29 research outputs found

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected

    Design and simulation of a wireless algorithm for lane switching on a drone road.

    Get PDF
    Unmanned aerial vehicles (UAV) or drones have developed very fast in recent years, and they have started to be applied in many fields such as aerial photography, military, and law enforcement. In a conceivable future, people will deploy more drones for civil and commercial uses which are not fully implemented today. One example is parcel delivery. Drones in large numbers will carry parcels to different destinations. To limit the movement of those drones. One idea is to construct a ”drone road,” a virtual tube-like area in the airspace. Drones should usually cruise within the tube but be able to move outside to avoid collision, or other hazards. One of the biggest problems, similar to ground self-driving cars, are collisions. Collisions will cause severe economic loss and even threaten people’s lives. Therefore, collision avoidance for drones is a valuable and important topic to research. We propose a coordination-free algorithm for drones to avoid collisions on the drone road and present the result of a simulation-based analysis to evaluate how some parameters related to wireless communications can affect performance. This study first proposes a system model to clarify the boundaries of the collision-avoiding problem we attempt to solve. In this model, drones are required to fly within a long straight drone road with the same forward direction. Drones are only equipped with a GPS sensor and wire- less communication components to perceive the environment. Moreover, only position and speed information can be shared with other drones. Then we propose a criteria-based algorithm specifying when drones should switch to another lane to avoid an incoming collision. Otherwise, drones should slow down their speed to wait for a good chance. Eight criteria are put forward in this research, including two baseline criteria ”do nothing” and ”always slow down.” Other parameters considered in simulations include beacon interval, path loss exponent for log-distance model, transmit power, and drone density. We run simulations with those parameters on OMNet++ for evaluation. We furthermore present a cost model to represent the performance to quantify simulation results. The simulation results show that packet loss is the main reason for collisions in our scenario. All simulation parameters can severely affect the packet loss rate and then consequent the collision rate. Four out of eight criteria can significantly reduce the total cost compared to the baseline

    Correlation-based Cross-layer Communication in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are event based systems that rely on the collective effort of densely deployed sensor nodes continuously observing a physical phenomenon. The spatio-temporal correlation between the sensor observations and the cross-layer design advantages are significant and unique to the design of WSN. Due to the high density in the network topology, sensor observations are highly correlated in the space domain. Furthermore, the nature of the energy-radiating physical phenomenon constitutes the temporal correlation between each consecutive observation of a sensor node. This unique characteristic of WSN can be exploited through a cross-layer design of communication functionalities to improve energy efficiency of the network. In this thesis, several key elements are investigated to capture and exploit the correlation in the WSN for the realization of advanced efficient communication protocols. A theoretical framework is developed to capture the spatial and temporal correlations in WSN and to enable the development of efficient communication protocols. Based on this framework, spatial Correlation-based Collaborative Medium Access Control (CC-MAC) protocol is described, which exploits the spatial correlation in the WSN in order to achieve efficient medium access. Furthermore, the cross-layer module (XLM), which melts common protocol layer functionalities into a cross-layer module for resource-constrained sensor nodes, is developed. The cross-layer analysis of error control in WSN is then presented to enable a comprehensive comparison of error control schemes for WSN. Finally, the cross-layer packet size optimization framework is described.Ph.D.Committee Chair: Ian F. Akyildiz; Committee Member: Douglas M. Blough; Committee Member: Mostafa Ammar; Committee Member: Raghupathy Sivakumar; Committee Member: Ye (Geoffrey) L

