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SUMMARY

Wireless sensor networks (WSN) are event based systems that rely on the

collective effort of densely deployed sensor nodes continuously observing a physical

phenomenon. The spatio-temporal correlation between the sensor observations and

the cross-layer design advantages are significant and unique to the design of WSN.

Due to the high density in the network topology, sensor observations are highly corre-

lated in the space domain. Furthermore, the nature of the energy-radiating physical

phenomenon constitutes the temporal correlation between each consecutive observa-

tion of a sensor node. This unique characteristic of WSN can be exploited through

a cross-layer design of communication functionalities to improve energy efficiency of

the network.

In this thesis, several key elements are investigated to capture and exploit the cor-

relation in the WSN for the realization of advanced efficient communication protocols.

A theoretical framework is developed to capture the spatial and temporal correlations

in WSN and to enable the development of efficient communication protocols. Based

on this framework, spatial Correlation-based Collaborative Medium Access Control

(CC-MAC) protocol is described, which exploits the spatial correlation in the WSN

in order to achieve efficient medium access. Furthermore, the cross-layer module

(XLM), which melts common protocol layer functionalities into a cross-layer module

for resource-constrained sensor nodes, is developed. The cross-layer analysis of error

control in WSN is then presented to enable a comprehensive comparison of error con-

trol schemes for WSN. Finally, the cross-layer packet size optimization framework is

described.

xv



CHAPTER I

INTRODUCTION

With the recent advances in Micro Electro-Mechanical Systems (MEMS) technol-

ogy, wireless communications, and digital electronics; the construction of low-cost,

low-power, multifunctional sensor nodes that are small in size and communicate un-

tethered in short distances has become feasible. The ever-increasing capabilities of

these tiny sensor nodes, which consist of sensing, data processing, and communicating

components, enable the realization of wireless sensor networks (WSN) based on the

collaborative effort of a large number of nodes.

Wireless Sensor Networks have a wide range of applications such as environmen-

tal monitoring [71], biomedical research [65], human imaging and tracking [29], and

military applications [52]. Consequently, WSN are slowly becoming an integral part

of our lives. Recently, considerable amount of research efforts have enabled the ac-

tual implementation of sensor networks tailored to the unique requirements of certain

sensing and monitoring applications.

In order to realize the existing and potential applications for WSN, sophisticated

and extremely efficient communication protocols are necessary. WSN are composed

of a large number of sensor nodes, which are densely deployed either inside a physical

phenomenon or very close to it. In order to enable reliable and efficient observa-

tion and initiate right actions, physical phenomenon features should be reliably de-

tected/estimated from the collective information provided by sensor nodes [7]. More-

over, instead of sending the raw data to the nodes responsible for the fusion, sensor

nodes use their processing abilities to locally carry out simple computations and

transmit only the required and partially processed data. Hence, these properties of

1



WSN impose unique challenges for development of communication protocols in such

an architecture.

The intrinsic properties of individual sensor nodes, pose additional challenges to

the communication protocols in terms of energy consumption. WSN applications

and communication protocols are mainly tailored to provide high energy efficiency.

Sensor nodes carry limited, generally irreplaceable power sources. Therefore, while

traditional networks aim to achieve high Quality of Service (QoS) levels, sensor net-

work protocols focus primarily on energy conservation. Moreover, the deployment

of the WSN is another constraint that is considered in developing WSN protocols.

The position of sensor nodes need not be engineered or pre-determined. This allows

random deployment in inaccessible terrains or disaster relief operations. On the other

hand, the random deployment constraints of WSN result in self-organizing protocols

to emerge in the WSN protocol stack. In addition to the placement of nodes, the

density in the network is also exploited in WSN protocols. Since generally, large

number of sensor nodes are densely deployed in WSN, neighbor nodes may be very

close to each other. Hence, multihop communication in sensor networks is exploited

in communication between nodes since it leads to less power consumption than the

traditional single hop communication.

Since energy consumption is the major constraint in WSN, most of the proposed

communication protocols improve the energy efficiency to a certain extent by ex-

ploiting the collaborative nature of WSN. However, the main commonality of these

protocols is that they follow the traditional layered protocol architecture. While these

protocols may achieve very high performance in terms of the metrics related to each

of these individual protocol layers, they are not jointly designed to maximize the over-

all network performance while minimizing the energy expenditure. Considering the

scarce energy and processing resources of WSN, joint design of networking layers, i.e.,

cross-layer design, stands as the most promising alternative to inefficient traditional
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layered protocol architectures.

Accordingly, an increasing number of recent work has focused on the cross-layer

development of wireless sensor network protocols. In fact, recent work on WSN

[75][81] reveal that cross-layer integration and design techniques result in significant

improvement in terms of energy conservation. Generally, there are three main reasons

behind this improvement. First, the stringent energy, storage, and processing capabil-

ities of wireless sensor nodes necessitate such an approach. The significant overhead

of layered protocols results in high inefficiency. Moreover, recent empirical studies

highlight that the properties of low power radio transceivers and the wireless chan-

nel conditions need to be considered in protocol design. Finally, the event-centric

approach of WSN requires application-aware communication protocols, which also

mandates a cross-layer communication protocol design.

In addition to the wireless channel impact and cross-layer interactions, spatio-

temporal correlation is another significant characteristic of sensor networks. The

dense deployment coupled with the physical properties of the sensed phenomenon

introduce correlation in the spatial and temporal domain. As a result, the spatio-

temporal correlation-based protocols emerge for improved efficiency in networking

wireless sensors. The correlation in WSN can be classified into two, i.e., spatial and

temporal correlation. Typical WSN applications require spatially dense sensor de-

ployment in order to achieve satisfactory coverage [20, 51]. Due to the high density

in the network topology, spatially proximal sensor observations are highly correlated

with the degree of correlation increasing with decreasing internode separation. Fur-

thermore, the nature of the energy-radiating physical phenomenon constitutes the

temporal correlation between each consecutive observation of a sensor node [42]. The

degree of correlation between consecutive sensor measurements may vary according to

the temporal variation characteristics of the phenomenon. The existence of the spatial

and temporal correlations bring significant potential advantages for the development

3



of efficient communication protocols well-suited for the WSN paradigm.

In WSN, correlation between sensors can be exploited in terms of aggregation,

collaborative source coding, or correlation-based protocols. Consequently, these tech-

niques aim to reduce the redundancy in the traffic by filtering correlated data. This

makes it essential for each packet to be transmitted reliably highlighting the impor-

tance of energy efficient error control. Moreover, the multi-hop features of the WSN

require a unique definition of reliability other than the conventional reliability metrics

that focus on point-to-point reliability. More specifically, in a WSN, when a packet

is injected into the network, each node along the path to the sink consumes a certain

amount of its scarce resources to relay the packet. Each packet has a different reli-

ability notion because of the path it has already traversed. Furthermore, in WSN,

the applications are interested in the collaborative information from sensors about

a specific event, rather than individual readings of each sensor. Consequently, the

reliability notion considered in WSN differs from the approach in traditional wireless

networks, in terms of both multi-hop reliability and event-based reliability.

The main objective of the WSN is to reliably detect/estimate event features from

the collective information provided by sensor nodes. While the collaborative nature of

the WSN brings significant advantages over traditional sensing; the spatio-temporal

correlation between the sensor observations and the cross-layer design in the WSN

are another significant and unique characteristics of the WSN that needs to be ex-

ploited to drastically enhance the overall network performance. In this thesis, several

key elements are investigated to capture and exploit the correlation in the WSN for

the realization of cross-layer communication protocols. The performed work can be

mainly classified into two topics, i.e., correlation and cross-layer communication in

WSN. More specifically, the challenges addressed in this thesis can be summarized as

follows:

• Spatio-temporal Correlation: The main goal of this research is to develop a
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theoretical framework to model the spatio-temporal correlation in WSN and

investigate the interdependencies between the properties of the physical phe-

nomenon that is sensed and the network parameters. Accordingly, first spatial

and temporal correlation is investigated independently. Furthermore, the theory

of spatio-temporal correlation is established.

• Spatial Correlation-based MAC: Based on the spatio-temporal correlation frame-

work, we propose a spatial Correlation-based Collaborative Medium Access

Control (CC-MAC) protocol as a first attempt to exploit correlation in commu-

nication protocols. CC-MAC minimizes unnecessary channel access contention

by filtering correlated data transmission.

• Cross-layer Communication: To the best of our knowledge, to date, there is no

unified cross-layer communication protocol for efficient and reliable event com-

munication which considers transport, routing, medium access functionalities

with physical layer (wireless channel) effects for WSN. In this research, a uni-

fied cross-layer module (XLM) that melts common protocol layer functionalities

into a cross-layer module is proposed.

• Error Control: The selection of error control scheme is another important de-

sign decision in WSN. Forward Error Correction (FEC) schemes improve the

error resiliency compared to Automatic Repeat reQuest (ARQ). In a multi-hop

network, this improvement can be exploited by reducing the transmit power or

by constructing longer hops, however, at the cost of energy consumption. We

propose a cross-layer analysis framework to evaluate this tradeoff and assess the

performance of FEC and ARQ schemes in WSN.

• Packet Size Optimization: Since WSN are packet based networks, the determi-

nation of packet size also plays an important role in cross-layer design of com-

munication protocols. Hence, we propose a cross-layer packet size optimization
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framework in our research.

1.1 Research Objectives and Solutions

In order to address the challenges posed by spatio-temporal correlation characteristics

of observed data in WSN and the cross-layer design requirements of communication

protocols for these networks, several topics need to be investigated. In this thesis, new

theoretical tools and communication protocols are developed to capture the effects

of spatio-temporal correlation in cross-layer communication protocols design. The

following five areas are investigated under this research and each of them is described

in the following subsections:

1. Theory of Correlation in Wireless Sensor Networks

2. Spatial Correlation-based Collaborative Medium Access Control in Wireless

Sensor Networks

3. XLM: Cross-Layer Module for Efficient Communication in Wireless Sensor Net-

works

4. Cross-Layer Analysis of Error Control in Wireless Sensor Networks

5. Cross-layer Packet Size Optimization for Wireless Sensor Networks

1.1.1 Theory of Correlation in Wireless Sensor Networks

Wireless Sensor Networks (WSN) are characterized by the dense deployment of sensor

nodes that continuously observe physical phenomenon. Due to high density in the

network topology, sensor observations are highly correlated in the space domain. Fur-

thermore, the nature of the physical phenomenon constitutes the temporal correlation

between each consecutive observation of a sensor node. These spatial and temporal

correlations along with the collaborative nature of the WSN bring significant poten-

tial advantages for the development of efficient communication protocols well-suited
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for the WSN paradigm. Based on the physical characteristics and dispersion pattern

over an area, the physical phenomenon to be observed can be modeled as point source

or field source. Clearly, understanding the spatio-temporal correlation characteristics

of the point and field sources brings potential advantages to be exploited in the design

of efficient communication protocols. Although there has been some research effort

to study the correlation in WSN [31, 56, 58, 64], most of these existing studies inves-

tigate the information theoretical aspects of the correlation, and they do not provide

efficient networking protocols that exploit the correlation in the WSN.

In this thesis, several key elements are investigated to capture and exploit the cor-

relation in the WSN for the realization of advanced efficient communication protocols.

A theoretical framework is developed to model the spatial and temporal correlations

in sensor networks. The objective of this analysis is to capture the spatio-temporal

characteristics of point and field sources in WSN. First, the spatial and temporal

correlations are investigated independently. Furthermore, models for point and field

sources are developed and their spatio-temporal characteristics are analytically de-

rived along with the distortion functions. Based on the theoretical analysis, numer-

ical simulations are performed. This analytical work provides tools for finding the

feasible operating region in terms of spatial and temporal resolution for a specific

distortion constraint considering spatio-temporal correlation, signal properties, and

network variables in WSN. The insight obtained from this framework enables the

development of efficient communication protocols that exploit these advantageous in-

trinsic features of the WSN paradigm. Based on this framework, possible approaches

are discussed to exploit spatial and temporal correlation for efficient medium access

and reliable event transport in WSN, respectively.
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1.1.2 Spatial Correlation-based Collaborative Medium Access Control in
Wireless Sensor Networks

The spatio-temporal framework that is developed in this thesis provides insight to de-

veloping correlation-based communication protocols. As a result, exploiting spatial

correlation in the context of collaborative nature of the WSN can lead to significant

performance improvement of communication protocols. Intuitively, data from spa-

tially separated sensor nodes are more useful for the sink than the highly correlated

data from closely located sensor nodes. Hence, it may not be necessary for every

sensor node to transmit its data to the sink; instead, a smaller number of sensor data

might be adequate to transmit certain event features to the sink within a certain

distortion constraint.

In this thesis, the spatial correlation among the observations of closely location

sensors is exploited at the medium access control (MAC) layer. Current studies on

medium access in WSN focus mainly on the energy-latency tradeoffs and on decreas-

ing energy consumption by modifying known medium access techniques [83], [74], [10],

[59]. To the best of our knowledge, this is the first effort that exploits spatial correla-

tion in WSN at the MAC layer. Based on the spatio-temporal framework, it is shown

that a sensor node can act as a representative node for several other sensor nodes

observing the correlated data. Consequently, a distributed, spatial Correlation-based

Collaborative Medium Access Control (CC-MAC) protocol is designed which has two

components: Event MAC (E-MAC) and Network MAC (N-MAC). E-MAC filters out

the correlation in sensor records while N-MAC prioritizes the transmission of route-

thru packets. Simulation results show that CC-MAC achieves high performance in

terms energy, packet drop rate, and latency.
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1.1.3 XLM: Cross-Layer Module for Efficient Communication in Wireless
Sensor Networks

Severe energy constraints of battery-powered sensor nodes necessitate energy-efficient

communication in order to fulfill application objectives of Wireless Sensor Networks

(WSN). However, the vast majority of the existing solutions are based on classical

layered protocol approach. Although many of the basic functionalities of each layer

are crucial for proper network operation, the layering approach leads to significant

overhead. It is much more efficient to have a unified scheme which melts common

protocol layer functionalities into a cross-layer module for resource-constrained sen-

sor nodes. This view has been shared in many recent work [16], [17], [27] [50], [67],

[69], [87], [86], where pair-wise cross-layer communication techniques have been pro-

posed. However, to the best of our knowledge, to date, there is no unified cross-layer

communication protocol that incorporates transport, routing, and medium access

functionalities along with considering the physical layer (wireless channel) effects in

a single module.

In this thesis, a unified cross-layer module (XLM), which replaces the entire tra-

ditional layered protocol architecture that has been used so far in WSN, is developed.

The design principle of XLM is complete unified cross-layering such that both the

information and the functionalities of traditional communication layers are melted

in a single module. The objective of XLM is highly reliable communication with

minimal energy consumption, adaptive communication decisions, and local conges-

tion avoidance. To this end, the protocol operation of XLM is governed by the new

cross-layer concept of initiative determination. Based on this concept, XLM per-

forms receiver-based contention, initiative-based forwarding, local congestion control,

and distributed duty cycle operation in order to realize efficient and reliable com-

munication in WSN. In a cross-layer simulation platform, the state-of-the-art layered

protocol configurations have been implemented along with XLM to realize a complete
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performance evaluations, which show that XLM significantly improves the communi-

cation performance and outperforms the traditional layered protocol architectures in

terms of both network performance and implementation complexity.

1.1.4 Cross-Layer Analysis of Error Control in Wireless Sensor Networks

Error control is of significant importance for Wireless Sensor Networks (WSN) because

of their severe energy constraints and the low power communication requirements. In

this thesis, a cross-layer methodology for the analysis of error control schemes in

WSN is presented such that the effects of multi-hop routing and the broadcast nature

of the wireless channel are investigated. More specifically, the cross-layer effects of

routing, medium access and physical layers are considered. This analysis enables a

comprehensive comparison of forward error correction (FEC) codes, automatic repeat

request (ARQ), and hybrid ARQ schemes in WSN. So far, the performance of FEC

codes have been investigated in a point-to-point fashion [46, 62, 66] in the context

of WSN. To the best of our knowledge, this is the first work that considers both the

broadcast wireless channel and the multi-hop structure of WSN with realistic channel

models and a 2 dimensional topology.

Hybrid ARQ and FEC schemes improve the error resiliency of communication

compared to ARQ. In a multi-hop network, this improvement can be exploited by

reducing the transmit power (transmit power control) or by constructing longer hops

(hop length extension), which can be achieved through channel-aware routing pro-

tocols. The results of our analysis reveal that for hybrid ARQ schemes and certain

FEC codes, the hop length extension decreases both the energy consumption and the

end-to-end latency subject to a target PER compared to ARQ. This decrease in end-

to-end latency is crucial for delay sensitive, real-time applications, where both hybrid

ARQ and FEC codes can be strong candidates. On the other hand, transmit power

control results in significant savings in energy consumption at the cost of increased
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latency for certain FEC codes. The results of our analysis indicate the cases where

ARQ outperforms FEC codes for various end-to-end distance and target PER values.

1.1.5 Cross-layer Packet Size Optimization for Wireless Sensor Networks

The unique characteristics of WSN necessitate rethinking of classical wireless net-

working in all aspects [7]. Among these, the determination of the optimal packet size

tailored for these unique characteristics constitutes a fundamental and still unexplored

problem in WSN. Traditionally, packet size optimization is performed considering a

point-to-point link, where the goal is to ensure a successful and efficient transmission

based on an efficiency metric [44], [55], [62]. However, in this traditional approach,

the influence of multi-hop and broadcast nature of wireless communication in WSN

cannot be captured.

In this thesis, a cross-layer solution for packet size optimization in WSN is intro-

duced such that the effects of multi-hop routing, the broadcast nature of the physical

wireless channel, and the effects of error control techniques are captured. A key result

of this research is that contrary to the conventional wireless networks, longer pack-

ets reduce the collision probability. On the other hand, packets cannot be too long

because of the wireless channel errors, which lead to retransmissions and increased

energy consumption. Our cross-layer analysis clearly reveals this tradeoff. An op-

timization solution is formalized by using three different objective functions, i.e.,

throughput, energy consumption, and resource utilization. Each objective function

highlights a different aspect of communication in WSN and can be selected according

to the requirements of the application in use. Furthermore, the effects of end-to-

end latency and reliability constraints are investigated that may be required by a

particular application. As a result, a flexible, cross-layer optimization framework is

developed to determine the optimal packet size in WSN. From this framework, the

optimal packet sizes under various network parameters are determined. Furthermore,
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the optimal packet size optimization framework is extended for wireless underwater

and underground sensor networks and the results are presented.

1.2 Thesis Outline

This thesis is organized as follows: Chapter 2 presents the spatio-temporal frame-

work, which is developed to capture the spatial and temporal correlations in WSN.

The objective of this framework is to enable the development of efficient communi-

cation protocols which exploit the correlation. Based on this framework, Chapter 3

introduces the spatial Correlation-based Collaborative Medium Access Control (CC-

MAC) protocol, which exploits the spatial correlation in the WSN in order to achieve

efficient medium access. Chapter 4 describes the cross-layer module (XLM) that

melds common protocol layer functionalities into a cross-layer module for resource-

constrained sensor nodes. Chapter 5 presents the cross-layer analysis of error control

in WSN. This framework enables a comprehensive cross-layer comparison of ARQ,

FEC, and hybrid ARQ schemes in WSN. Chapter 6 introduces the cross-layer packet

size optimization framework. Finally, Chapter 7 summarizes the research results and

suggests a number of problems for future investigation.
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CHAPTER II

THEORY OF CORRELATION IN WIRELESS SENSOR

NETWORKS

In this chapter, we develop a theoretical framework for the spatio-temporal correla-

tion in wireless sensor networks. First, the architecture and the correlation model

are presented. Based on this model, we first investigate spatial and temporal corre-

lation in WSN separately. More specifically, the distortion functions for spatial and

temporal correlation are derived. Then, the spatio-temporal correlation in WSN is

investigated based on two source models, i.e., point and field sources. The results of

this analysis are then further explored in the context of correlation-based cross-layer

module design in the following sections. This framework was first introduced in [8]

and then significantly enhanced in [78] and [77]. The remainder of this chapter is

organized as follows. The motivation for this work is provided in Section 2.1. In

Section 2.2, the related work in this area is summarized. The theoretical framework

is developed to model the spatial and temporal correlations in wireless sensor net-

works in Section 2.3. Based on the theoretical analysis, in Section 2.4, the numerical

simulations for spatio-temporal correlation characteristics of WSN data sources are

performed. The results of this study yield a significant theoretical background to be

used in the development of efficient communication protocols. In Section 2.5, applica-

tions of the results of this framework are explored for energy-efficient communication

in WSN.
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2.1 Motivation

The main objective of the WSN is to reliably detect/estimate event features from

the collective information provided by sensor nodes. Therefore, the energy and hence

processing constraints of small wireless sensor nodes are overcome by this collective

sensing notion which is realized via their networked deployment. While the col-

laborative nature of the WSN brings significant advantages over traditional sensing

including greater accuracy, larger coverage area, and extraction of localized features;

the spatio-temporal correlation among the sensor observations is another significant

and unique characteristic of the WSN which can be exploited to drastically enhance

the overall network performance. The characteristics of the correlation in the WSN

can be summarized as follows:

• Spatial Correlation: Typical WSN applications require spatially dense sensor

deployment in order to achieve satisfactory coverage [20, 51]. As a result, mul-

tiple sensors record information about a single event in the sensor field. Due to

the high density in the network topology, spatially proximal sensor observations

are highly correlated with the degree of correlation increasing with decreasing

internode separation.

• Temporal Correlation: Some of the WSN applications such as event tracking

may require sensor nodes to periodically perform observation and transmis-

sion of the sensed event features. The nature of the energy-radiating physical

phenomenon constitutes the temporal correlation between each consecutive ob-

servation of a sensor node [42]. The degree of correlation between consecutive

sensor measurements may vary according to the temporal variation character-

istics of the phenomenon.

The spatial and temporal correlation characteristics of a WSN application depends

also on the type of the source that generates the physical phenomenon. Based on the
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application, the physical phenomenon to be observed can be modeled as point source,

e.g., target detection/tracking, or field source, e.g., monitoring of magnetic field and

seismic activities. In general, events generating signal that originates from a single

point in the field can be modeled as a point source. The cases, where the physical

phenomenon is dispersed over the field, can be modeled as a field source. Clearly, it is

of great importance to capture the spatio-temporal characteristics of point and field

sources to be able design energy-efficient communication protocols which can exploit

the potential advantages of correlation in WSN.

