHz and 37GHz responses. If the 18GHz 
brightness temperature is less than the 37GHz one, no snow is assumed present.  

HT18 HT37

 
The limits of these algorithms are the area over which they can give good 
predictions and the errors on the estimations which are relatively high. Considering 
that the electromagnetic emission depends simultaneously on several parameters 
of the snowpack but also on the ground features and on the vegetation coverage, it 
is easy to understand why the estimations can be different if they are made on the 
north European tundra or on the Asian desert.  
 
Anyway, these algorithms are useful when the estimations are made on a global 
scale (tents or hundreds of squared kilometers). In this case, it is very difficult to 
have spatially detailed description of the surface, which, on the other hand, may 
include different types of coverage in the coarse spatial resolution elements of the 
spaceborne instruments. Thus, the use of methods that leave out detailed 
knowledge of the observed surfaces is very attractive and sometimes mandatory. 
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The procedure to develop an empirical algorithm is quite simple. The only need is 
two big datasets of conventional and electromagnetic measurements which will be 
split in two parts: the first half is used to establish the relationship and the other one 
to test the performance of the algorithm. Then, by using regressions (whether 
linear, quadratic, exponential, etc.) or artificial neural networks (ANN) relationships 
between the two kinds of data can be found and verified.  It is possible to estimate 
snow physical parameters from electromagnetic measurements or also to predict 
the scattering and emission from conventional ones.  



 
As stated before, the performances of these algorithms are not very good both 
because the study area are seldom homogeneous (and the electromagnetic signal 
of the snow is influenced by the one of the vegetation and other sources), and 
because the microwave emission/scattering strongly depends on several 
parameters (the retrieval of the geophysical parameters from the e.m. 
measurements is an ill-posed problem). Sometimes it is simpler to retrieve global 
parameters like the Snow Water Equivalent (which is defined as the integral of the 
snow density along the vertical profile of the snowpack) instead of snow depth and 
density separately. Anyway, in some cases the empirical algorithms have excellent 
performance. For instance, the retrieval of the snow temperature profile in 
Antarctica from AMSR-E radiometric measurements: the retrieval error has 
resulted to be lesser or equal than 1°C [31] because the structure of the snowpack 
remains almost unchanged year after year.  
 
 
The semi-empirical models are based on physical laws (hence are more rigorous 
than the empirical ones) but, for the determination of some parameters they use 
experimental data. An example is the HUT (Helsinki University of Technology) 
model [34] which has been successfully used to simulate the microwave brightness 
temperature of a simplified snowpack configuration.  
 
The approach used in the HUT snow emission model to estimate the brightness 
temperature of snow-covered soil relies on the following assumptions: the 
scattered microwave radiation is mostly concentrated in the forward direction and 
the snowpack is a single homogeneous layer overlying a semi-infinite half space 
(the ground). Thus, the brightness temperature inside a snowpack of depth d, just 
below the snow–air boundary, can be approximated as follows [34]: 

( ) ↑
−−−−+− +≡−

−
+= sBgB

dkqk

se

snowadkqk
bb TTe

kqk
TkeTdT sese

,,
sec)(sec)( 1),0(),( θθθθ      (2) 

where θ is the observation angle,  is the soil brightness temperature just 

above the ground–snow interface,  is the snowpack physical temperature, q is 
an empirical parameter ( q = 0.96 ) describing the fraction of intensity scattered in 
the direction θ which is the same at all frequencies, and k

),0( θ+
bT

snowT

e, ks, and ka are, 
respectively, the extinction, scattering and absorption coefficients (ke =ks+ ka). It is 
easy to recognize in (2) that the first term of the right hand side is the ground 
contribution attenuated by the overlying layer while the second represents the 
contribution from the snow. The extinction properties of dry snow (i.e. ke in (2)) as a 
function of snow grain size are modeled like in [35]. ka is calculated from the 
complex dielectric constant of dry snow. The real part of the snow dielectric 
constant is determined by using the formulas given in [36] whereas the imaginary 
part is treated with a formula based on the Polder–Van Santen mixing model [37]. 
To calculate the imaginary part of snow permittivity, the ice dielectric properties are 
also required. These are computed using an empirical formula [36]. The effect of 
snow grain size is described through the extinction coefficient, as determined 
empirically in [35] 

 
 
 

6 



28.20018.0 φfke =  (3) 

where  is in decibels, f is the frequency in gigahertz, and φ is the snow grain 
diameter in millimeters. Equation (3) was derived from observations on natural 
snowpack characterized by grain diameters ranging from 0.2 to1.6 mm. 

ek

 
Another example of semi-empirical model is the Microwave Emission Model of 
Layered Snowpacks (MEMSL) valid in the frequency range 5-100 GHz that has 
been developed by Wiesman and Mätzler [11] for dry winter snow and extended to 
wet snow by Mätzler and Wiesmann [12]. This model is based on multiple 
scattering radiative transfer theory, in which the scattering coefficient is determined 
from measurements of snow samples.    

 
 
The theoretical models are, among the three categories, the most rigorous and are 
based on the solution of the Maxwell’s equations. These models need an accurate 
characterization of the media interacting with the electromagnetic waves and are 
more useful to understand the phenomena which happen rather than estimate the 
physical properties of the target by inverting the experimental data. Indeed, the 
formulae describing the scattering or the emission are usually non-linear and very 
complex. Moreover the electromagnetic problem is multiparametric and ill-posed 
(different combination of input parameters give the same e.m. prediction), making 
almost impossible to invert the equations (theoretical methods). 
 
The most used theoretical models for simulating surface scattering from soil are the 
Small Perturbation Method (SPM), the Kirchhoff Approach under the Physical and 
Geometrical Optics approximations (respectively KA-PO and KA-GO), the Integral 
Equation Method (IEM) and the Small Slope Approximation (SSA). For volume 
scattering from the snowpack the most advanced models are based on the Strong 
Fluctuation Theory (SFT) and the Dense Medium Radiative Transfer Theory 
(DMRT). All of these models have been successfully used within their limits of 
validity to simulate emission and scattering. A comprehensive description of these 
models is given in the following chapter. 
 
Among the said models, the most used for the soil is the IEM, which has a wider 
validity domain than the SPM and the KA. In snow applications, the SFT and the 
DMRT use different approaches to model the snowpack (continuous for the SFT 
and discrete for the DMRT) but the results are similar; although, in recent years the 
DMRT has been improved and now, seems to reproduce experimental data better 
than the SFT over a wider range of frequencies.  
 
The main problem with the theoretical models is the difficulty to solve exactly the 
Maxwell equations in the case of media with a complex structure such as the 
natural bodies. Usually several approximations can be made (see [38] for snow) 
leading to more or less wide validity ranges. Another issue, which is strictly bound 
to the complexity of the models, is the computational time. Until few years ago the 
computational power of the computers was quite lower than what it is now and this 
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led the researcher to obtain simpler models. In the recent times, these problems 
are less severe and it is possible to use more complicated methods. 
 
It is worth noting also that with the advent of modern computers and the 
development of fast numerical methods, numerical simulations of the wave 
scattering problems have become an attractive alternative overcoming the 
limitations in regimes of validity of classical analytical models. An excellent 
treatment of various approaches can be found in the book by Tsang et al. [39]. A 
good review of the numerical methods is given also in the introduction of the paper 
by Li et al. [40].  
 

2.1 Scattering and emission from soils 
The electromagnetic scattering of the bare soils is usually modeled like surface 
scattering. This kind of scattering happens at the interface between two media that 
are homogeneous but with different electromagnetic properties. The former 
hypothesis is verified for the air but not exactly for the terrain, which is actually 
heterogeneous. Anyway, by considering the high density of the scatterers and the 
relatively high permittivity of its components, it is possible to compute an effective 
dielectric constant for the soil and to re-conduct the whole scattering problem to the 
classical surface one.  
 
The problem of the scattering from a bare soil can be divided into three different 
sub-problems, which need to be solved:  

- first of all, the soil can be modeled like a mixture of lime, clay, sand and 
water. Thus the effective permittivity of such mixture must be calculated on 
the basis of the percentage and the dielectric constant of each element. 

- second, the roughness statistic of the interface must be determined 
through the shape of the autocorrelation function (ACF), and the related 
Height Standard Deviation (HStdD), (known also as Standard Deviation of 
Soil heights, SDS), and the correlation length. A different approach is the 
determination of the fractal features of the surface.  

- finally, depending on the previous parameters, the electromagnetic 
problem must be solved by using appropriate approximations. 

 

2.1.1 The dielectric constant of bare soils  
Natural terrains can be regarded as mixtures of bulk material (sand, clay, loam, silt 
organic material, etc) and water, bounded by a rough surface. The determination of 
the electric properties of a mixture (the “homogenizations” problem) has been 
investigated since the nineteenth century [41]. Conversely, from the homogeneous 
media, the heterogeneous ones have electrical properties which depend on several 
factors: e.g. the percentage of the components, their permittivity and permeability, 
and the chemical bond between the molecules. A comprehensive description of the 
methods developed to obtain the effective dielectric constant of a mixture can be 
found in [41]. Usually mixing formulas that average the permittivity of each 
constituent by means of their percentage are used. However, when the differences 
between the electrical properties of the components are sensible, the models 



become more complicated. This is the case of soils, in which the permittivity of dry 
material (usually close to 3) is much smaller than that of water. 
 
The dielectric characteristics of water have been investigated in several textbooks 
and papers (e.g. [42]). The complex permittivity ε of pure free water can be 
described by the Debye equation: 

τπ
ε

ε
fj

n
n s

21

2
2

+
−

+=   (4) 

where n is the refractive index, εs is the static dielectric constant, f is the frequency, 
and τ is the relaxation time. On the other hand, the permittivity of soil is also 
dependent on soil texture since the particle dimensions of soil components vary 
from less than 2 µm for clay to more than 1000 µm for sand. Thus, for the same 
volumetric moisture content, there is more free water in sand than in clay.   
 
One of the most used models to calculate the dielectric constant of the terrain is 
semi-empirical and has been developed by Dobson et al. [43]. It assumes the soil 
made up by a four-component mixture and the resulting permittivity can be 
expressed as 

ααααα εεεεε bwbwfwfwaasssssoil vvvv +++=  (5) 

where the subscripts ss, a, fw, bw stand for solid soil, air, free water and bounded 
water and 

07.4 jss −≅αε  

φvvss −= 1  

va mvv −= φ  (6) 

bwfwv vvm +=  

b
ss

bssv ρ
ρ

ρρ
φ 38.01−≅

−
=  

In (6)  is the soil porosity, φv ≅ssρ 2.65 gr/cm3 is the density of the soil solid 

material and  is the total volumetric moisture content. To simplify the model but 
still retain a soil textural dependence it is possible to group together the water 
parameters as 

vm

αβαα εεε fwvbwbwfwfw mvv ≅+  (7) 

where β is a parameter empirically determined.  
 
Using (7) the soil permittivity can be written as 

( ) ( )111 −+−+≅ αβαα εε
ρ
ρε fwvss

ss

b
soil m  (8) 
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Dobson et al. [43] determined empirically the remained parameters α and β. They 
found that the value α=0.65 was the best compromise for all the soil types, whereas 
the magnitude of β can vary from 1.0 for sandy soil to 1.17 for silty clay. Generally, 
β can be estimated by  

CS 18.011.009.1 +−=β  (9) 

where S and C are respectively the weight fraction of the sand and the clay in the 
soil. 
 

2.1.2 Characterization of soil roughness  
 
2.1.2.1 Statistical description 
A rough surface can be described by a height function z = f(x,y). Direct assessment 
of roughness can be carried out by means of various experimental approaches 
able to reproduce the surface profile by using contact or laser probes. However, 
the exact characterization of natural surfaces is, in general, very difficult. The 
problem of defining optimal parameters for natural surface roughness has been 
investigated in many studies (e.g. [44]-[49]). In general, the analysis of scattering in 
remote sensing is performed by using random rough surface models, where the 
elevation of surface, with respect to the mean plane, is assumed to be a stationary 
stochastic process with a Gaussian height distribution. A different method of 
surface characterization is based on fractal description of surfaces [44]. 
 
An isotropically rough surface can be described by a one-dimensional random 
function z = f (ρ,φ) with zero mean, i.e.   <f (ρ,φ)> = 0. For a stationary random 
process, we have:  

)(),(),( 21
2

2211 ρρσφρφρ −= Cff z  (10) 

where σz is the height standard deviation and C is the autocorrelation function 
(ACF) which is a measure of the correlation of surface profile f(ρ)  at two different 
locations ρ 1 and ρ 2.  
 
The most common ACFs used in remote sensing of land surfaces are the 
Gaussian correlation function  

)exp()( 2

2

l
C ρρ −=  (11) 

and the Exponential correlation function: 

)exp()(
l

C
ρ

ρ −=  (12) 

where l is the correlation length.  
The spectral densities are respectively: 
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for the exponential ACF and 
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for the Gaussian one. 
 
Besides these two functions, several other kinds of autocorrelation functions have 
been developed and applied. It is worth quoting the mixed-exponential and the 1.5-
power which behave like an exponential for smooth surfaces and like a Gaussian 
for rough ones. In [50] several power ACF have been analyzed, pointing out that 
this type of functions shows the best performance in modeling the roughness of 
natural soils with respect to the Gaussian and exponential ones. 
 
In addition to the height function f(ρ), the slope function α(ρ) = f’(ρ) (<α(ρ)> = 0) is 
also an important characterization of the rough surface. Given a stochastic 
process, its derivative is also a stochastic function. If a random surface f (ρ) is 
generated by a Gaussian process its derivative f’(ρ)  is also Gaussian and its slope 
variance s2 is related to the second derivative of its correlation at the origin i.e. [51]: 

 )0("2 2
2

2
2 C

l
s z

z σσ
−==  (15) 

For the exponential correlation function the rms slope does not exist. This implies 
that this kind of ACF does not work for very rough surfaces. On the other hand, 
several measurements on natural surfaces have shown that the exponential ACF 
best represents the soil roughness. These two facts are contradictory: some 
explanations could be that ground measurements are not much accurate (maybe 
due to the finite length of the instruments) or that more complex ACF types must be 
considered in the modeling. In [52] a multi-scale approach has been analyzed: the 
exponential-like correlation function was simulated by the sum of three X-power 
ACFs, which are differentiable and have physical insight. The results show that a 
possible reason of the exponential correlation of most natural surfaces is that they 
contain more than one scale of roughness and that a multi-scale ACF can 
represents better the natural roughness of soil. 
 
2.1.2.2 Fractal description 
An interesting alternative approach is to model the surface by a continuous fractal 
function [53]. This technique can provide a new description of natural soils, since 
fractals are suitable tools for describing mixtures of deterministic and random 
processes. A fractal analysis of perfectly conducting bi-dimensional profiles has 
been performed by Rouvier and Borderies [54], who pointed out the fractal nature 
of the scattered field. The characterization of soil roughness and backscattering in 
terms of fractal Brownian description has been studied by Zribi et al. [55], who also 
validated a model using experimental data. On the other hand, several scientists 
(e.g. [56]-[58]) have shown that the slope and intercept of the power spectrum of 
the soil profile can be additional significant descriptors of the topography of natural 
soils. Moreover, slope S of the power spectrum, computed in a log-log space, 
makes it possible to determine the fractal parameter D according to the relation: D 
= (5 + S)/2  [59]. 

 
 
 

11 



Differently from the common descriptors of roughness (σx and l), the fractal 
dimension is a parameter which describes the scaling properties of a surface, i.e. it 
possesses the property of self similarity. The fractal dimension can be estimated by 
using the classical method of box counting or from the power spectrum of the 
surface profile. 
A basic problem involves incorporating these roughness descriptions into existing 
scattering models to provide essentially the same information as the traditional 
parameters. 
 

2.1.3 The electromagnetic models for bare soil 
The most common analytical models of scattering by dielectric rough surfaces are 
the Small Perturbation Method (SPM) and the Kirchhoff Approach (KA) under both 
the Physical and Geometrical Optics solutions (respectively PO and GO). An 
updated comprehensive treatment of these two approaches is given in [51] and in 
[39]. Further advances include the small slope approximation (SSA) [60]-[63] and 
the Integral Equation Method [64],[65].  The starting point for all of these 
approaches is the Huygens principle, which expresses the field at an observation 
point in terms of fields at the boundary surface (e.g. [51]). The scattered intensities 
are usually decomposed into coherent and incoherent terms. 
The limits of validity of these approaches have been frequently discussed in 
literature, but an exact criterion has not yet been exactly established. Anyway the 
plot in Fig. 2 show the commonly accepted validity range of SPM, PO, GO and IEM 
in the ks-kl plane [66]. 
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Fig. 2 - The validity range of the SPM, PO, GO and AIEM 
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From Fig. 2 it can be easily seen that the validity range of the AIEM cover both the 
SPM and the KA approximations letting it one of the most versatile models for the 
surface scattering. 
 
2.1.3.1 The Small Perturbation Method (SPM) 
The SPM, which is valid when the surface variations are much smaller than the 
electromagnetic wavelength and the slopes of the rough surface are relatively 
small, has found extensive applications in active and passive remote sensing of 
land surfaces. In this model, the random surface z = f(x,y) is decomposed into its 
Fourier spectral components. The scattered wave consists of a spectrum of plane 
waves. The scattered fields can be solved by using the Extended Boundary 
Condition method with the perturbation method. In the EBC method the surface 
currents are calculated first by applying the extinction theorem. The scattered fields 
can then be calculated from the diffraction integral by making use of the calculated 
surface fields [51]. The solution for the one dimensional surface is given in [51]. 
The more complete analysis, carried out up to the second order solution of the 
three dimensional problem with two-dimensional dielectric rough surfaces assures 
energy conservation and can be found in [39]. In this approach the zero order 
solution consists of only a single spectral component, which is simply the Fresnel 
specular reflection from a flat surface at z = 0.   
 
In the first order solution the incoherent bistatic scattering coefficient for a 
Gaussian correlation function assumes the form [67]:  
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where θs, φs θi, φi  are the incident and azimuth scattered and incident angles, 
[ ])cos(sinsin2sinsin 2222

isisisd kk φφθθθθρ −−+= , and the fqp terms are given in [67] as 
functions of the wave-numbers in free space and in the medium, the z components 
of incident and transmitted propagation vectors, and the incident and scattering 
angles.  
The first order solution does not modify the coherent reflection coefficients and, to 
see the correction term for the coherent wave due to the rough surface, the second 
order solution must be calculated. In the second order solution, the bistatic 
scattering coefficients as given in [39] are the following:  
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where: 
 
o ⊥⊥⊥ ′kkk i ,, , are wave vectors denoting scattering, incident and intermediate 

directions respectively 
o )( ⊥⊥ ′− kkW  is the spectral density of the rough surface  
 
The functions fee, fhe, fhh, feh are given in [39]. 
 