    Cellular and Wi-Fi technologies evolution: from complementarity to competition

    Get PDF
    This PhD thesis has the characteristic to span over a long time because while working on it, I was working as a research engineer at CTTC with highly demanding development duties. This has delayed the deposit more than I would have liked. On the other hand, this has given me the privilege of witnessing and studying how wireless technologies have been evolving over a decade from 4G to 5G and beyond. When I started my PhD thesis, IEEE and 3GPP were defining the two main wireless technologies at the time, Wi-Fi and LTE, for covering two substantially complementary market targets. Wi-Fi was designed to operate mostly indoor, in unlicensed spectrum, and was aimed to be a simple and cheap technology. Its primary technology for coexistence was based on the assumption that the spectrum on which it was operating was for free, and so it was designed with interference avoidance through the famous CSMA/CA protocol. On the other hand, 3GPP was designing technologies for licensed spectrum, a costly kind of spectrum. As a result, LTE was designed to take the best advantage of it while providing the best QoE in mainly outdoor scenarios. The PhD thesis starts in this context and evolves with these two technologies. In the first chapters, the thesis studies radio resource management solutions for standalone operation of Wi-Fi in unlicensed and LTE in licensed spectrum. We anticipated the now fundamental machine learning trend by working on machine learning-based radio resource management solutions to improve LTE and Wi-Fi operation in their respective spectrum. We pay particular attention to small cell deployments aimed at improving the spectrum efficiency in licensed spectrum, reproducing small range scenarios typical of Wi-Fi settings. IEEE and 3GPP followed evolving the technologies over the years: Wi-Fi has grown into a much more complex and sophisticated technology, incorporating the key features of cellular technologies, like HARQ, OFDMA, MU-MIMO, MAC scheduling and spatial reuse. On the other hand, since Release 13, cellular networks have also been designed for unlicensed spectrum. As a result, the two last chapters of this thesis focus on coexistence scenarios, in which LTE needs to be designed to coexist with Wi-Fi fairly, and NR, the radio access for 5G, with Wi-Fi in 5 GHz and WiGig in 60 GHz. Unlike LTE, which was adapted to operate in unlicensed spectrum, NR-U is natively designed with this feature, including its capability to operate in unlicensed in a complete standalone fashion, a fundamental new milestone for cellular. In this context, our focus of analysis changes. We consider that these two technological families are no longer targeting complementarity but are now competing, and we claim that this will be the trend for the years to come. To enable the research in these multi-RAT scenarios, another fundamental result of this PhD thesis, besides the scientific contributions, is the release of high fidelity models for LTE and NR and their coexistence with Wi-Fi and WiGig to the ns-3 open-source community. ns-3 is a popular open-source network simulator, with the characteristic to be multi-RAT and so naturally allows the evaluation of coexistence scenarios between different technologies. These models, for which I led the development, are by academic citations, the most used open-source simulation models for LTE and NR and havereceived fundings from industry (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) and federal agencies (NIST, LLNL) over the years.Aquesta tesi doctoral té la característica d’allargar-se durant un llarg període de temps ja que mentre treballava en ella, treballava com a enginyera investigadora a CTTC amb tasques de desenvolupament molt exigents. Això ha endarrerit el dipositar-la més del que m’hagués agradat. D’altra banda, això m’ha donat el privilegi de ser testimoni i estudiar com han evolucionat les tecnologies sense fils durant més d’una dècada des del 4G fins al 5G i més enllà. Quan vaig començar la tesi doctoral, IEEE i 3GPP estaven definint les dues tecnologies sense fils principals en aquell moment, Wi-Fi i LTE, que cobreixen dos objectius de mercat substancialment complementaris. Wi-Fi va ser dissenyat per funcionar principalment en interiors, en espectre sense llicència, i pretenia ser una tecnologia senzilla i barata. La seva tecnologia primària per a la convivència es basava en el supòsit que l’espectre en el que estava operant era de franc, i, per tant, es va dissenyar simplement evitant interferències a través del famós protocol CSMA/CA. D’altra banda, 3GPP estava dissenyant tecnologies per a espectres amb llicència, un tipus d’espectre costós. Com a resultat, LTE està dissenyat per treure’n el màxim profit alhora que proporciona el millor QoE en escenaris principalment a l’aire lliure. La tesi doctoral comença amb aquest context i evoluciona amb aquestes dues tecnologies. En els primers capítols, estudiem solucions de gestió de recursos de radio per a operacions en espectre de Wi-Fi sense llicència i LTE amb llicència. Hem anticipat l’actual tendència fonamental d’aprenentatge automàtic treballant solucions de gestió de recursos de radio basades en l’aprenentatge automàtic per millorar l’LTE i Wi-Fi en el seu espectre respectiu. Prestem especial atenció als desplegaments de cèl·lules petites destinades a millorar la eficiència d’espectre llicenciat, reproduint escenaris de petit abast típics de la configuració Wi-Fi. IEEE i 3GPP van seguir evolucionant les tecnologies al llarg dels anys: El Wi-Fi s’ha convertit en una tecnologia