In addition to the collaborative nature of the WSN, the existence of above men-

tioned spatial and temporal correlations bring significant potential advantages for the

development of efficient communication protocols well-suited for the WSN paradigm.

For example, intuitively, due to the spatial correlation, data from spatially separated

sensors is more useful to the sink than highly correlated data from nodes in proxim-

ity. Therefore, it may not be necessary for every sensor node to transmit its data to

the sink. Instead, a smaller number of sensor measurements might be adequate to

communicate the event features to the sink within a certain reliability/fidelity level.

Similarly, for a certain event tracking application, the measurement reporting fre-

quency, at which the sensor nodes transmit their observations, can be adjusted such

that temporal-correlated phenomenon signal is captured at the sink within a certain

distortion level and with minimum energy-expenditure.

Consequently, despite the existing proposed works for medium access control and

transport layer solutions in sensor networks discussed above, these protocols do not

exploit the correlation in the sensed phenomenon. In this section, several key ele-

ments are investigated to capture and exploit the correlation in the WSN for the

realization of advanced efficient communication protocols. First, a theoretical frame-

work is developed to model the spatial and temporal correlations in sensor networks.

This framework is further extended by considering the joint effects of spatio-temporal
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correlation for both point and field sources. To this end, first, the model for point

and field sources are introduced and their spatio-temporal characteristics are derived

along with the distortion functions. The objective of the correlation framework is

to enable the development of efficient communication protocols which exploit these

advantageous intrinsic features of the WSN paradigm. Based on this framework, pos-

sible approaches are discussed to exploit spatial and temporal correlation for efficient

medium access and reliable event transport in WSN, respectively.

2.2 Related Work

There has been some research efforts to study the correlation in WSN [11], [24], [25],

[26], [30], [31], [32], [56], [58], [64], [32]. However, most of these existing studies inves-

tigate the information theoretical aspects of the correlation, and they do not provide

efficient networking protocols which exploit the correlation in the WSN. For example,

in [31], a joint source-channel coding paradigm is proposed for optimal performance

in a class of sensor networks. On the other hand, there exist some proposals that

attempt to exploit spatial correlation in WSN [58, 56]. However, these schemes aim to

find the optimum rate to compress redundant information in the sensor observations

and they also do not propose to exploit correlation for developing efficient communi-

cation protocols for the WSN. The joint routing and source coding is introduced in

[64] to reduce the amount of traffic generated in dense sensor networks with spatially

correlated records. While joint routing and source coding reduces the number of

transmitted bits; from the network point of view, the number of transmitted packets

remains unchanged, which can be further minimized by regulating the network access

based on the spatial correlation between the sensor nodes.

In [25], the problem of correlated data gathering with the objective of energy

minimization is studied using different coding models. Similar analysis is performed

in [24] for lossy network and high-resolution coding under distortion constraints. The
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optimal network density under the total distortion constraint for delay-sensitive real-

time data gathering of correlated physical phenomenon in WSN is investigated in

[26]. Similarly, in [30], the joint optimization of sensor placement and transmission

structure for data gathering is proposed. However, these studies consider only the

spatial correlation in the WSN and do not incorporate the temporal correlation in

their analysis. In [32], a lower bound on the best achievable end-to-end distortion for

different coding schemes is derived as a function of the network parameters. Moreover,

in [11], the relation between spatial and temporal sampling rate on the overall network

delay and energy consumption is studied. However, these work neither consider nor

capture the spatio-temporal correlation characteristics of the physical phenomenon.
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Figure 1: Correlation model and architecture.

2.3 Spatio-Temporal Correlation in Wireless Sensor Net-
works

In this section, we develop the theoretical framework for the spatio-temporal correla-

tion in wireless sensor networks. The results of this analysis are then further explored

in the context of correlation-based medium access control and reliable event transport

approaches for WSN.
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2.3.1 Architecture and Correlation Model for WSN

In a sensor field, each sensor observes the noisy version of a physical phenomenon.

The sink is interested in observing the physical phenomenon using the observations

from sensor nodes with the highest accuracy. The physical phenomenon in interest

can be modeled as a spatio-temporal process s(t, x, y) as a function of time t and

spatial coordinates (x, y).

Depending on the specific sensor application, the physical phenomenon may be a

spatio-temporal process generated by a point source in case of applications such as

object tracking. In this case, the sink is interested in reconstructing the source signal

at a specific location (x0, y0) based on sensor observations. In other applications,

the spatio-temporal process may be a combination of multiple point sources where

the sink is interested in reconstructing the signal in multiple locations or over an

event area. Although the reconstruction is application specific, the properties of the

observations can be modeled based on the spatio-temporal process s(t, x, y).

The model for the information gathered by N sensors in an event area is illustrated

in Fig. 1. The sink is interested in estimating the event source, S, according to the

observations of the sensor nodes, ni, in the event area. Each sensor node ni observes

Xi[n], the noisy version of the event information Si[n], which is spatially correlated

to the event source, S. In order to communicate this observation to the sink through

the WSN, each node has to encode its observation. The encoded information, Yi[n],

is then sent to the sink through the WSN. The sink, at the other end, decodes this

information to get the estimate, Ŝ, of the event source S. The encoders and the

decoders are labelled as E and D in Fig. 1, respectively. Using this model, we will

exploit various aspects of correlation among sensor readings both in terms of time

and space.
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Each observed sample, Xi[n], of sensor ni at time n is represented as

Xi[n] = Si[n] + Ni[n] , (1)

where the subscript i denotes the spatial location of node ni, i.e. (xi, yi), Si[n] is the

realization of the space-time process s(t, x, y) at time t = tn
1 and (x, y) = (xi, yi),

and Ni[n] is the observation noise. {Ni[n]}n is a sequence of i.i.d Gaussian random

variables of zero mean and variance σ2
N . We further assume that the noise each sensor

node encounters is independent of each other, i.e., Ni[n] and Nj[n] are independent

for i 6= j and ∀n.

As it is shown in Fig. 1, each observation Xi[n] is then encoded into Yi[n] by the

source-coding at the sensor node as

Yi[n] = fi(Xi[n]) (2)

and then sent through the network to the sink. The sink decodes the received data

to reconstruct an estimation Ŝ of the source S

Ŝ = g(Y1[n1], ..., Y1[nτ ]; ...; YN [n1], ..., YN [nτ ]) (3)

based on the data received from N nodes in the event area over a time period τ =

tnτ−tn1 . The sink is interested in reconstructing the source S according to a distortion

constraint

D = E
[
d(S, Ŝ)

]
. (4)

In the next subsections, the general distortion function in (4) will be used to

independently obtain the distortion functions for spatial and temporal correlation in

the WSN, which can then be explored in discussing the correlation-based medium

access control and reliable event transport approaches for WSN in Sections 2.5.1 and

2.5.2, respectively. Furthermore, we extend the independent analysis of spatial and

temporal correlation by considering the joint effects of spatio-temporal correlation.

1Note that, we use a discrete-time model since each node is assumed to sample the physical
phenomenon synchronously after the initial wake-up.
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2.3.2 Spatial Correlation in WSN

In this section, we model the spatial correlation between observations of each sensor

node. The information gathered by N sensors in an event area can be modeled as

shown in Fig. 1. The sink is assumed to be interested in a point source S. Since we

only consider the spatial correlation between nodes, in this analysis, we assume that

the samples are temporally independent. Hence, by dropping the time index n, (1)

can be restated as

Xi = Si + Ni, i = 1, ..., N . (5)

The sink is interested in reconstructing the source S according to observations of

nodes ni which observe the spatially correlated version of S at (xi,yi), i.e., Si. The

physical phenomenon is modeled as jointly gaussian random variables (JGRVs) at

each observation point as

E{Si} = 0, i = 1, ..., N ,

var{Si} = σ2
S, i = 1, ..., N ,

cov{Si, Sj} = σ2
Scorr{Si, Sj} ,

corr{Si, Sj} = ρi,j = Kϑ(di,j) =
E[SiSj]

σ2
S

,

where di,j =‖ si− sj ‖ denotes the distance between nodes ni and nj located at coor-

dinates si and sj, respectively and Kϑ(·) is the covariance function. The covariance

function is assumed to be non-negative and decrease monotonically with the distance

d =‖ si − sj ‖, with limiting values of 1 at d = 0 and of 0 at d = ∞. Generally,

covariance models can be classified into four groups [13]:

• Spherical :

KS
ϑ (d) =





1− 3
2

d
θ1

+ 1
2

(
d
θ2

)3
if 0 ≤ d ≤ θ1

0 if d > θ1

; θ1 > 0.
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In this model, two observations taken more than θ1 distance apart are uncorre-

lated

• Power Exponential :

KPE
ϑ (d) = e(−d/θ1)θ2 ; θ1 > 0, θ2 ∈ (0, 2].

For θ2 = 1, the model becomes exponential, while for θ2 = 2 squared exponen-

tial.

• Rational Quadratic :

KRQ
ϑ (d) =

(
1 +

( d

θ1

)2
)−θ2

; θ1 > 0, θ2 > 0.

• Matérn :

KM
ϑ (d) =

1

2θ2−1Γ(θ2)

( d

θ1

)θ2Kθ2

( d

θ1

)
; θ1 > 0, θ2 > 0,

where Kθ2(·) is the modified Bessel function of second kind and order θ2.

The correlation model can be chosen according to the properties of the physical

phenomenon the sink is interested in. Since we are interested in S, which is also a

JGRV, we use a special notation with

var{S} = σ2
S ,

corr{S, Si} = ρs,i = Kϑ(ds,i) =
E[SSi]

σ2
S

,

where ds,i denotes the distance between the source S and the node ni. The observation

noise Ni of each node ni is modeled as i.i.d. Gaussian random variable with zero mean

and variance σ2
N , i.e., Ni ∼ N (0, σ2

N).

As each sensor node ni observes an event information Xi, this information is en-

coded and then sent to the sink through the WSN. In traditional point-to-point com-

munication, the optimum performance is obtained by compressing the information
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according to the source statistics and then adding redundant information to accom-

modate the errors introduced in the wireless channel. This technique is known as the

separation principle. In WSN, where multiple nodes try to send information about

the same event, however, it is known that joint source-channel coding outperforms

separate coding [31, 57]. In addition, for Gaussian sources, if the source is Gaussian

and the cost on the channel is the encoding power, then uncoded transmission is

optimal for point to point transmission [33]. Furthermore, for sensor networks with

finite number of nodes, uncoded transmission outperforms any approach based on the

separation paradigm leading to the optimal solution for infinite number of nodes [31].

Hence, we adopt uncoded transmission for the sensor observations in this work. Each

node ni sends to the sink, a scaled version, Yi, of the observed sample Xi according

to encoding power constraint PE.

Yi =

√
PE

σ2
S + σ2

N

Xi, i = 1, ..., N , (6)

where σ2
S and σ2

N are the variances of the event information Si and the observation

noise Ni, respectively.

The sink needs to calculate the estimation of each event information, Si, in order to

estimate the event source S. Since uncoded transmission is used, it is well known that

minimum mean square error (MMSE) estimation is the optimum decoding technique

[54]. Hence, the estimation, Zi, of the event information Si is simply the MMSE

estimation of Yi, which is given by

Zi =
E[SiYi]

E[Y 2
i ]

Yi . (7)

Note that the estimated values of Zi’s are spatially correlated since the actual

event information Si’s are spatially correlated. This spatial correlation results in re-

dundancy in each event information sent to the sink. Although the sink is interested

in estimating the event source, S, with a distortion constraint, intuitively, this con-

straint can still be met by using a smaller number of sensor nodes rather than all the
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nodes in the event area. In order to investigate the distortion achieved when smaller

number of nodes sending information, we assume that only M out of N packets are

received by the sink, where N is the total number of sensor nodes in the event area.

Since the sink decodes each Yi using the MMSE estimator, the event source can sim-

ply be computed by taking the average of all the event information received at the

sink. Then, Ŝ, the estimate of S, is given as,

Ŝ(M) =
1

M

M∑
i=1

Zi . (8)

The distortion achieved by using M packets to estimate the event S is given as

D(M) = E[(S − Ŝ(M))2] , (9)

where we use the mean-squared error as the distortion metric. Using (5) and (6) in

(7), the estimate Zi of each event information Si can be written as

Zi =
E[SiYi]

E[Y 2
i ]

√
P

σ2
S + σ2

N

(Si + Ni) . (10)

Denoting α =
√

P
σ2

S+σ2
N

,

E[SiYi] = ασ2
S ,

E[Y 2
i ] = α2

(
σ2

S + σ2
N

)
,

then, (10) is restated as

Zi =
σ2

S

σ2
S + σ2

N

(Si + Ni) . (11)

Using (11) and (8) in (9), the distortion function D(M) is found to be

D(M) = σ2
S −

σ4
S

M(σ2
S + σ2

N)

(
2

M∑
i=1

ρ(s,i) − 1

)
+

σ6
S

M2(σ2
S + σ2

N)2

M∑
i=1

M∑

j 6=i

ρ(i,j) . (12)

D(M) shows the distortion achieved at the sink as a function of number of nodes

M that send information to the sink and correlation coefficients ρ(i,j) and ρ(s,i) be-

tween nodes ni and nj, and the event source S and node ni, respectively. Based
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on the distortion function, we discuss possible approaches that can be used in the

Medium Access Control (MAC) protocols for WSN in Section 2.5.1. Consequently,

the correlation-based collaborative MAC (CC-MAC) protocol is described in Chapter

3.

2.3.3 Temporal Correlation in WSN

The energy-radiating physical phenomenon constitutes the temporal correlation be-

tween each consecutive observation of a sensor node [42]. For the periodic sensing

applications such as event tracking, each consecutively taken sensor observations are

temporally correlated to a certain degree. In this section, we establish the theoretical

analysis for this temporal correlation, which will be further elaborated in the context

of correlation-based reliable event transport approach discussed in Section 2.5.2.

Here, we consider the temporal correlation between the sensor observations and

hence we omit the spatial variation in this analysis. We are interested estimating the

signal s(t) in a decision interval of τ . In our theoretical analysis, we model an event-

to-sink distortion metric, where all the information coming from the sensor nodes in

the event area is considered as if it is generated by a single source node during the

decision interval τ .

Assume that the sensed information from the sensors are sent to the sink using

a reporting frequency of f . In this case, we seek to control the reporting frequency

f such that a desired distortion level is not exceeded in the estimation of the event

features at the sink. The event signal s(t) is assumed to be a Gaussian random process

with N (0, σ2
s). The sink is interested in finding the expectation of the signal s(t) over

the decision interval τ , i.e., S(τ). Assuming the observed signal s(t) is wide-sense

stationary (WSS), the expectation of the signal over the decision interval τ can be

calculated by the time average of the observed signal [35], i.e.,

S(τ) =
1

τ

∫ t0+τ

t0

s(t)dt , (13)
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where t0 is the time the sensor node wakes up for the sampling of the signal. With a

change of variables, S(τ) can be shown as

S(τ) =
1

τ

∫ τ

0

s(t0 + Γ)dΓ . (14)

We define the value of the signal at each sampling interval as

S[n] = s
(
t0 +

n

f

)
, (15)

where f is the sampling frequency and S[n] are JGRV with N (0, σ2
s)

2. For the

derivation of the distortion function, the following definitions are needed:

E{S[n]} = 0 ,

E{(S[n])2} = σ2
S ,

E{S[n]S[m]} = σ2
S ρ̂S(n, m) ,

E{s(t)s(t + δ)} = σ2
SρS(δ) ,

where ρ̂S(n,m) = ρS(|m − n|/f) is the covariance function that depends on the

time difference between signal samples. Although our results about the distortion

function apply to all the covariance models introduced in Section 2.3.2, we use the

power exponential model in the derivation since the physical event information such

as electromagnetic waves is modeled to have an exponential autocorrelation function

[72]. Hence, the covariance function becomes

ρS(δ) = e−|δ|/θ1 . (16)

Each sensor node observes the noisy version of the signal given as

X[n] = S[n] + N [n] (17)

and the transmitted signal is expressed by

Y [n] =

√
PE

σ2
S + σ2

N

X[n] (18)

2Note that, the samples of a Gaussian random process are jointly Gaussian [35]
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based on the discussion in Section 2.3.2. Using the MMSE estimator at the sink, each

sample is estimated as

Z[n] =
E

[
S[n]Y [n]

]

E
[
Y 2[n]

] Y [n] . (19)

Hence, each estimated sample from the sensor nodes can be represented as

Z[n] =
σ2

S

σ2
S + σ2

N

(
S[n] + N [n]

)
. (20)

After collecting all the samples of the signal in the decision interval τ , the sink

estimates the expectation of the signal over the last decision interval by

Ŝ(τ) =
1

τf

τf∑

k=1

Z[k] , (21)

where τf is the total number of sensor samples taken within a decision interval with

duration of τ . As a result, the distortion achieved by using τf samples to estimate

the event is given as

D = E

[(
S(τ)− Ŝ(τ)

)2
]

. (22)

Using the definitions above and substituting (14), (20), and (21) into (22); the dis-

tortion function can easily shown to be

D(f) = σ2
S +

σ4
S

τf(σ2
S + σ2

N)
+

+
σ6

S

τ 2f 2(σ2
S + σ2

N)2

τf∑

k=1

∑

l 6=k

e−(
|k−l|

f
)/θ1

− 2σ4
Sθ1

τ 2f(σ2
S + σ2

N)

τf∑

k=1

(
2− e

− k
fθ1 − e−(τ− k

f
)/θ1

)
.

(23)

It is observed from (23) that the distortion in the estimation decreases with in-

creasing f . Note that the distortion level, D, for the estimation of event features

from the sensor observations corresponds to the reliability level of the event-to-sink

communication in the WSN. In Section 2.5.2, this distortion function will be further

explored in the context of reliable event transport in WSN.
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2.3.4 Spatio-temporal Correlation

In this section, we extend the independent analysis of spatial and temporal correlation

by considering the joint effects of spatio-temporal correlation. The objective of this

analysis is to capture the spatio-temporal characteristics of physical phenomenon

modeled by point and field sources in WSN. In the following, first, the model for

point and field sources are introduced and their spatio-temporal characteristics are

derived along with the distortion functions.

2.3.4.1 Point Source

In many WSN applications such as target detection and fire detection, the goal is

to estimate the properties of an event generated by a single point source through

collective observations of sensor nodes. In this section, we first introduce our model

for the point source and formulate its spatio-temporal characteristics. Then, we derive

the distortion function for the estimation of the point source.

The point source is assumed to generate a continuous signal which is modeled as

a random process fS(s, t), where s denotes the outcome and t denotes time. For ease

of illustration, we use fS(t) in the remaining. We model the point source, fS(t), as a

gaussian random process such that fS(t) is first-order stationary, i.e., µS(t) = µS and

has a variance σ2
S. Without loss of generality, we assume µS = 0.

For ease of illustration, we assume the coordinate axis is centered at the point

source. As a result, the received signal, f(x, y, t), at time t at a location (x, y) can

be modeled as

f(x, y, t) = fS

(
t−

√
x2 + y2

v

)
e−

√
x2+y2

θs , (24)

which is the delayed and attenuated version of the signal fS(t). In this model, we

assume that the event signal travels with the speed, v, and is attenuated based on

an exponential law, where θs is the attenuation constant. Note that, the function

f(x, y, t) is also a Gaussian random process and the samples taken by the sensors are
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jointly Gaussian random variables (JGRVs). Since, µS = 0, the mean of the received

signal, µE = 03. The variance of the received signal is also given as follows:

σ2
E(x, y) = E

[
f 2(x, y, t)

]
=

(
σS e−

√
x2+y2/θs

)2

. (25)

An interesting result from (25) is that, the variance of the signal observed at

location (x, y) depends on the distance between the observation location and the

point source. The received signal at time tk by a sensor ni at location (xi, yi) is given

by

Si[k] = f(xi, yi, tk) . (26)

Assuming wide-sense stationarity, the spatio-temporal correlation function for two

samples of a point source taken at locations (xi, yi) and (xj, yj), and at times tk and

tl, respectively, is given by

ρp(i, j, k, l) =
E

[
Si[k] Sj[l]

]

σE(xi, yi) σE(xj, yj)
,

= ρS(∆t) , (27)

where ∆t = |tk− tl−(di−dj)/v|, di =
√

x2
i + y2

i is the distance of the sensor ni to the

point source, and ρS(∆t) = E[fS(t) fS(t + ∆t)]/σ
2
S is the correlation function of the

point source which is given by ρS(∆t) = e−∆t/θt , where θt is a constant governing the

degree of correlation. Note that the spatio-temporal correlation between two samples,

ρp(i, j, k, l), depends mainly on the difference between sample times tk and tl since

generally v À (di − dj).

In WSN, we are interested in estimating the signal generated by the point source

using the samples collected by the sensor nodes. The expectation of the generated

signal, fS(t), over an interval τ is given by

S(τ) =
1

τ

∫ τ

0

fS(t)dt . (28)

3The subscripts S and E, which are used throughout this section, represent the source and event,
respectively.

28



Each sensor node, ni, receives the attenuated and delayed version of the generated

signal fS(t), i.e., Si[k]. Due to the impurities in the sensor circuitries, the sampled

signal is the noisy version of this received signal which is given by

Xi[k] = Si[k] + Ni[k] , (29)

where the subscript i denotes the location of the node ni, i.e., (xi, yi), k denotes the

sample index which corresponds to time t = tk
4, Xi[k] is the noisy version of the

actual sample Si[k], and Ni[k] is the observation noise, i.e., Ni[k] ∼ N (0, σ2
N). Si[k]

is given by (24) and (26).

The observed information, Xi[k], is then encoded and sent to the sink through

the WSN. It has been shown that joint source-channel coding outperforms separate

coding. Moreover, for WSN with finite number of nodes, uncoded transmission out-

performs any approach based on the separation paradigm leading to the optimal

solution for infinite number of nodes [78]. Under the light of these results, we as-

sume that uncoded transmission is deployed in each node. Hence, the transmitted

observation, Yi[k], is given by

Yi[k] =

√
PE

σ2
S + σ2

N

Xi[k], i = 1, ..., N , (30)

where σ2
S and σ2

N are the variances of the event information Si[k] and the observation

noise Ni[k], respectively.