2.1.3.2 The Kirchhoff approach 
Physical Optics (PO) 
 
The Kirchhoff approximation, which is valid when the radius of curvature at every 
point on the surface is much larger than the wavelength, assumes that the fields at 
any point on the surface are equal to the fields that would be present on an infinite 
tangent plane at that point. Even with this approximation, no analytic solution has 
been obtained for the scattered field without further simplifications.  The expression 
of the scattered field contains the integral of a function F(α, β) where α and β are 
the local slopes of the surface f(x,y). In one case (physical optics PO), for surfaces 
with small height standard deviation σ, the integrand function F(α, β) is expanded 
about zero slope and only the first terms F(0,0) are kept.  
The bistatic scattering coefficients can be decomposed into a coherent and an 
incoherent part. For a large illuminated area, the bistatic scattering coefficient for 
the coherent component, which only exists in the specular directions, is: 

)()()cos4exp(4 22220
isqpisqpipoCqp kR φφδθθδθσπσ ς −−−=  (21) 

where: 

o subscript p represent polarization of the incident wave and subscript q the 
polarization of the scattered wave  

o Rpo is the reflection coefficient (b is for vertical or horizontal polarization) 
o δqp is the Kronecker delta 
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The bistatic scattering coefficient for the incoherent component is given by 
equation [67]: 
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where: 

o qs      =  hs or vs (horizontal or vertical directions of the scattered field) 
o k       =   2π/λ = wave number  
o λ       =   electromagnetic wavelength 
o α , β  =   local slopes  along x and  y directions 
o θi , φi, θs, φs  =  incident and scattering incident and azimuth angles  
o Rh, Rv = Fresnel reflection coefficients 
o l       =      surface correlation length 
o σ     =      height standard deviation 
o  ),,,,R,R,,( f = ),(F issivhq φφθθβαβα  

o )    (k = k ssiidx φθφθ cossincossin ⋅−⋅⋅  

o  )    (k = k ssiidy φθφθ sinsinsinsin ⋅−⋅⋅  
o  ) + (k = k sidz θθ coscos⋅
 
Geometrical Optics (GO) 
 
When the wavelength is much smaller than the surface height standard deviation, 
we can assume under the geometrical optics limit (GO) that scattering occurs only 
along directions for which there are specular points on the surface excluding local 
diffraction effects. The bistatic scattering coefficients are proportional to the 
probability of the occurrence of the slopes, which specularly reflect the incident 
wave into the observation directions. The asymptotic solutions to the vector 
scattering integrals can be obtained using the stationary-phase method. In this 
approach the coherent component vanishes and the cross-polarized 
backscattering coefficient is zero since the Fresnel coefficients are evaluated at 
normal incidence. The bistatic scattering coefficient is expressed by [39]: 

ab
dz

dydx

dzsi

d
qp f

Ck
kk

Ckkk

k

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
−

×
=°

)0("2
exp

)0("2ˆˆ 22

22

24
4

4

ς
ς

σσ
σ  (23) 

where: 
 
o fqp = g (kx, ky, kz, ksx, ksy, ksz, σ, Rh, Rv, θi, θs, φi, φs)  
o (kx, ky, kz) and (ksx, ksy, ksz) = components of incidence (ki) and scattered  (ks) 

wave vectors 
o kd = ki- ks = {kdx, kdy, kdz} 
o C”(0) = second derivative of the autocorrelation function computed in the origin 
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It should be noted that the bistatic scattering coefficients satisfy reciprocity but 
violate energy conservation i.e. by ignoring multiple scattering there is a loss of 
energy.  
Moreover, at high incidence angle the shadowing effect, which is neglected in the 
previous formula, becomes important. To take this effect into account the bistatic 
coefficients can be modified by introducing a shadowing function derived by Smith 
[68] and Sancer [69] (see also [39]). The modified coefficients σm

qp become: 
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In (25) and (26) µ=cot(θ). By adding this factor, the energy budget is improved, but 
the sum of reflected and transmitted energy is always less than unity and the 
difference is higher for H polarization [39]. 
An analytical theory for polarimetric scattering by 2D dimensional anisotropic 
Gaussian surface based on second order Kirchhoff approximation has been 
developed in [70]. The study was developed for any surface slope and height 
distributions assumed to be statistically even. The model is based on the geometric 
optics and takes into account the shadowing effect within the first- and second-
order illumination functions. The computation of the incoherent scattering 
coefficient requires only threefold integrations allowing a relatively small computer 
time.  It has been shown that the cross incoherent scattering coefficient is nil due to 
the shadow. The second-order incoherent scattering coefficient is proportional to 
the product of two surface slope probabilities for which the slopes would specularly 
reflect the rays in the double scattering process. In addition, the slope distributions 
are related to each other by a propagating term, equal to the modified 
characteristic function derived over the elevation difference where both reflections 
occur. This result generalizes the one obtained by Sancer [69] for any process in 
the case of single scattering.  
Simulations performed with various versions of the model (first and second order), 
with and without shadowing were compared with numerical simulations in [71]. 
From the obtained results, a general conclusion of the applicability of the method 
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was the following. For rms slope equal to 1, the model can be applied for incident 
angles θi, greater than 40°, for which the higher order contributions vanish. This 
means that if the rms slope diminishes, then the lower limit θi, should decrease. 
From the simulations, this point was not verified since kσζ is not large enough to 
use the geometric optics approximation. Thus, the first restriction of the model 
seems to be that kσζ  must be greater that 2π. According to the surface slope, the 
greater is the rms slope, the larger must be the incident angle in order to eliminate 
the higher order contributions. For a dielectric surface, θi, decreases when |εr| 
decreases because a part of energy is transmitted in the lower medium leading to 
the higher order contributions vanishing more quickly. 
 
2.1.3.3 The Small Slope Approximation 
 
The Small Slope Approximation (SSA) is one of the “non classical” methods 
proposed to solve the problem of scattering of electromagnetic waves from a rough 
surface, bridging the gap between the ranges of applicability of “classical” methods, 
such as Kirchhoff approximation (valid in the high frequency limit) and the Small 
Perturbation Method (SPM) (valid in the low frequency limit). SSA has been 
proposed by Voronovich [62],[72] who demonstrated that, following an approach 
very similar to the SPM, it is possible to derive a solution for the scattered and 
transmitted fields which are valid for surface with small slopes. A comprehensive 
description of the model can be found in [73].The limit of applicability of SSA is: 

k
kz<<∇ς  (28) 

where ∇ζ is the gradient of the surface height, k is the wavenumber and kz is the 
vertical component of the propagation vector of the incident plane wave or any 
other plane wave generated by the scattering phenomena and sensibly different 
from zero. This condition basically requires the maximum slope of the surface 
being much smaller than the grazing angle (angle respect to the horizontal) of any 
wave involved in the process. The authors claim that this condition does not 
depend on the frequency of the incident wave, as opposed to the SPM which 
requires:  

1<<ςzk  (29) 

The mathematically formulation of SSA is quite involved, even if it basically follows 
the formulation of the SPM proposed by Rice [74]. The scattered field of arbitrary 
polarization (similar considerations apply to the transmitted one) is represented 
trough a plane wave expansion The amplitude S(ki,k) of each plane wave 
component (named the Scattering Amplitude SA) with propagation vector k 
depends on the incident propagation vector ki  and incident and observed 
polarizations. A key point of the formulation is the representation chosen for SA in 
order to satisfy few symmetry conditions of the solution regarding arbitrary vertical 
and horizontal translations of the rough surface. The following generic 
representation is chosen: 

[ ] [ ] ξ);r;k,k()r()(r)kk(exp
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where subscript “t” indicates the horizontal component of vectors (rt is the generic 
point on the xy plane where the height of the surface is ζ and kt is the horizontal 
component of a wave propagation vector). 
The Fourier transform representation is introduced for the functional ϕ(ki,k;rt;[ζ]) of 
the rough height profile ζ(rt), so that the previous equation becomes: 
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where  

[ ] [ ] ξζζϕ ξ de j∫ Φ= ⋅ );ξ;k,k();r;k,k( i
r

ti
t  (32) 

and the bi-dimensional variable ξ is a generic point in the Fourier transform domain 
of variable rt, and function ζ(ξ) is the Fourier transform of the surface height.  
Similarly to the SPM formulation, a series expansion is introduced for the SA. In 
this case the series expansion is introduced for functional Φ(k,ki; ξ: [ζ]) which 
depend on the surface profile or its Fourier transform ζ(ξ). For this purpose it is 
considered the integral-power series applicable to smooth functional of ζ(ξ), which 
is a generalization of the Taylor series of a function of variable x. Assuming again 
the transformational conditions mentioned before, introducing such expansion 
leads to the following formula (omitting the dependence on k,ki): 
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The key point is the observation that in the expression of SA the following integral 
has to be computed:  

[ ]∫ Φ⋅ ξ);ξ(trξ de j ζ  (34) 

By substituting the above expansion in this integral, the nth order term can be 
estimated as follows (reported here up to the 2nd order for sake of simplicity): 
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By considering the mean value of the integrand function Φ2: 
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where a well known property of the Fourier transform of the derivative has been 
applied. More generally, the nth term of the expansion gives rise to a term whose 
order of magnitude is the nth power of the gradient of the surface profile. This 
shows that the series expansion of SA can be valid when |∇ζ| (i.e., the slope of the 
surface) is small enough, as stated at the beginning. 
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The mathematical formulation prosecutes in a very similar way to the SPM. Limiting 
the solution to the first term (the zero-order term is a plane wave propagating in the 
specular direction) a random surface is subsequently considered and the relevant 
statistical moments of the scattered field are computed. Considering a spatially 
homogeneous random function representing the surface height and with Gaussian 
statistics, as done in most of the formulations, the coherent component is 
associated to the specular wave, whilst the power density of the incoherent 
component is associated to the variance of the Scattering Amplitude (SA). In the 
far field zone the bistatic scattering coefficient is also computed for a generic pair of 
incident and observed polarizations p and q, leading to the following formula for the 
first order approximation in the SSA (it differs of a factor 4π from [62] to account for 
a different definition of the coefficient): 
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where σ2 is the variance of the random function ζ(rt) representing the surface 
height, and B(rt) is its covariance function equal to the expected value 
B(rt)=<ζ(ρt)ζ(rtρt)> and related to the surface autocorrelation function ρ by 
B(rt)=σ 2ρ(rt). The factor Bpq(ki,k) is function of both incident and scattered 
propagation vectors and permittivity of the medium underneath the surface in a 
way dependent on polarizations (see [61] for the complete expression of such 
factor).  
It is worth to note that Plant [75] has demonstrated that for the backscattering case 
this equation for the backscattering coefficient yield to the same expression 
provided by the IEM when considering single scattering contributions only. 
SSA has been extensively used to simulate the scattering behaviour of the sea 
surface, either alone or in the framework of a double scale approach in order to 
account the effect of steep waves (in this case SSA does not require to introduce 
arbitrary parameters, such as the separation among small scale and large scale 
sea wavenumber introduced when considering the SPM). In particular, SSA has 
been used to simulate the bistatic scattering originating from the sea surface 
illuminated by the GPS signal. 
 
2.1.3.4 The IEM model and its evolutions (IEMM and AIEM)  
 
The Integral Equation Method (IEM) was conceived by Fung and his collaborators 
in the middle of the 80’s with the main purpose of extending the validity range of 
the classical asymptotic approaches. The model evaluates the scattering 
coefficients of a randomly rough dielectric surface by using relatively simple 
algebraic formulas. A first systematic version of the IEM was published in 1992 
[64]. In the following fifteen years, the model was improved in various successive 
versions to better evaluate the scattering from natural surfaces for the various 
measurement configurations and types of roughness. 
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The IEM model (first version Fung 1992) 
Assuming a plane wave impinging on a rough surface, the far-zone scattered field 
in the medium above the surface is calculated with the Stratton-Chu formula 
[64],[65]. To obtain an accurate estimate of the total tangential field, the basic idea 
is to solve the integral equation to which the tangential field on the surface must 
obey (for this reason it is named as an Integral Equation Method). The IEM add a 
complementary term (c) to the classical Kirchhoff (k) tangential field. Such as the 
tangential fields, the scattered fields are expressed as a combination of the 
Kirchhoff (superscript k) and the complementary (superscript c) term:  
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p and q denote the incident and receiving polarization respectively, R is the range 
of the observation point, k is the wavenumber, E0 is the amplitude of the incident 
field, x,y,x’,y’ are integration variable in the space domain and u,v are integration 
variables in the Fourier domain. 
fqp and Fqp are dimensionless, complicated functions which depend on spatial 
variables. Several approximations are made to make these functions independent 
of spatial variables. In particular:  
 
1. it assumed that the surface slope is moderate  
2. the terms in the tangential field expressions involving the sum of the Fresnel 

reflection coefficients are disregarded. 
3. In the expression of fqp, the Fresnel reflection coefficients are approximated as 

a function of the incident angle at low frequencies (surface with small or 
moderate scale roughness) and as a function of the specular angle at high 
frequencies (surface with large scale roughness). Instead, the incidence angle 
is considered for Fpq.  

4. The complementary term is derived by inserting the scattered field derived by 
the Kirchhoff approximation into the integral equation to which the tangential 
field on the surface must obey. In other word, it is a sort of second iteration for 
the Kirchhoff solution.   

5. In the spectral representations of Green’s function and its gradient (introduced 
in the complementary fields), the phase term with the absolute sign can be  
dropped because if the surface points are close together then the difference 

zz ′−  will be small. On the other hand, if the two surface points are far apart 
then they cannot be correlated and hence will not contribute to the average 
power.  

6. In the spectral representation of the gradient of the Green’s function, the last 
term of vector g=ux0+vy0±z0√(k2-u2-v2) is neglected, since it tends to cancel 
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itself when the ensemble average is made for rough surfaces. In other words, it 
is assumed that the Green’s function is constant along the vertical direction 
when the complementary tangent surface field is computed. These last two 
assumptions have been revised in the following versions by the authors. 

7. Moreover, the spatial dependence of both functions through the slope terms is 
removed by performing integration by parts and then ignoring the edge terms. 

  
Once the field coefficients, fqp and Fqp, are made independent of spatial variables, it 
is possible to provide the expression of the incoherent scattered power. It is 
obtained subtracting the mean squared power from the total power: 
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The corresponding bistatic scattering coefficient is:   
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From the above expression, it follows that the scattering coefficient is given by the 
sum of three terms: the Kirchhoff, the complementary and the cross terms 
(superscript kc). To carry out the average operation a hypothesis about the type of 
surface height distribution is necessary. The assumption of a Gaussian height 
distribution simplifies the calculation of the incoherent power terms [64],[65]. The 
model that is obtained is expressed in terms of multiple integrals and can be 
represented in two different forms depending upon whether the surface height is 
moderate or large in terms of the incident wavelength (kσζ). A large normalized 
surface height may be interpreted as corresponding to high frequency.  
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In the case of moderate roughness, the exponential factor involving the surface 
correlation under the integral is expanded into series and some terms, which do not 
give significant contribution in the reduction of the integral, are disregarded. 
Instead, when the surface height is large, a stationary phase evaluation is carried 
out and it is necessary that the normalized surface correlation is close to unity 
otherwise the integrand functions present in the scattering coefficient are not 
appreciable. Moreover, for each case, in the expression of scattering coefficient it 
is possible to distinguish two types of terms: one representing single-scattering, 
and the other representing multiple-scattering. This division is important to identify 
weather single or multiple scattering is important for application. Formulas for 
bistatic scattering coefficient valid separately when kσζ ≤ 2 and for large kσζ are 
given in [65].  
It is important to note that this model does not include the effect of shadowing due 
to the roughness of the incident and scattered intensities. Thus, an additional 
function is needed to account for this effect. Some shadowing functions have been 
derived to correct the single scattering coefficient. The method of correction is 
simply multiply the scattering coefficient by the shadowing function, which depends 
on the cotangent of the incident angle and the surface slope. While this 
multiplication is suitable for the single scattering, for multiple scattering it cannot 
represent shadowing of the surface for the re-scattered field. A possible way to 
include it into the multiple scattering coefficients is to consider two shadowing 
functions: one depends on the cotangent of the incident angle and the other on the 
cotangent of the incident angle of the re-scattered field. Since the scattering terms 
appear in the form of a two dimensional integration with respect to the spectral 
variables (with respect to the Fourier transform representation of the Green’s 
function), the latter shadowing function should be integrated. In this way the re-
scattered field along every direction is modified by a shadowing function evaluated 
along that direction. Instead the other function is placed outside to multiply the 
integrals [64]. 
 
The IEMM model (Hsieh et al., 1997, 2003) 
 
Several tests of the IEM model have shown that neglecting the contribution from 
two surface points that are neither near nor far can be illegitimate. Thus an 
improved version of the model has been proposed, which removes the assumption 
in the spectral representation of the Green’s function used in the scattered field to 
compute multiple scattering (single-scattering terms were left unchanged) [75]. 
 
The far-zone scattered field becomes: 
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For the expressions of fqp and Fqp, this model keeps the same as given by the IEM. 
This leads to another approximation, the validity of which is justified by 
comparisons with measurements taken on statistically known surface. As a 
consequence it is required a revaluation of the average power and the scattering 
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coefficients, but, the added phase term factor, zzq ′− , only affects the cross and 
complementary terms of the averaged power, whilst the Kirchhoff term remains the 
same as the IEM model [76]. 
Moreover it was found that keeping of such a phase term is needed to identify 
upward and downward scattering intensities. To understand this necessity Fig. 3 
shows the scattered radiation generated by single scattering. If S represents an 
applicable shadowing function for the randomly rough surface, after the 
impingement of the incident wave on the surface, only the fraction S of the upward 
scattered power leaves the surface permanently. The other fraction of the upward 
propagating power, 1-S, is intercepted by the surface and becomes a source of 
multiple scattering. In other words, 1-S of the total illuminated area is re-illuminated 
by the upward scattered power. Similarly, only an S fraction of the total illuminated 
area is re-illuminated by downward scattered power. These intercepted scattered 
powers represent a further contribution of the incident power on the surface in 
multiple scattering processes. Therefore, it is not possible to assign the correct 
shadowing effect to multiple scattering calculation without identifying the upward 
and downward scattered intensities. In case of bistatic scattering an appropriate 
amount of shadowing is included to the incident and scattered power [76]. 
 
Comparisons of bistatic single, multiple and total scattering predicted by the IEMM 
model with measurements taken on a statistically known perfectly conducting 
Gaussian distributed surfaces with Gaussian ACF  have pointed out the significant 
contribution of multiple scattering on very rough surfaces. The agreement between 
model predictions and laboratory measurements was within a fraction of 1 dB at all 
scattering angles [77].  

 
 

 
Fig. 3 - A surface scattering geometry showing single and multiple scattering rays. 

On average the upward scattered field will illuminate (1-S) portion of the total 
illuminated area and the downward scattered field will illuminate S portion of the 

total illuminated area (After [76]) 
 
A modification of the IEMM (Chen et al., 2000) 

 
In the first version of the IEMM the complementary field coefficients Fqp are kept 
the same as in the IEM. In a further improvement [78], also these coefficients are 
modified to account for the absolute phase term within Green’s function. So, these 
coefficients are re-derived based on new surface slope expressions and are 
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distinguished in Fqp,up and Fqp,dn to denote the upward and downward scattering 
parts. A comparison between the bistatic scattering coefficients computed with 
numerical simulations FDTD) for a conducting Gaussian surface with Gaussian 
ACF (kσζ = 0.35, kl = 4.5) and the predictions of the re-derived IEMM model with 
and without multiple scattering has shown an overall good behavior of single 
scattering. However, in regions close to the minimum values of scattering the 
contribution of multiple scattering is significant (Fig. 4). 

 
Fig. 4 - Comparisons of azimuthal angular behavior of scattering coefficient 
simulated with FDTD and IEMM with and without multiple scattering for co-

polarization vv (a, c, e), and  cross-polarization hv (b,d, f). Conducting Gaussian 
surface with Gaussian ACF (kσ = 0.35, kL = 4.5),  θi = 30° incidence angle, θs = 5o, 

30o, 50° scattering angles. (After [78]). 
 
An update to the IEM  (Wu, 2001; Fung, 2004) 
 
In the IEM the spatial dependence of the Fresnel reflection coefficients is removed 
assuming that the local angle of incidence can be approximated as either the 
incident angle in the low frequency region (for slightly or moderate rough surfaces) 
or the specular angle in the high frequency region (for surface with large roughness 
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scale). The separation of these two regions leads to a discontinuity in the angular 
response reflection of the coefficients, and therefore to an unsatisfactory scattering 
behavior. This is particularly true for low dielectric constant or high loss surfaces 
because higher values of dielectric constant have fewer variations in the Fresnel 
reflection coefficients [79]. Another problem arises about the estimate of the 
Fresnel reflection coefficients in the intermediate region where both approximations 
fail. 
For these reasons a transition model for the reflection coefficient was developed. 
Such model allowed the argument of the Fresnel reflection coefficients to change 
from the incident angle to the specular angle as the operating frequency and/or 
surface roughness changed from small to large values [79]. The Fresnel reflection 
coefficients, Rv(θ) and Rh(θ), that appear in the single scattering IEM, were then 
generalized by replacing them with new transition reflection coefficients, Rv(T) and  
Rh(T) [79],[80].   
Comparisons of model results with numerical simulations using the Method of 
Moments were performed for surfaces with dielectric constant ε =3 - j0.1, surface 
rms height σz = 0.429 cm, correlation length l = 3 cm, and characterized by three 
different correlation functions (Gaussian, 1.5 Power, Two parameters). The 
comparisons, carried out for the backscattering as a function of frequency and 
incidence angle, with Fresnel reflections coefficients evaluated at θi, 0, and T, 
showed that the difference between the three predictions was more appreciable at 
higher frequencies and higher incidence angles. In all cases, the analysis indicated 
that there was a region where neither Rp(θi), or Rp(0) was applicable and where the 
use of the transition function in Fresnel reflection coefficient were in good 
agreement with simulations of both polarizations. 
A further test of  the validity of the  transition function was carried out by comparing  
single scattering IEM simulations using the Fresnel reflection coefficients evaluated 
at θi,θs and T with experimental data acquired at the EMSL of the Joint Research 
Centre (JRC) in Italy on a Gaussian dielectric surface with Gaussian ACF (σz = 2.5 
cm, l = 6 cm) [80]. Data were taken at 35° incidence angle in the frequency range 
0.5-5 GHz The corresponding normalized rms height, kσz changed from 0.26 to 
2.6, making the scattering property changing from low frequency condition to a high 
frequency condition. The comparison showed that, simulation with Rp(T) was able 
to well match experimental backscattering data in the transition region between 2.3 
and 4 GHz  making a link between simulations using Rp(θi), in the low frequency 
region and simulations using Rp(0) above 4 GHz. 
It should be noted that the transition model is demonstrated for the backscattering 
only. Its applicability to bistatic scattering remains the subject of further study. 
 