molt més complexa i sofisticada, incorporant les característiques clau de les tecnologies cel·lulars, com ara HARQ i la reutilització espacial. D’altra banda, des de la versió 13, també s’han dissenyat xarxes cel·lulars per a espectre sense llicència. Com a resultat, els dos darrers capítols d’aquesta tesi es centren en aquests escenaris de convivència, on s’ha de dissenyar LTE per conviure amb la Wi-Fi de manera justa, i NR, l’accés a la radio per a 5G amb Wi-Fi a 5 GHz i WiGig a 60 GHz. A diferència de LTE, que es va adaptar per funcionar en espectre sense llicència, NR-U està dissenyat de forma nativa amb aquesta característica, inclosa la seva capacitat per operar sense llicència de forma autònoma completa, una nova fita fonamental per al mòbil. En aquest context, el nostre focus d’anàlisi canvia. Considerem que aquestes dues famílies de tecnologia ja no estan orientades cap a la complementarietat, sinó que ara competeixen, i afirmem que aquesta serà el tendència per als propers anys. Per permetre la investigació en aquests escenaris multi-RAT, un altre resultat fonamental d’aquesta tesi doctoral, a més de les aportacions científiques, és l’alliberament de models d’alta fidelitat per a LTE i NR i la seva coexistència amb Wi-Fi a la comunitat de codi obert ns-3. ns-3 és un popular simulador de xarxa de codi obert, amb la característica de ser multi-RAT i, per tant, permet l’avaluació de manera natural d’escenaris de convivència entre diferents tecnologies. Aquests models, pels quals he liderat el desenvolupament, són per cites acadèmiques, els models de simulació de codi obert més utilitzats per a LTE i NR i que han rebut finançament de la indústria (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) i agències federals (NIST, LLNL) al llarg dels anys.Esta tesis doctoral tiene la característica de extenderse durante mucho tiempo porque mientras trabajaba en ella, trabajaba como ingeniera de investigación en CTTC con tareas de desarrollo muy exigentes. Esto ha retrasado el depósito más de lo que me hubiera gustado. Por otro lado, gracias a ello, he tenido el privilegio de presenciar y estudiar como las tecnologías inalámbricas han evolucionado durante una década, de 4G a 5G y más allá. Cuando comencé mi tesis doctoral, IEEE y 3GPP estaban definiendo las dos principales tecnologías inalámbricas en ese momento, Wi-Fi y LTE, cumpliendo dos objetivos de mercado sustancialmente complementarios. Wi-Fi fue diseñado para funcionar principalmente en interiores, en un espectro sin licencia, y estaba destinado a ser una tecnología simple y barata. Su tecnología primaria para la convivencia se basaba en el supuesto en que el espectro en el que estaba operando era gratis, y así fue diseñado simplemente evitando interferencias a través del famoso protocolo CSMA/CA. Por otro lado, 3GPP estaba diseñando tecnologías para espectro con licencia, un tipo de espectro costoso. Como resultado, LTE está diseñado para aprovechar el espectro al máximo proporcionando al mismo tiempo el mejor QoE en escenarios principalmente al aire libre. La tesis doctoral parte de este contexto y evoluciona con estas dos tecnologías. En los primeros capítulos, estudiamos las soluciones de gestión de recursos de radio para operación en espectro Wi-Fi sin licencia y LTE con licencia. Anticipamos la tendencia ahora fundamental de aprendizaje automático trabajando en soluciones de gestión de recursos de radio para mejorar LTE y funcionamiento deWi-Fi en su respectivo espectro. Prestamos especial atención a las implementaciones de células pequeñas destinadas a mejorar la eficiencia de espectro licenciado, reproduciendo los típicos escenarios de rango pequeño de la configuración Wi-Fi. IEEE y 3GPP siguieron evolucionando las tecnologías a lo largo de los años: Wi-Fi se ha convertido en una tecnología mucho más compleja y sofisticada, incorporando las características clave de las tecnologías celulares, como HARQ, OFDMA, MU-MIMO, MAC scheduling y la reutilización espacial. Por otro lado, desde la Release 13, también se han diseñado redes celulares para espectro sin licencia. Como resultado, los dos últimos capítulos de esta tesis se centran en estos escenarios de convivencia, donde LTE debe diseñarse para coexistir con Wi-Fi de manera justa, y NR, el acceso por radio para 5G con Wi-Fi en 5 GHz y WiGig en 60 GHz. A diferencia de LTE, que se adaptó para operar en espectro sin licencia, NR-U está diseñado de forma nativa con esta función, incluyendo su capacidad para operar sin licencia de forma completamente independiente, un nuevo hito fundamental para los celulares. En este contexto, cambia nuestro enfoque de análisis. Consideramos que estas dos familias tecnológicas ya no tienen como objetivo la complementariedad, sino que ahora están compitiendo, y afirmamos que esta será la tendencia para los próximos años. Para permitir la investigación en estos escenarios de múltiples RAT, otro resultado fundamental de esta tesis doctoral, además de los aportes científicos, es el lanzamiento de modelos de alta fidelidad para LTE y NR y su coexistencia con Wi-Fi y WiGig a la comunidad de código abierto de ns-3. ns-3 es un simulador popular de red de código abierto, con la característica de ser multi-RAT y así, naturalmente, permite la evaluación de escenarios de convivencia entre diferentes tecnologías. Estos modelos, para los cuales lideré el desarrollo, son por citas académicas, los modelos de simulación de código abierto más utilizados para LTE y NR y han recibido fondos de la industria (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) y agencias federales (NIST, LLNL) a lo largo de los años.Postprint (published version