The transmitted information is decoded at the sink. Since uncoded transmission

is used, it is well known that minimum mean square error (MMSE) estimation is

the optimum decoding technique [78]. Hence, the estimation, Zi[k], of the event

information Si[k] is simply the MMSE estimation of Yi[k], which is given by

Zi[k] =
σ2

E(xi, yi)

σ2
E(xi, yi) + σ2

N

(
Si[k] + Ni[k]

)
. (31)

4Note that we use a discrete-time model since each node is assumed to sample the physical
phenomenon synchronously after the initial wake-up.
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The sink is interested in estimating the expected value of the event during a deci-

sion interval τ which is given by (28). Assuming each sensor node sends information

at a rate of f samples/sec, this estimation can simply be found by

Ŝ(τ, f,M) =
1

τfM

M∑
i=1

τf∑

k=1

Zi[k] , (32)

where M is the number of sensor nodes that send samples of the observed point source.

M nodes are chosen among the nodes in the network to represent the point source, and

hence, are referred to as representative nodes. Consequently, the distortion achieved

by this estimation is given by

Dp(τ, f, M) = E
[
(S(τ)− Ŝ(τ, f,M))2

]
, (33)

where the subscript p denotes the point source. Using (24), (25), (28), (31), and (32),

(33) can be expressed as

Dp(τ, f, M) = σ2
S −

2

τ 2fM

M∑
i=1

τf∑

k=1

σ4
S e−3di/θs

σ2
S e−2di/θs + σ2

N

θt

×
[
2− e−

(
tk+di/c

)
− e−

(
τ−tk−di/c

)
/θt

]

+
σ2

N

τfM2

M∑
i=1

σ4
S e−2di/θs

(
σ2

S e−di/θs + σ2
N

)2

+
1

τ 2f 2M2

M∑
i=1

M∑
j=1

τf∑

k=1

τf∑

l=1

α ρ(i, j, k, l) , (34)

where

α =
σ8

S e−2(di+dj)/θs

(
σ2

S e−di/θs + σ2
N

)(
σ2

S e−dj/θs + σ2
N

) ,

di =
√

(xi + yi), and ρ(i, j, k, l) is the spatio-temporal correlation function given in

(27).

2.3.4.2 Field Source

There exist applications such as temperature monitoring and seismic monitoring,

where the physical phenomenon is dispersed over the sensor field, and, hence, can be
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modeled as a field source. Thus, here, we explore the spatio-temporal characteristics

of observing such a phenomenon in WSN.

The event signal f(x, y, t) is assumed to be a Gaussian random process with

N (0, σ2
s). The sink is interested in estimating the signal f(x0, y0, t) over the decision

interval τ at location (x0, y0). Assuming the observed signal f(x, y, t) is wide-sense

stationary (WSS), the expectation of the signal over the decision interval τ , i.e., S(τ)

can be calculated by the time average of the observed signal:

S(τ) =
1

τ

∫ τ

0

f(x0, y0, t) dt , (36)

where (x0, y0) is the event location. The signal, Si[k] received at time tk by a sensor

node at location (xi, yi) is defined as in (26) and Si[k]’s are JGRV with N (0, σ2
s). The

covariance of two samples, Si[k] and Sj[l], is given by:

cov{Si[k], Sj[l]} = σ2
S ρs(i, j) ρt(δ) ,

where

ρs(i, j) = e−di,j/θs , and ρt(δ) = e−|δ|/θt (37)

are spatial and temporal correlation functions, respectively, δ = (k − l)/f , f is the

sampling rate, di,j =
√

(xi − xj)2 + (yi − yj)2 is the distance between two nodes ni

and nj, and θs and θt are spatial and temporal correlation coefficients, respectively.

Following the discussion and derivations in Section 2.3.4.1, the noisy version of the

signal, Xi[k], and the transmitted signal, Yi[k] are given by (29) and (30), respectively.

The estimation Zi[k] can be found as follows:

Zi[k] =
σ2

S

σ2
S + σ2

N

(
Si[k] + Ni[k]

)
. (38)

After collecting the samples of the signal in the decision interval τ from M nodes,

the sink estimates the expectation of the signal over the last decision interval as

given in (32). As a result, the distortion achieved by this estimation is given as in
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(33). Using the definitions above and substituting (36), (38), and (32) into (33); the

distortion function can be derived as

Df (τ, f, M) = σ2
S −

2σ2
S

τ 2fM (σ2
S + σ2

N)

M∑
i=1

ρs(i, s)

τf∑

k=1

θt

[
2− e−k/(f θt) − e−

(
t− k

f

)
/θt

]

+
σ4

S σ2
N

τfM (σ2
S + σ2

N)2

+
σ6

S

(τfM (σ2
S + σ2

N))2

M∑
i=1

M∑
j=1

τf∑

k=1

τf∑

l=1

ρs(i, j)ρt(|k − l|/f) . (39)

2.4 Analysis and Results

In order to gain more insight to our intuitions, we performed case studies using the

distortion functions derived in Section 2.3 for spatial, temporal, and spatio-temporal

for point and field sources, respectively. The results of this analysis is provided in the

following.

2.4.1 Spatial Correlation

In Section 2.3.2, the theoretical framework of spatial correlation in WSN is developed

and the distortion resulting from sending a subset M of total N nodes in the event

area is derived (12). The relations between the positions of the sensor nodes in the

event area and the event estimation reliability is also important for exploiting spatial

correlation.

In order to gain more insight to our intuitions, we performed a case study using

the distortion function (12). In a 500 by 500 grid, we deployed 50 sensor nodes

randomly. We use the Power Exponential model with θ2 = 1 and θ1 = {10, 50, 100,

500, 1000, 5000, 1000} as the covariance model for the covariance function, Kϑ(·) in

(1). The parameter, θ1, controls the relation between the distance of the nodes and

the correlation coefficient. For each value of θ1, we calculate the distortion function

(12) by varying the number of sensor nodes sending information. Starting from 50

nodes, we decrease the number of nodes that send event information to the sink. We
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Figure 2: Observed Event Distortion for different θ1 values according to changing
number of representative nodes

refer to these nodes as the representative nodes.

The simulations are performed for a fixed topology with 1000 trials for each num-

ber of representative nodes. Representative nodes are selected randomly among the

50 nodes for each trial and the distortion function is calculated according to the lo-

cations of these nodes. The average distortion calculated from these simulations and

the distribution of the distortion for each number of representative nodes is shown in

Fig. 2.

As shown in Fig. 2, the achieved distortion stays relatively constant when the

number of representative nodes is decreased from 50 to 15. This behavior is due to

the highly redundant data sent by the sensor nodes that are close to each other. In

addition, with increasing θ1, the observed event distortion decreases since close nodes

become less correlated with increasing θ1.
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Figure 3: Observed event distortion for varying normalized reporting frequency.

2.4.2 Temporal Correlation

As derived in Section 2.3.3, the distortion D(f) observed in the estimation of the

signal S being tracked depends on the reporting frequency f used by the sensor

nodes sending their readings to the sink in the decision interval τ . A case study with

the same network configuration and parameters in Section 2.5.1 is also performed to

observe the variation of the observed event distortion at the sink for varying reporting

frequency f , i.e., distortion function D(f) in (23). It is observed from (23) and Fig.

3 that the observed event distortion at the sink decreases with increasing f . This

is because the number of samples received in a decision interval i increases with

increasing f conveying more information to the sink from the event area. Note that

however, above a certain reporting frequency, f , the observed event distortion cannot

be further reduced. Therefore, a significant energy saving can be achieved by selecting

small enough f that achieves desired event distortion D∗ and does not lead to an

overutilization of the scarce sensor resources.

On the other hand, any f chosen arbitrarily small to achieve a certain distortion
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bound D∗ using (23) may not necessarily achieve the desired distortion level and hence

assure the event transport reliability. This is mainly because all of the sensor samples

generated with this chosen reporting frequency may not be received because of packet

losses in the sensor network due to link errors and network disconnectivity. Similarly,

as very high values of f do not bring any additional gain in terms of observed event

distortion as shown in Fig. 3; on the contrary, it may endanger the event transport

reliability by leading to congestion in the sensor network. Let fmax be the maximum

reporting frequency which the network capacity can accommodate. Thus, f > fmax

leads to congestion and hence packet losses resulting in an increase in the observed

event distortion.
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Figure 4: Distortion vs. sampling rate for different values of (a) M , (b) K, (c) θT ,
and (d) θS (Point source).
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2.4.3 Spatio-temporal Correlation with Point Sources

In this section, we provide numerical simulation results for spatio-temporal correlation

characteristics of point sources using the distortion functions given by (34). A sensor

network of a grid topology of 50m × 50m with 120 nodes is used for the evaluations.

For the point source evaluations, the location of the point source is the center of the

grid.

For each evaluation, the closest M nodes to the center are chosen to send infor-

mation. This selection method, which we refer to as ordered selection, enables us to

observe the spatial correlation effects as the M value is increased, since higher value

of M corresponds to nodes farther from the center being chosen. Another important

parameter is the number of packets sent by a single sensor node during the decision

interval τ , which is denoted as K = τf , where f is the sampling rate of the sensor

nodes. In the evaluations, the parameter K is fixed and τ is determined as the f

changes, which enables us to investigate the effect of a large range of sampling rate

values.

In this section, the behavior of the distortion function in (34) is investigated for

various values for sampling rate, f , number of representative nodes, M , number of

samples, K, and spatial and temporal correlation coefficients, θS and θT , respectively.

The influence of sampling rate, f , on distortion is shown in Fig. 4(a). It is clearly

seen that, as the sampling rate increases, distortion decreases, which show the effect

of temporal resolution on event estimation. The rate of decrease is significantly large

for a specific range of f values, e.g., 0.1 < f < 100 for M = 5. Moreover, above this

range of f values, the distortion remains relatively constant. This observation reveals

that there is an optimal value, fopt, for temporal resolution such that further increase

in sampling rate, f , does not influence the distortion.

The effect of number of representative nodes, M , on distortion is also shown in Fig.

4(a). It is clear that, increasing M degrades the distortion function for high values
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of sampling rate, f . As the sampling rate increases, consecutive samples become

sufficient to extract the characteristics of the source. However, as M is increased,

distortion increases due to decrease in spatial correlation. On the other hand, for

lower sampling rates, e.g., f < 0.1s−1, an increase in M improves the distortion since

the temporal resolution is not sufficient in this case. As a result of increased M , the

spatial correlation helps build a more accurate estimation of the signal. However,

increasing M above a specific value, e.g., M = 10, has no impact on distortion. This

result reveals that, there is an optimal value, Mopt, for efficient estimation, which we

will investigate in detail later.

In Fig. 4(b), the effect of number of samples, K, is shown. The solid lines rep-

resent the distortion values for each K, and the dotted lines show the corresponding

decision interval values, i.e., τ . Note that, when the sampling rate is low, τ increases

significantly so that required number of samples can be collected (note the logarith-

mic scale on x-axis). However, this increase in τ results in temporally uncorrelated

samples to be collected, which leads to higher distortion. However, for higher values

of f , τ decreases and the temporal resolution becomes sufficient. Moreover, for the

transition region, where the distortion function decreases significantly, the number of

samples, K, has an important influence on distortion. In this region, lower K also

improves the estimation since more closely sampled instances are taken into account.

However, when the sampling rate, f , is further increased, the temporal resolution

becomes so fine that, any number of samples does not effect the distortion, where the

lines for different K values intersect.

In Fig. 4(c) and 4(d), the influence of the temporal and spatial correlation co-

efficients, θT and θS, on distortion are shown, respectively. A higher value of either

of these parameters corresponds to a higher correlation in either temporal or spatial

domain. As shown in Fig. 4(c), as θT is increased, i.e., the temporal correlation

between nodes are increased, an increase in sampling rate results in a much more
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decrease in the distortion. This is also observed for θS as shown in Fig. 4(d). An

interesting result is that although the number of nodes are fixed in Fig. 4(d), higher

spatial correlation improves the effect of temporal resolution since each selected node

is highly correlated with the point source.
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Figure 5: Distortion vs. sampling rate for different values of θT (Field source).

2.4.4 Spatio-temporal Correlation with Field Source

In this section, the behavior of the distortion function in (39) for field sources is

investigated for the same set of parameters used in Section 2.4.3. For the field source

evaluations, the network aims to estimate the signal value at the center of the grid

using the samples of the sensors located on the grid. The effect of the number of

representative nodes, M , and the number of samples, K are found to be similar to

the point source case and hence, are not reproduced here. Similar observations can

be made as in Section 2.4.3.

In Fig. 5, the effect of temporal correlation coefficient on the distortion is shown.

Contrary to our results for point source, the decrease in distortion does not depend on
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θT . However, the distortion plot shifts to the left when θT is increased. This affects

the optimal sampling rate value, fopt, i.e., higher θT results in smaller fopt value. On

the other hand, the relation between spatial correlation coefficient θS with distortion

is similar to the case in point source shown in Fig. 4 (d), and hence, is not reproduced

here. Similarly, the decrease in distortion depends on θS, which shows that spatial

correlation is more important in decreasing the distortion for field sources.
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constraints (Field source).

In Fig. 6, the tradeoff between spatial and temporal resolution is shown. Each

point represents the boundary of the feasible region for (M, f) values that meet a cer-

tain distortion constraint, Dmax. The figure can be read as follows: For each allowed

distortion Dmax, the tuples represent the boundary of the feasible region inside which

the distortion constraint is guaranteed. An important result is that, for each Dmax

value, there is an optimum operating point, where minimum number of nodes can be

used with low sampling rate. Increasing M above this value also requires increase

in temporal resolution. Moreover, a decrease in maximum allowed distortion value,
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Dmax, results in a smaller feasible region, as expected. This also results in a smaller

range for feasible values of M . Consequently, aggressively collecting information from

each sensor node in the field, does not necessarily correspond to more accurate esti-

mation. This figure serves as an important guideline to the design of communication

protocols, network topology, and deployment for a particular distortion requirement.
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2.4.5 External Parameters

In this section, we investigate the effects of the network topology properties, such as

grid size and the effects of using a random topology for field sources. The results also

apply to point sources.

We present the effects of network topology on event distortion in Fig. 7, where

distortion is shown versus M for different grid sizes at sampling rate f = 13.74 s−1.

Grid size is defined as the minimum distance between two neighbor nodes in the

grid topology. Smaller grid sizes correspond to higher granularity at the cost of

40



higher density and larger number of sensors to cover a certain area, which affect the

deployment cost and energy consumption of the WSN. It is shown in Fig. 7 that there

is an optimal point for M for small grid sizes (< 10 m). Moreover, increasing grid

size also increases the distortion. As explained before, when M is increased, nodes

far from the field center are chosen. Hence, as the grid size increases, these nodes

become spatially uncorrelated. In this case, increasing M helps decrease distortion.

On the other hand, when the grid size is small, an increase in M does not affect

the distortion. This shows that a suitable internode distance needs to be chosen for

efficient coverage of the physical phenomenon as well as an optimum M value.

So far, a grid topology has been considered for evaluations. However, a grid

topology may not be practical for some WSN and the effect of using a random topology

needs to be considered. Moreover, in our evaluations, we use a specific method for

representative node selection, such that the closest M nodes to the source are chosen.

This selection assumes that the location of the event source is known. However, in

some applications, the location of the source may not be available to the sink. This

is important especially in tracking applications.

The effect of randomness in the network topology and the node selection method

is investigated using three different scenarios. The first scenario corresponds to a

random topology of 120 nodes in a 50m×50m topology, where M representative

nodes are randomly selected. For Scenario 2, again random topology is used with

ordered selection method. Scenario 3 corresponds to grid topology with ordered

selection. The achieved distortion from these scenarios are shown in Fig. 8. For

scenarios 1 and 2, the average of 1000 random topologies are shown. The results

show that when ordered selection is used, the randomness of the network topology

improves the achieved distortion. It can also be observed that, when the nodes are

randomly chosen, i.e., Scenario 1, the achieved distortion is significantly high because

the representative nodes can be located anywhere in the network. However, a higher
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value of M , in this case, helps reduce the distortion. Hence, in practical applications

where the source location is not known, at first, higher number of representative nodes

can be used to locate the signal source, and once the location of the signal source is

found, the number of nodes can be decreased to the optimum M value to improve

the accuracy of estimation.
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2.5 Exploiting Correlation in WSN

Spatial and temporal correlation, in addition to the collaborative nature of the WSN,

bring significant potential advantages for the development of efficient communica-

tion protocols well-suited for the WSN paradigm. In this section, we discuss possi-

ble approaches exploiting spatial and temporal correlation to achieve energy-efficient

medium access and reliable event transport in WSN, respectively.
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2.5.1 Correlation-based Medium Access Control

The shared wireless channel between sensor nodes and energy considerations of the

WSN make the Medium Access Control (MAC) a crucial part of the wireless sensor

phenomenon. The distributed architecture and the application-oriented traffic prop-

erties of the WSN pose interesting challenges for the development of MAC protocols.

Furthermore, the scarce energy sources of sensor nodes necessitate energy aware MAC

protocols. Hence, MAC protocols for WSN should be developed tailored to the phys-

ical properties of the sensed phenomenon and the specific network properties so that

the access to the channel is coordinated with minimum collisions without effecting

the connectivity throughout the network.

In WSN, many individual nodes deployed in large areas sense events and send cor-

responding information about these events to the sink. When an event occurs in the

sensor field, all the nodes in an event area collect information about the event taking

place and try to send this information to the sink. Due to the physical properties

of the event, this information may be highly correlated in nature according to the

spatial correlation between sensor nodes. Intuitively, data from spatially separated

sensors is more useful to the sink than highly correlated data from closely located

sensors. Hence, it may not be necessary for every sensor node to transmit its data

to the sink; instead, a smaller number of sensor measurements might be adequate

to communicate the event features to the sink within a certain distortion constraint.

As a result, the MAC protocol can reduce the energy consumption of the network by

exploiting spatial correlation in the WSN without compromising on the access latency

as well as the distortion achieved.

Consequently, due to the spatial correlation between sensor observations, signifi-

cant energy saving can be achieved by choosing representative nodes among the nodes

in the event area without degrading the achieved distortion at the sink. It is clear

that reduced number of nodes transmitting information decreases contention in the
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wireless medium resulting in decreased energy consumption. In Chapter 3, the lessons

learned from this analysis will be exploited to develop a MAC protocol that exploits

the spatial correlation between closely located sensor nodes that regulates medium

access and prevents redundant transmissions from closely located sensors.

2.5.2 Correlation-based Reliable Event Transport

In order to realize the potential gains of the WSN, it is imperative that desired

event features are reliably communicated to the sink. To accomplish this, a reliable

transport mechanism is required in addition to an efficient medium access scheme

as discussed in Section 2.5.1. The main objective of the transport layer mechanism

in WSN is to achieve reliable collective transport of event features from the sensors

within the coverage of the phenomenon, i.e., event area, to the sink. In order to

provide reliable event detection at the sink, possible congestion in the forward path

should also be addressed by the transport layer. Once the event is sensed by a num-

ber of sensor nodes within the event area, significant amount of traffic is triggered by

these sensor nodes, which may easily lead to congestion in the forward path. Further-

more, the error and congestion control objectives must be achieved with minimum

possible energy expenditure. Energy efficiency must be also considered in transport

mechanism design by shifting the burden to the high-powered sink in the WSN in

order to conserve limited sensor resources.

Unlike traditional communication networks, the sensor network paradigm neces-

sitates that the event features are estimated within a certain distortion bound, i.e.,

required reliability level, at the sink as discussed in Section 2.3. Reliable event detec-

tion at the sink is based on collective information provided by source nodes and not

on any individual report. Hence, conventional end-to-end reliability definitions and

solutions are inapplicable in the WSN regime and would only lead to over-utilization
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of scarce sensor resources. On the other hand, the absence of reliable transport al-

together can seriously impair event detection which is the main objective of WSN

deployment. Hence, the WSN paradigm necessitates a collective event-to-sink relia-

bility notion rather than the traditional end-to-end notion [4]. The main rationale

behind such event-to-sink reliability notion is that the data generated by the sensors

are temporally correlated which tolerates individual packets to be lost to the extent

where the desired event distortion D∗ is not exceeded. Consequently, the event-to-

sink reliable transport (ESRT) protocol has been developed that exploits the results

obtained from this research [4].
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CHAPTER III

SPATIAL CORRELATION-BASED COLLABORATIVE

MEDIUM ACCESS CONTROL IN WIRELESS SENSOR

NETWORKS

In this chapter, the spatial correlation-based collaborative medium access control (CC-

MAC) protocol is presented. CC-MAC exploits spatial correlation, which is inherent

in Wireless Sensor Networks (WSN), at the MAC layer. CC-MAC was first presented

in [80]. The motivation for this work is provided in Section 3.1. The recent work on

spatial correlation in WSN in addition to existing MAC protocols are summarized in

Section 3.2. Based on the theoretical framework that was developed in Chapter 2, the

corollaries are discussed in Section 3.3 and a node selection algorithm is developed for

correlation filtering in Section 3.4. Details of the distributed CC-MAC protocol that

regulates medium access to reduce the number of nodes transmitting information are

presented in Section 3.5. CC-MAC performance analysis and simulation results are

presented in Section 3.6.

3.1 Motivation

Wireless sensor networks (WSN) are event-based systems that rely on the collective

effort of several microsensor nodes observing a physical phenomenon. Typical WSN

applications require spatially dense sensor deployment to achieve satisfactory coverage

[51]. As a result, several sensor nodes record information about a single event in a

sensor field. Because of the high density in the network topology, the sensor records

may be spatially correlated subject to an event. The degree of spatial correlation

increases with decreasing internode separation.
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Exploiting spatial correlation in the context of collaborative nature of the WSN

can lead to significant performance improvement of communication protocols. Possi-

ble approaches to utilize spatial and temporal correlation in WSN are already investi-

gated in [77] and [78]. Intuitively, data from spatially separated sensor nodes is more

useful for the sink than the highly correlated data from closely located sensor nodes.

Hence, it may not be necessary for every sensor node to transmit its data to the sink;

instead, a smaller number of sensor data might be adequate to transmit certain event

features to the sink within a certain distortion constraint.

In this chapter, we show how this spatial correlation can be exploited at the

medium access control (MAC) layer. The shared wireless channel between sensor

nodes and the energy considerations make the MAC layer a crucial part in WSN.