The IEM2M model (Alvarez-Perez, 2001) and the Advanced Integral Equation 
(AIEM)  (Chen, 2003a; Wu, 2004)  
 
The last version of IEMM, with the modification on the complementary coefficients 
Fqp, still contains an erroneous assumption for which terms corresponding to 
second-order scattering occurring through the medium below the surface are 
treated as occurring within the upper medium. Thus, the second-order scattering is 
not correctly described [81]. 



The main problem arises because the IEMM does not provide treatment to 
separate the medium in the spectral representation of Green’s function and its 

gradient [81],[82]. That is, the phase term zzjqe ′−  is maintained, but no distinction 
is made between q in medium 1 and medium 2 for this phase term. Hence, second-
order scattering within medium 1 is mixed inappropriately with second-order 
scattering through medium 2. 
So both the IEM2M and the AIEM fully remove the two IEM assumptions of 
dropping the phase term with the absolute sign in the Green’s function and its 
gradient, and cancelling  the term with ±  in the definition of the vector g when the 
ensemble averaging is made. Moreover, they express the complementary term of 
the scattering field as the sum of two contributions: one represents the interaction 
between two points on the surface that can take place through the incident medium 
and the other the interaction through the medium below the boundary (Fig. 5). For 
each case a difference is made between waves propagating upwards and 
downwards. 
 
 
 

 
Fig. 5 - The geometry of scattering from a rough surface. F(+) represents the 

upward re-radiation, and F(-) represents the downward re-radiation. They may go 
through both the upper and lower medium.(After [82]) 

 
Although both approaches are based on the same concept for the complementary 
field, the mathematical representation is slightly different as also it is different the 
method of evaluation of the incoherent power and the assumption on the local 
angle of the Fresnel reflection coefficients. 
The IEM2M re-derives the entire formulation of the model, for surfaces with small 
or moderate heights and for surfaces with large heights, with the Fresnel 
coefficients chosen in that way: 
 
1. the first interaction of the incident wave with the surface in a second-order 

process contributes with a reflection coefficient characterized by the incident 
angle and transmitted polarization 

2. a first-order term contributes with a reflection coefficient characterized by the 
scattering angle and receiving polarization [81]. 
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Instead, the AIEM model, that represents a directed modification of the IEMM [78], 
expresses the above mentioned contributions for the complementary field in a 
simple way.  It can be written as the sum of four terms, from which it is possible to 
recognize the terms related to the interaction between two points that happens 
through the incident medium (  and ) and those related to the 

interaction through the medium below the boundary (  and ) 
[82],[83]: 
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The condition z > z’ represents the upward propagation, while the opposite 
represents the downward propagation. It is noted that when dealing with 
complementary field coefficients, the reradiated fields can propagate through 
medium 1, denoted by ( )+

1qpF , ( )−
1qpF , and through medium 2, denoted by , 

, as shown in Fig. 5. 

( )+
2qpF

( )−
2qpF

Once these scattering fields are obtained, the single scattering terms that in the 
IEMM were left the same as those present in the first IEM version, are re-derived 
since mathematically such terms should be modified according to the derivation 
keeping the absolute phase term within Green’s function [82]. The multiple-
scattering terms instead are left as the same formulated in the IEMM [78],[83].  
The AIEM model has been validated comparing the prediction results for 
backscattering with numerical simulations and measured data in terms of angular, 
frequency and polarization dependence [83].  
It has been shown that the difference between the results of the AIEM and the IEM, 
both using the transition model for the Fresnel reflection coefficient, is quite small 
on slightly rough surface (rms slope = 0.235) suggesting that the absolute phase 
term in the Green’s function can be ignored. Instead, when the roughness 
increases to kσz = 3.0, kl = 6.0, the difference between the two models becomes 
significant. It was also observed that the difference is larger for smaller dielectric 
constants. This indicates that the absolute phase term in the Green’s function 
cannot be dropped out for surfaces with a large slope and a small dielectric 
constant [83]. 
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We can remark that the refinement work carried out from the first IEM to the last 
AIEM consisted in removing some of the original approximations. This was done 
either to obtain a relatively simple (but efficient) scattering model and to limit the 
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2.2 Scattering and emission from a snow layer 
neral modeled as a 

n be considered as a dense 

ous layer of snow can be treated as a continuous random medium 

ture 

.2.1 The Strong Fluctuation Theory 
 snow is modeled like a homogeneous 

the singularity of the DGF is taken into account to evaluate the effective 

- me shape of the correlation function 
(related to the shape of the scatterers) 

computing time power of the 90’s PC. It is worth to note that the computational time 
of the AIEM is much heavier than the first IEM, and in many practical cases the 
original formulation is fully acceptable. However, at the present state of the art, the 
AIEM represents perhaps the best model for simulating surface scattering. Indeed, 
it combines the high accuracy in evaluating the scattering coefficients with a high 
versatility in modeling the various statistics of the soil (Gaussian, Exponential, Two 
scale, etc.). 
 

In microwave remote sensing the snow cover is in ge
heterogeneous slab upon a semi-infinite medium. In such representation there are 
three main contributions to the total emission: the upward emission from the 
snowpack, the one of the soil attenuated by the overlying layer and the downward 
snow emission reflected by soil. In more sophisticated approaches the multi-layer 
nature of the snow cover and the coherent behavior of the e.m. waves in such 
complex media are also taken into consideration.  
From the electromagnetic point of view, snow ca
heterogeneous medium composed of ice particles, which occupy an appreciable 
volume fraction (of the order or bigger than 10 %), air, and, in the case of wet 
snow, liquid water. This latter can appear as a thin film around ice grain and as 
pockets among ice particles. In such a dense medium, where there is more than 
one scatterer within a wavelength distance and the dielectric properties of the 
particles are significantly different from those of the background, the assumption of 
independent scattering, and then the conventional radiative transfer (CRT), are not 
valid anymore.  
The inhomogene
where scattering effects are taken into account by means of random fluctuations of 
permittivity described by a correlation function, or as a discrete scattering medium 
composed of scattering particles embedded in a host background. Both methods 
can address coherence effects and satisfy energy conservation [39],[67],[84].   
The first theories of scattering from random media disregarded the singular na
of the dyadic Green’s function (DGF) and were valid only for the case of weak 
fluctuations of dielectric constant (WFT). When dealing with remote sensing of 
snow cover the strong variations of the permittivity must be taken into account. 
 

2
In the Strong Fluctuation Theory (SFT) the
medium with permittivity fluctuations described by a correlation function: the 
variance characterizes the strength of the permittivity function of the medium and 
correlation lengths corresponding to the scales of the fluctuation. The major 
features of SFT are: 

 
- 

permittivity of the random medium  
the exclusion volume has the sa
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An effe ze both absorption and scattering 
ffects due to randomness of the medium. The scatterers (i.e. ice grains) 

pace (host) medium with permittivity ε  (air) filled with scatterers with permittivity ε  

rs extend the theory to the case of a three-component mixture. The 
omponents of the infinite half space are two types of scatterers (ice particles and 

88] who reformulates the SFT by 
ccounting for a medium with N-constituents and considers the case of ice grains 

ctive permittivity is used to characteri
e
embedded in the background are transformed into dipoles embedded in a medium 
with an auxiliary permittivity εg. The latter can be seen as a quasi-static permittivity 
taking into account absorption effects. The effective permittivity, which considers 
also the scattering effects, is computed from εg and from the correlation function 
describing permittivity fluctuations of the continuous random medium. Once the 
effective permittivity has been obtained, the brightness temperature can be 
computed from the coherent wave approach described in the following paragraph. 
 
A first formulation of the SFT [85] represents the snow layer as an infinite half 
s b s
(ice grains). The fractional volume occupied by the scatterers is f and the one 
occupied by the host medium is (1-f). In [86] several correlation functions are 
assessed, for both isotropic and anisotropic cases. All of these functions satisfy the 
previous requirements and lead to an extension of the classic Weak Fluctuation 
Theory (WFT).  
 
In [87] the autho
c
water droplets with permittivity εs1 and εs2 and volume fraction fs1 and fs2 
respectively) embedded in a background medium (air with permittivity εb). This 
representation is useful in modeling wet snow that is composed by ice grains, 
water and air. The expressions of effective permittivity and scattering coefficients 
remain in the same algebraic form of the two-component case with the addition of 
small correction coefficients (see Appendix 2).  
 
The case of wet snow is treated by Stogryn [
a
covered by a thin film of water. Special attention is paid to the case of spherical 
inclusions for which the susceptibility ξi has a simple form. The scattering 
coefficients remain the same and only the effective permittivity is changed 
accounting for the N possible values εi (i=1..N) that ε(r) can assume. In the model, 
wet snow is modeled as an isotropic random medium consisting of air, ice, and 
water (both as menisci between ice grains and as a thin film surrounding ice 
particles). The manner in which water is distributed in the snow has a major effect 
on the snow dielectric properties. At frequencies below 12 GHz, corrections due to 
the finite-ice-grain size is small so that εg is close to the true dielectric constant. 
The fraction of water present as a film ff, which fits experimental data is 
independent of frequency to within experimental accuracy of the determination of 
the dielectric constant, and well fits data for both the real and the imaginary part of 
the dielectric constant. From the fitting of the experimental data, the author obtains 
ff = 0.24 for all the frequencies between 8 and 12 GHz. It should be noted that the 
Polder-Van Santen theory (εg calculated as in [87]) corresponds to the limiting case 
of ff = 0. It is shown that for a snowpack with density = 0.442 g/cm-3 and total water 
fraction = 2.5 %, the Polder-Van Santen formula underestimates Im(εg) by a factor 
of 13.1 at 8 GHz and by a factor of 8.9 at 12 GHz. The underestimate is less 
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l investigations for a long time, and data are 

s stated before, according to the Strong Fluctuation Theory the random medium 
eneous layer with a spatially fluctuation permittivity. By 

pronounced for Re(εg) where the Polder-Van Santen theory is lower by a factor of 
about 1.05 at the two frequencies. 
The permittivity of snow under various physical conditions has been subject of 
many theoretical and experimenta
currently available at frequencies up to 90 GHz (e.g. [89],[90],[35],[36]).  More 
recently, Arslan et al. [91] computed the effective permittivity of wet snow by using 
the SFT for a two phase (dry snow with nonsymmetrical inclusions of liquid water) 
and a three-phase (air, and spherical inclusions of ice and water) model. The 
results indicated that the shape and the size of inclusions are important. It should 
be noted that penetration in dry snow is very high up to frequencies of Ku band. A 
small quantity of liquid water (1-2%) can reduce penetration to a fraction of the 
observation wavelength.       
 
2.2.1.1 Wave approach 
A
is modeled like a homog
using the fluctuation-dissipation theorem the brightness temperature of a slab 
above a semi-infinite medium can be easily calculated. Moreover, using the wave 
approach is possible to extend the results to a multilayer snowpack [92]. 
 

Ẑ

ε2

εg

ε0

z=0

z=-d

AIR

SNOW

GROUND

 
Fig. 6 – Structure of the simple snowpack modeled like in [92]: there is one layer of 

snow above a semi-infinite medium (the soil). 

For a single layer  medium (Fig. 6), 
e brightness temperature at the zeroth order is expressed by [51] 
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where T1 and T2 are  respectively the snow and soil temperatures, Rp,mn and Tp,mn 
are the reflection and transmission coefficients (p=v or h, indicates polarization,  
mn = 01,12 indicates transition between layers) and the double apex stands for the 
imaginary part. 
 
If the T1=T2 and εeff~εg (the random medium is only absorptive, i.e. the scattering 
coefficient can be disregarded) the previous equations become  
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which are the well known brightness temperatures for an absorptive layer above a 
emi-infinite medium [8], [51],[84]. s
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Fig. 7 – The structure of a multilayer snowpack overlying a half-space. The 
interfaces are considered as flat [51][83]. 
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To account for the layered structure of natural media, it is also possible to extend 
(51)-(52) to a multi-layer case (Fig. 7). In [92] and [51] the fluctuation-dissipation 
theorem is applied to such complex media and the final expression of brightness 
temperature is 
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re the coefficients Ar,Br,Cr,Dr, r=1..N, and transmissivity Tv, Th can be calcula
cc

 

.2.2 Dense Medium Radiative Transfer Theory (DMRT) 

reciable (f > 0.1) and the dielectric properties of the particles are 
significantly different from that of the background medium, such as in the case of 
snow, the particle positions become correlated. Thus, the assumptio
independent scattering overestimates the scattering and the Conv l 
Radiative Transfer (CRT) cannot be used anymore. Indeed, if the particles scatter 
independently, the extinction rate is linearly proportional to the number of particles 
er unit volume no and to f = no vo , where vo is the volume of a single particle. 
owever, physical intuition suggests that that the linear relation cannot be correct 

for arbitrary f, because when the entire volume is occupied by scatterers, the 
medium becomes homogeneous (f = 1) and scattering should be equal to zero. 
Experimental data taken on a slab containing densely distributed spherical pa s 
overlying a homogeneous half-space confirmed that, in a dense medium with small 
particles, both the coherent attenuation rate and bistatic intensities first increase 

 the volume fraction further increases [93],[94] (Fig. 8). Thus 
ttenuation rates and bistatic scattering exhibit a peak as a function of the 

less than those 
entional radiative 

whe
a

ted 
ording [51]. 

2
The classical radiative transfer theory has been successfully used to predict the 
electromagnetic behavior of the discrete models where the scatterers are very 
sparse. Unfortunately, when the fractional volume occupied by the scattering 
particles is app

n of 
entiona

p
H

rticle

with the volume fraction of the particles until a maximum is reached, and then 
decrease when
a
concentration of particles. The magnitudes of both are also 
predicted by the independent scattering assumption and the conv
transfer theory. 



 
Fig. 8 - Theoretical results of normalized attenuation rates as a function of 
fractional volume compared with experimental data. Circles represent the 

experimental data. All the data have been normalized by the attenuation rate 
based on independent scattering at a fractional volume of 100 percent (After [94]). 

  
Dense media scattering has been the subject of continual interest since the 
beginning of 80’s because of the importance of the effects from the correlation of 
scatterers [95]-[97]. In Fig. 9 is depicted a comparison of the pair distribution 
functions g(r) of the scatterers for several volume fractions in a dense medium and 
in a sparse one, as a function of the distance between the particles. It is possible to 
see that, in a dense medium, the probability that two particles are at a certain 
distance decrease as the distance increase. Moreover, when the density increases 
(and the distance among the scatterers decreases) also the probability to find the 
particles closer each others increases. When the separation between the particles 
is 3-4 diameters, g(r)~1, which means that the probability of this spatial 
configuration is almost zero. 

 
 

Fig. 9 - The pair distribution function of the scatterers in a dense medium with 
respect to a sparse one (represented by the independent distribution). (After [84]) 
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 The Dense Medium Radiative Transfer equations (DMRT) were derived from the 
wave theory under the quasi-crystalline approximation with coherent potential 
(QCA-CP) [98]-[100] on the first moment of the field, and the ladder approximation 
of correlated scatterers on the second moment of the field [67],[101],[102]. The 
basic physical idea is that because the particles are randomly distributed, the 
phases of the scattered fields are random, so that the products of scattered fields 
generally average to zero except those terms in the multiple scattering equations 
that result in constructive interference. The mathematical approach is to identify 
and retain only the constructive interference terms in the correlated ladder 
approximation. Putting these terms together gives the DMRT equation.   
The ladder approximation is one of the common approximations used for the 
Bethe-Salpeter equation [102]. Detailed derivations can be found in [96]. The 
reason for choosing the combination of the QCA-CP and ladder proximation is 
that energy conservation is obeyed exactly. Sometimes the dense medium 
rad ts 
d  

 

ap

iative transfer theory is called the radiative wave theory to emphasize i
erivation from wave theory and that does not use conventional radiative transfer
eory in any step of the derivations. In the ladder approximation of correlatedth

scatterers, wave interactions between different particles (whether of far, near, or 
intermediate range) are weighted by the pair distribution function of particle 
positions; therefore the wave interactions of all ranges of distance separation are 
included. The extinction rate, albedo, and phase matrix of the DMRT equation are 
expressed in terms of the physical parameters of the medium [96],[103]. DMRT 
takes the following into account: 1) Scattering by correlated scatterers; 2) the pair 
distribution function of scatterer positions; and 3) the effective propagation constant 
of a dense medium. The improved equations also preserve the advantages of the 
conventional radiative transfer equations: a) Multiple scattering of the incoherent 
intensities is included; b) energy conservation and reciprocity are obeyed; and c) 
the form of the equations remains the same as the conventional radiative transfer 
equations so that numerical solutions are calculated in the same manner [96],[103].  
In [94] the DMRT was applied to study the multiple scattering in a slab containing 
densely distributed particles smaller than a wavelength overlying a homogeneous 
half-space (Fig. 10). The theory was used to explain the phenomena observed in a 
controlled laboratory experiment [93],[104], performed in 1983. In this paper the 
DMRT equations, derived from the Dyson equation under the QCA-CP and the 
Bethe-Salpeter equation under the ladder approximation of correlated scatterers, 
were solved numerically by using the Fourier series expansion and discrete 
ordinate-eigenanalysis approaches [67],[105]. The extinction rate, albedo, and 
phase matrix were related to the physical parameters of the medium.  



 
Fig. 10 - A polarized electromagnetic plane-wave incident upon a slab of densely 
distributed particles (region 1) overlying a homogeneous half-space (region 2). 

(After [94]) 
 
The study considers a slab of densely distributed spherical particles of radius a and 
permittivity εs = εs‘+ iεs”  embedded in a background of permittivity ε. The slab is of 
thickness d and lies above a homogeneous medium with a permittivity of ε2 = ε2‘+ 
iε2”. The DMRT is used to describe the propagation and scattering in the slab. The 
pair distribution function g(r) describes the correlation of particle positions and is 
d
oc

ssumptions are inherent in d ffective propagation constant and 
lbedo: 1) The particle size has to be small compared to the wavelength of interest; 

 
ependent on the physical parameters of particle size a and fractional volume f 
cupied by the particles.  

eriving the eTwo a
a
2) the effective propagation constant K is assumed to have a small imaginary part 
compared with its real part; i.e., K” << K’. Based on these two assumptions, minor 
modifications were made to the formulae when computing the effective propagation 
constant and albedo. K0 introduced according to the assumption of small particle 
size, satisfies the relation 

)1(
3

1 2
0

220

f
K

kks −
−

+

where 

)( 22
22 kkf

kK s −
+=  (57) 

µε=k   and 
ssk µε=  are, respectively, the wavenumbers of the background 

and the particles, µ is the permeability. The background medium is assumed as non-
absorptive (i.e., air). f = n04πa3/3 is the fractional volume occupied by the particles, and 
no is the number density of p
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articles in a unit volume. 
 
Physically, K0 indicates the 
where the scattering effect is insignificant and can be ignored; mathematically, K0 
is regarded as the zeroth order solution of K. From (57), K0, generally a complex 

r, is solved by using a 
ond assumption, K2 is 

approximation of K it is: 

propagation constant of coherent waves in a medium 

numbe quadratic formula. Nevertheless, in accordance with 
the sec approximately expressed as K2= K’ 2 + i2K' K” , where 
K‘ and K” represent the real and imaginary parts, respectively. With this 
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],[96],  

⎧

=′′′+′= 22 2 KKiKK

0 is now known from (57). Assuming that the particles are non-
interpenetrable and that the intermolecular forces are zero [106] the pair 
distribution g(r) function is computed using the Percus-Yevick approximation from 
the following equation [67
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The imaginary part 2K, representing the extinction rate ke, is solved from (58) by 
balancing the real and imaginary parts separately. The albedo ϖ is   
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0

In region 1, for π ≥  θ ≥ 0, the den a 
form which resembles the conventional radiative transfer equation.  

se medium radiative transfer equation assumes 
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where the 4x4 phase matrix )φ′ , is dependent on k,,,( θφθ ′P e and ϖ . ),;( φθzI   is 
column vector containing the four Stokes parameters. 
Equation 61 is derived from the Bethe-Salpeter equation under the ladder 

ffects of near, 
intermediate, and far field are included and weighted in a consistent manner. 
The phase matrix in (61), 

approximation of correlated scatterers. In the Bethe-Salpeter equation, the phase 
information is maintained through the covariance of the incoherent and coherent 
fields. In the ladder approximation of correlated scatterers the e

),,,( φθφθ ′′P , is identical to the Rayleigh phase matrix of 
ayleigh scatterers. To obtain (61) the coherent and the incoherent parts e 

rm the art K' of
t K is gene aginary p

boundary between region 0 

R  of th
intensity were added together to fo  total Stokes vector. The real p  the 
effective propagation constan  rally much larger than the im art 
K”. The angles of reflection and transmission at the 
and region 1 obey Snell's law by using the real part of the effective propagation 
constant in region 1. Hence, ko sin θo = K' sin θ, where θo and θ are angles in 
region 0 and region 1, respectively.  
 