    Topics on modelling and simulation of wireless networking protocols

    Get PDF
    The use of computer simulation to study complex systems has grown significantly over the past several decades. This is especially true with regard to computer networks, where simulation has become a widespread tool used in academic, commercial and military applications. Computer model representations of communication protocol stacks are used to replicate and predict the behavior of real world counterparts to solve a variety of problems.The performance of simulators, measured in both accuracy of results and run time, is a constant concern to simulation users. The running time for high delity simulation of large-scale mobile ad hoc networks can be prohibitively high. The execution time of propagation e ects calculations for a single transmission alone can grow unmanageable to account for all potential receivers. Discrete event simulators can also su er from excessive generation and processing of events, both due to network size and model complexity. In this thesis, three levels of abstracting the Institute of Electrical and Electronics Engineers (IEEE) 802.11 Request to Send/Clear to Send (RTS/CTS) channel access mechanism are presented. In the process of assessing the abstractions' ability to mitigate runtimecost while retaining comparable results to that of a commercially available simulator, OPNET, the abstractions were found to be better suited to collecting one metric over another.Performance issues aside, simulation is an ideal choice for use in prototyping and developing protocols. The costs of simulation are orders of magnitude smaller than that of network testbeds, especially after factoring in the logistics, maintenance, and space required to test live networks. For instance, Internet Protocol version 6 (IPv6) stateless address autocon guration protocols have yet to be convincingly shown to cope with the dynamic, infrastructure-free environment of Mobile Ad hoc Networks (MANETs). This thesis provides a literature survey of autocon guration schemes designed for MANETs, with particular focus on a stateless autocon guration scheme by Jelger andNoel (SECON 2005). The selected scheme provides globally routable IPv6 pre xes to a MANET attached to the Internet via gateways. Using OPNET simulation, the Jelger-Noel scheme is examined with new cluster mobility models, added gateway mobility, and varied network sizes. Performance of the Jelger-Noel scheme, derived from overhead, autocon gura ion time and pre x stability metrics, was found to be highly dependent on network density, and suggested further re nement before deployment.Finally, in cases where a network testbed is used to test protocols, it is still advantageous to run simulations in parallel. While testbeds can help expose design aws due to code or hardware di erences, discrete event simulation environments can o er extensive debugging capabilities andevent control. The two tools provide independent methods of validating the performance of protocols, as well as providing useful feedback on correct protocol implementation and con guration. This thesis presents the Open Shortest Path First (OSPF) routing protocol and its MANET extensions as candidate protocols to test in simulated and emulated MANETs. The measured OSPF overhead from both environments was used as a benchmark to construct equivalent MANET representations and protocol con guration, made particularly challenging due to the wired nature of the emulation testbed. While attempting to duplicate and validate results of a previous OSPF study, limitations of the simulated implementation of OSPF were revealed.M.S., Electrical Engineering -- Drexel University, 200