The existing MAC protocols cannot be applied here because of the event-based traf-

fic properties and the energy constraints in WSN. Also, the channel access must

be coordinated in such a way that possible collisions are minimized or eliminated.

These requirements can be satisfied by intelligent management of transmission at-

tempts among nodes by exploiting the spatially correlated nature of the event infor-

mation. Based on the theoretical framework for spatial correlation in WSN developed

in Chapter 2, we develop a distributed, spatial correlation-based collaborative MAC

(CC-MAC) protocol that regulates medium access and prevents redundant transmis-

sions from closely located sensors.

3.2 Related Work

There exists some research to study the correlation in WSN [31, 56, 64] in recent years.

In these work, the information theoretical aspects of the correlation are explored. In

other words, these studies aim to find the optimum rate to compress redundant in-

formation in the sensor observations. More recently, the relation between distortion,

spatio-temporal bandwidth, and power for large sensor networks is investigated [32].
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However, correlation (spatial or temporal) between sensor observations is not con-

sidered in this work. Moreover, none of the above solutions develop communication

network protocols.

In [84], spatial and temporal correlations are exploited to eliminate the acknowl-

edgements in the communication. While the number of acknowledgements is consid-

erably reduced, the number of redundant packets is still large in the network. The

joint routing and source coding is introduced in [64] to reduce the amount of traffic

generated in dense sensor networks with spatially correlated records. While joint

routing and source coding reduces the number of transmitted bits, the number of

transmitted packets remains unchanged from the network point of view. In our opin-

ion, the number of transmitted packets can be further minimized by regulating the

network access based on the spatial correlation between the sensor nodes. Moreover,

the relation between spatial and temporal sampling rate on the overall network de-

lay and energy consumption is studied in [11]. However, the spatial and temporal

correlations between sensor observations are not investigated.

Current studies on medium access control in WSN focus mainly on the energy-

latency tradeoffs. S-MAC [83] aims to decrease the energy consumption by using

sleep schedules with virtual clustering. T-MAC [74], a variant of S-MAC, incorporates

variable sleep schedules to further decrease the energy consumption. However, in both

protocols, sensor nodes keep sending redundant data with increased latency because

of periodic sleep durations. In [10], an energy-aware TDMA-based MAC protocol

is presented where the sensor network is assumed to be composed of clusters and

gateways. Each gateway acts as a cluster-based centralized network manager and

assigns slots in a TDMA frame. The protocol assumes a cluster-based topology that

results in significant additional processing complexity and overhead in the overall

sensor network. An energy efficient collision-free MAC protocol that is based on a

time-slotted structure is presented in [59]. Each node determines its own time slot
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using a distributed election scheme based on traffic requirements of its every two-hop

neighbor. Although the protocol achieves high delivery ratio with tolerable delay, the

performance of the protocol depends on the two-hop neighborhood information in

each node. Since this information is collected through signaling, in the case of high

density sensor networks, the signaling cost increases significantly resulting in either

incomplete neighbor information because of collisions or high energy consumption.

So far, the existing MAC solutions focus on decreasing energy consumption by

modifying known medium access techniques. In our opinion, event-based MAC pro-

tocols that exploits topology and traffic properties of WSN need to be developed. In

Chapter 2 and [78], we introduced the characteristics of spatial and temporal corre-

lations in WSN. Based on this framework, we develop the spatial correlation-based

collaborative MAC (CC-MAC) protocol that aims to reduce the energy consumption

of the network by exploiting spatial correlation in WSN without compromising the

channel access latency and the achieved distortion.

3.3 Corralaries from Spatial Correlation Theory

The theoretical framework developed in Chapter 2 reveals that significant energy

savings can be achieved by exploiting the spatial correlation between sensor observa-

tions. More specifically, the event distortion, DE(M), that is achieved at the sink as

a function of the number of sensor nodes M was found to be

DE(M) = σ2
S −

σ4
S

M(σ2
S + σ2

N)

(
2

M∑
i=1

ρ(s,i) − 1

)
+

σ6
S

M2(σ2
S + σ2

N)2

M∑
i=1

M∑

j 6=i

ρ(i,j) , (40)

where σ2
S and σ2

N are the variance of the received signal and the observation noise,

respectively, ρ(i,j) and ρ(s,i) are the correlation coefficients between nodes ni and nj,

and the event S location and the sensor node ni, respectively. It follows from our

previous discussions in Chapter 2 that the following can be concluded about the

achieved distortion at the sink:
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Remark 1: The minimum distortion is achieved when all the sensor nodes in the

event area send information to the sink. However, the achieved distortion at the sink

can be preserved even though the number of the representative nodes is decreased.

As a result, significant energy saving is possible by allowing less number of sensor

nodes to send information.

Remark 2: Based on (40), there are two factors affecting the distortion other than

the number of representative nodes.

1. The correlation coefficient, ρ(s,i), between a sensor node ni sending the infor-

mation and the event source S affects the distortion function negatively. The

distortion increases as the distance between the event source S and the node ni

increases. Intuitively, if a representative sensor node is chosen apart from the

source, it observes inaccurate data resulting in higher distortion at the sink.

2. The correlation coefficient, ρ(i,j), between each representative node ni and nj

affects the distortion positively. As the distance between sensor nodes increases,

the distortion decreases. Since further apart sensor nodes observe less correlated

data, the distortion is decreased if these nodes are chosen as the representative

nodes.

Consequently, because of the spatial correlation between sensor observations, sig-

nificant energy savings can be achieved by choosing representative nodes among the

sensor nodes in the event area without degrading the achieved distortion at the sink.

It is clear that the reduced number of sensor nodes transmitting information decreases

contention in the wireless medium resulting in decreased energy consumption.

As a result, our aim is to find the minimum number of representative nodes that

achieve the distortion constraint given by the sensor application. This minimum
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Figure 9: Spatial Re-usage in Sensor Networks.

number is given as

M∗ =

argmin

M

{DE(M) < Dmax}

where Dmax is the maximum distortion allowed by the sensor application.

It is important to note that the minimum number of representative nodes, M∗,

depends on the locations of the representative nodes. It follows from our previous

discussions that for a fixed number of representative nodes, the minimum distortion

can be achieved by choosing these nodes such that (i) they are located as close to the

event source S as possible and (ii) they are located as far apart from each other as

possible. As an example, as illustrated in Fig. 9, choosing representative nodes such

that they are spread over the event area results in a decrease in distortion because of

less redundant data sent by these nodes. Note that such a formation also improves

the medium access success during the transmission of the information. Since the

representative nodes are not located close to each other, the probability of collision

in the wireless medium decreases. As a result, exploiting spatial correlation not only

improves the distortion but also utilizes the wireless channel because of the spatial

reuse property of the wireless medium.

To apply our observations about the distortion function, DE(M), a node selec-

tion technique is required to select the representative nodes resulting in minimum
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energy expenditure. For this purpose, we introduce the iterative node selection (INS)

algorithm in Section 3.4. The INS algorithm is a control agent running at the sink

that determines the minimum number of representative nodes based on the distor-

tion constraint, Dmax. Accordingly, the average distance between the representative

nodes is determined and each sensor node in the WSN is informed about this average

distance value. Each node then performs the spatial correlation-based collaborative

MAC (CC-MAC) protocol, explained in Section 3.5, that exploits spatial correlation

distributively.

3.4 The Iterative Node Selection (INS) Algorithm

According to the observations in Section 3.3, we introduce the iterative node selec-

tion (INS) algorithm to find the number of the representative nodes in WSN. INS

tries to find the ideal locations of representative sensor nodes such that the required

distortion can be maintained at the sink. Based on the INS algorithm results, the

CC-MAC protocol is performed distributively by each sensor node to achieve the

required performance. The INS algorithm requires the statistical properties of the

node distribution as input and provides a correlation radius value for distributed op-

eration as output. As pointed out in Section 3.3, the locations of the representative

sensor nodes should be chosen such that the redundancy between event information

is decreased. The selection of locations of correlated points based on a distortion

constraint has been investigated with the well-established Vector Quantization (VQ)

methods in coding theory [49]. Hence, these methods can be exploited by suitable

mapping to our problem. We first give an overview about the VQ design problem

and then introduce our INS algorithm.

The VQ design can be stated as follows: Given a vector source with its statistical

properties known, given a distortion constraint, and given the number of codevectors,

the VQ algorithm tries to find a codebook and a partition that result in the smallest

52



0 5 10 15 20 25 30 35 40 45 50
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of Representative Nodes

D
is

to
rt

io
n

INS
Minimum Distortion
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the distortion found by the INS solution.

average distortion. More specifically, the VQ algorithm aims to represent all possible

codewords in a code space by a subset of codewords, i.e., the codebook, within the

distortion constraint. Hence, the VQ solutions fit well with our problem, where

we want to represent all the sensor nodes in an event area with smaller number

of representative nodes. If we choose two dimensional codevectors, the code-space

in the VQ approach can be mapped to the network topology with the node places

as the codeword spaces. Once the codebook is determined, the VQ algorithm uses

Voronoi regions to determine the partition of a code such that any information in this

partition is represented by the codevector. The Voronoi regions determine the areas

closest to the points representing the area. By applying the VQ algorithms, e.g., [49],

to our representative node selection problem, the codebook and the partitions can be

found. The codebook represents the locations of the representative nodes, while the

partitions represent the areas of which the representative nodes are responsible for.

Since the VQ algorithms require only the statistical properties of the code space,

for the selection of representative nodes, only the statistical properties of the topology
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are required at the sink. These properties constitute the density of the network and

the type of node distribution, e.g., uniform, Gaussian, or Poisson. Therefore, the INS

algorithm does not require the exact locations of the nodes to be collected at the

sink. It is assumed that the statistical properties the WSN topology is known by the

INS algorithm1. Based on the statistical properties, the INS algorithm first forms a

sample topology. Then, as shown in Fig. 11, the algorithm starts with selecting all the

nodes in the event region as representative nodes. Then, the number of representative

nodes, M , is iteratively decreased. For each value of M , the positions of the nodes

are found such that the distortion, DE(M), is minimized.

The INS algorithm decreases the number of representative nodes until the distor-

tion constraint, Dmax, is met. The VQ solution is used to find the positions of the

representative nodes for each iteration using the sample topology created from the

statistical properties of the network. The distortion, DE(M), is then calculated using

(40). Once the maximum allowed distortion is met, the algorithm terminates.

Using a VQ toolbox [3], we simulated the INS algorithm using the same topology

used in Chapter 2. The locations of representative nodes are determined for 5 to 50

representative nodes. The distortion found from these selections is shown in Fig. 10.

1Note that the density and node distribution can be evident from the initial deployment of the
WSN.

INS()
M = N;
Calculate DE(M)
while (DE(M) ≤ Dmax)

M = M − k
RunVQ()
Calculate ρ(s,i) and ρ(i,j) ∀ i, j
Calculate DE(M)

end
end;

Figure 11: Iterative Node Selection Algorithm. RunVQ() performs VQ algorithm
and finds the places of representative nodes.
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Figure 12: 16 Representative nodes chosen by VQ algorithm and the Voronoi regions
representing the correlation regions.

Moreover, we show the minimum distortion found among the 1000 random trials in

Chapter 2 for θ1 = 5000. Note that by choosing the representative node locations

based on the VQ algorithm rather than the random selection, significant improvement

in the achieved event distortion is possible as shown in the Fig. 10. In Fig. 12, we show

the locations of the selected nodes for 16 representative nodes. Each representative

node is shown by a circle and a dot. The representative nodes are the only nodes that

transmit their event information to the sink, while the other nodes are suppressed

from sending information. The Voronoi regions determine the areas where only one

node is allowed to transmit its event information to the sink.

As explained before, the INS algorithm creates a sample topology for the sensor

network to exploit spatial correlation and filter correlation between the nodes. Fig. 12

shows that if a node transmits data, then the nodes in its proximity are not required

to send data. We call this area, specified by the INS algorithm, the correlation region

of the representative node. Based on these observations, we introduce the following

definitions:
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• Correlation Radius (rcorr): The radius of the correlation region is called the cor-

relation radius, rcorr. The INS algorithm determines this value from the average

radius of Voronoi regions. Nodes with internode distance, d(i,j), smaller than

the correlation radius, rcorr, are assumed to contain highly correlated data. This

distance is assumed to be known a-priori from the exchange of local information

during network initialization or to be estimated from the received control signal

strength as discussed in [63].

• Correlation Neighbor: A node nj is said to be the correlation neighbor of node

ni if its distance, d(i,j), to the node ni is smaller than the correlation radius,

rcorr. The correlation neighbors are shown as circles in Fig. 12.

When the INS algorithm converges, the average radius of the Voronoi regions,

i.e., the correlation radius, rcorr, is calculated and the distributed CC-MAC protocol,

as explained in Section 3.5, is performed. To exploit the spatial correlation between

sensor nodes and to improve the performance of the WSN, our MAC protocol tries to

create the correlation regions distributively. Note that the INS algorithm determines

the representative nodes that would achieve the minimum distortion given the number

of representative nodes. However, since this centralized information is not suitable for

distributed control, the correlation radius, rcorr, is informed to the individual nodes

so that they try to form the correlation regions in a distributed manner and choose

the representative nodes, accordingly. Since the INS algorithm resides at the sink and

requires no location information, no additional energy consumption is introduced at

the sensor nodes, which perform only the CC-MAC protocol.

During the lifetime of the network, the network topology can change because of

node failure or battery drain of sensor nodes. However, since the distortion depends

on the physical phenomenon, such a change should not affect the distortion achieved

at the sink unless the number of sensors decreases significantly. In such a case, the

event information cannot be captured at the desired distortion level even if all the
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Figure 13: E-MAC and N-MAC. The representative node transmits its record on
behalf of the entire correlation region, while all correlation neighbors suppress their
transmissions.

nodes send information, i.e., rcorr = 0. Hence, new nodes can be deployed. If new

nodes are deployed in the sensor field to increase the spatial resolution or to improve

the connectivity, the CC-MAC operation is not affected since the desired distortion

is achieved at the sink.

Overall, the goals of the CC-MAC protocol are to determine representative nodes

without any explicit internode communication, to create the correlation regions, and

to prevent the correlation neighbors from transmitting their event information.

3.5 CC-MAC Protocol Description

Based on the results presented in Section 3.3 and Section 3.4, we propose the spatial

correlation-based collaborative MAC (CC-MAC) protocol that aims to collaboratively

regulate sensor node transmissions. It follows from our earlier discussion in Section
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3.3 that the distortion constraint can be achieved even though the number of nodes

sending information about an event is decreased. Furthermore, by intelligently select-

ing the locations of the representative nodes, the distortion, DE(M), can be further

reduced. To achieve these goals, the INS algorithm, which resides at the sink, de-

termines the correlation radius, rcorr, for a distortion constraint, Dmax, as explained

in Section 3.4. This information is then broadcast to each sensor node during the

network setup. The CC-MAC protocol, which is implemented at each sensor node,

then performs MAC distributively. CC-MAC exploits spatial correlation in the MAC

layer by using the correlation radius, rcorr, to suppress the redundant information.

We now present the principles of CC-MAC protocol in detail. When a specific

source node, ni, transmits its event record to the sink, all of its correlation neighbors

have redundant information with respect to the distortion constraint, Dmax. This

redundant information, if sent, increases the overall latency and contention within

the correlation region, as well as wasting scarce WSN energy resources. Our proposed

CC-MAC protocol aims to prevent the transmission of such redundant information

and prioritize the forwarding of filtered data to the sink.

In WSN, the sensor nodes have the dual functionality of being both data origina-

tors and data routers. Hence, the medium access is performed for two reasons:

• Source Function: Source nodes with event information perform medium access

to transmit their packets to the sink.

• Router Function: Sensor nodes perform medium access in order to forward the

packets received from other nodes to the next destination in the multi-hop path

to the sink.

According to the spatial correlation between observations in WSN, the medium ac-

cess attempts related to the source function of the sensor nodes should be coordinated

such that the transmission of the redundant information to the sink is collaboratively
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prevented. However, once a packet is injected into the network, it has to be reli-

ably transmitted to the sink. Hence, the route-thru packet is more valuable at an

intermediate node than its own generated data packet.

To address these two different contention attempts in WSN, our CC-MAC proto-

col contains two components corresponding to the source and router functionalities.

Event MAC (E-MAC) filters out the correlated records and Network MAC (N-MAC)

ensures prioritization of route-thru packets. More specifically, a node performs E-

MAC when it wants to transmit its sensor reading to the sink, while N-MAC is

performed when a node receives a packet and tries to forward it to the next hop. A

typical WSN with the E-MAC and N-MAC application areas are shown in Fig. 13.

Since centralized medium access is not preferred in WSN, we use a distributed

protocol to determine the representative nodes. Both E-MAC and N-MAC use

a CSMA/CA-based medium access control with appropriate modifications and en-

hancements. The information about correlation formation is embedded inside the

RTS/CTS/DATA/ACK packets. Each node is informed about the correlation infor-

mation about a node using these packets. As a result, additional signaling is not

required for our CC-MAC protocol. We explain the packet structure and the princi-

ples of both E-MAC and N-MAC in the following sub-sections.

3.5.1 Packet Structure

To address the unique characteristics of WSN, i.e., spatially correlated information

and higher priority route-thru packets, a bit in the reserved space of RTS, CTS, and

DATA packet structures is used as a new field called first hop (FH) field as shown

in Fig. 14. The FH field helps the sensor nodes to differentiate the type of packet,

i.e., newly generated packet (source functionality) or a route-thru packet (router

functionality), and perform E-MAC or N-MAC accordingly.

When a sensor node records an event, it sets the FH field of the RTS and DATA
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Figure 14: Structures for RTS, CTS, and DATA packets.

packets related to the transmission of the sensor record. All nodes overhearing the

RTS with FH field set, determine that the transmission is related to a source func-

tionality and perform E-MAC as will be explained in Section 3.5.2. The recipient of

this RTS packet sets the FH field of the CTS packet that is sent back to the source

node. As a result, each neighbor of the sender and the receiver is informed about

the type of the packet being transferred. Once a node receives the DATA packet, it

clears the FH field, indicating that the packet is a route-thru packet. The node, then,

simply forwards the packet to the next hop. Nodes accessing the medium for router

functionality do not set the FH field in their RTS packets and perform N-MAC as

will be explained in Section 3.5.3.

3.5.2 Event MAC (E-MAC)

The Event MAC (E-MAC) protocol aims to filter out correlated event information

by forming correlation regions based on the correlation radius, rcorr, obtained from

the INS algorithm as shown in Section 3.4.

In each correlation region, a single representative sensor node transmits data for

a specific duration, while all other nodes stop their transmission attempts.
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After each transmission duration, a new representative node is selected as a result

of the contention protocol. All sensor nodes contend for the medium for the first time

so that the representative nodes are selected by the help of the spatial-reuse property

of the wireless channel. This initial phase is called as the first contention phase and

is explained as follows.

• First Contention Phase (FCP): In the first contention phase, all nodes with

event information contend for the medium for the first time using RTS / CTS /

DATA / ACK structure [36]. Each of these nodes sets the FH field of the RTS

packet and tries to capture the medium for transmission. At the end of this

phase, some of the sensor nodes access the channel while others have to backoff.

Note that more than one node can access the channel in this first phase because

of the spatial reuse as shown in Fig. 13.

When a node ni captures the channel after the FCP, it becomes the representative

node of the area determined by the correlation radius rcorr. The node, ni, continues to

send information to the sink as a sole representative of its correlation region. Using

the information in the ongoing transmission, other nodes hearing the transmission

can determine whether they are correlation neighbors of node ni. Every node nj that

listens to the RTS packet of the node ni looks at the FH field and determines that the

transmission is related to a source functionality. In addition, each node nj determines

d(i,j), its distance to node ni. If d(i,j) is found to be less than the correlation radius,

rcorr, then the node nj determines that it is a correlation neighbor of the node ni and

stops its transmission. If the node is outside the correlation region of node ni, then

it contends for the medium if it has a packet to send.

The protocol procedure for the correlation neighbors depends on the relation be-

tween the transmission range, R, of the sensor nodes and the correlation radius, rcorr.

For the case when rcorr ≤ R, the transmission area of a node ni contains the cor-

relation area of the node as shown in Fig. 15. Hence, all the correlation neighbors
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of the node ni can hear the transmission of node ni. As a result, the redundancy

because of correlation can be totally removed by the already ongoing transmission

from the representative node. However, in the case when rcorr > R, some of the

correlation neighbors of node ni cannot hear the transmission of node ni. Hence,

the redundancy cannot be filtered out completely with respect to the total distortion

constraint. Based on these observations, we first explain the procedure for the corre-

lation neighbors for the first case and then point out the modifications for the second

case.

Case 1: rcorr ≤ R

In this case, when a node nj determines that it is a correlation neighbor of a

node ni it suppresses its data transfer to the sink for a specific amount of time

and performs necessary procedures for forwarding the packets. In addition, in order

to conserve energy during the transmission of node ni, each correlation neighbor

enters suspicious sleep state (SSS) of duration TSSS. As a result, during the SSS

period, the representative node ni continues sending information to the sink as a sole

representative of its correlation region. Furthermore, the correlation neighbors defer

contending for the medium for TSSS.

In SSS, the correlation neighbors switch to sleep state for the duration of the

transmission, i.e., Ttx, that is extracted from the duration field of the RTS, CTS or

r corr

R

r corr

R

Figure 15: Two cases for E-MAC. The figure shows two cases for correlation region,
rcorr, and transmission region, R.
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DATA packets. However, in order to be able to forward the route-thru packets and

to maintain network connectivity, correlation neighbors start to listen to the channel

after a random sleep interval of trs, such that Ttx < trs < TnextTx, where TnextTx is

the time when node ni will begin the next transmission of the sensor record. TnextTx

is assumed to be set by higher layer protocols and is related to the transmission rate

of the application. As a result, a correlation neighbor stays in sleep state during

trs. The correlation neighbors then listen to the channel for EIFS sec and if there

is a transmission destined to the neighbor, the node performs N-MAC. Otherwise, it

switches to sleep state again.

After TSSS duration, node ni releases its representative role by switching into

SSS, leaving the medium to other nodes. The remaining nodes then go through the

first contention phase again. As a result, an equal load-sharing among sensor nodes

is provided.

Case 2: rcorr > R

In this case, some nodes correlated to the representative node ni cannot be in-

formed about their correlated data. This results in unnecessary contention for the

medium from some of the correlation neighbors outside the communication range.