 



Once the dense medium radiative transfer equations are solved subject to the 
boundary conditions, the scattered Stokes vector in the direction (θos ,φos) region 0 
is: 

)0;,()()0;,( 10 =⋅== zITzI sssososo φθθφθ  (62) 
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and )(10 θT  is the transmissivity matrix of

 
In [94] the dense medi
using Fourier serie n 
example of the results Fig. 11 shows a comparison of computed bistatic intensities 
with experimental data taken in laboratory. 

 the Stokes vector from region 1 to region 
0.  

um radiative transfer equations were solved numerically by 
s expansion and discrete eigen-analysis approaches. As a

 
Fig. 11 - Computed normalized bi-static intensities as a function of fractional 

volume f are compared with a controlled laboratory experiment. DMT and CRT 
denote the results of dense medium theory and conventional theory, respectively, 

and circles represent the experimental data for particle concentration from 0.302 to 
28.95 percent (After [94]) 

 
 
2.2.2.1 Approximation of multiple scattering equations (Quasi-Crystalline 
Ap
 
M  
the Foldy-Lax equations and taking configurational averages that lead to a 

proximation, QCA, and QCA with Coherent Potential, QCA-CP) 

ultiple scattering from a collection of discrete scatterers can be studied by using
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be made.  The most used a  scattering from snow pack 
re the effective field approximation (EFA) and the quasi-crystalline approximation 
CA). Coherent potential (CP) is frequently introduced to impose self-consistent 

1 2 N centered at 

hierarchy of equations. However, to solve the equations, approximations need to 
pproximations in modeling

a
(Q
approximations. 
 

or a half space of N particles in regions V , V ,... V   (the jth particle is F
rj, has permittivity εj, permeability µ, and wavenumber kj) the Foldy-Lax multiple 
scattering equations in operator form can be written as follows [39]: 
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l
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where the Green’s  functions 

,1

               

G   and lG   l = 1,2, ..,N are functions of all the 

particles and lT  is the transition operator defined in  [39] function of the lth particle . 
o calculate the coherent and incoherent fields ensemble averages of m

 equations must be taken. By using the concept of configuratio
averaging and the Bayes’ rule we obtain from (64) [39]:  

T ultiple 
scattering nal 

))G(ETE(GNG)G(E ljjoo +=  (65) 

where E is the expectation value.  
Similarly, by fixing the particle l we obtain from (65) 

j
jll

jlooll G
N

GTEGGE ∑+=)(  (66) 
≠= ,!

On averaging the summation in (66) can be replaced by (N-1). Thus: 

))(()1()( jjl G  (67) jlooll ETENGGGE −+=

 the total average is given in terms of the 
 conditional average with one 
rage with two particle fixed. In 

similar manner, we can exp
n+1 particles fixed. A hierar
In the Effective Field Approximation (EFA, Foldy’s approximation), truncation is 

The equations (65) to (67) indicate that
conditional average with one particle fixed, and the
particle fixed is given in terms of the conditional ave

ress the conditional average with n particles in terms of 
chy of equations is generated. 

carried out at the first equation of the hierarchy. It is assumed  

)()( GEGE jj ≅  (68) 

The approximation is valid for sparse concentration of particles.  
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e second stage of the 
The quasi-crystalline approximation (QCA) is a higher order approximation than the 
effective field approximation. Truncation is made at th
hierarchy of equations. The operator equation is [39]: 

)()( GECrdGnGGE jjooo ∫+=  (69) 

jjo Crdn ∫  is the mass operator for discrete scatterers under the  Qwhere CA. 

he idea of coherent potential originates from the observation that in the derivation T
of multiple scattering equations, the background medium dyadic Green’s operator 
is used. The potential operator U  is proportional to kp

2 – k2 and is a measure of the 
difference in permittivity from the background medium. However, as the 
concentration of particles incr
medium K, and the scattering potential

than n’s 
r with wav

eases, the coherent wave propagates in an effective 
 is a result of the difference in wavenumber 

from K rather  from k. The idea of coherent potential is to introduce the Gree
operato enumber K [39].  
 
In the low frequency limit of the QCA-CP is:  
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where: 
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In the QCA-CP the relationship governing K is
attenuation term that is dependent on particle size can be neglected (very low 

y limit), the mixture formula for the effective permittivity εeff = K2/ωµo is :  

− g(r) is  the pair distribution function  

 non-linear. When the scattering 
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because, conversely than QCA-CP, it didn’t obey the energy conservation. In [107] 
a new approach to calculate th
QCA has been proposed which
 
The main difference between the QCA and QCA-CP resides in their validity range. 

r 
e 

Actually, the DMRT-QCA can be regarded as a correction to the classical Mie 

s

s
eff

f
3

1

The QCA-CP has been extended to multiple species of particles different in  [39]. 
 
It is worth noting that for a long time the QCA approximation has not been used 

e propagation constants of a dense medium under 
 obey energy conservation. 

It has been demonstrated [107] that the solution of the radiative transfer unde
CA-CP is limited to small particles compared to the wavelength and the phasQ

matrix obtained is equivalent to the Rayleigh one. Instead, when only QCA is used, 
higher order multipole effects can be accounted for, hence the model is applicable 
to moderate-size particles (i.e. the validity range is the same of the Mie scattering). 
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nalyzed in [108] by considering a scattering 
edium containing particles of multiple sizes. The particle sizes were distributed 

hen a 
uncated Rayleigh distribution is used. These two effects combine to give an 

attered cross-section when a size distribution 

-section. This occurs because larger particles scatter 

scattering [38]. It is also worth noting that the QCA solution is close to the QCA-CP 
when the scatterer size is small. 
 
To better understand the difference in applications between the two 
approximations, it is useful to consider the frequencies used in the microwave 
remote sensing of snow. The dimensions of the ice crystals can range from tenths 
to few millimeters. At C-band, the wavelength is 5-6 cm and at Ka band is 8 mm. 
So, the QCA-CP could not be very appropriate to simulate the snow emission at 
higher frequencies because the gain size is comparable to the wavelengths. 
 
2.2.2.2 Effects of size distribution  
The effects of a size distribution were a
m
according to a Rayleigh probability density function, with the large size tail 
truncated at a radius of 1 cm. Fig. 12 shows how the effective extinction rate ke 
varies as a function of fractional volume for four different cases. We can see that, 
for each kind of scattering particle used, the extinction rate calculated using the 
size distribution is much larger than the corresponding extinction rate calculated 
using single size particles. The effective albedo is also much larger w
tr
increase of over 10 db in the backsc
is substituted for single sized particles. This effect occurs because the truncated 
Rayleigh size distribution includes some snow grains that are quite a bit larger than 
the mode size, although at much lower concentration. These large snow grains are 
responsible for most of the radar cross-section. This does not mean, however, that 
the medium is acting like a sparse distribution of large particles alone. In a dense 
medium, the collective behavior of all the particles determines the scattering and 
absorption characteristics of the medium. The positions, and therefore the 
scattering of each particle, are also constrained by the location and size of all the 
other particles. DMRT incorporates the collective behavior and correlated 
scattering effects into the effective extinction rate, albedo, and phase matrix in a 
rigorous and consistent way. 
In [108] the DMRT was applied to a three-layer model consisting of two Scattering 
layers overlying a homogeneous half space with a Rayleigh size distribution for 
particle size  in each layer (Fig. 13).  Results from this model were compared with 
results from a model that uses a single scattering layer containing single sized 
particles whose size matches the mode size of the Rayleigh distribution. It was 
found that the model that used a size distribution gave higher cross-sections than 
the model with single sized particles. A peak in extinction rate as a function of 
fractional volume for lossless particles was eliminated introducing a small loss. 
When two scattering layers were examined, the layer with the largest particles 
determined most of the cross
more than small particles. The case with two scattering layers also indicated that 
higher frequencies are needed to see volume scattering in thin snow cover. 
The three-layer model was extended to the multilayer case in [109] and used to 
investigate the relationship between the electromagnetic sensor response and the 
snow-cover changes under time-varying environmental conditions. Within each 
snow layer the constituent ice particles were random clusters of small primary 
spherical particles. The stickiness τ was applied to parameterize the clustering 



nature of snow grains. The aggregated ice particles are randomly distributed in a 
background medium of complex permittivity. 
 

 
Fig. 12 - The extinction rate as a function of the fractional volume of scattering 

particles for 4 different cases using a single scattering layer. 1) small loss particles 
with ε1s = (3.2 + i0.001) and a Rayleigh probability density function for particle size 
with a mode snow grain radius of 1 mm. 2) lossless particles with ε1s = 3.2  and a 

Rayleigh probability density function for particle size with a mode snow grain radius 
of 1 mm. 3) and 4) are like cases 1) and 2) except that a single snow grain size of 1 
mm is used (no size distribution). The other parameters  are: Layer depth = 0.5 m, 

frequency = 5 GHz. (After [108]) 
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Fig. 13 - The layered scattering medium. The upper half space (region 0) is 
assumed to be air. The two scattering layers (regions and 2) contain dense 

distributions of ice particles. The lower half space (region 3) is assumed to be soil 
(After [108]). 
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In [110] volume 3-D pair distribution functions were calculated from the 2-D 
stereological data by solving Hanisch’s integral equation. Monte Carlo simulations 
were first used for multisize particles to verify the procedure. Next, the procedure 
was applied to available planar snow sections. A log-normal distribution of particle 
sizes was assumed for the ice grains in snow. To derive multisize pair functions, a 
least squares fit was used to recover pair functions for particles with sufficient 
number density and the hole correction approximation was assumed for the larger 
particles. A family of 3-D pair distribution functions were derived. These were then 
substituted into DMRT to calculate scattering. It was found that the computed 
scattering rates were comparable to those calculated under the Percus–Yevick 
approximation of pair distribution functions of multiple sizes. 
An approach to eliminate the assumption of small particles (ka<<1) was developed 
in [107] with a model based on QCA-DMRT applicable to moderate sized particles. 
The exten es 
abo  
w
w  
represent the observed frequenc  in the snow covered terrains. 

sion is important for microwave remote sensing because for frequenci
ve 10 GHz, the particle sizes in some geophysical media are comparable to the

avelength. Cases of particles with and without interparticle forces were studied. It 
as shown that particles with interparticle forces (sticky particle model) can better

y dependence
Cases for coated particles were also studied. 
In [111] the snow medium was treated as densely packed sticky ice particles 
following a size distribution. The quasi-crystalline approximation (QCA) dense 
medium theory was applied to calculate the absorption, scattering and emission of 
snow at multiple frequencies. The correlation of particle position is taken into 
account by using the Percus-Yevick approximation that can accommodate particles 
of multiple sizes. The size distribution is discretized so that it can be applied to the 
Percus-Yevick approximation for the cross pair distribution function of particles with 
different sizes. The model was extended to sticky particles of moderate size in 
[112],[113]. In this work the rough surface scattering was modeled by the 
Numerical Maxwell Model of 3D simulations (NMM3D), which is accelerated by fast 
computation method known as with Sparse-Matrix Canonical Grid method (SMCG). 
The bistatic scattering coefficients of rough surfaces were used as the boundary 
conditions for the DMRT. 
 

2.2.3 Frequency behavior of snow models  
A systematic analysis of the models in terms of their performances as a function of 
observation frequency and geometry was not found in literature. In most cases the 
low frequency limit (correlation length << electromagnetic wavelength)  was 
assumed to be valid up to about 18 GHz for both SFT and DMRT, while no 
significant constraints in the observation angle were noted. The range of validity of 
the dry snow effective permittivity modeled with the strong fluctuation theory was 
examined by Huining et al. [114] by comparing model predictions with experimental 
data-based values. The results showed that the SFT provides reasonable accurate 
estimates for the imaginary part of the effective permittivity in the 1- to 100-GHz 
range except for large grain sizes at high frequencies (60 - 90GHz). More recently, 
the frequency dependence of scattering and extinction of dense media for 
frequencies higher than 18 GHz was studied by Chen et al. [115] using Monte 
Carlo simulations of the three-dimensional solutions of Maxwell’s equations. The 
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extinction, scattering, and absorption properties of snow 
ere calculated for non-sticky and sticky particles with different stickiness 

quations compared well with 
ependence of densely packed 

particle positions were generated by deposition and bonding techniques. Monte 
Carlo simulations were performed for various frequencies, particle sizes, and 
particle permittivities. The 
w
parameters. Numerical solutions of Maxwell’s e
QCA/DMRT results indicate that the frequency d
sticky small particles is much weaker than that of independent scattering and better 
match the observed data. 
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3. MODELING THE EMISSION FROM SNOW COVERED SOIL 

The models developed in this work aim to simulate the electromagnetic emission of 
continental dry and wet snowpacks. Even if the two kinds of snow are similar, the 
presence of liquid water strongly affects the e.m. emission behavior. Thus, two 
different models have been used to simulate the brightness temperature.  
The dry snowpack can be represented like one layer of snow above the soil. To 
this end, two electromagnetic models have been coupled, the Advanced Integral 
Equation Method (AIEM) and the Dense Media Radiative Transfer under the 
Quasi-Crystalline Approximation (DMRT-QCA). The first model has been chosen 
due to its wide range of validity and flexibility. For instance, it is possible to change 
the autocorrelation function very easily disregarding if the ACF is azimuthally 
isotropic or not. The DMRT-QCA has been selected because it represents one of 
the most advanced models for the snow. It could account for a wide range of 
particle size and for the adhesive properties of the ice crystals. Moreover, it has 
been developed for the Mie scattering (which occurs when the scatterers have 
dimensions comparable to the wavelength) instead of the Rayleigh approximation 
like most of the model available in literature. This feature is very important because 
it extends the validity range of the model up to the Ka band, which usually is the 
highest frequency used to monitor snow covers. The obtained model has been 
called IRIDE (IFAC RadiatIve Dry snow Emission) Model.  
Wet snow is characterized by the presence of liquid water among the ice particles. 
The electric properties of liquid water are very different from the ones of the ice 
crystals: the imaginary part of the water permittivity is very high and this lead to a 
high emission and to a high extinction of the radiation coming from bottom. The 
SFT can model different kind of scatterers and it is easy to use in a multilayer 
model with the wave approach. Moreover, because wet snow with only a few 
percents of LWC is able to mask the contribution of the soil, this latter can be 
modeled as a flat plane. With this choice, the computational time can be strongly 
reduced. These are the reasons because the Strong Fluctuation Theory has been 
chosen to simulate the brightness temperature of wet snow.  
 
In Fig. 14 the structure of the model for dry snow is outlined. θ is the observation 
angle, εs is the permittivity of the spherical ice grains and ε0 is the one of the bulk 
(air), ε2 is the dielectric constant of the ground that is modeled as a semi-infinite 
medium, d is the thickness of the snowpack. 
 
In the following paragraphs, the description of the emission model obtained by 
properly coupling the AIEM and DMRT-QCA will be given. The errors found in 
literature and corrected during this research will be pointed out as well as all the 
critical points. 
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Fig. 14 - Structure of the model for dry snowpacks 

3.1 Bistatic scattering from soil: the Advanced Integral Equation 
Method (AIEM) 
 

3.1.1 The model 
In simulating emission from snow covered soil both the direct contribution from soil 
and the downward snow emission scattered from soil can be very significant (Fig. 
15). Thus, it is important to have available a good model to simulate scattering from 
soil in the backward and forward directions. To this end a bistatic polarimetric 
version of the Advanced Integral Equation Method has been developed, 
implemented and validated with numerical and experimental data. 
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Fig. 15 – The three contributions to the total emission 
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As stated in the previous chapter, the first systematic version of the Integral 
Equation Method was published in 1992 [64]. The IEM adds a complementary term 
to the classical Kirchhoff tangential field, and the scattered fields are expressed as 
a combination of the Kirchhoff and the complementary term. In the first paper [64] 
only the single scattering was developed. Multiple scattering terms were added by 
[76],[77] in the IEMM, while the Advanced Integral Equation Method (AIEM) was 
formulated by Chen et al. [82] and Wu et al. [83]. In this latter version the 
complementary field was written as the sum of four terms: two of them related to 
the downward radiation (  and ) and two representing upward one 

( and ) [82],[83]: 

c
zzqpE ′>,1

c
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zzqpE ′<,2
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c
zzqp

c
zzqp

c
zzqp

c
qp EEEEE ′<′<′>′> +++= ,2,1,2,1  (72) 

This has been obtained by keeping the absolute phase term within Green’s 
function [82]. Thus, the single scattering terms were re-derived and modified. The 
multiple-scattering terms instead were the same as in the formulation of the IEMM 
[78],[83].  
We can remark that the refinement work carried out from the first IEM to the last 
AIEM consisted in removing some of the original approximations. It is worth to note 
that the computational time of the AIEM is much heavier than in the first IEM, and 
in many practical cases the original formulation is fully acceptable. However, at the 
present state of the art, the AIEM represents perhaps the best model for simulating 
surface scattering. Indeed, it combines the high accuracy in evaluating the 
scattering coefficients with a high versatility in modeling the surface statistics of 
soils (Gaussian, Exponential, Two-scale, etc.). 
The reference system (also called principal frame) of the Advanced Integral 
Equation Method is depicted in Fig. 16. 
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Fig. 16 - The reference system of the Advanced Integral Equation Method 
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The AIEM model can be written as sum of single and multiple scattering terms: 

)()( 000 MS qpqpqp σσσ +=  (73) 

The single scattering terms account for the electromagnetic waves that impinge 
upon the surface and are scattered in the upper or in the lower medium without 
further interaction with the surface. Instead the multiple terms account for the 
waves, which interact with the surface two or more times. 
The normalized scattering coefficient is composed of three terms, namely the 
Kirchhoff, the cross and the complementary terms. The expression for the single 
scattering term is: 
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where k1 is the wavenumber in the upper medium, σ is the height standard 
deviation of the surface roughness and W(n) is the Fourier transform of the nth 
power of the normalized surface correlation function. The transmitted polarization is 
p and q is the received one. 
The difference between the IEM and the AIEM resides in the expression of the 
function .  For the IEM model it has the following expression: n

qpI

2
),()(),()(

)(
2 sysxqp

n
zyxqp

n
szkk

qp
n

szz
n
qp

kkFkkkFk
efkkI szz

−−+−−
++= −σ  (75) 

where the coefficients  and  can be  found in (Fung, 
1994). In the AIEM, which accounts for the scattered waves in various directions by 
means of the q

),( yxqp kkF −− ),( sysxqp kkF −−

1,2 functions,  is different from the previous equation and is 
expressed by 
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with 2,1222 =−−= mvukq mm  

In (76) accounts for the Kirchhoff field and  accounts for the 

complementary scattered intensities in the upward (+) and downward (-) directions 
both in the upper (1) and lower (2) media. We have fully rederived these latter 
coefficients because all the papers available in the open literature are affected by 
many typographical errors. As an example, the original expression of coefficient 

 has two signs reversed. The correct expressions for these coefficients are: 
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The previous  coefficients depend on six functions C)(
2,1

±
qpF 1-C6 for the co-polar 

scattering coefficients and on six functions B1-B6 for the cross-polar ones. These 
terms too, affected by many errors in literature (e.g. in (78) the k1 factor is missing 
in C1, C4, B1, B4),  have been re-derived. The right expressions are: 
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As the Kirchhoff terms of the σο accounts for single scattering only, the multiple 
scattering coefficients (IEMM, [78]) are added to the complementary field. It can be 
useful to write the σ0(M) as the sum of three terms: the cross-term kc related to the 
interaction of the Kirchhoff  and complementary fields, and the terms c1, c2 which 
are due to the complementary field only 
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c
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At the present state of the art [78] the three terms of the IEMM can be expressed 
by the following formula 
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In the previous equations the G functions are 
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It is worth noting that the formulation of the AIEM is subsequent to that of the 
IEMM. The Fqp functions used in the IEMM differ from the ones of the AIEM 
because the formulation of [78] does not distinguish between waves which 
propagate in the upper or in the lower medium, but only upperward and downward. 
The following relation exists between the previous coefficients 
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All the numerical evaluations of the multiple scattering coefficients must satisfy the 
following conditions required to limit the integrals to the radiation modes 

0'0'00 1111 >−>−>−>− qkqkqkqk szzszz  

 
3.1.2 The reflection coefficients 
All the fqp and Fqp functions depend on the vertical or horizontal reflection 
coefficients. These coefficients are related to the local incidence angle (the angle 
formed by the incidence direction and the normal to the surface) and hence they 
are strongly dependent on the surface roughness. In the original formulation of the 
IEM these coefficients were calculated at the incidence angle (for smooth surfaces) 
or at the specular angle (for rough surfaces) for the Kirchhoff component. The 
bound between the two regions has been established in [65] as follows: 
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However, the separation between the two regions is not well defined, and methods 
to remove empirical approximations have been investigated. In [79] a transition 
function to connect the reflection coefficient from one region to the other has been 
developed. This function is based on the ratio between the σc and σo.  The 
reflection coefficient is expressed by : 
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where the transition function γp is 01 SS pp −=γ . In the case of backscattering it is  

θspec  = 0 and  the Sp and S0 functions are expressed in a simply way by: 
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For the more general case of bistatic scattering the transition function is still under 
investigation. In this work the reflection coefficient has been selected after some 
comparisons with the FDTD simulations in the most critical conditions (see 
Appendix 1) which led us to assume the following rule: 
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In computing the complementary field, the reflection coefficients are always 
calculated at the incidence angle. The justification for this approximation relies on 
the fact that the complementary term is dominant for smooth surfaces where the 
Kirchhoff field is negligible. On the contrary, for very rough surfaces, is the 
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contribution of the complementary components that can be disregarded and the 
reradiated field is correctly expressed by the Kirchhoff term only.  
 