    Proceedings of the Third Edition of the Annual Conference on Wireless On-demand Network Systems and Services (WONS 2006)

    Get PDF
    Ce fichier regroupe en un seul documents l'ensemble des articles accéptés pour la conférences WONS2006/http://citi.insa-lyon.fr/wons2006/index.htmlThis year, 56 papers were submitted. From the Open Call submissions we accepted 16 papers as full papers (up to 12 pages) and 8 papers as short papers (up to 6 pages). All the accepted papers will be presented orally in the Workshop sessions. More precisely, the selected papers have been organized in 7 session: Channel access and scheduling, Energy-aware Protocols, QoS in Mobile Ad-Hoc networks, Multihop Performance Issues, Wireless Internet, Applications and finally Security Issues. The papers (and authors) come from all parts of the world, confirming the international stature of this Workshop. The majority of the contributions are from Europe (France, Germany, Greece, Italy, Netherlands, Norway, Switzerland, UK). However, a significant number is from Australia, Brazil, Canada, Iran, Korea and USA. The proceedings also include two invited papers. We take this opportunity to thank all the authors who submitted their papers to WONS 2006. You helped make this event again a success

    Holistic and efficient link adaptation for 802.11x wireless LANs

    Get PDF
    Wireless LANs (WLANs), based on the IEEE 802.11 standard, have become the standard means for indoor wireless connectivity. At the same time, the rising number of smart mobile devices, broadband access speeds, and bandwidth hungry applications (e.g., high definition video streaming) have led to an increase not only of usage but also of demand for higher data-rates. This demand for higher rates is being met with newer IEEE 802.11 standards (e.g., 802.11n/ac) that introduce new features and also increase the different possible settings for each feature. Inherent channel variations and the possible interference conditions when operating in unlicensed spectrum necessitate adaptation of the various medium access control (MAC) and physical (PHY) layer features to ensure high performance. Selecting the values of those features to optimise a criterion such as throughput is the link adaptation problem. Link adaptation, the focus of this thesis, can play a key role in improving the performance of 802.11 WLANs. Increasing number of features and feature setting combinations with newer 802.11 standards is not only making link adaptation even more important but also more challenging. The contributions made in this thesis significantly advance the state of the art on link adaptation for 802.11 WLANs along three dimensions. First, we show that not knowing the exact cause of loss is not an impediment to effective link adaptation. Nevertheless, actions taken in response to losses are more crucial and they ought to be holistic and not solely dependent on the exact cause of loss. Second, we make significant methodological contributions for analysing the impact of multiple parameters on a given criterion, based on comprehensive experimental measurements. The application of this methodology on 802.11n measurements, examining the interaction of the protocols various parameters on performance under varying conditions, has lead to several valuable findings on how to perform efficient link adaptation in a complex WLAN scenario like 802.11n and future 802.11 standards. Adaptation should be holistic, based on the channel quality instead of the interference scenario, and independent of loss differentiation. Based on these insights, lastly and most importantly, we propose two novel holistic link adaptation schemes for legacy 802.11a/b/g and 802.11n WLANs, termed Themis and SampleLite, respectively. Both Themis and SampleLite take a hybrid approach relying on easily accessed channel quality information at the sender side to perform holistic adaptation. The hypothesis that adaptation should be holistic is validated by our results, with both Themis and SampleLite outperforming the current state of the art