However, trying to inform these nodes about node ni’s transmission requires addi-

tional transmission and contention for channel access, which increases the overhead

of the protocol. Hence, there is a trade-off between correlation filtering and protocol

overhead in this case.

Another problem that needs to be addressed in this case is the routing of node

ni’s packets out of the correlation region. Since all communication neighbors are also

correlation neighbors, the packets generated by ni should be routed through these

nodes. However, if all correlation neighbors go into SSS as explained in Case 1, node

ni would not be able to send its packets outside the correlation region. To overcome
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this problem, we introduce the directional sleeping technique. The directional sleep-

ing technique works as follows. After the first contention phase, all the correlation

neighbors drop their in-queue packets. They do not try to send their packets for TSSS

seconds but continue to listen to the channel to route packets from node ni. If, for

a certain number κ of transmissions, a correlation neighbor does not receive an RTS

packet destined for itself, it determines that the path from node ni to the sink does

not include itself and enters the SSS.

Other nodes that are in the route from node ni to the sink continue to listen to

the channel. This principle results in directional sleeping where nodes that are not in

the path from node ni to the sink can switch to sleep state. In addition, SSS helps

those nodes not in the path to route packets coming from other sources to the sink

as explained in Case 1. After the SSS, the remaining nodes enter the FCP and the

whole process is repeated.

3.5.3 Network MAC (N-MAC)

As a node records an event and transmits its packets using E-MAC, these packets

are forwarded through the network by intermediate nodes that perform the router

functionality. In addition, node deployment over large sensor fields may have to deal

with multiple concurrent events. Hence, when a packet is routed to the sink, it may

traverse through nodes corresponding to other concurrent events. However, since the

correlation has already been filtered out using E-MAC, the route-thru packet must

be given priority over the packets generated by another concurrent event. This is the

reason why network MAC (N-MAC) component is required.

When an intermediate node receives a DATA packet, it performs N-MAC to fur-

ther forward that packet to the next hop. The route-thru packet is given precedence

in two phases. When a correlation neighbor receives an RTS regarding a route-thru

packet during the random listening period of the SSS, it switches from SSS to receive
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state and receives the packet. During the transmission, the representative node defers

its transmission and the route-thru packet is received by the correlation neighbor.

To further exploit the higher priority of the route-thru packet, we use a priority

scheme similar to the IEEE 802.11 point coordinate function (PCF)[36]. A node in

a correlation region with a route-thru packet listens to the channel for PCF inter

frame space (PIFS) time units, which is smaller than the distributed coordination

function (DCF) inter frame space (DIFS) used by the nodes performing E-MAC.

The router node then sets its backoff window size to a random number between [0,

CW
′
max − 1], where CW

′
max is a value smaller than the actual CWmax used by the

representative node. Such a principle increases the probability that the router node

captures the channel since the router node begins backoff before the representative

node of the correlation region. As a result, the route-thru packet is given precedence.

Since backoff procedure is still used, the collision between multiple route-thru packets

that may be in the same correlation region is prevented. If, on the other hand, the

representative node receives the route-thru packet, it simply gives precedence to the

route-thru packet and forwards the route-thru packet.

The two components of CC-MAC, i.e., E-MAC and N-MAC, provide a complete

solution for exploiting spatial correlation at the MAC layer. E-MAC filters the highly

correlated information by defining a correlation region for transmitting nodes and

preventing correlation neighbors in that region from transmitting their data. N-MAC

provides precedence to the filtered out data while it traverses through the WSN. In

Section 3.6, we investigate the performance of the CC-MAC protocol as well as the

effects of protocol parameters.

3.6 Simulation Results

We use ns − 2 [1] for our simulations. To gain more insight into the protocol op-

eration, we first evaluate the effects of CC-MAC protocol parameters on the overall
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performance such as energy consumption and distortion achieved at the sink. We

then present a comparative study of various MAC protocols. Along with our CC-

MAC protocol, we simulated T-MAC [74], TRAMA [59], and S-MAC [83], which

are energy aware MAC protocols designed specifically for wireless sensor networks,

in addition to IEEE 802.11[36] and a simple carrier sense multiple access (CSMA)

protocol.

We present simulation results for sensor topology of 50 nodes randomly deployed

in a 500x500m2 sensor field. We assume that one of the sensor nodes is a sink and all

other nodes send their event information to that sink. The sensor nodes are modeled

according to the ns − 2 wireless node module and energy model. The transmission

range of each node is 100m with average energy consumption of 24.75mW , 13.5mW ,

and 15µW during transmitting, receiving, and sleeping, respectively. We assume that

nodes consume the same energy for idle listening as receiving. The parameters CWmax

and CW ′
max are chosen as 1024 and 512. In each simulation, an event occurs with

an event source located at the center of the sensor field. Each sensor node reports

their event information to the sink. To investigate the effect of the traffic load, the

simulation results are presented by varying the reporting period of the sensor nodes.

The reporting period determines the period each node creates packets about the event

information. Each simulation is performed for 600s.

3.6.1 CC-MAC Parameters

Two parameters that are required for the CC-MAC operation are the correlation

radius, rcorr, defined in Section 3.4 and the suspicious sleep state interval, TSSS,

mentioned in Section 3.5. We present the effects of these parameters on the CC-

MAC performance according to the following performance metrics:

• Average Energy Consumption (J): is the average energy a node consumes during

the simulation. The average energy consumed is the most important metric
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Figure 16: Energy consumption for different correlation radius values.

since the WSN rely on energy awareness.

• Distortion: is the average distortion achieved at the sink according to the re-

ceived sensor information. For each reporting interval, the distortion is calcu-

lated using (40), according to the information received at that interval. We

use the Power Exponential model with θ2 = 1 and θ1 = 5000 as the covari-

ance model. The distortion metric is presented to evaluate the reliability of the

CC-MAC protocol in terms of distortion.

The first set of experiments are performed for the evaluation of the effect of cor-

relation radius, rcorr, defined in Section 3.4. The correlation radius, rcorr, is required

by the CC-MAC protocol to form the correlation regions for achieving the distortion

constraint, Dmax, as explained in Section 3.5. To observe the effect of the correlation

radius, rcorr, on the performance of CC-MAC, we performed simulations by varying

the correlation radius, rcorr from 30m to 100m. We use SSS duration of TSSS = 50s

for this set of experiments. This value is chosen such that the representative nodes

could send multiple packets even for low reporting rates, such that nodes do not enter
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Figure 17: Distortion achieved by different correlation radius values.

the first contention phase (FCP), which is explained in Section 3.5, for every packet.

Note that this selection is made so that our CC-MAC protocol does not behave as a

pure CSMA/CA with sleep periods. The results are shown in Fig. 16 and 17.

Fig. 16 shows the energy consumption for 4 different correlation radius values,

i.e., rcorr = {30m, 50m, 70m, 100m}. The average energy consumption decreases as

the reporting period is increased, as expected, since less packets are generated dur-

ing the simulation. It is clearly seen that significant energy conservation is possible

by increasing the correlation radius, rcorr. Since less representative nodes transmit

information to the sink when correlation radius, rcorr is increased, less contention

attempts are made in the overall network. The gain achieved by increasing the corre-

lation radius is even more significant for high traffic load. As an example, increasing

correlation radius from rcorr = 30m to rcorr = 100 results in energy conservation of

56% for reporting period of 4s, while the energy conservation of 38% is achieved for

reporting period of 10s. When the traffic load is increased, i.e., the reporting period

is decreased, the collision probability during medium access also increases because of
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Figure 18: Average energy consumption for various SSS durations.

increased packet flow in the WSN. Hence, the effect of filtering correlated information

has an increased impact on the energy conservation for high traffic load.

We show the effect of varying correlation radius, rcorr on the achieved distortion

in Fig. 17. Fig. 17 shows that the achieved distortion is insensitive to the report-

ing interval. In addition, the distortion achieved stays relatively constant when the

correlation radius, rcorr, is varied. These results are consistent with our theoretical

results in Chapter 2. The theory concludes that the achieved distortion stays rela-

tively constant when the number of representative nodes is higher than 15. Since the

correlation radius, rcorr, in effect, determines the number of representative nodes in

CC-MAC, the same distortion behavior is also achieved in Fig. 17.

The second set of experiments considers the effect of the SSS duration, TSSS, on

the performance metrics. The SSS duration determines how long a node will stay

as a representative node after capturing the channel during the FCP as explained in

Section 3.5. Small TSSS results in equal sharing of energy consumption by increasing

the probability that every node becomes a representative node. Moreover, small TSSS

increases the probability that a node will be in the awake state for a route-thru packet.
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Figure 19: Distortion values for various SSS durations.

We performed simulations by changing the SSS duration, TSSS, from 30s to 150s. We

used rcorr = 100m for this set of experiments.

The variation of energy consumption for various TSSS is shown in Fig. 18. A

decrease in the SSS duration from 150s to 30s, leads up to 60% increase in the energy

consumption. As the SSS duration decreases, the selection of the representative

nodes, i.e., FCP, is performed more frequently. Hence, nodes consume more energy

due to the increase in number of contentions.

The distortion performance is shown in Fig. 19. The results show that the dis-

tortion is not affected by the choice of TSSS. This follows from the fact that the

same number of representative nodes sends information, regardless of the SSS du-

ration. Hence, the choice of SSS duration, TSSS, can be determined without any

consideration about the distortion achieved at the sink.

3.6.2 Comparative Study

In this section we compare the performance results of our CC-MAC with TRAMA

[59], S-MAC [83], T-MAC [74], IEEE 802.11 [36], and the basic CSMA protocol. Using
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the same sensor network setup in Section 3.6.1, we evaluate the following performance

metrics of then above protocols:

• Medium Access Delay (s): is the average time spent between the time a packet

is handed to the MAC layer and the time it is received at the next hop. This

delay accounts for the contention delay in the case of contention-based protocols

[74], [83] and scheduling delay in schedule-based protocols [10], [59].

• Packet Drop Rate: is the fraction of packets that is dropped during the medium

access. It is calculated as the percentage of dropped packets to the total packets

sent from the MAC layer throughout the simulation. This metric shows the per-

formance of the MAC protocol in terms of medium access overhead introduced

in terms of wasted number of packets.

• Goodput: is the ratio between the total number of packets received at the sink

and the total number of packets generated by all sensor nodes. As a result, the

efficiency of the MAC protocol is investigated.

• Average Energy Consumption (J): is the average energy a sensor node consumes

during the simulation.

TRAMA [59] is a schedule-based MAC protocol, designed specifically for WSN.

Each node performs traffic-based scheduling using two-hop neighbor information in

the network based on a schedule interval set according to the traffic rate. We use

a schedule interval of 100 transmission slots of duration 6.82ms for the TRAMA

protocol. S-MAC [83] and T-MAC [74], on the other hand, are contention-based

MAC protocols that incorporate sleep cycles to conserve energy. Since T-MAC has

been proposed to improve the energy efficiency of S-MAC by further trading off

throughput and latency, we include T-MAC in our energy consumption analysis.

Since the throughput and latency performance of T-MAC is designed to be inferior
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Figure 20: Medium access delay introduced by different MAC protocols.

to S-MAC [74], we consider S-MAC for the other performance metrics described

above. We simulated the S-MAC protocol with frequency of schedule update of 10s

and 10% duty cycle. The T-MAC protocol is simulated with minimum idle listening

period TA of 15ms. The IEEE 802.11 is performed according to the ns − 2 module

[1]. According to the INS protocol, we set the correlation radius rcorr = 91.68m to

achieve a distortion constraint of Dmax = 3.16 that accounts for 16 representative

nodes in the INS solution. The SSS duration is set as TSSS = 100s.

Fig. 20 shows the medium access delay achieved by each MAC protocol. CSMA

has the lowest medium access delay of 6ms, which is because of the lack of collision

avoidance mechanism and energy-awareness. CC-MAC performs close to the IEEE

802.11 and S-MAC performance with medium access delay below 50ms. Note that

the delay performance of three protocols is relatively constant for variable traffic

load. TRAMA has a medium access delay of 10s that is significantly higher than the

medium access delay introduced by the contention-based protocols. This difference

is because of the schedule-based medium access scheme.
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Figure 21: Percentage of dropped packets for different MAC protocols.
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Figure 22: Goodput for different MAC protocols.

The packet drop rate is shown for each of the MAC protocols in Fig. 21. S-MAC,

IEEE 802.11, and CSMA achieve similar packet drop rates, which are in the order

of 80%, while TRAMA has a packet drop rate between 60% and 20% depending on

the traffic load. CC-MAC protocol outperforms all the contention-based protocols, as
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Figure 23: Average energy consumption for different MAC protocols.

well as TRAMA for high traffic load. Note that the packet drop rate is insensitive to

traffic load in the case of S-MAC, IEEE 802.11, CSMA, and CC-MAC. As a result, the

packet drop rate depends on the number of nodes contending for the medium. Since

CC-MAC prevents correlation neighbors from contending for the medium, the packet

drop rate is significantly lowered. The packet drop rate of the TRAMA protocol

varies according to the traffic load. This is related to the scheduling approach of the

protocol. Although collisions are prevented by scheduling transmissions, as the load

increases, packet drop rate also increases since the packets cannot be accommodated

in the transmission slots. For reporting period higher than 10s, TRAMA has lower

packet drop rate than CC-MAC.

The goodput of CC-MAC is shown in Fig. 22 along with CSMA, IEEE 802.11, S-

MAC, and TRAMA protocols. Note that we do not compare the throughput since the

efficiency of the protocols is more important than the total number of packets received

at the sink. It is clear that CC-MAC would achieve lower throughput compared to

other protocols since it filters the redundant data injected into the network without

compromising the distortion limits. However, sink is interested in uncorrelated data
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Figure 24: Achieved distortion and the distortion found by the INS algorithm.

to construct the event features rather than the highly redundant data from each sensor

node. Since the redundant contention attempts are eliminated, the goodput of CC-

MAC is significantly higher than of the other contention-based protocols achieving up

to 180% increase compared to S-MAC [83] goodput. Moreover, CC-MAC outperforms

TRAMA [59], which is a reservation-based protocol, when the nodes are transmitting

at a high frequency. As the reporting period is increased, the frame structure of

TRAMA can accommodate more nodes and goodput increases compared to CC-

MAC. However, note that the number of nodes sending information to the sink is still

much lower in CC-MAC than in TRAMA because of suppressed correlation neighbors.

Hence, less packets are introduced into the network with less nodes transmitting data.

As a result, energy consumption is decreased as shown in Fig. 23.

The energy consumption performance of CC-MAC with three energy-aware pro-

tocols, TRAMA, S-MAC, and T-MAC is shown in Fig. 23. We also compare these

four protocols IEEE 802.11 for completeness. As shown in Fig. 23, CC-MAC has
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significant energy conservation compared to other energy-aware protocols. While S-

MAC outperforms TRAMA for high reporting frequency, TRAMA achieves better

energy consumption for increased reporting period. Since, T-MAC provides variable

sleep schedules based on the traffic, the energy consumption is significantly lower

than S-MAC and TRAMA. However, with the help of spatial correlation-based ap-

proach of the CC-MAC protocol, the WSN consumes 25% less energy compared to

T-MAC, 70% less energy compared to S-MAC and TRAMA, and 85% less energy

compared to IEEE 802.11. As a result, CC-MAC protocol provides significant en-

ergy savings without compromising latency and throughput. This significant gain in

energy consumption increases the lifetime of the network.

CC-MAC also achieves distortion within 10% of the distortion constraint found

theoretically by the INS algorithm as shown in Fig. 24. The increase in the distortion

is because of the lost packets during the transmission of event information to the

sink. As shown in Fig. 21, 30% of the packets are dropped during transmission. The

dropped packets result in an increase in the achieved distortion since less information

about the event is received at the sink than anticipated by the INS algorithm. Hence,

a reliability guarantee is required from higher layers for the exact achievement of

required distortion. Moreover, the distributed nature of the CC-MAC protocol brings

additional offset to the achieved distortion. Since the INS algorithm determines the

correlation radius based on the statistical properties of the network, the realization

of the network may be different because of changes in the statistical properties and

different realizations. However, it is clear from our results in Section 3.6.1 that the

achieved distortion can further be decreased by decreasing the correlation radius.

Hence, by using less number of sensor nodes and filtering out the correlation between

sensor observations, CC-MAC protocol achieves significant gains in terms of energy

consumption in the MAC layer without compromising from latency, goodput, and

distortion.
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CHAPTER IV

XLM: CROSS-LAYER MODULE FOR EFFICIENT

COMMUNICATION IN WIRELESS SENSOR

NETWORKS

In this chapter, a unified cross-layer module (XLM) is presented. XLM achieves

efficient and reliable event communication in wireless sensor networks (WSN) with

minimum energy expenditure. XLM was first presented in [9]. The motivation for

this work is provided in Section 4.1. In Section 4.2, we first provide a review of

existing work on cross-layer design in WSN. The XLM protocol basics, overview, and

the protocol description are introduced in Section 4.3. In Section 4.4, we provide

performance evaluations of the XLM solution and provide a comparative analysis

with five layered suites.

4.1 Motivation

Wireless sensor networks (WSN) are event-based systems that exploit the collective

effort of densely deployed sensor nodes which continuously observe certain physical

phenomenon. In general, the main objective of any WSN application is to reliably

detect/estimate event features from the collective information provided by sensor

nodes. Nevertheless, the main challenge for achieving this objective is mainly posed

by the severe energy and processing constraints of low-end wireless sensor nodes.

Clearly, the collaborative sensing notion of the WSN achieved by the networked

deployment of sensor nodes help to overcome the characteristic challenge of WSN,

i.e., resource constraints. To this end, there has been significant amount of research

effort that aims to develop collaborative networking protocols in order to achieve
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communication with maximum energy efficiency.

In addition to the collaborative sensing and networking in WSN, spatio-temporal

correlation is another significant characteristic of sensor networks. Dense deployment

of sensor nodes makes the sensor observations highly correlated in the space domain

with the degree of correlation increasing with internode proximity. Similarly, some of

WSN applications such as event tracking require sensor nodes to periodically sample

and communicate the sensed event features. The nature of the energy-radiating phys-

ical phenomenon yields temporal correlation between each consecutive observation of

a sensor node. It has been shown in Chapter 2 and Chapter 3 that exploiting the

spatial and temporal correlation further improves energy-efficiency of communication

in WSN.

Most of the proposed communication protocols that exploit the collaborative na-

ture of WSN and their correlation characteristics improve energy efficiency to a cer-

tain extent. However, the main commonality of these protocols is that they follow

the traditional layered protocol architecture. More specifically, the majority of these

communication protocols are individually developed and optimized for different net-

working layers, i.e., transport, network, medium access control (MAC), and physical

layers. While these protocols may achieve very high performance in terms of the met-

rics related to each of these individual layers, they are not jointly designed in order

to maximize the overall network performance while minimizing the energy expendi-

ture. Considering the scarce energy and processing resources of WSN, joint design of

networking layers, i.e., cross-layer design, stands as the most promising alternative to

inefficient traditional layered protocol architectures.

In fact, recent work on WSN [61], [75], [81] reveal that cross-layer integration and

design techniques result in significant improvement in terms of energy conservation

in WSN. There exists some research on the cross-layer interaction and design in

developing new communication protocols [16], [17], [27] [50], [67], [69], [86], [87].
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However, as discussed in Section 4.2 in detail, these studies either provide analytical

results without any communication protocol design, or perform cross-layer design

within a limited scope, e.g., only routing and MAC, which do not consider all of the

protocol layers involved in the communication in WSN.

Clearly, there is still much to be gained by rethinking the protocol functions of

protocol layers in a unified way so as to provide a single communication module for

efficient communication in WSN. To the best of our knowledge, to date, there is no

unified cross-layer communication protocol for efficient and reliable event communi-

cation that incorporates transport, routing, medium access functionalities along with

considering the physical layer (wireless channel) effects for WSN.

In this chapter, a unified cross-layer module (XLM) is developed and presented,

which achieves efficient and reliable event communication in WSN with minimum

energy expenditure. XLM melts common protocol layer functionalities into a cross-

layer module for resource-constrained sensor nodes. The operation of the XLM is

devised based on the new cross-layer notion of initiative determination, which con-

stitutes the core of the XLM and implicitly incorporates the intrinsic communication

functionalities required for successful communication in WSN. Based on the initiative

concept, XLM performs receiver-based contention, initiative-based forwarding, local

congestion control, and distributed duty cycle operation in order to realize efficient

and reliable communication in WSN. In a cross-layer simulation platform, the state-

of-the-art layered protocol configurations have been implemented along with XLM to

provide a complete performance evaluation. Analytical performance evaluation and

simulation experiment results show that XLM significantly improves the communi-

cation performance and outperforms the traditional layered protocol architectures in

terms of both network performance and implementation complexity.

79



4.2 Related Work

A cross-layer integrated MAC/routing protocol has been independently proposed by

[69] and [86]. In [86] and [87], the performance analysis of a cross-layer geographi-

cal random forwarding (GeRaF) algorithm is presented. This algorithm introduces

receiver-based routing with MAC and routing layer cross-layer interaction. However,

the GeRaF algorithm requires a sensor node with two radios for signaling, which may

not be feasible in some scenarios. In [85], the MAC protocol is modified for a single

radio node. However, for all studies [85], [86], [87], the given analysis considers a

perfect channel model and is based purely on geographical relations. As a result, the

behavior of the proposed cross-layer protocol presented in [85], [87], [86] may not be

realistic.

In [69], a receiver-based routing is again proposed, where the performance of the

protocol is analyzed based on a simple channel model and lossless links. Moreover, the

latency performance of the protocol is presented based on different delay functions

and collision rates. Also, the effect of the physical layer are not considered in the

protocol operation.

A new integrated MAC/routing solution is proposed in [60] for geographical rout-

ing in WSN. The proposed solution considers a realistic channel model including

fading channel statistics. However, this work considers only the interaction between

MAC and routing layers and omits the transport layer and physical layer issues.

Furthermore, the integrated MAC/routing scheme proposed in this work does not

explicitly address the energy-efficiency requirement of energy-constrained sensor net-

works.

In [16] and [17], a cross-layer optimization solution for power control at the phys-

ical layer and congestion control at the transport layer is considered. Moreover,

a cross-layer analysis of the impact of physical layer constraints on link-level and

network-level performance of CDMA sensor networks is presented in [28]. This work
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underlines important tradeoffs between topology control and receiver design prin-

ciples. However, both these studies apply only to CDMA-based wireless multihop

networks which may not apply to WSN where CDMA technology may not be the

most efficient scheme.