3.1.3 The shadowing effects 

When the roughness becomes appreciable (i.e. rLk εσ 2.12 > ) there is a 
fraction of surface that is not more completely illuminated by the incidence plane 
wave. This shadowing effect affects the reradiated fields. To account for this effect 
the scattering coefficients must be multiplied by two functions, which account 
respectively for the incidence and scattered direction. In [39] the shadowing 
function is expressed by 
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where the lambda function is 
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For the multiple scattering Chen et al. [78] introduced a slightly different S function 
(whereas the lambda function remained the same): 
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3.1.4 The autocorrelation functions 
In (74) the W(n) function represents the Fourier  transform of the n-th power of the 
surface correlation function. Along with the roughness Height Standard Deviation, 
the correlation function is an important parameter to characterize rough surfaces. 
The most used correlation functions are the exponential, the Gaussian and the x-
power (1<x<2). The function which best fits the experimental measured spectra is 
the exponential one, but the main problem with it is that the exponential function is 
not derivable in the origin and so it has not physical insight.  
The power spectral densities corresponding to the six types of surface correlation 
functions implemented in the model (which are the most used in microwave remote 
sensing) are listed below: 
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o 2D Gaussian isotropic in the azimuth plane 
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o 2D exponential isotropic in the azimuth plane 
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o 1.5-power isotropic in the azimuth plane 
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o 2D mixed-exponential isotropic in the azimuth plane 
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In this latter case the integral must be evaluated numerically because a close form 
does not exist. It is worth pointing out that the mono-dimensional correlation 
function models a surface which has an infinite correlation length in the transverse 
direction, whereas the bi-dimensional one accounts for surfaces which are isotropic 
in the azimuth plane. As a consequence, the 1-D spectra have to be divided by 2k 
to perform 1-D simulations, while the factor 2π is present in the definition of the 2-D 
transform only. Other autocorrelation functions accounting for surfaces with 
different correlation lengths in the x and y directions or for multi-scale ones are not 
taken into consideration in this work. 

3.1.5 Polarimetric version of the AIEM 
In recent years there has been a growing interest in studying the full polarimetric 
features of the observed surfaces. Indeed, this approach increases the potential of 
microwave sensors in detecting land characteristics. Unfortunately, almost all the 
available  electromagnetic models for surface scattering deal with the linear 
polarizations only, or have a very narrow range of validity. Thus, an extended 
version of AIEM, which can simulate the four Stokes parameters, has been 
developed. 
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Fig. 17 - Polarization ellipse in x-y plane for a wave travelling in the z direction. 
ψ, η  α are respectively the rotation, the ellipticity and the auxiliary angles. (After 

[116]) 
,

 
Following [117] the scattering coefficient for arbitrary transmitted and received 
polarizations can be written as  

( ) T
T
RttrrRT AMA

a
πχψχψσ 4,,,0 =  (104) 

where: 
• AR and AT are the modified Stokes vectors for the received and transmitted   

polarizations 
• M is the average Stokes scattering operator 
• a is the illuminated area 
• ψ and χ are respectively the rotation and the ellipticity angles. 

 
The A vector can be expressed as 
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The ψ and χ parameters are depicted in Fig. 17. By appropriately setting these two 
terms it is possible to obtain all the possible polarizations (Fig. 18). The principal 
ones are 

- Right → 2 χ = -90° 
- Left → 2 χ = 90° 
- Vertical → 2 χ = 0° and 2  ψ = 0° 
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- Horizontal → 2 χ = 0° and 2  ψ = 180° 
 

 
 

Fig. 18 - Poincaré sphere of polarization states. The linear polarizations are along 
the equator and the circular ones at the poles. The upper and lower hemisphere 

represents all the possible elliptical polarizations. (After [116]) 
 

In (104) the M matrix is expressed by 
11 −−= RWRM T  (106) 
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Each element of the W matrix represents the correlation product of the 
electromagnetic fields. For the Small Perturbation Method, the components of W 
can be expressed by 
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and, for the  Geometrical Optic (in the case of a Gaussian surface)   
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Each model depends on a factor like aqpamn*. In the case of linear polarization 
qp=mn and aqpamn*=|aqp|2, thus we can easily obtain the expression for the 
scattering written in chapter 2. 
 
According to the AIEM model the bistatic scattering coefficient can be expressed 
by 
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If the term 
2n

qpI  is written as , it is possible to obtain an expression for the 

bistatic scattering coefficient very similar to (108) and (109). 
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Moreover it can be written a new matrix Q that act like <W>  
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from which 
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The elements of the new Q matrix are written as 
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which represents the kernel of the polarimetric AIEM. 
 
Because there are no polarimetric datasets like the ones used in the validation of 
the AIEM model, the SPM has been used to make a validation of the P-AIEM.  
 
In Fig. 19 is depicted a comparison of the SPM and the AIEM models for two rough 
surfaces. It is possible to see that there is an excellent agreement between the 
predictions of two models on the entire range of observation angles for both the 
two degrees of roughness. 
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Fig. 19 - Comparison between the bistatic scattering coefficient γ in VR polarization  
simulated with the  AIEM (dark and light blue) and the SPM (pink and orange) 

models for two different surface HStdD (0.5 cm pink and dark blue, 1cm orange 
and light blue). The other parameters are θi=35°, L=6 cm, exponential ACF, 

mv=5%. 
 

 

3.1.6 Validation of the AIEM 
During the analysis of the state of the art it emerged that the validity range of the 
Advanced Integral Equation Method hadn’t been properly investigated. The authors 
claim that the AIEM is able to simulate a very wide range of rough surfaces but it 
was almost impossible to find clear limits in literature. In the framework of the ESA 
project “Use of Bi-Static Microwave Measurements for Earth Observation” a huge 
number of bistatic scattering simulations from rough surfaces made with the Finite 
Difference Time Domain (FDTD) model have been available and they have been 
used to validate the developed AIEM model and investigate its validity ranges. The 
parameters of the numerical dataset are shown in Tab. 1. 
 
Table 1 -   s = Surface Height Standard Deviation, l = correlation length 
 

Parameters Values 
Autocorrelations function (ACF) Gaussian and Exponential 

5.00 + j 0.6, 8.5 + j 1.2, 24.0  + j 3.19, 
27 + j 4  at L- band Permittivity 
4.06 + j 0.3, 7.0 + j 0.8, 24.0  + j 3.19     
at C-band 
0.12, 0.23, 0.35, 0.47, 0.82   at L- band Normalized Height Standard Deviation 

ks 0.50, 1.0, 1.5, 2.0, 3.5, 4.0     at C-band 
1.48, 2.96, 5.48            at L-band Normalized Correlations length kl 
6.28, 12.57                  at C-band 
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The surfaces modeled were all mono-dimensional (i.e. the surface was anisotropic 
with an infinite correlation length in a direction) and ranged from the very smooth 
case, ks=0.12, to the very rough ones, ks=4 for several values of permittivity (which  
represent the soil from the dry to the water saturated condition). 
 
3.1.6.1 Gaussian ACF L-band 
In this case simulations have been performed with ks = 0.12, kl = 5.48 and for two 
values of permittivity (5 + j0.6 and 24 + j 3.19), and for incidence angles of 30o and 
50o. These values correspond to roughness conditions intermediate between SPM 
and PO approximations (see Fig. 2). In all the cases considered there is a good 
agreement between analytical and numerical simulations for scattering angles 
higher than the backscattered direction. For scattering angles lower than 
backscattering direction, the numerical solution presents higher values and a 
marked separation of two polarizations.  A discrepancy can also be observed at 
extreme scattering angles (absolute values larger than 70-80 degrees), which can 
be justified by the criticality of modeling those situation both by numerical FDTD 
and closed form simulators. As an example Fig. 20 presents the results obtained 
on a surface with permittivity 5 + j 0.6 at the incidence angle θi = 30o (a), and θi = 
50o (b).  
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Fig. 20 - Bistatic scattering coefficient at L-band as a function of scattering angle 

for a surface with Gaussian ACF,  ks  = 0.12 and kl = 5.48). a)   incidence angle θi 
= 30o and   permittivity ε =5 + j 0.6,  b) incidence angle θi = 50o and   permittivity ε 

=24 + j 3.19  
 
 
3.1.6.2 Gaussian ACF C-band 
 
At C-band, simulations have been performed with ks = 2.0 and 3.5, kl = 12.56,  for 
three values of permittivity (4.06+j0.3, 7.0+j0.8 and 24+j3.19), and for incidence 
angles between 10o and 60o at 10o steps. The rougher surface falls within the GO 
approximation range, whilst the smoother one may be considered both in the GO 
and PO applicability limits (intersection area in Fig. 2). Some examples are 
reported in Fig. 21. In all the mentioned cases, there is in general a good 
agreement between analytical and numerical simulations up to a ks=3.5. On the 

 
 
 

62 



smoother surface (ks = 2) some deviation exists only at the highest incident angles 
and for scattering angles lower than backscattering direction, where the numerical 
solution presents higher values and a noticeable separation of two polarizations, as 
in the previous Gaussian case at L band. As expected, the angular distribution of 
scattered power becomes flatter as the roughness increases. The dip at Vertical 
polarization at the highest incidence angle appears to be related to the Brewster 
angle. 
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ε =4.06 + j 0.3 ;  ks  = 3.5 
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Fig. 21 - Bistatic scattering coefficient at C-band as a function of scattering angle 

for a surface with Gaussian ACF and kl = 12.56. 
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3.1.6.3 Exponential ACF L-band 
 
At L-band, simulations have been performed with ks from 0.12 to 0.82, kl from 1.48 
to 2.96, and for 2 values of permittivity (8.5 +j1.2 and 27.0 +4.0). As for other 
cases, incidence angles ranged between 10o and 60o at 10o steps. Some examples 
are reported in Fig. 22. There is, in general, a good agreement between analytical 
and numerical simulations. Some overestimation of the AIEM is evident at the 
extreme negative scattering angles for ks = 3.5 especially for the horizontal 
component at negative scattering angles. This overestimation increases as the 
roughness increases. 
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Fig. 22 - Bistatic scattering coefficient at L-band as a function of scattering angle 

for a surface with Exponential ACF   
 
3.1.6.4 Exponential ACF C-band 
 
At C-band simulations have been performed with ks from 0.5 to 4.0, kl = 6.28 and 
12.57, and 3 values of permittivity (4.06 + j0.3, 7.0 + j0.8 and 24 + j 3.19). As for 
other cases, incidence angles ranged between 10o and 60o at 10o steps. Some 
examples are reported in Fig. 23. In all cases, there is, in general, a good 
agreement between analytical and numerical simulations until ks=2 (and kl=12.57). 
As the roughness increases (ks ≥ 3) a significant overestimation of the AIEM 
appears, mainly at vertical polarization. It is noticeable that in these cases the 
roughness should fall within the GO approximation limits, which predict same 
backscattering at vertical and horizontal polarization, as done by the AIEM 
simulations. Conversely, the FDTD simulations predicts higher scattering at 
horizontal polarization in all directions for those cases. 
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Fig. 23 – Bistatic scattering coefficient at C-band as a function of scattering angle 

for a surface with Exponential ACF   

3.1.7 Comparison between AIEM simulations and experimental data 
All the comparisons made in the AIEM validation phase have been done against 
numerical data. In order to better test the performances of the Advanced Integral 
Equation Method to simulate the bistatic scattering from natural surfaces it is worth 
to extend the validation to experimental datasets. Between 1995 and 1996, an 
experiment aimed to investigate the bistatic scattering signature of non-vegetated 
surfaces took place at the ElectroMagnetic Signature Laboratory of the European 
Joint Research Center (EMSL-JRC) in Ispra (Italy). Three different soil targets, 
composed by an artificial homogeneous dielectric shaped with a suitable mold, 
were used [118]).  The dielectric material was a combination of sand, water, and 
ethanediol. The latter component, which attracts water, was added to guarantee a 
good stability in time (15–20 days) of the model dielectric properties. The 
permittivity was measured using a coaxial probe directly applied on the surface. 
The sample under test was contained in a cylinder of 2 m in diameter and 0.4 m 
height. The roughness of the models had a Gaussian height distribution but, on the 
azimuthal plane, two of them were characterized by a Gaussian autocorrelation 
function while a third model had a mixed Gaussian-exponential ACF.  
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Fig. 24 - The scattering measurements configuration of the EMSL-JRC anechoic 
chamber (After [66]) 
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The surface characteristics of the three soil models and their values of permittivity 
are summarized respectively in Tabs 2 and 3.  
 

 Table 2 - Summary of surface characteristics  
 

surface type ACF S (cm) ACL (cm) 
Smooth Gaussian 0.4 6 

Medium rough mixed Gaussian/ 
exponential 0.9 l = 1.8 

L = 3.0 
Rough Gaussian 2.5 6 

 

Table 3 - The permittivity of target material 
 

Frequency 
(GHz) 

Gaussian 
smooth/rough Medium rough 

2 8.7 + i 2.8 5.0 + i 1.4 
5 6.8 + i 2.8 4.5 + i 1.4 

6.8 6.0 + i 2.6 4.1 + i 1.4 
10 5.5 + i 2.2 3.9 + i 1.1 
18 5.2 + i 1.6 3.8 + i 0.9 

 
 
 
The polarimetric scattering measurements were carried out on the sample placed 
in the centre of the EMSL anechoic chamber (radius 10 m) at various incidence 
and scattering angles between 10 and 50 degrees (the arrangement is depicted in 
Fig. 24). A frequency stepped CW mode (step =11.25 MHz) in the range 1.5 - 18.5 
GHz was used, applying a full polarimetric calibration in the monostatic 
configuration and a simple “Response & Isolation” correction in the bistatic case. 
The absolute calibration accuracy was better than +/- 0.5 dB and the system noise 
level for typical measurement settings (averaging factor =128, time window span = 
10 ns) ranges from -50 dBsm at 2 GHz to -40 dBsm at 18 GHz [118]. 
The scattering matrix of the target was measured in the plane of incidence (vertical 
polarization plane) both in monostatic and bistatic mode for different incidence and 
scattering angles. Independent samples were obtained by rotating the target in 
azimuth to obtain uncorrelated data at a given frequency and averaging in the 
frequency domain over a window larger than one correlation length.  It should be 
noted that, the contribution of the coherent term (which is important for a smooth 
surface at low frequency) has been subtracted from the experimental data used in 
this section, so that only the AIEM model for incoherent component has been 
considered here. The procedure used for subtracting the coherent component from 
the data can be affected by significant errors which can explain some discrepancy 
we observe hereafter in specular direction. 
For this comparison the AIEM and SPM models have been run for 2-D surfaces. It 
should be noted that, in the case of SPM and for the frequency range of interest, 



the validity conditions of the model can be satisfied for the Gaussian “smooth” 
surface only.     
 
 
3.1.7.1 Gaussian ACF: Smooth surface 
 
Fig. 25 represents a comparison of backscattering coefficient measured and 
simulated as a function of frequency at H polarization for three values of incidence 
angle and for a surface with Gaussian autocorrelation function. We see that the 
AIEM well reproduces co-polarized experimental data on the entire frequency 
range at steep incidence angle. At higher incident angles the trend of 
backscattering as a function of frequency shows that, as the frequency increases, 
experimental data tend to a constant value, whereas the model predicts a 
decrease of backscattering. Very similar results have been obtained at VV 
polarization.  
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Fig. 25 – Simulated (continuous line and measured (points) backscattering 
coefficient from a “smooth” surface (s =0.4cm  l =6cm)  with a Gaussian ACF as a 

function of frequency  
 
 
Fig. 26 represent the comparison of measured and simulated bistatic scattering 
coefficient carried out as function of scattering angle on the “smooth” surface at L-
band (2 GHz). We can see that the model reproduces experimental data in the 
backscattering regions quite well, whereas a discrepancy (higher than 5 dB) 
appears in the region of specular forward scattering. However, it should be noted 
that the model does not include the coherent term (which is important for a smooth 
surface at low frequency). As said before, the latter contribution has been 
subtracted from the experimental data via a procedure that can be affected by 
significant errors. 
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The results for the comparison carried out on the same surface at C (5 GHz) and X 
(10 GHz) bands are shown in Figs. 27 and 28. We see that, at 5 GHz, the AIEM  
fits experimental data on the entire range of tested scattering angles  very well. The 
same trend is observed at 10 GHz for HH polarization and scattering angle higher 
than -20 degrees, whereas, for high negative scattering angles, the model tends to 
underestimate experimental data especially at VV polarization. 
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Fig. 25 -  Measured and simulated bistatic scattering coefficient as function of 
scattering angle on the “smooth” surface  (s = 0.4cm  l=6cm  ε = 8.7+j2.8) at L-

band (2 GHz) (a:  θi = 20°  b:  θi =40°), 
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Fig. 26 -  Measured and simulated bistatic scattering coefficient as function of 
scattering angle on the “smooth” surface  (s=0.4cm  l=6cm)  at C-band (ε = 6.8 

+j2.8)  (a:  θi =20°  b:  θi =40°), 
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Fig. 27 - Measured and simulated bistatic scattering coefficient as function of 

scattering angle on the “smooth” surface  (s=0.4cm  l=6cm  ε = 5.5+j2.2) at X-band 
(10 GHz) (a:  θi =20°  b:  θi =40°) 

 
 
3.1.7.2 Gaussian ACF: “Rough” surface 
 
For the “Rough” surface experimental data are very well reproduced at all 
frequencies between 2 and 10 GHz, As an example Fig. 29 (a, b) shows the 
bistatic scattering coefficient at 10 GHz as a function of scattering angle for 
incidence angles equal to -20 and -40 degrees respectively.  
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Fig. 29 - Measured and simulated bistatic scattering coefficient as function of 
scattering angle on the “Rough” surface  (s=2.5cm  l = 6cm ) at X-band ( ε = 

5.5+j2.2)  (a:  θi =20°;  b:  θi =40°) 
  
 
3.1.7.3 “Medium rough” mixed ACF surface  
 
On the “Medium Rough” surface, which has a mixed Gaussian-Exponential 
correlation function, two approximations to the local angle θl can be considered: the 
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flat surface approximation, obtained by replacing θl with the incidence angle and 
the specular incidence approximation (θl =0). The first approximation is valid in the 
low frequency limit while the second one is for high frequencies. The bound 
between the two regions has been determined by measurements [65]. Therefore, 
the reflection coefficients are expressed by (94):  
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As for the smooth surface, the comparison of the model with experimental data at 
low frequency (2 GHz), not represented here, shows good agreement except in the 
region of coherent scattering, but at higher frequencies, this discrepancy 
disappears. Fig. 30 shows the results obtained at 5 GHz, for an incidence angle 
equal to - 40 degrees. At a higher frequency (10 GHz), experimental data are much 
better reproduced by the AIEM.  
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Fig. 30 - Measured and simulated bistatic scattering coefficient as function of 

scattering angle on the “Medium Rough” (mixed-exponential ACF)  surface at  θi 
=40° ( s=0.9cm  l=1.8cm  L=3cm  ε=4.5+j1.4) a = 5 GHz,  b = 10 GHz     

 
 

3.2 Electromagnetic properties of a dry snowpack: the Dense 
Media Radiative Transfer model (DMRT) 
As stated in the “State of the art”, the DMRT radiative transfer equation is formally 
the same of the classical one except for the characteristics of the medium, which 
are computed in a different way. The electromagnetic properties of a dense 
medium must be described by specifying how the statistics of the spatial 
configuration of scatterers is influenced by the high density and by the stickiness 
property of the ice grains. The function that expresses this collective behavior 
under the quasi-crystalline approximation is the pair distribution function. 
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3.2.1 The pair distribution function for sticky particles 
Let us consider a collection of spherical identical particles which tend to adhere 
one another (just like the snow crystals) and denote the particle radius with a, the 
factional volume occupied by the scatterers with f and the stickiness parameters 
with τ. Stickiness is a physical parameter used in molecular physics to describe the 
potential energy of adhesiveness between particles. In [51],[39] the sticky 
parameter is adopted to better describe the correlated distribution of ice crystal in 
the snowpack. The particle positions are determined by inter-particle potential 
energy: given the potential energy, the Percus Yevick equation can be soled to 
calculate the pair distribution function, which is proportional to the joint probability 
density functions of two particles. Usually, the value τ =0.1 is chosen because in 
this case the frequency dependence of extinction coefficient is 2.8 (for the 
independent scattering is 4), which is the best frequency dependence value tested 
through experiments [35].  
 