    Interference management in impulse-radio ultra-wide band networks

    Get PDF
    We consider networks of impulse-radio ultra-wide band (IR-UWB) devices. We are interested in the architecture, design, and performance evaluation of these networks in a low data-rate, self-organized, and multi-hop setting. IR-UWB is a potential physical layer for sensor networks and emerging pervasive wireless networks. These networks are likely to have no particular infrastructure, might have nodes embedded in everyday life objects and have a size ranging from a few dozen nodes to large-scale networks composed of hundreds of nodes. Their average data-rate is low, on the order of a few megabits per second. IR-UWB physical layers are attractive for these networks because they potentially combine low-power consumption, robustness to multipath fading and to interference, and location/ranging capability. The features of an IR-UWB physical layer greatly differ from the features of the narrow-band physical layers used in existing wireless networks. First, the bandwidth of an IR-UWB physical layer is at least 500 MHz, which is easily two orders of magnitude larger than the bandwidth used by a typical narrow-band physical layer. Second, this large bandwidth implies stringent radio spectrum regulations because UWB systems might occupy a portion of the spectrum that is already in use. Consequently, UWB systems exhibit extremely low power spectral densities. Finally IR-UWB physical layers offer multi-channel capabilities for multiple and concurrent access to the physical layer. Hence, the architecture and design of IR-UWB networks are likely to differ significantly from narrow-band wireless networks. For the network to operate efficiently, it must be designed and implemented to take into account the features of IR-UWB and to take advantage of them. In this thesis, we focus on both the medium access control (MAC) layer and the physical layer. Our main objectives are to understand and determine (1) the architecture and design principles of IR-UWB networks, and (2) how to implement them in practical schemes. In the first part of this thesis, we explore the design space of IR-UWB networks and analyze the fundamental design choices. We show that interference from concurrent transmissions should not be prevented as in protocols that use mutual exclusion (for instance, IEEE 802.11). Instead, interference must be managed with rate adaptation, and an interference mitigation scheme should be used at the physical layer. Power control is useless. Based on these findings, we develop a practical PHY-aware MAC protocol that takes into account the specific nature of IR-UWB and that is able to adapt its rate to interference. We evaluate the performance obtained with this design: It clearly outperforms traditional designs that, instead, use mutual exclusion or power control. One crucial aspect of IR-UWB networks is packet detection and timing acquisition. In this context, a network design choice is whether to use a common or private acquisition preamble for timing acquisition. Therefore, we evaluate how this network design issue affects the network throughput. Our analysis shows that a private acquisition preamble yields a tremendous increase in throughput, compared with a common acquisition preamble. In addition, simulations on multi-hop topologies with TCP flows demonstrate that a network using private acquisition preambles has a stable throughput. On the contrary, using a common acquisition preamble exhibits an effect similar to exposed terminal issues in 802.11 networks: the throughput is severely degraded and flow starvation might occur. In the second part of this thesis, we are interested in IEEE 802.15.4a, a standard for low data-rate, low complexity networks that employs an IR-UWB physical layer. Due to its low complexity, energy detection is appealing for the implementation of practical receivers. But it is less robust to multi-user interference (MUI) than a coherent receiver. Hence, we evaluate the performance of an IEEE 802.15.4a physical layer with an energy detection receiver to find out whether a satisfactory performance is still obtained. Our results show that MUI severely degrades the performance in this case. The energy detection receiver significantly diminishes one of the most appealing benefits of UWB, specifically its robustness to MUI and thus the possibility of allowing for parallel transmissions. This performance analysis leads to the development of an IR-UWB receiver architecture, based on energy detection, that is robust to MUI and adapted to the peculiarities of IEEE 802.15.4a. This architecture greatly improves the performance and entails only a moderate increase in complexity. Finally, we present the architecture of an IR-UWB physical layer implementation in ns-2, a well-known network simulator. This architecture is generic and allows for the simulation of several multiple-access physical layers. In addition, it comprises a model of packet detection and timing acquisition. Network simulators also need to have efficient algorithms to accurately compute bit or packet error rates. Hence, we present a fast algorithm to compute the bit error rate of an IR-UWB physical layer in a network setting with MUI. It is based on a novel combination of large deviation theory and importance sampling
    corecore