In [67], new forwarding strategies for geographic routing are proposed based on an

analytical work in [88]. The authors provide expressions for the optimal forwarding

distance for networks with and without ARQ. However, the forwarding protocol does

not consider the impact of medium access and uses a classical sense of forwarding that

results in a very high overhead. Moreover, the analysis for the distribution of optimal

hop distance is based on a linear network structure, which may not be realizable in

WSN using geographical routing, where a 2-dimensional terrain exists.

In [27], joint routing, MAC, and link layer optimization is proposed. Although

the optimization problems presented in this work are insightful, no communication

protocol for practical implementation is proposed. Moreover, the transport layer is-

sues such as congestion and flow control are not considered. Furthermore, in [47]

and [48], a thorough investigation of optimization techniques for cross-layer design

in wireless networks is performed. It has been stated that scheduling constitutes the

bottleneck in optimization due to the nonconvex nature of the scheduling problem.

Consequently, in [47], a distributed cross-layer congestion control and scheduling al-

gorithm is developed. However, this solution considers a pair-wise cross-layer design

including only transport and link layers.

Consequently, these studies either provide analytical results without any commu-

nication protocol design, or perform cross-layer design within limited scope, e.g., only

routing and MAC, which do not consider all of the networking layers involving in the

communication in WSN.
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4.3 XLM: Cross-Layer Module for WSN

XLM is a cross layer communication module for WSN, which replaces the entire tra-

ditional layered protocol architecture that has been used so far in WSN. The design

principle of XLM is a complete unified cross-layering such that both the informa-

tion and the functionalities of traditional communication layers are melted in a single

module. Consequently, XLM incorporates the required functionalities and aims to

address the corresponding responsibilities of transport, network and MAC layers of

classical layered networking approach by taking the physical layer and channel effects

into account.1 The objective of XLM is highly reliable communication with minimal

energy consumption, adaptive communication decisions and local congestion avoid-

ance. Since XLM replaces all of the traditional communication layers, it has all of the

required functionalities. To this end, the cross-layer module incorporates new cross-

layer notion of initiative determination, receiver-based contention, initiative-based

forwarding, local congestion control, and distributed duty cycle operation. The de-

tails of these functionalities are explained in the following sections. Before explaining

the specifics of the XLM operation, in this section, we first provide an overview of

the cross-layer operation of XLM.

The basis of communication in XLM is build on the so-called initiative concept,

which provides freedom for each node to decide on participating in communication.

Consequently, a completely distributed and adaptive network operation is realized.

In WSN, the major goal of a communication suite is to successfully transport event

information by constructing (possibly) multi-hop paths to the sink. During XLM op-

eration, the next-hop in each communication is not determined in advance. Instead,

1Note that the sensor nodes equipped with XLM will still have RF transceiver which has all
necessary physical layer functionalities, e.g., modulation/demodulation, channel coding, RF power
control, specified according to the specific deployment and application requirements.
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an initiative determination procedure is used for each node to decide on participat-

ing in communication, i.e., routing and forwarding of the event information. As will

be explained next, initiative determination is performed by each node based on its

current capabilities related to all communication layers, e.g., link quality and relative

location deduced from the channel information, current incoming forwarding request

load, buffer level, and remaining energy level; melting these information into a unified

decision incentive driving its level of willingness of participating in the communication

in the sensor network. Therefore, the cross-layer initiative determination concept con-

stitutes the core of the XLM and implicitly incorporates the intrinsic communication

functionalities required for successful communication in WSN.

A node initiates transmission by broadcasting an RTS packet to indicate its neigh-

bors that it has a packet to send. Upon receiving an RTS packet, each neighbor of

node i decides to participate in the communication or not. This decision is given

through initiative determination considering the current status of the node’s commu-

nication capabilities. The initiative determination is a binary operation where a node

decides to participate in communication if its initiative is 1. Denoting the initiative

as I, it is determined as follows:

I =





1, if





ξRTS ≥ ξTh

λrelay ≤ λTh
relay

β ≤ βmax

Erem ≥ Emin
rem

0, otherwise

(41)

The initiative is set to 1 if all four conditions in (41) are satisfied. Each condition

in (41) constitutes a certain communication functionality in XLM. The first condition,

i.e., ξRTS ≥ ξTh , ensures reliable links be constructed for communication based on

the current channel conditions. For this purpose, it requires that the received signal

83



to noise ratio (SNR) of an RTS packet, ξRTS, is above some threshold ξTh for a

node to participate in communication. The effect of this threshold on routing and

energy consumption performance will be analyzed and the most efficient value of

this threshold will be chosen in Section 4.3 . The second, i.e., λrelay ≤ λTh
relay, and

the third, i.e., β ≤ βmax, conditions are used for local congestion control in XLM. As

explained in Section 4.3.5, the second condition in this component prevents congestion

by limiting the traffic a node can relay. More specifically, a node participates in the

communication if its relay input rate, λrelay, is below some threshold λTh
relay. The

third condition ensures that the node does not experience any buffer overflow and

hence, also prevents congestion. The last condition, i.e., Erem ≥ Emin
rem , ensures that

the remaining energy of a node Erem stays above a minimum value, Emin
rem . This

constraint helps preserve uniform distribution of energy consumption throughout the

network.

The cross-layer functionalities of XLM lie in these constraints that define the

initiative of a node to participate in communication. Using the initiative concept,

XLM performs receiver-based contention, initiative-based forwarding, local conges-

tion control, hop-by-hop reliability, and distributed operation. The details of XLM

operation are explained next. More specifically, we first define the basic parameters

for the operation of XLM in Section 4.3.1. For a successful communication, a node

first initiates transmission as explained in Section 4.3.2. Then, the nodes that hear

this initiation perform initiative determination. The nodes that decide to partici-

pate in communication perform receiver-based contention and angle-based routing as

described in Section 4.3.3 and Section 4.3.4. Moreover, the local congestion control

component ensures energy efficient as well as reliable communication by two-step con-

gestion control as explained in Section 4.3.5. Finally, based on this protocol operation

description, the most efficient operation point for XLM is analytically investigated in

Section 4.3.6.
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4.3.1 XLM Basics and Definitions

We assume the following network model for the operation of XLM. Each node per-

forms a distributed duty cycle operation. The value of the duty cycle is denoted by δ

and defines the ratio of the time a node is active. Each node is implemented with a

sleep frame with length TS sec. As a result, a node is active for δ× TS sec and sleeps

for (1− δ)× TS sec. Note that the start and end times of each node’s sleep cycle are

by no means synchronized. As a result, a distributed duty cycle is employed.

In the network, nodes send information to the sink if an event occurs in their

vicinity. The area that an event occurs is denoted as the event area. Based on this

model and the XLM mechanism, each node in XLM, contributes to the transmission

of event information to the sink based on its duty in the network and the current

network conditions. The duty of a node in WSN can be classified in two classes:

• Source Duty: Source nodes with event information need to transmit their pack-

ets to the sink. Hence, these nodes perform transmission rate selection based

on the congestion in the network.

• Router Duty: Sensor nodes also forward the packets received from other nodes

to the next destination in the multi-hop path to the sink. These nodes indicate

their initiative on accepting new flows through their path to the destination.

Based on these duties, each node will determine its initiative to participate in the

transmission of an event as explained above. The protocol operation details explained

in the following sections incorporate the aforementioned definitions.

4.3.2 XLM Transmission Initiation

Since a node may be spatially correlated with its neighbors, when it has a packet to

send, it also checks if its information is correlated with the transmitting source nodes,

abandoning the transmission if a correlated node exists [80]. This is accomplished
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by when a node has a packet to transmit, it first listens to the channel for a specific

period of time, TSSS, as we have previously investigated in [80]. If the channel is

occupied, the node performs backoff based on its contention window size CWRTS.

When the channel is idle, the node broadcasts an RTS packet, which contains the

location of the sensor node i and the location of the sink. This packet serves as a

link quality indicator and also helps the potential destinations to perform receiver-

contention which is explained in Section 4.3.3. When a node receives an RTS packet,

it first checks the source and destination locations. It is clear that, in order to route a

packet to the destination, the next hop should be closer to the sink than node i. We

refer to this region where the neighbors of a node that are closer to the sink reside

as the feasible region. Similarly, the region where the neighbors of a node that are

farther to the sink is referred to as the infeasible region. Hence, a node receiving a

packet first checks if it is inside the feasible region of the transmitting node i. In

order to save energy, the nodes inside the infeasible region of node i switch to sleep.

The nodes inside the feasible region perform initiative determination as explained in

Section 4.3. If a node decides to participate in communication, it performs receiver

contention as explained in Section 4.3.3.

4.3.3 XLM Receiver Contention

The receiver contention operation of XLM is based on the receiver-based routing

approach [69], [87]. After an RTS packet is received, if a node has an initiative,

i.e., I = 1, to participate in the communication, it performs receiver contention to

forward the packet. The receiver contention is based on the routing level of each node

which is determined by its location. The routing level of a node is decided based on

the progress a packet would make if the node forwards the packet. The feasible

region is divided into Np priority regions corresponding to an increasing progress, i.e.,

Ai, i = 1, ..., Np. The nodes with the longer progress have higher priority over other
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nodes. This prioritization is performed by the contention mechanism for medium

access.

Each priority region, Ai, corresponds to a backoff window size, CWi. Based on

the location, a node determines its region and backs off for
∑i−1

j=1 CWj + cwi, where

cwi ∈ [0, CWi]. This backoff scheme helps differentiate nodes of different progress

into different prioritization groups. Only nodes inside the same group contend with

each other. The winner of the contention sends a CTS packet to node i indicating

that it will forward the packet. On the other hand, if during backoff, a potential

receiver node hears a CTS packet, it determines that a node with a longer progress

has accepted to forward the packet and switches to sleep.

When node i receives a CTS packet from a potential receiver, it determines that

receiver contention has ended and sends a DATA packet indicating the position of

the winner node in the header. The CTS and DATA packets both indicate the other

contending nodes the transmitter-receiver pair. Hence, other nodes stop contending

and switch to sleep. In the case of two nodes sending CTS packets without hearing

each other, the DATA packet sent by the node can resolve the contention. Note that

node i may not receive a CTS packet because of three cases:

• CTS packets collide,

• There exists no potential neighbors with I = 1, or

• There exists no nodes in the feasible region.

However, node i cannot differentiate these three cases by the lack of a CTS packet.

Hence, the neighbors of node i send a keep alive packet after
∑Npr

j=1 CWj if no com-

munication is overheard. The existence of a keep alive packet notifies the sender that

there are nodes closer to the sink, but the initiative shown in (41) is not met. With

the reception of this packet, node continues retransmission. However, if a keep alive

packet is not received, the node continues retransmission in case there is a CTS packet
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collision. If no response is received after some retries, node i determines that a local

minimum is reached and switches to angle-based routing mode as explained next.

4.3.4 XLM Angle-based Routing

XLM constructs routes through initiative-based forwarding in a hop-by-hop fashion.

This techniques generally results in reliable and efficient end-to-end paths as will be

shown in Section 4.4. Since the routing decisions depend, in part, on the locations

of the receivers, however, there may be cases where the packets reach local minima.

In other words, a node cannot find any feasible nodes that are closer to the sink

than itself. This problem is a well known phenomenon in geographical routing-based

approaches and is generally resolved through face routing techniques [39, 41]. Face

routing, however, necessitates a node to communicate with its neighbors to establish

a planarized graph and construct routes to traverse around the ”void” generated by

the local minimum. Since this communication will increase the protocol overhead

and violate the receiver-based principle of XLM, we introduce an angle-based routing

technique.

Clock−wise

Counter Clock−wise

i
j

k

s

Figure 25: Illustration of angle-based routing.

The main principle of the angle-based routing can be seen in Fig. 25. When a

packet reaches node i, which is a local minimum towards the sink, the packet has
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to be routed either in clock-wise direction (through node j) or in counter clock-wise

direction (through node k). Assume that lines are drawn between the node i and

the sink, s, as well as between node i and its neighbors. If we compare the angles

between the line i − s and the other lines, line i − j (line i − k) has the smallest

angle in the clock-wise (counter clock-wise) direction. Using this geometric property,

routes can be constructed. Once a measuring direction is set (clock-wise or counter

clock-wise), the packet can traverse around the void by using the same direction.

Hence, for angle-based routing we introduce the term traversal direction to indicate

this direction. Next, we explain how the angle-based routing works.

When a node switches to angle-based routing mode as explained in Section 4.3.3, it

also sets the traverse direction to clock-wise and sends an RTS packet, which indicates

both the routing mode and the traverse direction. The nodes that receive this packet

calculate their angle relative to the source-sink direction. Denoting the angle by θij,

node j sets its contention window to c θij + cwi, where cwi is a random number,

and c is a constant.2 The node with the smallest contention window (hence, the

smallest angle) sends a CTS packet and the data communication takes place. This

procedure is repeated until the packet reaches a local minimum. In this case, the

traverse direction is set to counter-clockwise and the procedure is repeated. Angle-

based routing is terminated and default routing is performed when the packet reaches

a node that is closer to the sink than the node that started angle-based routing. A

sample route found by this algorithm is shown in Fig. 26. XLM switches to angle-

based routing mode in clock-wise direction at node a. At nodes b and f the traverse

direction is changed while at node d angle-based routing mode is terminated and at

node e, it is used again.

2The constant can be selected according to the latency requirements and the density of the
network.
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Figure 26: Sample route created by angle-based routing.

4.3.5 XLM Local Cross-Layer Congestion Control

XLM incorporates a new hop-by-hop local cross-layer congestion control component

which is devised based on the buffer occupancy analysis presented here. The objective

of this component is to perform hop-by-hop and local congestion control by exploiting

the local information in the receiver-contention in order to avoid the need for an end-

to-end congestion control. It also exploits the local reliability measures taken by

the channel access functionality hence does not necessitate traditional end-to-end

reliability mechanisms.3

As discussed in Section 4.3.1, a sensor node has two duties in WSN, i.e., source

duty and router duty. Accordingly, here, we consider two sources of traffic as an input

to the buffer of each node:

3The sink is only interested in reliable detection of event features from the collective information
provided by numerous sensor nodes and not in their individual reports. As the correlated data
flows originated from the event area are loss tolerant to the extent that event features are reliably
communicated to the sink, the need for end-to-end reliability may not exist due to the sheer amount
of correlated data flows [4]. Hence, the local reliability measures of XLM suffice for an event in
the sensor field to be tracked with a certain accuracy at the sink. This is also observed in the
performance evaluation of XLM in Section 4.4.
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• Generated packets: The first source is the application layer, i.e., the sensing

unit of a node, which senses the event and generates the data packets to be

transmitted by the sensor node during its source duty as discussed in Section

4.3.1. We refer to these packets as the generated packets. For a node i, the rate

of the generated packets is denoted by λii.

• Relay packets: In addition to generated packets, as a part of its router duty, a

node also receives packets from its neighbors to be forwarded to the sink due

to multi-hop nature of sensor networks. These packets are referred as the relay

packets. The rate at which node i receives relay packets from node j is denoted

as λji.

The input rate to the buffer of node i is hence the combination of the input rates

of these two types of packets. Since the sensor nodes utilize a duty cycle, the buffer

occupancy of the nodes build up while they sleep due to the generated packets.

Hence, based on the above definitions, the local cross-layer congestion control

component of XLM has two main congestion control measures. The main idea of

XLM cross-layer congestion control is to regulate the congestion:

• in router duty, by providing the sensor nodes with the freedom of deciding

whether or not participating in the forwarding of the relay packets based on the

current load on the node due to its relaying functionality, and

• in source duty, by explicitly controlling the rate of the generated data packets.

Here, we first aim to analyze the upper bound for the total relay packet rate a

sensor node can accommodate in order to obtain a decision measure for local con-

gestion control in router duty. This bound, denoted by λTh
relay, is used in the XLM

initiative determination as presented in (41) in Section 4.3.
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Denoting the generated packet rate of a node i by λii, the input packet rate at

the node i’s buffer, λi, can be represented as

λi = λii + λi,relay = λii +
∑

j∈N in
i

λji (42)

where N in
i is the set of nodes which have node i as the next hop and λji is the packet

rate from node j (∈ N in
i ) to node i. Moreover, the output rate of node i can be given

by

µi = (1 + ei)(λii + λi,relay) (43)

where ei is the packet error rate. A node is active on the average δ fraction of time.

Hence, the average time the node i spends in transmitting, receiving and listening

during the active period is given by

Trx = λi,relayTPKT ,

Ttx = (1 + ei)(λii + λi,relay)TPKT ,

Tlisten = δ − [
(1 + ei)λii + (2 + ei)λi,relay

]
TPKT ,

respectively, where TPKT is the average duration required to successfully transmit a

packet to another node, λii is the generated packet rate, and λi,relay is the total input

relay packet rate of node i.

In order for a node to prevent buffer overflow and maintain its duty cycle, Tlisten ≥
0. Consequently, the input relay packet rate, λi,relay is bounded by

λi,relay ≤ λTh
i,relay , (44)

where the relay rate threshold, λTh
i,relay, is given by

λTh
i,relay =

δ

(2 + ei)TPKT

− 1 + ei

2 + ei

λii . (45)

As a result, XLM incorporates a hop-by-hop congestion control which is devised

based on this buffer occupancy analysis. Nodes participate in routing packets as long
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as (44) is satisfied. According to (45), the relay rate threshold is directly proportional

to the duty cycle value, δ. This suggests that the capacity of the network will decrease

as δ is reduced. However, since lower δ results in less energy consumption, this tradeoff

needs to be analyzed carefully. Moreover, note that the input relay rate of source

nodes, i.e., λii > 0, should be lower than that of the nodes that are only relays, i.e.,

λii = 0. This provides homogenous distribution of traffic load to sensor nodes, where

source nodes relay less traffic.

In addition to congestion control based on regulating the relaying functionality as

discussed above, the XLM local congestion control component also takes an active

control measure in case of network congestion, by directly regulating the amount of

traffic generated and injected into the network.

During the receiver-contention mechanism described in Section 4.3.3, node i may

not receive any CTS packets but receive keep alive packets. In this case, node i

decides that there is a congestion in the network. Then, it reduces its transmission

rate by decreasing the amount of traffic generated by itself. In other words, since the

traffic injected by any node due to its router duty is controlled based on (44), the

active congestion control is performed by controlling the rate of generated packets λii

at the node i itself.

Therefore, in case of congestion, XLM node reduces the rate of generated packets

λii multiplicatively, i.e.,. λii = λii ·1/µ, where µ is defined to be the transmission rate

throttle factor. If there is no congestion detected, then the packet generation rate

can be increased conservatively in order not to lead to oscillation in the local traffic

load. Therefore, XLM node increases its generated packet rate linearly for each ACK

packet received, i.e., λii = λii + α. Here, we select µ = 2, i.e., the rate of generated

packets is halved in case of congestion, and α = λii0/10, where λii0 is the initial value

of the generated packet rate set by the sensing application. Here, note also that

XLM adopts a rather conservative rate control approach. This is mainly because it
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has two functionalities to control the congestion for both source and router duties

of a sensor node. As the node decides to take part in the forwarding based on its

buffer occupancy level, it already performs congestion control as part of the XLM’s

forwarding mechanism. Hence, XLM node does not apply its active congestion control

measures, i.e., linear increase and multiplicative decrease, to the overall transmission

rate. Instead, it only updates the generated packet rate, λii.

Note also that since the local congestion control is specific to certain regions and

may not apply to the entire event area, nodes inside a congested region may reduce

their transmission rates and the overall event reliability may still be met at the sink

from the data from other nodes due to the sheer amount of correlated data flows as in

[4]. Thus, instead of an inefficient end-to-end reliability mechanism, this local cross-

layer congestion control exploits the local congestion control and reliability in order

to maintain high network utilization and reliability in a local and distributed manner.

In fact, this is also clearly observed in the performance evaluation experiment results

as presented in Section 4.4.

The overall XLM protocol operation and its pseudo-algorithm is also presented in

Fig. 27. The lines 1-13 show the algorithm for a source node i, which has a packet

to send. Note that node i performs either retransmission or switches to angle-based

routing based on the reception of a CTS packet, a Keep Alive packet, or the lack of

them (lines 3 - 10). The lines 14-29 show the XLM operation for a neighbor node

j, which receives a packet. In the case of an RTS packet, the initiative is calculated

and the backoff timer is set based on whether default or angle-based routing is used

as explained in Section 4.3.3 and Section 4.3.4 (lines 16-19). The expiration of the

timers result in a node to transmit a CTS packet. Similarly, if node j receives a

CTS, DATA, or ACK packet, these timers are reset. Finally, the values for λii and

λi,relay are updated for each successful or unsuccessful communication according to

(45) (lines 5, 8, and 24).
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if has packet to send then1

// Source node i
Perform carrier sense and transmit RTS2

if CTS received then3

Transmit DATA4

if ACK received then Increase λii, update λi,relay5

else Retransmit RTS6

else if Keep alive packet received then7

Decrease λii, update λi,relay8

Retransmit RTS9

else10

Switch to angle-based routing11

Retransmit RTS12

end13

else if packet received then14

// Neighbor node j
switch packet type do15

case RTS16

Calculate I17

if I=1 then Set backoff timer18

else Set backoff for keep alive19

case CTS20

Reset backoff timers, switch to sleep21

case DATA22

if Destined for itself then23

Transmit ACK, update λj,relay24

else Reset backoff timers, switch to sleep25

case ACK26

Reset backoff timers27

end28

end29

Figure 27: Pseudocode of XLM

4.3.6 XLM Duty Cycle Analysis

XLM employs a distributed duty cycle operation as described in Section 4.3.1. Hence,

the choice of the duty cycle value, δ, is important for the performance of XLM. Based

on the XLM operation specifics described in the previous sections, here, we investigate

the effect of duty cycle on the network performance using an energy consumption
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analysis. The objective of this analysis is to find the optimum operating point for

XLM in terms of duty cycle, δ. In this respect, the energy consumed by the network

for a packet sent to the sink as a function of the distance of its source to the sink is

investigated.