The first function that must be calculated is the pair distribution function and the 
related structure factor. In [38] were found several typographic errors that have 
been detected and corrected in this work. The pair distribution function describes 
the probability that two particles can be at a certain distance. The scatterers are 
considered not penetrable. 
 
The pair distribution function is defined as 
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where h(r) is the structure factor expressed by  
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paX =  (116) 
The above integral is not numerically convergent as ∞→p and an asymptotic 
evaluation must be performed. Thus, h(r) must be divided into two parts  

)()()( rhrhrh singreg +=  (117) 

where h(r) is separated into a regular part (which is convergent) and into an 
asymptotic part  
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In (118) )(~
0 pCn  can be obtained from [39] 
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The pair distribution function is not regular and has very sharp peaks. Anyway, it 
usually converges to one when the distance between the particles is greater than 
2-3 diameters. This means that in a dense medium the particles cannot assume 
arbitrary positions but are closely packed together.  
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Fig. 31 - The Percus-Yevick pair distribution function for sticky spherical scatterers. 
The distance between the particles is normalized to the diameter. The volume 

fraction is 0.3. 
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In Fig. 31 the pair distribution function is represented for several values of 
stickiness. The sharp peak for r=2a clearly show the tendency of the scatterers to 
adhere one another.  
 
Once the pair distribution function has been computed it is possible to find the 
other two relevant parameters for the radiative transfer equation: the effective 
permittivity and the extinction coefficient. 
 

3.2.2 The effective permittivity and the extinction coefficient 
The parameters used in the radiative transfer equation and that characterize the 
propagation medium are the effective permittivity and the extinction coefficient. 
Considering a medium composed by N particles centered in Nrrrr ,...,,, 321  and 
the incident wave impinging along ki, the Foldy-Lax multiple scattering equation 
describes the electromagnetic field in a dense medium and can be written as in  
[39], [51] 
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where 
)( j

w and 
)(l

w are respectively the exciting field coefficients of the j-th and l-

th particles, 
)(l

T is the T-matrix of the l-th particle, inca  is the coefficient of the 

incident field and the matrix )( jl rrkσ  describes the vector translation formula 

transforming spherical waves centered at jr  to spherical waves centered at lr . 
Equation (125) can be easily interpreted: the field exciting the j-th particle is the 
sum of the waves scattered by all the other particles (except the considered one) 
and the incident wave. 
 
The (125) holds for a fixed spatial configuration of the N particles. To perform a 
statistical configuration analysis of (125) the conditional average must be used. 
Denoting with ( )jNjj rrrrrrp |,...,,...,, 1121 +−   the conditional probability density 
function, it is 
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where all xr  become dummy variables excepted jr . (126) represents the j-th 
particle mean exciting field and can be written as  
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Since )( jl rrkσ  depends on both lr and jr  it is useful to apply another time the 
Bayes’ rule to (127) 
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Then (128) becomes 
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where Ej is the conditional average given the position of the j-th particle, )|( jl rrp  

is the conditional probability of finding the l-th particles in lr  when the j-th one is in 

jr , and Elj is the conditional average given the position of the j- and l-th particles. 
 
Based in the QuasiCrystalline Approximation (QCA), 
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The previous equation means that the average field computed by holding fixed two 
particles is approximated by the one holding fixed only one particle. Since jr  has 
become a dummy variable, it is possible to replace the summation by N-1. Hence it 
is possible to made the following substitution 

)()|()1( 0 jljl rrgnrrpN −=−  (131) 

The average exciting field of the l-th particle under the quasi-crystalline 
approximation can be eventually written as 
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where )( jl rrg −  is the pair distribution function described in the previous 
paragraph. 
 
The integral equation (132) could be solved by means of a vector spherical wave 
expansion truncated at multipole Nmax. Its value is chosen according to the 
following rule [38] 

⎣ ⎦ 12max += akN  (133) 
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In remote sensing of snow, this value is at most 3. This expansion leads to a set of 
2Nmax equations, the Lorentz-Lorentz law (L-L law) and to the Ewald-Oseen (E-O) 
theorem. 
 
The L-L law is [39,eq. 6.1.46a-b] 
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where Mp and Lp are [39,eqs. 6.1.34 and 6.1.39] 
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In the previous equations k is the wavenumber in the vacuum, K is the effective 
wavenumber in the dense medium, hp is the Bessel function of p order, jp is the 
Hankel function and n0 is the particle number density that can be obtained from 
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The functions ,  [39, eqs. 6.1.44a-b], ),,( pvnA ),,( pvnB )|,1|,1( pvna −  and 
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where  
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represents the Wigner 3j symbol which can be found in [120, pag. 536]. 
 
In (134) and  are the T matrix coefficients used in the expansion [51, 
eqs. 1.6.14b and 1.6.15b] 
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The L-L law (134) can be rearranged to give a system of 2Nmax homogeneous 
equations for the 2Nmax unknown amplitudes , ,…,  and 

, ,… . By imposing the determinant of (134) to vanish, it is 
possible to obtain the solution for the effective propagation constant K. The 
equation could be solved numerically by using the Muller’s Method to search the 
root K. Anyway, bearing in mind that K is complex, K=K’ + j K’’, and K’’<<K’, the 
final value of K will be determined by the convergence of the real part only and the 
imaginary one could not have the enough accuracy. In addition K’’ depends 
strongly on the pair distribution function which have very sharp peaks and which 
are difficult to be taken into account with this technique. 
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It is worth outlining that the quasi-crystalline approximation combined with the 
distorted Born approximation, may not conserve energy. To impose it, a different 
procedure must be followed. 
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From equations (134) only the real part of the obtained effective propagation 
constant K will be retained. After that, one of the equations of the L-L law must be 
substituted with the E-O theorem which is a single equation given by [39, 6.1.49] 
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The resulting set of equations is non-homogenous and the amplitudes 
,  i=1,..,N)(M

iX )(N
iX max can be determined by solving the system.  

 
Now it is possible to determine the absorption coefficient ka which can be 
calculated by 
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where Kr is the real part of K and 
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Bearing in mind that ke = ka + ks, the first part extinction coefficient and of the 
effective permittivity of the snow is now calculated. To obtain the scattering 
coefficient we must compute before the phase matrix, which describe how the 
intensity impinging on an infinitesimal volume is distributed over all the other 
directions. 
 
 

3.2.3 The DMRT-QCA phase matrix 
 
The procedure to obtain the phase matrix for a dense medium under the quasi-
crystalline approximation is well established in literature but it is very complicated 
due to the system of reference used. In [38] a new method has been shown which 
makes use of rotation matrices to switch between different frames. 
 
Due to the spherical symmetry of the scatterers it is useful to obtain the phase 
matrix in the 1-2 system [51] (Fig. 32) and then switch to the principal one 
(depicted in Fig. 16).  
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Fig. 32 - Geometry of the 1-2 frame based on the scattering plane.   

 
The 1-2 scattering plane contains the incident ki and scattering ks vectors. The 
angle between them is Θ. The expressions for the 1i, 2i, 1s and 2s versors can be 
found in [51, eqs. 1.1.34-1.1.36] . 
 
The phase matrix relates the Stokes parameters of the scattered wave to the one 
of the incident wave and, in the 1-2 frame, can be written as 
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Because of the spherical shape of the scatterers, the cross-polarization terms 
 and ( )Θ12P ( )Θ21P  are zero. 

The phase matrix components are 

( ) ( ) ( )ΘΘ=Θ qfP 2
1111  

( ) ( ) ( )ΘΘ=Θ qfP 2
2222  

( ) ( ) ( )( ) ( )ΘΘΘ=Θ qffP *
221133 Re  (149) 

( ) ( )Θ=Θ 4433 PP  
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where the fii terms are expressed by 
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The term q(Θ) is a correction factor related to the structure factor by 
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00 21 π  (152) 

We recall that the expression of the structure factor is 
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where 
 

( ) Θ−+= cos)Re(2Re 22 KkkKp  (154) 

The functions ( )Θcosnτ  and ( )Θcosnπ  can be found in [121] 
 
Once the phase matrix has been calculated, it is possible to obtain the second part 
of the extinction coefficient. The expression of the scattering coefficient in the 1-2 
frame is 
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Eventually the effective permittivity of the snow and the extinction coefficient are 
obtained 
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It is possible to make a useful comparison between the phase matrices of the 
DMRT-QCA and Mie. In the classical Mie phase matrix, the scattering amplitudes 
are 
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and the phase matrix components 

( ) ( ) 0
2

1111 nfP Θ=Θ  (160) 

( ) ( ) 0
2

2222 nfP Θ=Θ  (161) 
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Hence, it is possible to see the DMRT-QCA like a correction to the classical Mie 
scattering. Indeed there is a modification in the fii(Θ)  terms made by the average 
multipole amplitudes  and  which depends on the pair distribution 
functions and account for the dense medium properties. Moreover also the P

)(M
nX )( N

nX
ii(Θ)  

components are corrected by a term proportional to the structure factor h(Θ) which 
accounts for the adhesive features of the scatterers. 
 
 
By using the previous procedure, the phase matrix obtained is expressed in terms 
of the 1-2 system of reference. To solve the vector radiative transfer equations it 
needs to express Pii(Θ)  in the principal frame. The procedure to transform the 
phase matrix is the following. Let αi be the angle which rotates anticlockwise  

(the incidence vertical versor) to  and α

iv̂

i1̂ s the angle which rotates anticlockwise 

 (the scattering vertical versor) to . The transformation between the two 
systems of reference can be seen as a rotation around the axis [105, pp.35-36]. 
Thus, the transformation of the phase matrix can be obtained by 
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In Fig. 33 (a,b,c) a comparison between the scattering components of the DMRT-
QCA for sticky particles and the Mie scattering is shown.  
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(a)                                                                 (b) 
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Fig. 33 – Comparison l of normalized phase scattering components for the DMRT-
QCA and Mie scatterers as a function of Θ at (a) 13.4 GHz, (b) 17.5 GHz and (c) 

37 GHz. The other parameters are f=0.25, grain radius=0.7mm, τ =0.1, ice 
permittivity=3.15+j0.001 

 
It is clearly shown that the scattering predicted by the DMRT-QCA is mostly 
forward (Θ = 0°) at all frequency, especially at 37 GHz, whereas the Mie scattering 
is almost symmetrical.  
 

3.3 Emission from a dry snow layer upon a rough soil 
As stated in the previous sections, following a discrete approach dry snow can be 
modeled as a slab of random discrete spherical particles embedded in air upon a 
semi-infinite medium (the soil). The upper interface of the layer will be considered 
flat whereas the roughness of the snow-ground interface will be taken into 
consideration bistatic scattering coefficients. The procedure to obtain these terms 
will be outlined in the next paragraph. The rationale to consider flat the upper 
boundary is the following: at the air-snow interface, the roughness is extremely low 
and moreover the dielectric discontinuity is weak. 
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The structure of the model is depicted in Fig. 13 but for sake of convenience is also 
reported here. The observation angle is θ, εs is the permittivity of the spherical ice 
scatterers and ε0 is the one of the host (air), ε2 is the dielectric constant of the 
ground which is modeled as a semi-infinite medium, d is the thickness of the 
snowpack. 
 
To calculate the brightness temperature of the snow, the radiative transfer 
equations have to be solved by imposing the boundary condition at the top and the 
bottom interfaces of the layer. In the following, the solution of the radiative transfer 
equations will be obtained by using the discrete ordinate-eigenanalysis technique. 
 
For the media with a laminar structure, the scattering couples the specific intensity 
only in two directions: upwards (denoted by ( )zI ,θ ) and specularly downward at 
the same angle θ (denoted by ( )zI ,θπ − ). The general Vector Radiative Transfer 
(VRT) equations for one layer of scatterers can be written as [51][84]. 
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where ),,( zI φθ  is the specific intensity, ke is the extinction coefficient, ka is the 
absorption coefficient, T1 is the thermodynamic temperature of the snow layer, P is 
the phase matrix of the discrete random medium. The first equation stands for the 
upward intensity and the latter is for the downward one. The procedure to compute 
ke, ka and P has been shown previously. 
 
To solve equations (163)-(164) two boundary conditions must be imposed. They 
are: 

)0,,()()0,,( 10 ===− zIRzI φθθφθπ
rr

     at z=0 (165) 
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Fig. 34 - The boundary conditions at the upper (a) and lower interfaces (b) 

 

In (165) )(10 θR  is the reflection coefficients matrix at the snow-air interface and in 

(166) )(12 θR  and )(21 θT  are respectively the snow-ground reflection and the 
ground-snow transmission matrices at the snow-ground boundary. The two 
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boundary conditions are depicted in Fig. 34. As stated before, the transmission and 
reflection matrices at the upper boundary are calculated via the Fresnel law 
whereas the ones at the bottom interface are calculate by integration of the bistatic 
scattering coefficients, computed through the AIEM, to account for the soil 
roughness. 
 
To solve the previous set of equations it is useful to expand the Specific Intensity 
and the Phase matrix into a Fourier series as a function of the φ coordinate. The 
representations of these two quantities are 
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In the case of passive remote sensing of a layer composed by spherical scatterers 
overlying a soil with an azimuthal isotropic roughness autocorrelation function, the 
intensity vector has no φ dependence. Thus only the first terms of the (167) and 
(168) Fourier expansions (the 0th order solution) can be calculated by a simple 
integration 
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Because we have supposed the soil to be azimuthal isotropic, in (170) the phase 
matrix depends on the angle φ-φ’ instead of φ and φ’ separately. Moreover, due to 
this kind of symmetry, the 3rd and the 4th components of the specific intensity vector 

are zero [51], hence the terms ),(0 zI θ  and )',(0 θθP  could be simply written as 
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The VRT equations can be rearranged as  
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(173)-(174) represent a set of four integral equations which can be solved 
analytically only in a few cases. There are two numerical methods applied 
successfully: the matrix doubling [65],[51] and the discrete order-eigenanalysis 
solution [51]. This latter is very simple, especially for the single layer case. 
However, the random medium must be “homogeneous” with only one type of pair 
distribution functions and without gradients inside the snowpack. Conversely, the 
matrix doubling allows one considering the vertical profiles of all the snow 
parameters (temperature, grain radius, fractional volume, etc) but it is more 
complicated. 
 
In order to solve the (173)-(174) equations with the discrete order method it is 
mandatory to discretized the integrals and obtain a new set of 2n independent 
equations which will be solved by means of the eigenvalues analysis. An n-point 
Gaussian quadrature rule, is a quadrature rule constructed to yield an exact result 
for polynomials of degree 2n − 1, by a suitable choice of the n points xi and n 
weights wi. The domain of integration for such a rule is conventionally taken as [−1, 
1], and the integral could be approximated by 
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Because the limits of the integrals in (169)-(170) are not 1 and -1, the previous 
equation must be rewritten as 
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For the Gaussian quadrature rule, the associated polynomials are Legendre 
polynomials, Pn(x). With the n th polynomial normalized to give Pn(1) = 1, the i th 
Gauss node, xi, is the i th root of Pn; its weight is given by (Abramowitz & Stegun 
1972, p. 887)
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Let µj be the 2n zeroes of the even order Legendre polynomial function )(2 µnP  
and aj are the weighting coefficients. Thus there are a total of 2n values both for µj 
and aj which obey the relations 
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Fig. 35 - The quadrature angles represented in the principal frame 
 
By letting µ’=cosθ’ (the θ’ angles are depicted in Fig. 35) the integral equations can 
be approximated by means of the quadrature formula giving a set of 2n equations. 
The (173) can be rewritten as  
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where  

( ) ( )zIzI ii ,µββ =  (180) 

( ) ( ) hvP jiji ,,,, == βαθθβα αβ  (181) 

The choice of the order n of the quadrature formula is intrinsically related to the 
rate of angular variation of the phase matrix. The smoother the variations are the 
lower the order that must be chosen. For instance, in the case of Rayleigh 
scattering, n=8 is a good choice [51].  
 
The use of Gaussian quadrature is essential because it makes phase function 
renormalization unnecessary, implying that energy is conserved in the computation 
[39]. The (179) represents a set of 4n equations: 2n to account for the up-going 
and down-going intensities and 2n to account for the V and H polarizations. 
 
To solve (179) for the homogeneous solution let 
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( ) z
ii eIzI α

ββ =  (182) 

Substituting the previous equation in (179) it is easy to obtain 4n equations useful 
to determine the 4n eigenvalues of α and the corresponding eigenvectors. In a 
matrix formulation it is: 
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Where uI and dI represent respectively the upward and downward specific 
intensities and are vectors of rank 2n 
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Both ek,µ  and a  are diagonal 2n x 2n matrices represented by  
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The matrices F  and B  are the forward and backward scattering phase matrices 
and are expressed by 
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Due to the spherical symmetry of the scatterers, also the phase functions are 
symmetrical and 

( ) ( ) hvjiji ,,,, == −− βαβαβα  (190) 

Hence both F  and B  are symmetric matrices. 
 
For a numerical solution of the problem, it could be useful to reduce the number of 
equations and this could be done by letting 
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By adding and subtracting (183) we obtain 
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Where 
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Combining the displayed equation in (192) it is possible to obtain the following 
equation which must be solved by the eigenanalysis 
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=⋅−⋅⋅⋅ +

−−
IAW αµµ  (194) 

The previous equation has 2n eigenvalues  and 2n eigenvectors 2
2

2
2

2
1 ,...,, nααα
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The constants  and  must be determined by imposing the boundary 

conditions. Also 

lP lP−

−I  can be determined by (192). Denoting the homogenous 
solution with “H” it has 
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The particular solutions for equations (179) is denoted by the superscript P and is  

1TCII
p
d

p
u ==  (197) 

where 1T  is a vector of rank 2n in which each component is equal to the snow 
thermodynamic temperature T1.   
 
As stated before, to obtain the constants  and , l=1,2,..2n, the boundary 
conditions must be imposed. For sake of convenience they are reported also here 

lP lP−

)0()0,,()()0,,()0( 1010 =⋅====−== zIRzIRzIzI ud φθθφθπ   (198) 
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where  

]....,,,,....,,,[ 10101010101010
2121 nn hhhvvv rrrrrrdiagR =  

]....,,,,....,,,[ 12121212121212
2121 nn hhhvvv rrrrrrdiagR =  (200) 

]....,,,,....,,,[ 12121212121212
2121 nn hhhvvv ttttttdiagT =  

The vector 2T is like 1T  but with the temperature of the soil. Each component 
of the (200) matrices must be read as: reflection coefficient (r) , from medium q 

to medium p, i
ipqrα

 th quadrature angle. t denotes the transmission coefficient. 
 
