19 research outputs found

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Exploring variabilities through factor analysis in automatic acoustic language recognition

    Get PDF
    La problématique traitée par la Reconnaissance de la Langue (LR) porte sur la définition découverte de la langue contenue dans un segment de parole. Cette thèse se base sur des paramètres acoustiques de courte durée, utilisés dans une approche d adaptation de mélanges de Gaussiennes (GMM-UBM). Le problème majeur de nombreuses applications du vaste domaine de la re- problème connaissance de formes consiste en la variabilité des données observées. Dans le contexte de la Reconnaissance de la Langue (LR), cette variabilité nuisible est due à des causes diverses, notamment les caractéristiques du locuteur, l évolution de la parole et de la voix, ainsi que les canaux d acquisition et de transmission. Dans le contexte de la reconnaissance du locuteur, l impact de la variabilité solution peut sensiblement être réduit par la technique d Analyse Factorielle (Joint Factor Analysis, JFA). Dans ce travail, nous introduisons ce paradigme à la Reconnaissance de la Langue. Le succès de la JFA repose sur plusieurs hypothèses. La première est que l information observée est décomposable en une partie universelle, une partie dépendante de la langue et une partie de variabilité, qui elle est indépendante de la langue. La deuxième hypothèse, plus technique, est que la variabilité nuisible se situe dans un sous-espace de faible dimension, qui est défini de manière globale.Dans ce travail, nous analysons le comportement de la JFA dans le contexte d un dispositif de LR du type GMM-UBM. Nous introduisons et analysons également sa combinaison avec des Machines à Vecteurs Support (SVM). Les premières publications sur la JFA regroupaient toute information qui est amélioration nuisible à la tâche (donc ladite variabilité) dans un seul composant. Celui-ci est supposé suivre une distribution Gaussienne. Cette approche permet de traiter les différentes sortes de variabilités d une manière unique. En pratique, nous observons que cette hypothèse n est pas toujours vérifiée. Nous avons, par exemple, le cas où les données peuvent être groupées de manière logique en deux sous-parties clairement distinctes, notamment en données de sources téléphoniques et d émissions radio. Dans ce cas-ci, nos recherches détaillées montrent un certain avantage à traiter les deux types de données par deux systèmes spécifiques et d élire comme score de sortie celui du système qui correspond à la catégorie source du segment testé. Afin de sélectionner le score de l un des systèmes, nous avons besoin d un analyses détecteur de canal source. Nous proposons ici différents nouveaux designs pour engendrées de tels détecteurs automatiques. Dans ce cadre, nous montrons que les facteurs de variabilité (du sous-espace) de la JFA peuvent être utilisés avec succès pour la détection de la source. Ceci ouvre la perspective intéressante de subdiviser les5données en catégories de canal source qui sont établies de manière automatique. En plus de pouvoir s adapter à des nouvelles conditions de source, cette propriété permettrait de pouvoir travailler avec des données d entraînement qui ne sont pas accompagnées d étiquettes sur le canal de source. L approche JFA permet une réduction de la mesure de coûts allant jusqu à généraux 72% relatives, comparé au système GMM-UBM de base. En utilisant des systèmes spécifiques à la source, suivis d un sélecteur de scores, nous obtenons une amélioration relative de 81%.Language Recognition is the problem of discovering the language of a spoken definitionutterance. This thesis achieves this goal by using short term acoustic information within a GMM-UBM approach.The main problem of many pattern recognition applications is the variability of problemthe observed data. In the context of Language Recognition (LR), this troublesomevariability is due to the speaker characteristics, speech evolution, acquisition and transmission channels.In the context of Speaker Recognition, the variability problem is solved by solutionthe Joint Factor Analysis (JFA) technique. Here, we introduce this paradigm toLanguage Recognition. The success of JFA relies on several assumptions: The globalJFA assumption is that the observed information can be decomposed into a universalglobal part, a language-dependent part and the language-independent variabilitypart. The second, more technical assumption consists in the unwanted variability part to be thought to live in a low-dimensional, globally defined subspace. In this work, we analyze how JFA behaves in the context of a GMM-UBM LR framework. We also introduce and analyze its combination with Support Vector Machines(SVMs).The first JFA publications put all unwanted information (hence the variability) improvemen tinto one and the same component, which is thought to follow a Gaussian distribution.This handles diverse kinds of variability in a unique manner. But in practice,we observe that this hypothesis is not always verified. We have for example thecase, where the data can be divided into two clearly separate subsets, namely datafrom telephony and from broadcast sources. In this case, our detailed investigations show that there is some benefit of handling the two kinds of data with two separatesystems and then to elect the output score of the system, which corresponds to the source of the testing utterance.For selecting the score of one or the other system, we need a channel source related analyses detector. We propose here different novel designs for such automatic detectors.In this framework, we show that JFA s variability factors (of the subspace) can beused with success for detecting the source. This opens the interesting perspectiveof partitioning the data into automatically determined channel source categories,avoiding the need of source-labeled training data, which is not always available.The JFA approach results in up to 72% relative cost reduction, compared to the overall resultsGMM-UBM baseline system. Using source specific systems followed by a scoreselector, we achieve 81% relative improvement.AVIGNON-Bib. numérique (840079901) / SudocSudocFranceF

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010
    corecore