The total energy consumed as a result of a single flow from a source node at

distance D from the sink can be found as

Eflow(D) = Eper−hop E[nhops(D)] (46)

where Eper−hop is the average energy consumed in one hop for transmitting a packet,

and E[nhops(D)] is the expected hop count from a source at distance D to the sink.

An accurate approximation for the expected hop count is given in [87] as

E[nhops(D)] ' D −Rinf

E[dnext−hop]
+ 1 (47)

where E[dnext−hop] is the expected hop distance, which we will derive in Chapter 5

[79] and Rinf is the approximated transmission range.

The energy consumed in one hop has three components as given by

Eper−hop = ETX + ERX + Eneigh (48)

where ETX is the energy consumed by the node transmitting the packet, ERX is

the energy consumed by the node receiving the packet, and Eneigh is the energy

consumed by the neighbor nodes. Note that similar energy consumption analysis

has also been performed in the literature in a node-centric manner which required

models/assumptions for the generated traffic, e.g., [69], [87]. On the other hand, the

effect of neighbor nodes has not been considered [34]. In our analysis, we investigate

the energy consumption to transmit a single packet to the sink with the effect of

neighbor nodes, which provides a clearer insight on the energy consumption.

In order to successfully transmit the packet, a node needs to complete the four-

way handshaking. Assume that the distance between the nodes transmitting and
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receiving packet is dh = E[dnext−hop] and the probability that a data and a control

packet is successfully received at this distance are pD
s (dh) and pC

s (dh), respectively4.

When a transmitter node sends an RTS packet, it is received by the receiver node

with probability pD
s (dh) and the node replies with a CTS packet. If the CTS packet is

received (with probability pC
s (dh)), the transmitter node sends a DATA packet, and

the communication is concluded with an ACK packet. In every failure event, the node

begins retransmission. Therefore, the expected energy consumed by the transmitting

node, ETX , is

ETX =
K

(pC
s )3pD

s

, (49)

where

K = Esense + (pC
s )2

[
ER

tx + EC
wait + EC

rx

]

+
(
1− (

pC
s

)2
)

EC
t/o +

(
pC

s )
)3

pD
s

[
ED

tx + EA
rx

]

+
(
pC

s

)2
(1− pC

s pD
s )EA

t/o

where Esense is the energy consumption spent for sensing the region, Ex
tx and Ex

rx

are the packet transmission and reception energies spent for packets, where the su-

perscripts R, C, D, A refer to RTS, CTS, DATA and ACK packets, respectively.

ECTS
wait is the expected energy consumption for waiting for a receiver CTS, and Et/o is

the energy consumed before the transmitter node times out, deciding that a suitable

router does not exist.

The two terms in (49), EC
wait and EC

t/o are the only system dependent terms. The

expected waiting time for the next hop EC
wait is calculated next.

According to the discussion in Section 4.3.3, on the average, each node in priority

region, Ai, waits for CWi/2 in its priority slot as well as the previous priority slots.

Denoting the probability that the next hop for node i, Ni, exists in Ak by Pk =

4We reasonably assume that the length of RTS, CTS and ACK packets are the same.
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P{Ni = j, s.t. j ∈ Ak}, the average waiting time for the next hop is given by

EC
wait = erx

{
NP∑
i=1

[ i−1∑

k=1

CWk +
CWi

2

]
Pi

}
, (50)

where

Pk =
(
1− p[A(γk−1),ξTh]

)
p[A(γk),ξTh] , (51)

p[A(γk),ξTh] = 1 − pk, pk is given in Chapter 5 [79], erx is the energy consumption for

receiving and γk is maximum distance from the sink for nodes in Ak.

Using the same approach, the energy consumption of the receiver node can be

found as:

ERX =
1

(pC
s )3pD

s

{
ER

rx + EC
wait + EC

tx + ED
rx + EA

rx

}
(52)

The last term in (48), Eneigh, is the energy consumed by the neighbors of the

transmitter and the receiver nodes. First, all the nodes inside the transmission region

of the transmitter consume energy for RTS packet reception if they receive the packet.

Moreover, there exist nodes that listen only the CTS message sent by the receiver

node. Considering these principles, the energy consumption of the neighbor nodes,

Eneigh is expressed by:

ENeigh =
1

(pC
s )2pD

s

{
ρδ(πR2

inf − 2)pC
s ER

rx +
(
ρδA(D,Rinf , D)− 2

)

×
(

EC
wait + EC

rx +
ED

rx

2

)}
. (53)

Finally, the probability that a packet is received is given by [88]

ps =
(
1− 1

2
e−

ξ
1.28

)16l

(54)

where ξ is the received SNR, and l is the packet length, which is lC and lD for pC
s and

pD
s , respectively.

Using (49), (52), (53), and (54) in (48), the overall energy consumption of a flow

can be found. Using numerical integration methods, the effect of distance, D, on the
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energy consumption of a flow is found and shown in Fig. 28. Considering Fig. 28,

energy consumption of a flow is minimal for δ ∼ 0.002. However, in relatively small

sized networks of < 1000 nodes, this operating point may not provide connectivity in

the network. On the other hand, note also that the energy consumption has a local

minima around δ = 0.2. We will also show by comprehensive performance evaluations

in Section 4.4 that, this value is a suitable operating point for XLM in terms of energy

efficiency.
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Figure 28: Avg. energy consumption vs. duty cycle for different values of D.

4.4 Performance Evaluation

In order to gain more insight into the protocol operation, we first investigate the

effects of XLM protocol parameters on the overall network performance. We, then,

present a comparative study between XLM and five different layered protocol suites

consisting of state-of-the-art protocols. Finally, we discuss the overall communication

complexity for both XLM and the layered protocol suites.

The existing sensor network simulation platforms are not suitable for cross-layer

communication suite design due to their layered architecture. For this reason, we
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Table 1: Simulation Parameters
Parameter Value Parameter Value
Re-tx. Limit 7 Pt 5 dBm
µ 2 PL(d0) 55 dB
α λii0/10 Pn -105 dBm
Buffer Length 30 n 3
lcontrol 20 bytes σ 3.8
ldata 100 bytes Tcoherence 16 ms
Frame Length 5s Erx 13.5 mW
Energy Threshold 100 µJ Etx 24.75 mW
ξTh 10 dB Esleep 15 µW
Tsss 5s

evaluate XLM and various layered protocol suites in cross-layer simulator (XLS) de-

veloped at our laboratory in C++. XLS consists of a realistic channel model and an

event-driven simulation engine. We present simulation results for a sensor topology

of 300 nodes randomly deployed in a 100x100m2 sensor field. The sink is located

at coordinates (80,80). The simulation parameters for both sensor nodes and the

communication suites are given in Table 1. In each simulation, an event occurs in an

event area located at coordinates (20,20) with an event radius of 20m. Each source

node reports its event information to the sink. To investigate the effect of duty cycle,

each simulation is performed for duty cycle values of δ ∈ [0.1, 1]. Each simulation

lasts for 60s and the results are the average of ten trials for each of ten different

random topologies.

In the evaluations, we investigate the following performance metrics:

• Throughput is the average number of bits per second received at the sink during

the simulations. In calculating this metric, only unique packets are considered

since multiple copies of a packet can be received at the sink due to either

broadcast nature of some protocols or retransmissions.

• Goodput is the ratio between the total number of unique packets received at

the sink and the total number of packets generated by all the source nodes. As
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Figure 29: Route Failure Rate for XLM with angle-based routing and default geo-
graphical routing.

a result, the overall communication reliability of the suites is investigated.

• Energy Efficiency is the most important metric in WSN. In our simulations, we

consider the average energy consumption per hop and per unique packet that is

received at the sink, which can be considered as the inverse of energy efficiency.

Hence, a lower value refers to a more efficient communication.

• Number of Hops is the average number of hops each received packet traverses

to reach the sink. This metric is used to evaluate the routing performance of

each suite.

• Latency is the average time it passes between the time a packet is generated

at a source node and the time it is received at the sink. This delay accounts

for the queuing delay and the contention delay at the nodes as well as specific

protocol operation.

101



4.4.1 XLM Parameters

The parameters that affect the XLM operation are the angle-based routing, SNR

threshold, ξTh, and duty cycle, δ. We present the effects of these parameters on the

XLM performance in this section.

The effect of angle-based routing is shown in Fig. 29, where the route failure

rate vs. duty cycle parameter δstat is shown for XLM with angle-based routing and

with only default geographical routing. In these experiments, only a snapshot of the

network is considered and the routes are found considering a static topology. The

routing failure is the ratio of the number of unsuccessful routes between each nodes in

the network and the number of all possible routes. The results show that route failure

rate increases as the static duty cycle δstat is decreased. However, angle-based routing

limits the route failure rate to less than 10% for δstat > 0.2. This leads to up to 70%

decrease in failure rate. Note that failure rate of XLM with angle-based routing also

increases as δstat is further decreased since the network becomes partitioned.

In Fig. 30 (a), the total throughput received at the sink is shown. The x-axis

shows the duty cycle, δ, and the throughput is shown for different SNR threshold,

ξTh, values. The network throughput increases as the duty cycle, δ, is increased. An

increase in the duty cycle increases the number of nodes that are active at a given

time. Consequently, the capacity of the network increases. This fact is also evident

from our buffer occupancy analysis in Section 4.3.5. The effect of the SNR threshold,

ξth is also shown in Fig. 30 (a). The first curve on the figure, i.e., No ξTh, is the

case where the first condition in (41) is not used by the nodes. In other words, nodes

contend for participating in routing irrespective of the received SNR value. It can be

observed that, increasing the SNR threshold, ξTh improves the network throughput

upto a certain ξTh. Above this value, the network throughput degrades. This shows

that a very conservative operation of XLM leads to performance degradation.

In Fig. 30 (b), the goodput performance is shown. It can be clearly seen that
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Figure 30: (a) Average throughput, (b) average goodput, and (c) average latency
vs. duty cycle for different values of ξTh.

XLM provides reliability above 95% for δ > 0.1 and ξTh ≤ 10dB. The decrease in

goodput at δ = 0.1, is due to the fact that the connectivity of the network cannot be

maintained since, on the average, only 10% of the nodes in the network are active at

a given time. Moreover, for ξTh = 15dB, the goodput decreases up to 0.7 as the duty

cycle is decreased. This is due to the fact that potential receivers with the desired

channel quality cannot be found and the reliability of the XLM degrades.

In Fig. 30 (c), the end-to-end latency is shown, which reveals that increasing

SNR threshold, ξTh, improves the end-to-end latency performance up to a certain

ξTh value. ξTh = 10dB results in the lowest latency. Since for all above performance
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metrics, ξTh = 10dB results in the most efficient performance, we use this value in

the following evaluations.

4.4.2 Comparative Evaluation

In this section, we compare the performance of the XLM with five different layered

protocol architectures. We first identify the protocol configurations implemented in

our study along with the implementation issues. Then, we present the results of our

comparative evaluation for networks with and without duty cycle operation. The

complexity issues are also discussed.

4.4.2.1 Protocol Configurations

The protocol configurations implemented for the comparative evaluation are as fol-

lows:

Flooding: This configuration serves as the baseline for the other configurations.

In this case, each node broadcasts its packet and the nodes that are closer to the sink

rebroadcast this packet until it reaches sink. At the MAC layer, a simple CSMA type

broadcast mechanism is used such that each node senses the channel and performs

exponential backoff in case the channel is busy. No retransmission mechanism is used.

At the transport layer, packets are injected at constant rate and no rate control is

used. The results shown include the unique packets received at the sink excluding

the duplicate packets.

[GEO]: Geographical Routing + CC-MAC + ESRT: This protocol con-

figuration is composed of ESRT [4], geographical routing [67], and CC-MAC [80] at

transport, routing, and MAC layers, respectively. The CC-MAC protocol is imple-

mented using rcorr = 7m, and TSSS = 5s. In the routing protocol [67], distance-based

blacklisting is used such that, the nodes in the farthest 20% of the radio range are

blacklisted and the next closest node to the sink is selected as the next hop.
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[PRR]: PRR-based Geographical Routing + CC-MAC + ESRT: This

protocol configuration is similar to GEO with the exception of the routing algorithm.

In this configuration, the routing decisions are based on the channel quality of each

node with its neighbors. The channel quality is measured in terms of packet reception

rate (PRR) as discussed in [67]. The node that maximizes the PRR×geographical

advancement product is selected as the next hop.

[PRR-SMAC]: PRR-based Geographical Routing + SMAC + ESRT:

This protocol configuration is similar to PRR with the MAC layer replaced by the

SMAC protocol [83]. In this configuration, the duty cycle operation proposed in [83]

is implemented instead of the distributed duty cycle operation.

[DD-RMST]: Directed Diffusion + RMST: This case consists of RMST

[70], directed diffusion [38] and a simple CSMA scheme. The RMST protocol is

implemented with hop-by-hop recovery and caching, and no link-layer ARQ is used at

the link layer as presented in [70]. DD-RMST is used in the comparative evaluations

for operation without duty cycle, i.e., δ = 1.

XLM: Our proposed cross layer module (XLM) is implemented according to the

protocol description in Section 4.3 and pseudocode in Fig. 27 with SNR threshold

ξTh = 10dB.

It is important to note that the existing protocols that we have implemented in the

layered protocol suites are usually proposed considering only their related layers with

reasonable assumptions about the other layers. As an example, in the geographical

routing protocols [67], each node is assumed to know the locations of their neighbors.

However, actual implementation and operation of such an information exchange pro-

cedure is important especially when comparing these solutions to the proposed XLM

solution. Since the receiver-based approach employed in the XLM does not require

such an explicit information exchange, this constitutes a major overhead for the lay-

ered protocol suites using such an approach. Moreover, since duty cycle is deployed
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Figure 31: (a) Average throughput, (b) average goodput, and (c) percentage of
dropped packets due to retransmission timeout vs. duty cycle for different values of
ξTh.

in our solution, each neighbor of a node may not always be active. Hence, in or-

der for each protocol to work together in the protocol suites, we have made some

implementation modifications.

Accordingly, in GEO, PRR, and PRR-SMAC, each node broadcasts a beacon to

indicate its position and the remaining time to sleep. This beacon is sent at the

beginning of each sleep frame when a node wakes up. Each neighbor that receives

this beacon determines that the specific node will be active for the duration specified

in the beacon. In the case of PRR and PRR-SMAC, this beacon also serves as a
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channel quality indicator. In order to optimize the network performance, in GEO

and PRR, the beacons are piggybacked if there is a packet in the queue. In PRR-

SMAC, a pairwise cross-layering is used and the routing beacons are sent with the

SYNC packets. Similarly, SYNC packets are piggybacked if there is a packet in the

queue.

We have indicated that DD-RMST is used only for operation without duty cycle,

i.e., δ = 1. This decision is due to the fact that neither directed diffusion nor RMST

considers duty cycle operation [38], [70]. Therefore, the DD-RMST protocol config-

uration is evaluated only for δ = 1 for fairness and completeness of the evaluations.

We next present the results for operation with duty cycle, by changing the duty

cycle δ from 0.1 to 1 in Section 4.4.2.2. Since DD-RMST is only considered for opera-

tion without duty cycle, the performance metrics corresponding to this configuration

are shown as a single point at δ = 1 in the figures.

4.4.2.2 Results

In Fig. 31 (a), the throughput comparison for XLM and the layered protocol suites

is presented. The throughput achieved by XLM is significantly higher than that of

the other five layered protocol suites (more than 80% improvement for δ = 0.3). This

shows the clear advantage of using a cross-layer approach. In the layered protocol

suites, the cross-layer information is not efficiently exploited for each functionality.

For example, in PRR and PRR-SMAC, route selection is only performed based on

location information and link quality, whereas the congestion level at a specific node

is not considered. Another important result emerges in the comparison between XLM

and PRR-SMAC. GEO and PRR use CC-MAC at the MAC layer. CC-MAC results

in smaller number of nodes sending information in an event area as a representative

of all the nodes in that area [80]. XLM also exploits this spatial correlation for

medium access. However, SMAC [83] does not exploit this property and all the
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nodes inside an event area sends information to the sink. This results in almost 3-

times increase in the number of source nodes. The higher throughput value of PRR-

SMAC compared to GEO and PRR can be explained with this fact. However, XLM

still outperforms PRR-SMAC in terms of total throughput although less number of

nodes send information, which shows that the network capacity is exploited in a more

efficient manner. This also results in higher temporal resolution at the sink since the

representative nodes send information at a higher rate.

Note that the total throughput achieved by the DD-RMST is significantly lower

than XLM, PRR, and GEO and comparable to Flooding. This is due to two main

reasons. The first reason is the additional traffic created for recovering lost packets.

This additional traffic both increases the contention in the wireless channel and de-

creases the capacity of the network. The second reason for throughput degradation

is the control packets of directed diffusion. Especially, the interest and exploratory

packets constitute a significant amount of traffic due to their broadcast nature. Con-

sequently, these two types of additional traffic significantly decrease the throughput

of DD-RMST.

The goodput of the communication suites are shown in Fig. 31 (b). Irrespective of

the duty cycle value, δ, XLM provides very high reliability. The cross-layer commu-

nication paradigm of the XLM that is adaptive to the network topology enables such

high performance even when the network operates at low duty cycle. Coupled with

the high throughput of XLM as shown in Fig. 31 (a), our cross-layer approach en-

ables highly efficient communication. Moreover, DD-RMST provides 100% reliability

while XLM results in a reliability of 96% for operation without duty cycle, i.e., δ = 1.

Note that RMST protocol uses hop-by-hop recovery with negative acknowledgments

to request missing packets. On the other hand, XLM aims to first prevent link losses

by constructing non-congested, high quality paths and then ensures high reliability

by hop-by-hop ARQ technique. This approach results in reliability comparable to
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Figure 32: (a) Average energy consumption per packet, (b) average hop count, and
(c) average latency vs. duty cycle for layered protocol suites and XLM.

RMST at a significantly lower cost as we will discuss next.

The decrease in reliability for the other layered protocol suites is mainly because

of the significant number of packet drops due to retransmission timeouts as shown in

Fig. 31 (c)5. This suggests that nodes cannot find their intended next hops due to

either low channel quality or because the nodes switch to sleep state before receiving

any packets. This is exacerbated especially in the case of low duty cycle. As a result,

the reliability of the network is hampered significantly.

5Since Flooding and DD-RMST does not deploy ARQ, they are not included in Fig. 31 (c).
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In Fig. 32 (a), the energy consumption per packet is shown. In Fig. 32 (a), the

values for GEO and PRR at δ = 0.1 are not shown since no packets are received by

the sink. It can be seen that XLM consumes significantly less energy per packet and

hence is highly energy efficient when compared to the other layered protocol suites.

This difference is mainly because of the periodic broadcast of beacon packets in GEO

and PRR, and SYNC packets in PRR-SMAC. Furthermore, the significant percentage

of retransmission timeouts as shown in Fig. 31 (c) indicate significant energy wastage

due to packets that cannot be transmitted to the sink. Since the network and MAC

layers operate independently, the nodes chosen by the routing layer cannot be reached

and significant energy consumption occurs.

An interesting result is the significantly low energy efficiency of DD-RMST. Al-

though this configuration provides 100% reliability as shown in Fig. 31 (b), the

layered structure of the routing, transport and MAC functionalities results in a high

penalty. As explained before, the routing layer, i.e., directed diffusion, incurs signifi-

cant amount of overhead in order to maintain end-to-end paths between sources and

the destination. On the contrary, XLM employs an adaptive routing technique that

provides an energy efficient path in terms of both link quality and energy consump-

tion distribution. Another important observation from Fig. 32 (a) is that the energy

consumption per packet for XLM has a minimum at δ = 0.2. This is consistent with

the mathematical analysis provided in Section 4.3.6. Hence, we observe that the duty

cycle value of δ = 0.2 provides the most energy efficient performance for the operation

of XLM.

On the other hand, the advantages of using a separate routing layer in the layered

protocol suites can be seen from Fig. 32 (b), where the average hop count is shown.

GEO, PRR, PRR-SMAC, and DD-RMST result in less number of hops for the packets

that reach the sink than XLM. This is due to the fact that the routing algorithms

in these layered protocol suites aim to find the smallest number of hops. While
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this result may be incorporated as a disadvantage when only routing layer is taken

into account, the overall performance of XLM reveals that, routing layer performance

alone does not provide efficient communication in WSN. In other words, while smaller

number of hops might seem optimal in terms of routing efficiency, other effects such

as link quality, contention level, congestion level, and overall energy consumption,

necessitate a cross-layer approach in route selection for overall efficiency.

Furthermore, as shown in Fig. 32 (c), XLM incurs an end-to-end latency compa-

rable to PRR. GEO results in smaller end-to-end delay since the routing is performed

based only on geographical location. On the other hand, PRR-SMAC results in higher

end-to-end latency due to the clustered scheduling of nodes. Fig. 32 (c) also clearly

shows the tradeoff of DD-RMST in achieving high reliability. This configuration re-

sults in significantly high latency values when compared to the other configurations.

The end-to-end latency for Flooding is significantly higher for the limiting cases,

i.e., δ = 1 and δ ≤ 0.2. When all the nodes are active, flooding causes significant

amount of contention and congestion leading to higher buffer occupancy time for

each packet at each hop leading to higher latency. On the other hand, when the duty

cycle is low, each time a node receives a packet, it has to go through one duty cycle

before it can re-broadcast the packet. This, in turn, increases the end-to-end latency.

Similarly, the end-to-end latency of XLM increases for low δ. The reason for this

increase is evident from Fig. 31 (c). Note that for δ = 0.1, 14% of the transmitted

packets are dropped due to retransmission timeout. This is due to the fact that,

sender nodes cannot find any neighbors that satisfy the constraints in (41) discussed

in Section 4.3. As a result, the end-to-end latency increases due to retransmissions.

4.4.2.3 Implementation Complexity

In addition to the performance of our XLM module in terms of network metrics, the

complexity and implementation issues of cross-layer design are also important. In
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this section, we provide a qualitative comparison of cross-layer design and layered

protocol architectures implemented in our simulation environment.

One of the major advantages of cross-layer design for communication protocols

is the implementation efficiency. In a traditional layered protocol architecture, each

layer has clear boundaries. This layered structure leads to computation delays due to

the sequential handling of a packet. For example, in TinyOS [2], each layer has to wait

for the lower layers to process the packet since a single buffer is used for a packet for

all layers. XLM, however, melts the functionalities of traditional transport, routing,

and MAC layers into a unified cross-layer communication module by considering

physical layer and channel effects as shown in Fig. 27. Hence, these functionalities

are performed as a whole and overall protocol efficiency can be improved using this

module.