The brightness temperature BT  observed in region 0 can be eventually obtained 
from: 

{ }110100 )0(1)0(1)( TCzIT
C

zIT
C

T
H
uuiB +=⋅==⋅=θ  (201)

   

3.3.4 Computation of the reflection coefficients 
To solve the vector radiative transfer equations, boundary conditions at the upper 
and lower interfaces must be imposed. They are 
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Each component of  abR  and abT is a reflection coefficient or a transmit one which 
must be calculated depending on the roughness of the surface. As stated 
previously, in the present model we have supposed that, as frequently happens in 
alpine regions the interface at the air-snow boundary is flat, whereas the interface 
between the snow and the ground is rough.  
 
The Fresnel reflection coefficients for V and H polarizations are expressed by 
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where ηa,θa,  a=1,2  are the refractive index and the angle in the a medium. θ1 and 
θ2 are related by the Snell’s law. 
 
To calculate the reflection coefficients taking into account the soil roughness the 
equivalent reflectivity must be computed by means of 
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2
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2
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+=Γ ∫ ∫
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π

φθθφθφθγφθφθγ
π

φθ  (206) 

where the scattering coefficients rrγ  and trγ  are obtained from the AIEM model 
and, considering azimuthally isotropic surfaces, φ can be set to zero. 
 
Eventually, the R reflection coefficient is the square root of the reflectivity. 
 

3.4 Modeling snow containing free liquid water (wet snow) 
To study the microwave emission of wet snow (i.e. a snowpack which contains free 
liquid water), it is almost useless to adopt a sophisticated model like the DMRT 
coupled with the AIEM because the penetration depth of e.m. waves in such 
medium is very shallow (of the order of a few centimeters at C-band). Moreover, 
the DMRT equations for a multi-species medium (like water droplets and ice 
crystals embedded in the air) are very difficult to solve and the computational time 
required can be too high. Another issue to be considered is the physical process 
involved in the melting/refreezing of snow (Fig. 36). Usually snow starts to melt 
when the temperature of the air is above 0°C and the sunlight impinges on the 
snowpack. In these conditions the thermal wave starts to slowly propagate into the 
medium and the snow starts to melt from the top to the bottom (Fig. 36 (a)). The 
refreezing phase happens when the air temperature is below 0°C (usually from 
dusk to dawn, Fig. 36 (b)), and the liquid water return to solid state. It should be 
noted that the refreezing can be complete or not: e.g. it is possible that the deepest 
layers of the snowpack remain moist because the air has not been enough cold 
during the night. Considering that the emission of a cloud of water particles can be 
very high (even close to that of a black-body) it is plain how the microwave 
brightness temperature of wet snow is driven by the LWC. 
 
 

 
 
 

93 



Tair>0 Tair>0

Melting phase

Tair>0 Tair>0Tair>0 Tair>0Tair>0

Melting phase

Tair>0Tair>0

 
(a) 

 

Tair<0Tair<0

Refreezing phase

Tair<0 Tair<0Tair<0Tair<0Tair<0

Refreezing phase

Tair<0Tair<0

 
(b) 

 
Fig. 36 - The melting and refreezing processes of snow. Ice crystals are depicted in 

dark blue while liquid water droplets are in light blue. (a) represents the melting 
phase from sunrise (on the left) to sunset (on the right). (b) represents the 

refreezing phase during the night. The arrows indicate the thermal flux. 
 
 
The Strong Fluctuation Theory has proved to be very good in modeling the e.m. 
behavior of wet snow and represents a good trade-off between accuracy and 
computational time. Moreover, to model the “layered” behavior of the 
melting/refreezing processes, a multilayer method like the one in chapter 2 can be 
used. 
 
 

 
Fig. 37 - The structure of wet snow like modeled in the SFT 
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As stated previously, the SFT let the dense medium to be homogeneous and 
consider the scatterers like fluctuation of the permittivity.  In the Weak Fluctuation 
Theory the permittivity is written as 
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where the angular brackets stands for spatial average, δ is the normalized variance 
and R is the normalized correlation function of the dielectric constant. Instead the 
SFT use a different (and more effective) approach to represent the permittivity 

( ) ( )rr fg 'εεε +=  (208) 

where gε is the auxiliary permittivity which is valid in the low-frequency limit (where 

the e.m. interactions between two particles is negligible) and ( )rf'ε  is the random 
fluctuation. 
 
By using this decomposition, the wave equation can be written as 
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Solving (209) (the procedure is outlined in appendix 2) it is possible to obtain the 
effective permittivity of the snow medium  
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and , ,  are bounded together by  icef waterf hostf 1=++ hostwaterice fff  
 
The auxiliary permittivity can be obtained by solving 
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which is equivalent to the Polder-Van Santen mixing formula. 
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4. EXPERIMENTAL RESULTS AND COMPARISON WITH 
SIMULATIONS 

The description of the interaction between electromagnetic waves and natural 
targets is one of the most difficult tasks of the research. The main reason resides in 
the intrinsic randomness of natural environment. While it can be simple to describe 
artificial targets (which usually have a well-defined geometry and electric 
properties), Earth surfaces are quite difficult to characterize. The best way to check 
the performances of the models is to compare the analytical estimations with 
measurements taken on natural (or semi-natural) targets.  
 
In [122] a large dataset of radar measurements taken on snowcovers on the Swiss 
Alps is published. In [18] fields measurements of microwave emission from snow 
covered soil taken on several test sites in Italy are shown. Macelloni et al. [22] 
[123] investigated the melting-freezing processes of the snow by means of long 
time series of the brightness temperature at several frequencies. Some 
measurements have been taken also on artificial targets to simulate soils with a 
pre-determined surface roughness [66]. In [124] is presented a long time series of 
measurements taken on dry snow during the 2006/2007 winter season by the 
Microwave Remote Sensing Group of the IFAC. These measurements have been 
used during the codification of the dry snow model for a preliminary validation. 

4.1 Comparison of the snow emission model with experimental 
data 
The Microwave Remote Sensing Group of the Institute for Applied Physics of the 
Italian National Research Council (IFAC-CNR) has performed several experiments 
on the snow cover surfaces under the most common conditions. The aims of these 
investigations were to understand the relationships between the microwave 
emission and the physical properties of terrains covered by snow with or without 
vegetation. The datasets obtained are very extensive and includes both 
electromagnetic and synoptic direct measurements of the media parameters (e.g. 
height, density, temperature and crystal characteristics of the snowpack).  
 
It is worth pointing out that, conversely from the surface scattering, it is very difficult 
to validate the volume scattering models (like the DMRT-QCA or SFT) against 
numerical datasets. Indeed, the only way to obtain such dataset is to perform a 
Montecarlo analysis: numerically solve the Maxwell equations for a huge number of 
scatterers configurations. This technique requires a computer with a very high 
computational power and for this reason has been rarely used. Thus, the use of 
experimental dataset is almost mandatory. 

4.1.1 The IFAC remote sensing equipment and experiments 
The remote sensing data were collected by means of a Radiometer set measuring 
thermal emission  at  several different microwave frequencies: from 1.413 GHz up 
to 37 GHz and in the thermal infrared (8-14 µm) band. The microwave sensors 
measured the horizontal and vertical polarization components of brightness 
temperature with an accuracy of ±0.5 K, at incidence angles between 30 and 70 
degrees. The instruments were portable, self-calibrated systems with a dual 



polarization horn antenna for each frequency channel and an internal calibration 
based on two loads at different temperatures (250 K ±0.2 K and 370 K ± 0.2 K). 
The calibrated output digital signals were recorded on a notebook computer 
together with temperatures of calibrating loads. Calibration checks in the range 30 
K - 300 K  are always carried out during the field experiments by means of 
absorbing panels of known emissivity and temperature (Eccosorb AN74 and 
VHP8), and observing clear sky with a calibrated noise source coupled to the 
antenna. Background emission is periodically measured by means of a reflecting 
plate placed above the target and subtracted from the total emission. The achieved 
measurement accuracy (repeatability) has proven to be better than ±1.0 K, with an 
integration time of 1 sec. The beamwidth of the corrugated conical horns is 20° at -
3 dB and 56° at -20 dB for both frequencies and both polarizations. The sensors 
were installed on a shelter placed directly on the snow (Fig. 38) or on a 
snowmobile. The observation geometry (distance between antenna and target) is 
arranged to meet the conditions of far field operation at an observation angle θ = 
30° from a minimum height of 140 cm. The FOV ranged from 0.6x0.6 m2 at θ = 30° 
incidence angle to 2x2 m2 at θ = 70°. The infrared sensor, a commercial type hand-
held radiometer with accuracy (repeatability) of ± 0.5 K, is placed on the same 
boresight of microwave radiometers. Microwave emissivity is approximated by 
normalizing the brightness temperature to the thermometric temperature at 10 cm 
depth.  

 

 
 

Fig. 38 – The microwave instruments shelter placed on the Mount Cherz test site 
during the 2002/2003 winter season. In the foreground it is possible to see a 

profilometer for the roughness measurements 

4.1.2 The Morsex (Microwave and Optical Remote Sensing 
experiment)  dataset 
Field measurements of microwave emission from soil covered with snow were 
carried out from 1996 until 1999 on the Italian Alps and Apennines on various test 
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sites at different elevations in order to represent situations of varying snow cover 
conditions including dry snow at high density with rounded polycrystals, low density 
fresh/dry snow, and finally a typical spring situation of wet snow with rounded 
particles, high surface density and a very low consistence. In each test site the 
composition of the strongly stratified snow pack was analyzed according to the 
standards of the International Commission on Snow and Ice [125]. 
The test sites (depicted in Fig. 39) were selected in order to have a flat surface with 
sufficient extension, homogeneity and horizon free to guarantee the same 
conditions for the antenna footprints at all the observation angles.  
 

 
(a) 

 

 
(b) 

 
Fig. 39 - The locations of the three test sites on the Eastern Italian Alps. In (a) is 
depicted the Campolongo pass and in (b) the passo Valles and Zingari alti test 

sites. (from Google Earth) 
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4.1.2.1 Comparison between the snow model and the Morsex dataset of dry 
snow 
 
The Morsex radiometric dataset was used to validate the IRIDE snow model and to 
test his capability to simulate the microwave emission before use it for a sensitivity 
analysis and to better understand the interaction between the electromagnetic 
waves and the snow medium.  
 
The first comparison between measured and simulated data was made as a 
function of the observation angle. Three different snowpacks were taken into 
consideration corresponding to three different alpine test sites. The measurements 
were carried out at 6.8, 10 and 37 GHz. The input parameters of the model are 
depicted in Tab. 4. As outlined previously, the snow data were derived from ground 
measurements except for the grain size, which was used as a fitting parameter, 
while the soil parameters were obtained from fitting the C-band radiometric data. 
The 1.5-power autocorrelation function was chosen because it better represents 
the soil roughness over such large scale of roughness. 
 

Tab. 4 – Input parameters to the IRIDE model for the simulation of the Morsex 
dataset 

 

Input parameters 
 Campolongo Pass Valles  Zingari Alti 

Snow    
Temperature (K) 266 266 266 

Depth (m) 0.67 1.19 1.16 
Fractional volume 0.3 0.3 0.3 

Particle diameter 
(mm) 

0.8 @ 6.8,10 GHz 
0.45 @ 37 GHz 

0.7 @ 6.8,10 GHz
0.4 @ 37 GHz 

0.7 @ 6.8,10 GHz 
0.4 @ 37 GHz 

Stickiness 0.1 0.1 0.1 
Soil    

Permittivity 4+j1 6+j2 5+j1 
HSdtD (cm) 0.7 0.5 0.5 

Correlation length 
(cm) 12 12 12 

ACF 1.5 power 
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Fig. 40 - Comparison between simulated (continuous line) and measured (dots) 
brightness temperatures of dry snow at (a) 6.8 GHz, (b) 10 GHz and (c) 37 GHz. 
Experimental data are taken on the Campolongo Pass test site. Input parameters 

for the snow model are shown in Tab. 4 
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Fig. 41 - Comparison between simulated (continuous line) and measured (dots) 
brightness temperatures of dry snow at (a) 6.8 GHz, (b) 10 GHz and (c) 37 GHz. 

Experimental data are taken on the Valles test site. Input parameters for the snow 
model are shown in Tab. 4. 
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Fig. 42 - Comparison between simulated (continuous line) and measured (dots) 
brightness temperatures of dry snow at (a) 6.8 GHz, (b) 10 GHz and (c) 37 GHz. 
Experimental data are taken on the Zingari alti test site. Input parameters for the 

snow model are shown in Tab. 4 
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Figures 40-42 show the comparisons between snow model simulations and 
microwave measurements taken on Campolongo, Passo Valles and Zingari Alti 
test sites. The snow was everywhere dry thick and quite stratified, even if this latter 
feature does not affect very much the brightness temperature of alpine dry snow at 
C- and X-band. The agreement between the measured and simulated data is very 
good for the three test sites and improved with respect to other models [18]. It is 
worth pointing out that for the lowest frequency, the emission of the soil is 
predominant. 
 
In addition to the measurements as a function of the observation angle, the 
relationship between brightness temperature and the snow water equivalent (SWE) 
was investigated. The SWE is defined by  

zdzzSWE
d

ρρ ≈= ∫
0

)(  (213) 

where ρ  is the mean density. The last part of the equation holds exactly only for 
homogeneous snowpack. 
 
The relationship between measured and simulated brightness temperatures as a 
function of SWE is represented in Fig. 43. The two frequencies considered are the 
10 and 37 GHz at V polarization and the observations are made at 40 deg 
incidence angle. The inputs for the model were the same as used in the previous 
simulations (see Tab. 4). Also in this case the agreement is very good over a wide 
range of SWE.  
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Fig. 43 - Comparison between measured (dots) and simulated (lines) brightness 

temperature as a function of snow water equivalent and snow depth at 40° 
observation angle for a mean fractional volume of 0.3. The experimental data are 

taken on the Campolongo Pass test sites. 
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4.2 The effect of the liquid water on the emission of snow 
During the 2002/2003 winter season, the Microwave Remote Sensing Group of the 
IFAC carried out a long-term experiment [22] aiming to investigate how the 
electromagnetic emission is affected by the melting/refreezing processes of snow. 
The experiment was called the MASMEX 02/03 (Microwave Snow Melting 
Experiment) and was carried out on the Mount Cherz test site. In order to have 
detailed data on the condition of the snowpack a physically-based hydrological 
model developed by the University of Brescia was used to estimate the time 
evolution of snow depth and wetness. Moreover, conventional measurements of 
snow parameters were carried out along vertical profiles at each significant change 
during the daily cycles of snow melting and refreezing (the majority daily or several 
time in a day). These measurements included, for each characteristic layer: grain 
shape and size, volumetric liquid water content (VLWC), snow density, 
temperature, and hardness. They were used also to calibrate the hydrological 
model and test its performances, and the measurement of liquid water content was 
carried out using standard empirical methods and two electromagnetic probes: the 
Snow Fork (TOIKKA- Finland) and a probe built by IFAC-CNR.  
 
To simulate the emission of wet snow, a two-layer model based on the wave 
approach was used. The permittivity of the snow was computed by means of the 
SFT, modeling the free water like spherical droplets among the ice crystals. The 
input parameters were derived from the hydrological model except the correlation 
length of the permittivity fluctuations. This latter was determined by the fitting of the 
experimental measurements on a melting/refreezing cycle and used to estimate 
the emission for the following days. It should be noted that the electromagnetic 
snow model considers flat interfaces between the air, the snow layers and the 
ground. 
 
The first model activity in the Masmex framework was to asses the capability of the 
SFT to simulate the emission of snow for long time series and to reproduce the 
fluctuations of the brightness temperature. In Tab. 5 are shown the inputs of the 
model derived from ground and simulated hydrological data. Both correlation 
length of the permittivity fluctuation and soil permittivity were kept constant for the 
entire simulations. 
 

 Depth
(cm) 

Volume 
Fraction 

(%) 

Temperature
(°C) 

VLWC 
(%) 

Correlation 
Length 
(mm) 

Permittivity 

Upper 
layer 

min/max 
10 38/53 - 4.2 /0 0 /2.9 0.6  

Lower 
layer 

min/max 
9/ 48 33/48 -1.8 /0 0 /3.1 0.9  

Soil   0   6+ j 0.5 
 
Tab. 5  - Input parameters of the SFT model used in the simulation of the MASMEX 

02/03 data 



 
 
Fig. 44 shows the measured brightness temperature at 37 GHz V polarization of 
one day, along with the simulated one and the LWC of the upper (10 cm) and 
lower layers of the snow. We can see that the model is able to reproduce very well 
the emission for the entire cycle. The comparison with liquid water content shows 
that the brightness temperature is better correlated to LWC of the first layer in the 
melting phase while, in the refreezing one, the e.m. emission process is driven by 
the LWC of the lower layer. As pointed out in paragraph 3.4, the brightness 
temperature of snow rises immediately just from the beginning of the melting 
phase. During the refreezing, Tb gently decreases because the wet snow emission 
is attenuated by the overlying dry snow layers (see Fig. 44). As the refreezing 
phase proceeds, the wet snow is hidden by a dry layer which increases with the 
time and attenuates the microwave emission coming from the bottom. 
 
 

0

25

50

75

100

125

150

175

200

225

250

275

300

27/3/2003
0.00

27/3/2003
6.00

27/3/2003
12.00

27/3/2003
18.00

28/3/2003
0.00

28/3/2003
6.00

28/3/2003
12.00

B
rig

ht
ne

ss
 te

m
pe

ra
tu

re
 (K

) 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

LW
C

 (%
)

37 GHz V meas 37 GHz V model LWC 1st LWC 2nd

LWC 1

LWC 2

37 GHz model

37 GHz measured

 
 
Fig. 44 - Time series of measured and simulated brightness temperatures Tb at 37 
GHz vertical polarization. Lower lines (pink and black) represent respectively the 

liquid water content of the upper and lower layers. 
 
The comparison of measured and simulated brightness temperatures at 19 GHz 
and 37 GHz for a long sequence of data are represented in Fig. 45 and 46. The 
investigated period was eleven days long at the end of March and four days in 
April. It is possible to see that the brightness temperature at 19 GHz has, in both 
cases, an appreciable overestimation of experimental data, which can be due to 
the various approximations made in the model and also to a slight overestimation 
of the snow temperature. Anyway, the model reproduces well the trend of 
experimental data.  
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Fig. 45 - Experimental and simulated brightness temperatures at 19 and 37 GHz 

(Vertical polarization) together with simulated volumetric liquid water content of the 
two snow layers as a function of time.  Inputs to the e.m. model were obtained from 

hydrological simulations except for correlation length and soil permittivity which 
were derived from ground measurements 
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Fig. 46 - Experimental and simulated brightness temperatures at 19 and 37 GHz 
(Vertical polarization) together with simulated volumetric liquid water content of the 
two snow layers as a function of time.  Inputs to the e.m. model were obtained from 

hydrological simulations except for correlation length and soil permittivity which 
were derived from ground measurements 



 
 

To better understand how the various layers affect the emission of the snowpack a 
model analysis carried out to separate the terms that contribute to total emission 
was made. These contributions are: emission from soil attenuated by the two snow 
layers, emission from the lower layer of snow attenuated by the overlying layer, 
and the emission of the upper layer. Also in this case the frequencies investigated 
were 19 and 37 GHz. Fig. 47 shows that the upper layer controls emission in the 
melting phase, while the lower layer mostly influences brightness in the refreezing 
phase. The soil contribution is appreciable on relatively thin layers of refrozen snow 
only, and, as expected, it is higher at 19 GHz than at 37 GHz. It is appreciable only 
when the overlying layers of snow are both completely frozen (e.g. in the night of 
March, 22nd). After this date, the soil contribution disappears as soon as the snow 
wetness increases, and it remains undetectable because the LWC didn’t drop to 
zero anymore.  
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Fig. 47- Contribution of emission from soil and from the two snow layers to total 

brightness temperature  (a: 37 GHz, b:  19 GHz) 
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5. SENSITIVITY ANALYSIS OF THE DMRT MODEL 

 
Theoretical models are very useful to check and understand the relationships 
between the physical parameters of natural media and their electromagnetic 
behavior. Usually, these kinds of investigations are carried out by means of 
sensitivity analysis. The behavior of Strong Fluctuation Theory has been studied in 
[126] and will not be repeated here. Instead, the new IRIDE model for dry snow 
based on DMRT and the AIEM will be used to understand how the geophysical 
parameters of dry snow can affect the electromagnetic emission. As stated before, 
the main parameters that characterized the snow are the thickness, the density and 
the grain radius. Thus, the analysis has been focused on these variables for 
several frequencies and polarizations. When the results for the V and H pol. are 
similar, only one will be shown.  
 
The sensitivities of the brightness temperature as a function of the snow depth 
(SD) for the Ku and Ka bands for the two polarizations) are depicted In Figs. 48-49 
(a)-(b). In this analysis the soil has been modeled as flat with a permittivity ε= 3.2 
like in [107]. The snow inputs (Tab. 6) were set to typical values for the North 
European snow covers: fractional volume=0.3, stickiness τ =0.1, the grain size is 
indicated in the figures close to each curve. At 19 GHz, V polarization there is a 
good sensitivity (nearly linear) of the emission to the snow depth for almost every 
particle size. It should be noted that only for tiny crystals (in case of diameters 
smaller than 0.2mm) the sensitivity is almost zero. In the other cases, it ranges 
from -25.1 K/m for small particles up to -107 K/m for big one. At 37 GHz the 
sensitivity is higher with a saturation at relatively low thicknesses. For shallow 
snowpacks the sensitivity is almost constant and range from 32 K/m up to 40 K/m 
respectively for grain radius from 0.2 to 0.5 mm. 
 

Table 7 - Input parameters to the dry snow model for the preliminary sensitivity 
analysis 

 
parameter value 

Fractional volume 0.2 
Grain radius 0.1-0.5mm 

Scatterers permittivity 3.2+j0.002 @ 19 GHz
3.2+j0.01 @ 37 GHz 

Stickiness τ 0.1 
Snow temperature 260 K 
Soil temperature 260 K 

Ground permittivity 3.2 
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Fig. 48 – The brightness temperature at 19 GHz (a) V and (b) H polarizations as a 
function of snow depth for several values of grain size. The model parameters can 

be found in Tab. 7 
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Fig. 49 – The brightness temperature at 37 GHz (a) V and (b) H polarizations as a 
function of snow depth for several values of grain size. The model parameters can 

be found in Tab. 7 
 
 
Fig. 50 shows an attempt to investigate the behavior of the Chang’s algorithms 
[33]. It is useful to recall that such method is based on the difference between the 
brightness temperature measured at Ku band and the one at Ka band. The 
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coefficients of the linear regression described in the state of the art can be 
obtained by the fitting of experimental measurements and are disregarded in this 
analysis. 
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Fig. 50 – The brightness temperature difference ∆Tb at (a) V and (b) H 

polarizations as a function of snow depth for several values of grain size. The 
model parameters can be found in Tab. 7 
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For small grain size the difference ∆Tb between the two frequencies increases 
almost linearly at least up to a depth of 1m. As the grain radius increases ∆Tb 
presents a maximum (which happens at smaller snow depth as bigger is the grain 
size) and the algorithm can fail. This is due to the saturation showed by the 
emission at 37 GHz. From these considerations, it is possible to understand why 
the empirical algorithms can give acceptable predictions only if applied to large 
areas, where the variability of the snow parameters as grain size is larger and this 
can help to smooth the sharp transition outlined in Fig. 50. 
 
Fig. 51 shows a similar analysis as in Fig. 43. The emission as a function of SD is 
investigated for four values of frequency. It should be noted that, since the density 
is kept fixed, the results hold also for the SWE that range from 0 to 27.5 cm. At the 
lowest frequencies, as pointed out previously, the emission depends mainly on soil 
and is influenced very few by the snow cover. If the frequency rises at Ku and Ka 
bands, the extinction properties of the ice crystals become appreciable and heavy 
affect the brightness temperature. At 37 GHz the plot clearly shows saturation for a 
snow depth of 20-30 cm (SWE ≅ 9cm). Beyond these values, snow masks 
completely the soil emission and the measured brightness is only due to the snow. 
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Fig. 51 – Sensitivity analysis of brightness temperature as a function of the snow 
depth for four frequencies. The input parameters to the model are summarized in 

Tab. 8 
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Tab. 8 – Input parameters for the simulation depicted in Fig. 51 

 
parameter value 
Frequency 6.8,10,19,37 GHz

Observation angle 55 deg 
Fractional volume 0.3 

Grain radius 0.5mm 
Scatterers permittivity Hufford model 

Stickiness τ 0.1 
Snow temperature 266 K 
Soil temperature 271 K 

Soil HStdD 0.5 cm 
Soil Corr. Length 20 cm 

ACF 1.5 Power 
Ground permittivity 8+j2 

 
The last analysis is devoted to study the effect of the snow density on the emission. 
In a dense medium the brightness temperature is affected, in opposite ways, by the 
absorption and scattering processes. It is possible to see in Fig. 52 that for small 
particles the absorption is the main phenomena but if the scatterers size get bigger, 
the scattering become predominant. To this aim, the snowpack analyzed was 1 m 
thick and the grain radius considered were 0.3 and 0.5 mm. The entire set of 
parameters for the analysis is depicted in Table 9. 
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Fig. 52 – Sensitivity analysis of brightness temperature to snow density for two 

frequencies and two different grain radius. Even if the absolute values of the lines 
are different the trend is essentially the same for each curve. The input parameters 

are shown in Tab. 9 
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Tab. 9 – Input parameters for the simulation depicted in Fig. 52 

 
parameter value 
Frequency 19,37 GHz 

Observation angle 55 deg 
Density 0.05-0.45 Kg/m3

Grain radius 0.3, 0.5 mm 
Scatterers permittivity Hufford model 

Snow depth 1 m 
Stickiness τ 0.1 

Snow temperature 266 K 
Soil temperature 271 K 

Ground permittivity 8+j2 
 
 
 

For both the four cases considered, the trend of the diagrams is the same: for very 
tenuous snow the scattering is predominant and the brightness temperature 
decreases almost linearly, after a minimum is reached (for density around 150 
Kg/m3) the absorption/emission processes become predominant and the Tb start to 
rise. This behavior is typical of dense medium in which there is a strong interaction 
of the electromagnetic waves with the scatterers.  
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CONCLUSIONS 

In this thesis, the problems of modeling the electromagnetic microwave emission 
from soils covered by snow have been discussed. Both dry and wet snowpacks 
have been considered. A comprehensive review of the state of the art of the 
electromagnetic theoretical models for simulating soil and snow microwave 
emission has been given. The characteristics of each model have been analyzed 
in-depth and discussed with respects to the measurement systems features and 
the parameters of the observed media. Moreover, special attention has been paid 
to identify the validity limits of the models. The e.m. models taken into 
consideration to simulate surface scattering have been: the Small Perturbation 
Method, the Kirchhoff Approach under the Physical and Geometrical Optics, the 
Small Slope Approximation, and the Advanced Integral Equation Method. Emission 
from snow has been studied by using the Dense Media Radiative Transfer Theory 
under the Quasi-Crystalline Approximation with or without Coherent Potentials and 
the Strong Fluctuations Theory. 
 
From the literature analysis, the DMRT under the Quasi-Crystalline Approximation 
was found to be, at the state of the art, the best theoretical model for simulating dry 
snow, while the AIEM was the more suitable in modeling soil. For wet snow, the 
best performances have been shown by the SFT. 
 
 
During the study of the models available in literature, many severe errors have 
been detected for both the DMRT and AIEM. Hence, the two models have been 
thoroughly revised and the errors corrected. Moreover, the AIEM was extended to 
the polarimetric case, which was not yet available in literature. 
Subsequently, an advanced model for simulating emission from soils covered by 
dry snow (called IRIDE IFAC RadiatIve Dry snow Emission model) has been 
developed by coupling the DMRT with the AIEM.  Since radiation from wet snow is 
practically not affected by soil contribution, the model for simulating wet snow was 
based on the SFT and the wave approach for multilayered media, by disregarding 
surface scattering from soil.  
 
In order to check and test the performances of the developed software, an 
extensive validation has been successfully carried out by means of numerical and 
experimental data. The two models have also been used to give a physical insight 
to the microwave measurements collected by the IFAC Microwave Remote 
Sensing Group on some test sites in the Italian Alps and to enlighten the 
experimental relationships found between microwave emission and snow 
parameters. 
 
Finally, an extensive sensitivity analysis of the IRIDE model has been carried out, 
in order to understand how the electromagnetic emission depends on the physical 
characteristics of snow and on the observing parameters. It has been found that 
both IRIDE and SFT models predict a sensitivity to snow depth and volume fraction 
well in agreement with experimental data, whereas the extremely high sensitivity to 
ice crystal dimensions still needs to be confirmed by measurements. For instance, 
the sensitivity of brightness temperature to the snow depth predicted by the IRIDE 
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model ranges from -4 up to -123 K/m at 19 GHz, in V pol., respectively for 0.2 and 
1 mm grain diameter, and from -35 up to -354 K/m at 37 GHz, in V pol. The 
sensitivity of the emission simulated by IRIDE to snow density shows a non-
monotonic behavior both for Ku and Ka bands and for the two grain sizes 
considered: up to 120-150 Kg/m3, the emission is inversely proportional to the 
density, while, after such a value, the emission increases as the density increases. 
A further study has been carried out to check the empirical Chang’s algorithm used 
for the retrieval of snow depth or of SWE. This analysis pointed out that the 
performances of the algorithm are strongly affected by the snow characteristics, in 
particular by the grain size, and this high dependence causes a relative big error in 
estimate the snow depth. 
 
Further advancements in the IRIDE model will take into account the multilayer 
structure of dry snow, a different solution of the radiative transfer equation to 
consider the vertical profiles of snow parameters, and the non-spherical 
(ellipsoidal) shape of the ice grains. Moreover, another consideration emerged 
during the progress of the thesis is that the techniques used for estimating the soil 
characteristics, in particular the shape of the autocorrelation function, are not 
adequate for the description of the surface roughness and should be improved. 
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Appendix 1: Validation of the AIEM model 

In this chapter, the comparisons made in the validation phase between the AIEM 
simulations and the FDTD data provided by ESA will be shown. These latter are 
considered as data truth. All the comparisons are made for surfaces with mono-
dimensional correlation function. The validation of the model for bi-dimensional 
surface has been carried out by means of the ISPRA-JRC experimental data.  

For sake of convenience the labels over the axes are omitted. This has been done 
for improve the readability of the diagrams. The horizontal axe represents the 
scattering angle (degrees) and the vertical one represents the bistatic scattering 
coefficient γ (dB). The incidence angle is indicated in the legend of the graphs. The 
continuous lines indicate the AIEM data while the dashed ones represent the FDTD 
reference data. The horizontal polarization is depicted in pink and the vertical 
polarization is depicted in blue. 

The simulations at L and C band are carried out respectively at 1.25 GHz and 5 
GHz. 

Exponential correlated surfaces  
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Appendix 2: The permittivity of a dense medium computed by 
the SFT 
The Strong Fluctuation Theory is a method used to solve the wave equation in the 
case of propagation in an inhomogeneous dense medium. The fundamental 
concept of the SFT is to describe the random medium as continuous with random 
fluctuation of the permittivity. Usually, the theory describing the propagation of 
electromagnetic waves in a heterogeneous medium is developed under two basic 
assumptions: 
 

- the fractional volume occupied by the scatterers is small 
- the dielectric fluctuations in the medium are very small (Born 

approximation). 
 
These two assumptions failed when applied to some natural media: for instance in 
the case of wet snow because the fractional volume can reach the 40% and the 
permittivity of the liquid water can be tent times the one of the background. The 
previous assumptions are made to disregard the singularity of the Green’s dyadic 
function in the waves equation. Indeed, the Green’s function has a singularity for 

'rr →  which means that, inside the random medium, the observation and source 
points can coincide (i.e. the particles act like radiation source). 
 
It is worth reminding that, in a random medium, the e.m. fields strongly fluctuate 
from point to point due to the scattering among the particles, and thus it is 
mandatory to apply a statistical average. The obtained equation is called the 
“Dyson equation” which has infinite terms. If the Dyson equation is directly 
approximated, the resulting formula holds only for tenuous media and leads to the 
Weak Fluctuation Theory. A more extensive description of the Strong Fluctuation 
Theory can be found in [1]-[3]. 
 
Considering a continuous medium (Fig. 53) in which the permittivity ( )rε  is 

allowed to fluctuate. It can be seen as a host medium ( hε ) which includes 
spherical particles whose characteristics are: permittivity εp and radius ap, p=1,..,n. 
In the case of wet snow there are two types of inclusions, i.e. ice and water 
spheres. 
 

 
 

Fig. 53 - The structure of the random medium 
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The fractional volume occupied by the scatterers is  and the one of the host 

medium is 

pf

∑ =
−=

n

i ph ff
1

1 . The equation for a wave travelling in such medium is 

( ) ( ) ( ) 0
0

2
0 =−×∇×∇ rErkrE

ε
ε

 (214) 

where 000 µεω=k . 
 
To understand the strong fluctuation theory is better to analyze before the weak 
one. 
 
The Weak Fluctuation Theory 
 
From an electromagnetic point of view, a random medium is characterized by its 
permittivity and permeability. Since it is improbable to find ferromagnetic material in 
remote sensing of natural media, the permeability is supposed to be 0µµ = . A 
common assumption to represent the dielectric constant is to express it as a sum 
of a constant and a fluctuating parts [3],[4] 
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 (215) 

where δ and R are respectively the normalized variance and the correlation 
function of the fluctuations.  
 
The wave equation for the random medium can be written as 

( ) )()()( 22 rErrErE fm εµωµεω =−×∇×∇  (216) 

Neglecting the singularity of the Green’s function, the solution of (216) is 

')'()'()',()()( 2
00 drrErrrGPVkrErE fε∫+=  (217) 

The (217) is a Neumann form solution and cannot be solved in a closed form. To 
obtain the first moment of the electric fields, the bi-local approximation is commonly 
used and it is valid under the assumption 

1<<δ  (218) 

which means that the fluctuation of the permittivity must be weak. To overcome this 
constrain it is useful to decompose the permittivity in a different way. 
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The Strong Fluctuation Theory 
 
The WFT is based on two assumptions: 

- the singularity of the dyadic Green’s function is disregarded 
- the two parts of the permittivity are the average and a difference function 

 
These statements lead to a solution with a narrow validity range. To overcome 
such limitations it is useful to decompose the random permittivity in a different way. 
Instead of )(rm εε =  it is better to use an auxiliary permittivity gε  which will 

differ from the final effε  only for a small quantity depending on the particles 
dimension. Such little quantity will vanish if the grain size will become much smaller 
than the wavelength. Thus, the new expression of the random permittivity is 

( ) ( )rr fg 'εεε +=  (219) 

where gε  is the auxiliary permittivity which is valid in the low-frequency limit (where 

the e.m. interactions between two particles are negligible) and ( )rf'ε  is the 

random fluctuation. gε  will be obtained later. 
 
By using this decomposition, the wave equation could be written as 
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 (220) 

Indicating with )',( rrGg  the dyadic Green’s function which satisfy the waves 

equation with 0µεω ggk = : 

)'()',()',( 2 rrIrrGkrrG ggg −=−×∇×∇ δ
 (221) 

It should be noted that both )',( rrG
g

 and gε  are deterministic quantities chosen 

to approximate the random medium in the very low-frequency limit. 
 
The solution of the equation (220) for the electric field is 

')'(
)'(

)',()()(
0

2
00 drrE

r
rrGkrErE g

g ε
εε −

+= ∫  (222) 

where E0(r) is the incident wave and Gg(r,r’) is the DGF for a medium with 
permittivity εg. 
 
To solve the (222) the exclusion volume must be chosen to coincide with the shape 
of the correlation function of the permittivity fluctuations. Because it has been 
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supposed the scatterers to be spherical, this will be also the shape of the exclusion 
volume [3]. 
 
The dyadic Green’s function is expressed by  

( '
3
1)',()',( 2 rrI
k

rrGPVrrG
g

gg −+= δ )  (223) 

where PV stands for “Principal Value”. The solution (222) can be rewritten as 
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from which 
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Rearranging the previous expression it can be obtained 
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by operating the following substitutions 
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the solution (225) can be written as 

')'()'()',()()( 2
00 drrFrrrGPVkrErF fg ξ∫+=  (228) 

which is an equation without singularity similar to (217).  The previous equation can 
be interpreted like if the source ( ) )(2 rErfεµω  in the medium with permittivity 

mε  become the source )()( rFrξ in the medium gε . 
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Relationship between F and E
 
The relationship between F and E can be understood from the electrostatic. Let us 
consider dipolar particles in vacuum. By indicating with El the local electric field 
acting on a particle (sum of the external field and the ones radiated by all the other 
particles) and with E the spatially and temporally averaged electric field in a point of 
the space (which is the sum of the incidence electric field and the ones generated 
by all the dipoles). From the Lorentz equation it can be written 
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which is similar to (227). Thus it is possible to make a comparison and see F(r) as 
the local fields exciting the random inclusions (by considering the permittivity 
fluctuations as dipoles) and E(r) as the macroscopic fields (Fig. 54) . 
 

 
 

Fig. 54 - Electrostatic fields for a dielectric sphere 
 
 
Moreover it is possible to give insight also to )(rξ . In the electrostatic case the 
polarizability P of a particle is  
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Thus, considering the random medium 
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By this way it is possible to see )(rξ  like the equivalent electrical susceptibility of 

the dipoles in the medium gε . Thus, by using the transformation ξε ↔  the 

scattering problem in a medium with permittivity )(rε  is become the problem of 

the scattering from dipoles in the medium gε . 
 
Computation of the equivalent permittivity εeff 

 
By applying the bi-local approximation to F(r) it has 

∫ ∫+= ''')'()'','()',()()( 2
00 rdrdrFrrrrGPVkrErF

effg ξ  (232) 

where 

)'''()'','()'','( 2
0 rrRrrGPVkrr geff

−= ξξ  (233) 

and 

( ) ( )''')'''( rrrrR ξξξ =−  (234) 

If the average of F(r) is computed directly from (228) it has 

)'()'()',()()( 2
00 rdrFrrrGPVkrErF g∫+= ξ '  (235) 

which compared with (232) gives 

')'()'()()( rdrFrrrFr
eff∫ −= ξξ  (236) 

The electrical displacement vector D is defined as 

ED ε=  (237) 

Thus, by the same way as (236), the spatial average of D is 

')'()'()()()( rdrErrrErrD eff∫ −==
∆

εε  (238) 

where εeff if the effective permittivity. To obtain the explicit expression of εeff is 
convenient to switch to the transformed domain. For instance 

rderk rkj
effeff ∫ ⋅−= )()( εε  (239) 

the same operation must be carried out also on ξ, D, E, F. From the electrostatic 

EPD 0ε+=  (240) 

thus it is possible to write 
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By using (227) it has 
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The (241) can be written as  
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and by grouping the properly terms it has 
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By applying the Fourier transform to (238)  
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and from (244)-(245) it has 
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This is the analytical expression of effε  and the correction term which must be 

added to gε  to account for the coherent scattering effects between the particles 
can be clearly seen. 
 
In order to apply the bi-local approximation, the following condition must be verified 

1)( <<k
eff

ξ  (247) 

hence the (246) become 

)()( 0 kIk
effgeff ξεεε +≅  (248) 

For relatively low frequency, the spatial dispersion of ξ can be neglected and it has 
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and 
0

0 effgeff I ξεεε +=  (250) 

To obtain a useful expression of effε , the quantity 0

eff
ξ  must be calculated. By 

using the (249) and some properties of the Green’s function for spherical exclusion 
volumes it has 
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Because 
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it can be written 
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Now it is possible to have an explicit expression for effε  
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Since effε  is a diagonal matrix with identical elements 
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Usually the first integral of the previous equation can be neglected with respect 
to gε , hence 
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This is the expression of the effective permittivity of a random medium according to 
the Strong Fluctuation Theory. 
 
When the SFT is used to compute the permittivity of a mixture of two constituents 
(one specie of spherical scatterers embedded in air) the only parameters needed 
are the permittivity of the two media εs and εb, the fractional volume and the radius 
of the scatterers fs and a respectively. The correlation function  is expressed 
by [1] 
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and equation (256) becomes 
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Indeed, for a three components mixture (two species of inclusions in the host 
medium) it has 
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Computation of the auxiliary permittivity εg
 
The auxiliary permittivity holds in the “very low-frequency” limit, when the scattering 
between the particles in the random medium can be neglected, i.e. 

0)( =rξ  (263) 

Supposing the medium be composed by a dielectric mixture made up by n 
components, each one with permittivity εp and fractional volume fp, p=1,..,n . If the 
scatterers are uniformly distributed we have 

[ ] npfr pp ..1)(Pr === εε  (264) 
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Hence, the spatial average (263) can be written as 
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The previous equation is the “Polder-Van Santen” mixing formula, originally derived 
for inhomogeneous medium with dipoles [5], thus the result is consistent with the 
very low-frequency approximation of gε . 

By solving the (266) it is possible to obtain the value of the auxiliary permittivity gε . 
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