In addition to the simulation performance, the implementation issues are also

important for a complete comparison. As explained in Section 4.3, XLM does not

require any tables or extra buffer space for routing and transport layer functionalities.

The routing is performed based on receiver initiatives which eliminates the need for a

routing table at each node. As shown in Fig. 27, the implementation of XLM is both

simple and compact. On the other hand, in PRR-SMAC, SMAC protocol maintains

schedule table for each of one-hop neighbors to provide synchronized sleeping cycles.

Similarly, in DD-RMST, at the routing layer, each node has to implement reinforce-

ment table for each source indicating the next hop in the reinforced path. In case

a node is a source node, it also has to keep track of multiple neighbors which has a

path to the sink for exploratory messages. At the transport layer, RMST [70] requires

a separate queue to cache data locally to support loss recovery at all hops. These

requirements, due to either layered operation of the protocol stack or the internal pro-

tocol structure at each layer, places burden in memory space for communication in

112



sensor nodes. This extra space required by the communication stack limits the avail-

able space to develop new applications for sensor networks. On the other hand, the

careful use of code space and cross-layer implementation of communication function-

alities in XLM provides a much efficient operation in WSN. When coupled with the

noticeably better communication performance as discussed in Section 4.4.2.2, XLM

becomes a successful candidate for communication protocols in WSN.
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CHAPTER V

CROSS-LAYER ANALYSIS OF ERROR CONTROL IN

WIRELESS SENSOR NETWORKS

The cross layer module (XLM) framework, which is explained in Chapter 4, realizes

energy efficient communication through cross-layer design of transport, routing and

MAC functionalities. Another important factor in wireless communications is the

error control technique for reliable communication. In this chapter, we develop a cross-

layer analysis of error control schemes based on the cross-layer framework developed in

Chapter 4. More specifically, the effects of multi-hop routing and the broadcast nature

of the wireless communication are investigated to derive the equations governing

the energy consumption, latency and packet error rate (PER) performance of error

control schemes. This analysis enables a comprehensive comparison of forward error

correction (FEC) and automatic repeat request (ARQ) schemes in WSN. The cross-

layer analysis framework was first introduced in [79]. The rest of this chapter is

organized as follows: The motivation for this chapter is provided in Section 5.1. In

Section 5.2, an overview of previous analysis on error control schemes in WSN is

provided. Our approach and the system model for cross-layer analysis are explained

in Section 5.4. In Section 5.5, the cross-layer analysis of ARQ, FEC, and hybrid ARQ

schemes is presented. The numerical evaluations are explained in Section 5.6 along

with their implications on the tradeoffs of error control schemes.

5.1 Motivation

Wireless Sensor Networks (WSN) are characterized by collaborative information trans-

mission from multiple sensor nodes observing a physical phenomenon [7]. Severe
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energy constraints of battery-powered sensor nodes necessitate energy-efficient com-

munication protocols in order to fulfill application objectives. Moreover, the low

power communication constraints of sensor nodes exacerbate the effects of the wire-

less channel leading to error-prone links. In WSN, where correlation between sensors

can be exploited in terms of aggregation, collaborative source coding, or correlation-

based protocols, energy efficient error control is of extreme importance. Since these

techniques aim to reduce the redundancy in the traffic, it is essential for each packet

to be transmitted reliably. Moreover, the strict energy consumption requirements, the

multi-hop structure of the WSN, and the broadcast nature of the wireless channel

necessitate a cross-layer investigation of the effects of error control schemes.

In this chapter, a cross-layer analysis of error control schemes is presented. More

specifically, the effects of multi-hop routing and the broadcast nature of the wireless

communication are investigated to derive the equations governing the energy con-

sumption, latency and packet error rate (PER) performance of error control schemes.

As a result, a cross layer analysis considering routing, medium access and physical

layers is devised. This analysis enables a comprehensive comparison of forward error

correction (FEC), automatic repeat request (ARQ), as well as hybrid ARQ schemes

in WSN. So far, the performance of FEC codes have been investigated in a point-to-

point fashion [46, 62, 66]. To the best of our knowledge, this is the first work that

considers both the broadcast wireless channel and the multi-hop structure of WSN

with realistic channel models and a 2 dimensional topology. Moreover, a practical

comparison of these schemes is provided by considering two major hardware archi-

tectures for WSN, i.e., Mica2 [22] and MicaZ [23] nodes. It should be emphasized

that in this work, we do not propose a new FEC code for WSN. Rather, we devise a

framework to assess the performance of FEC, ARQ, and hybrid ARQ schemes. Fur-

thermore, our goal is to indicate the situations where one of the error control schemes

should be favored.
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5.2 Related Work

Although there have been several studies on error control techniques in wireless net-

works and especially in cellular networks, none of them are directly applicable to

the WSN. Especially the limited energy consumption requirements of WSN and the

low complexity in the sensor hardware necessitate energy efficient error control and

prevent high complexity codes to be deployed. Recently, there have been some work

that considers the energy consumption analysis of error control techniques in WSN.

In [68], the energy consumption profile of convolutional codes has been presented

based on a specific sensor node architecture, i.e., µAMPS node. Although FEC codes

have been shown to provide flexible error control capabilities over high variety of

ranges between nodes, such an advantage is limited in scenarios where limited error

probabilities are acceptable. More specifically, for convolutional codes, no coding

provides better energy efficiency for probability of bit error, Pb > 10−5 [68]. This is

due to the fact that at high Pb, the transceiver energy dominates the overall energy

consumption. Since the packet length is increased due to coding, overall energy

consumption increases. Similarly, in [62], the energy efficiency of convolutional codes

is compared to the energy efficiency of BCH codes in a framework to optimize the

packet size in WSN. The results of this work reveal that BCH codes outperform the

most energy efficient convolutional code by almost %15. This is due to the high energy

consumption of Viterbi decoding that is required for decoding of convolutional codes.

Consequently, we do not consider convolutional codes in our work due to their energy

inefficiency.

In [66], an analysis of different modulation schemes and two BCH codes is pre-

sented based on their energy consumption efficiency. More specifically, the effects

of signal to noise ratio (SNR), 2-ary and M-ary modulation schemes, and two BCH

codes on the energy consumption of a sensor node are investigated. However, in this

analysis, the energy consumption for transmitting redundant bits is considered as
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the only overhead of error control coding without considering the decoding energy.

Furthermore, a single-hop WSN is considered, which decouples multi-hop routing and

the effects of error control codes.

In [40], the effect of error control coding on the energy consumption of multihop

WSN is studied. However, this analysis considers a linear topology, where the dis-

tances between each hop are fixed and equal. Moreover, for each link, the probability

of error is assumed to be the same. Consequently, the fading effects of the wireless

channel and the random route construction cannot be captured with the presented

framework in [40]. Furthermore, the end-to-end latency has never been considered in

the context of FEC codes in WSN before.

5.3 Error Control in Wireless Sensor Networks

In WSN, where correlation between sensors can be exploited in terms of aggregation,

collaborative source coding, or correlation-based protocols, error control is of extreme

importance. Since the abovementioned techniques aim to reduce the redundancy in

the traffic by filtering correlated data, it is essential for each packet to be transmitted

reliably. In general, the error control mechanisms in communication networks can

be categorized into three main approaches; automatic repeat request (ARQ), forward

error correction (FEC), and hybrid ARQ.

• Automatic Repeat Request (ARQ): ARQ-based error control mainly depends on

the retransmission for the recovery of the lost data packets/frames. ARQ pro-

tocols enable transmissions of failed packets by sending explicit acknowledges

upon reception and detection of missing acknowledgements. It is clear that

ARQ error control mechanisms incur significant additional retransmission cost

and overhead in case of errors. On the other hand, in the case of good channel

quality, overhead of the ARQ protocols is low since a packet is sent with min-

imum overhead compared to FEC schemes. The efficiency of ARQ in sensor
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Figure 33: 2D average packet reception rate graphs for (a) ARQ (FSK), (b) FEC
(FSK), (c) ARQ (DSSS/OQPSK), (d) FEC (DSSS/OQPSK).

network applications is limited due to the scarcity of the energy and processing

resources of the sensor nodes.

• Forward Error Correction (FEC): FEC adds redundancy to the transmitted

packet such that it can be received at the receiver error-free even if the limited

number of bits are received in error. There exist various FEC codes that are

optimized for specific packet sizes, channel condition, and reliability such as lin-

ear block codes (BCH and Reed-Solomon (RS) codes) as well as convolutional
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codes. On the other hand, for the design of efficient FEC schemes, it is impor-

tant to have good knowledge of the channel characteristics and implementation

techniques.

• Hybrid ARQ (HARQ): Hybrid ARQ schemes aim to exploit the advantages of

both FEC and ARQ schemes by incrementally increasing the error resiliency of

a packet through retransmissions. Mainly, two types of HARQ schemes exist:

Type I and Type II. With HARQ-I techniques, first an uncoded packet or a

packet coded with a lower error correcting capability is sent. If this packet is

received in errors, the receiver sends a negative acknowledgement (NACK) to

the sender, which re-sends the packet coded with a more powerful FEC code.

The difference in Type II is that for retransmissions, only the redundant bits

are sent. While Type II decreases the bandwidth usage of the protocol, Type I

does not require the previously sent packets be stored.

Forward error control (FEC) coding and hybrid ARQ schemes improve the error

resiliency compared to ARQ schemes by sending redundant bits through the wireless

channel. Therefore, lower signal to noise ratio (SNR) values can be supported to

achieve the same error rate as an uncoded transmission. This advantage can be

exploited in two ways in wireless networks:

• Transmit Power Control: The improved error resiliency provided through FEC

codes has generally been exploited by reducing the transmit power in cellular

networks. This technique, which we refer to as transmit power control, improves

the capacity of cellular networks by reducing the interference to other users.

• Hop Length Extension: In multi-hop networks, the advantage of FEC coding

can also be exploited by improving the transmission range of a node. This is

illustrated in Figs. 33, where the packet error rates of ARQ and FEC codes for

a packet of 38 bytes around a transmitter node is shown. In Fig. 33(a) and
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Fig. 33(b), the packet error rates are shown for frequency shift keying (FSK)

modulation, which is used in Mica2 nodes, while Fig. 33(c) and Fig. 33(d) show

direct sequence spread spectrum offset quadrature phase shift keying (DSSS/O-

QPSK), which is used in MicaZ nodes. It is clear that, FEC codes increase the

transmission range of a node, which can be exploited to construct longer hops in

a multi-hop network. We refer to this technique as hop length extension, which

can be achieved through channel-aware cross-layer routing protocols.

In the following, we investigate the tradeoffs between ARQ, FEC, and hybrid ARQ

schemes in terms of energy consumption, latency and end-to-end PER considering

the transmit power control and hop length extension techniques to exploit the error

resiliency of FEC techniques.

5.4 Analysis Approach and System Model

In our analysis, we consider a network composed of sensor nodes that are distributed

according to a 2-D Poisson distribution with density ρ. Duty cycle operation is

deployed such that each node is active for δ fraction of the time and is in sleep mode

otherwise [9]. Moreover, we consider a monitoring application such that the reporting

rates of sensors are low but the messages should be transmitted reliably.

In order to realize hop length extension, we consider a channel-aware routing

algorithm. In this algorithm, the next hop is determined according to the received

signal to noise ratio (SNR) of a packet sent from a specific node i at a distance D from

the sink. Among the neighbors of i, the neighbor, j, that is closest to the sink and

with SNR value, ψj > ψTh is selected as the next hop, where ψTh is the received SNR

threshold. Note that this approach can be implemented using a cross-layer approach

as in [9] or through signaling [67]. The medium access is performed through RTS-

CTS-DATA exchange in addition to ACK and retransmissions for ARQ and NACK

and retransmissions for hybrid ARQ.
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Figure 34: Reference model for the derivations.

Accordingly, first, the expected hop distance is derived as a function of the network

parameters. Then, the end-to-end energy consumption, latency, and packet error

rate (PER) of a single flow is derived. We use the model shown in Fig. 34 and

the log-normal shadow fading channel model [88] for our derivations. Note that in

such a model, the transmission range of a node is essentially infinite due to the

shadow fading component. In our analysis, we approximate the transmission range

of a node to Rinf , which is the distance at which the probability that a packet can

be successfully received is negligible. Moreover, the hop distance at each hop is

considered independent since duty cycle operation is performed. As a result, the state

of the network will change at each hop since different nodes will be awake at different

time instants. In [76], duty cycle operation is not considered and hence, a different

approach has been taken. Note that similar energy consumption analysis has been

performed in a node-centric manner for routing algorithms in [69], [87]. However, the

effect of neighbor nodes and the effect of routing decisions has not been investigated in

this context yet. In our analysis, we investigate the energy consumption to transmit

a single packet to the sink with the effect of neighbor nodes and wireless channel

effects, which provides a clearer insight into the energy consumption.

Our cross-layer analysis framework enables comprehensive comparison of ARQ,
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FEC, and hybrid ARQ schemes. To illustrate specific results, we consider block codes

because of their energy efficiency and lower complexity compared to convolutional

codes [62, 68]. We consider a block code, which is represented by (n, k, t), where n

is the block length, k is the payload length, and t is the error correcting capability

in bits. In our analysis, we use (128, 50, 13), (128, 78, 7), and (128, 106, 3) extended

BCH codes, which enable the evaluation of the effect of error detection capability, t, by

fixing the block length, n. Furthermore, we use the (7, 3, 2), (15, 9, 3), and (31, 19, 6)

RS codes. Other FEC schemes can also be used in our framework. For the hybrid

ARQ schemes, we consider three different configurations. For type-I hybrid ARQ

(HARQ-I), we consider the case where first an uncoded packet is sent followed by a

packet encoded by BCH codes. Furthermore, a combination of two BCH codes is also

considered for the HARQ-I. The type-II hybrid ARQ schemes necessitate incremental

error control coding since only the difference is sent through the retransmissions.

This is generally accomplished through punctured codes [82]. Since this procedure is

energy consuming, we consider the case where the packet is encoded by a BCH code

and then the payload is sent first. The receiver uses only the CRC bits in the payload

for decoding. In case of errors, the receiver sends a NACK packet and the transmitter

sends the redundant bits for BCH decoding. We consider only one retransmission is

performed for the hybrid ARQ schemes. Throughout the chapter, the hybrid ARQ

schemes are indicated by a tuple (t1, t2), where the first parameter, t1 indicates the

error correction capability in the first packet and t2 is that in the second packet. As

an example, HARQ-II (0, 3) refers to type-II hybrid ARQ, where first an uncoded

packet is sent, i.e., t1 = 0, and in case retransmission is requested, the redundant bits

of the BCH (128,106,3) encoded packet is sent.
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5.5 Cross-Layer Analysis

In this section, we first derive the expected hop distance by considering the effects of

broadcast channel and the routing algorithm discussed in Section 5.4. The results of

this analysis are then used to analyze the end-to-end energy consumption, latency,

and packet error rate (PER) of FEC, ARQ, and hybrid ARQ schemes. The total

energy consumed as a result of a single flow from a source node at distance D from

the sink can be found as

Eflow(D) = E[Eh] E[nh(D)] , (55)

where E[Eh] is the expected energy consumption per hop and E[nh(D)] is the expected

hop count from a source at distance D to the sink. Similarly, the end-to-end latency

of a flow is given by

Tflow(D) = E[Th] E[nh(D)] , (56)

where E[Th] is the expected delay per hop.

A good approximation for the expected hop count is given in [87] as

E[nh(D)] ' D −Rinf

E[dh]
+ 1 , (57)

where E[dh] is the expected hop distance. In Sections 5.5.1, 5.5.2, and 5.5.3, we derive

the expressions for the expected hop length, E[dh], the expected energy consumption

per hop, E[Eh], and the expected latency per hop, E[Th], respectively.

5.5.1 The Expected Hop Distance

Consider a node j at coordinates (γ, α) with respect to the sink as shown in Fig. 34.

The distance from node j to node i is, hence, given by

d(i,j) = d(D, γ, α) =
√

γ2 + D2 − 2γD cos α . (58)

The expected hop distance, E[dh], can be found as

E[dh] =

∫ D

γmin

∫ αγ

−αγ

d(i,j) dP{Ni = j} , (59)

123



where γmin = D − Rinf , d(i,j) is the distance between nodes i and j as given by

(58), dP{Ni = j} is the probability that node j is selected as the next hop, and

αγ = acos
[
(γ2 + D2 −R2

inf )/(2γD)
]
.

In order for node j to be selected as the next hop, first, the received SNR, ψk,

at each node, k, that is closer to the sink than node j should satisfy ψk < ψTh .

Moreover, the received SNR of node j should satisfy, ψj > ψTh. The probability that

node j is selected as the next hop is, hence, given by

dP{Ni = j} = P{NA(dγ) = 1}P{ψj > ψTh}P{d(j,s) ≥ γ} , (60)

where NA(dγ) is the number of nodes in the area, dA, at distance γ from the sink,

P{ψj > ψTh} is the probability that the received SNR of a node j is above ψTh, and

P{d(j,s) ≥ γ} is the probability that the next hop is at least at a distance γ from the

sink, s. P{NA(dγ) = 1} can be approximated by

P{NA(dγ) = 1} ' 1− e−ρδγdγdα as dγ → 0

' ρδγdγdα , (61)

where we use the approximation e−x ' 1 − x for the last step since (ρδγdγdα) → 0

as dγ → 0, dα → 0.

For the calculation of P{ψj > ψTh} and P{d(j,s) ≥ γ}, we first introduce the log-

normal channel model [88], where the received power at a receiver at distance d from

a transmitter is given by

Pr(d) = Pt − PL(d0)− 10ηlog10

( d

d0

)
+ Xσ , (62)

where Pt is the transmit power in dBm, PL(d0) is the path loss at a reference distance

d0 in dB, η is the path loss exponent, and Xσ is the shadow fading component, with

Xσ ∼ N (0, σ). Moreover, the signal to noise ratio (SNR) at the receiver is given by

ψ(d) = Pr(d)− Pn in dB, where Pn is the noise power in dBm.
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Considering the shadow fading component, Xσ, the probability that ψj, is above

some threshold, ψTh, is

P{ψj > ψTh} = P{Xσ > β(d(i,j), ψTh)} ,

= Q
(β(d(i,j), ψTh)

σ

)
, (63)

where

β(d, ψTh) = ψTh + Pn − Pt + PL(d0) + 10ηlog10

(
d

d0

)
(64)

and Q(x) = 1/
√

2π(
∫∞

x
e−(t2/2))dt.

According to the channel model above, by denoting the area that consists of nodes

that are closer to the sink than node j as A(γ), P{d(j,s) ≥ γ} can be found as

P{d(j,s) ≥ γ} =
∞∑
i=0

P{NA(γ) = i}pi
k ,

=
∞∑
i=0

e−MM i

i!
pi

k

= e−M(1−pk) , (65)

where NA(γ) is the number of nodes in A(γ), M = ρδA(γ), and A(γ) is the area of

intersection of two circles with centers separated by D and with radii Rinf and γ,

respectively. Moreover, pk = P{ψk ≤ ψTh, k ∈ A(γ)} is the probability that for a

node k in A(γ) the received SNR ψk ≤ ψTh, which is given by

pk =

∫ γ

γmin

∫ αγ

−αγ

[
1−Q

(
β

σ

)]
1

A(γ)
dαdγ . (66)

Using (60), (61), (63), (65), and (66) in (59), the expected hop distance can be

calculated as follows:

E[dh] = ρδ

∫ D

γmin

∫ αγ

−αγ

γd(i,j)Q

(
β

σ

)
e−M(1−pk)dαdγ , (67)

which will be used for energy consumption and latency analysis of FEC, ARQ, and

hybrid ARQ schemes according to (55), (56), and (57).
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5.5.2 Energy Consumption Analysis

The expected energy consumption and latency per hop are also calculated by consid-

ering a node j as shown in Fig. 34. We first derive the expected energy consumption

per hop and present the expected latency per hop accordingly. Denoting the ex-

pected energy consumption of node j by E[Ej] and using (67), the expected energy

consumption per hop can be calculated as

E[Eh] = ρδ

∫ D

γmin

∫ αγ

−αγ

γE[Ej]Q

(
β

σ

)
e−M(1−pk)dαdγ . (68)

Since a node can become a next hop if its received SNR value is above a certain

threshold, the expected energy consumption, E[Ej], can be found as

E[Ej] =

∫ ∞

ψTh

Ecomm(ψ, d(i,j))fΨ(ψ, d(i,j))dψ , (69)

where Ecomm(ψ, d(i,j)) is the energy consumption for communication between nodes

i and j given that they are at a distance d(i,j) and the SNR value at node j is ψ.

Moreover, fΨ(·) is the pdf of the SNR. Since, P (Ψ ≤ ψ) = P (Xσ ≤ β(ψ, d(i,j))), fΨ(·)
is found as:

fΨ(ψ, d(i,j)) = fXσ

(
β(ψ, d(i,j))

)
=

1

σ
√

2π
e
−β2

2σ2 . (70)

The first component, Ecomm(ψ, d(i,j)), in (69) is the energy consumption to trans-

mit a packet between two nodes at a distance d(i,j) with received SNR ψ. Ecomm(ψ, d(i,j))

has three components as given by1

Ecomm = ETX + ERX + Eneigh , (71)

where ETX is the energy consumed by the node transmitting the packet (node i),

ERX is the energy consumed by the node receiving the packet (node j), and Eneigh is

the energy consumed by the neighbor nodes.

1We drop the indices ψ and d(i,j) for ease of illustration.
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In order to successfully transmit the packet, a node needs to complete the four-way

RTS-CTS-DATA-ACK handshake for ARQ, three-way RTS-CTS-DATA handshake

for FEC codes, and RTS-CTS-DATA-NACK exchange for hybrid ARQ. We denote

the probability that a data and a control packet is successfully received at distance

d(i,j) by pD
s and pC

s , respectively2. Due to the low traffic load, we assume that collisions

are avoided through control packets and the probability of RTS collisions is negligible.

Accordingly, ETX is given as follows:

EARQ
TX =

1

(pC
s )3pD

s

{
Esense +

(
pC

s

)2 [
ER

tx + EC
rx

]
+

(
1− (

pC
s

)2
)

EC
t/o

+
(
pC

s

)3
pD

s

(
ED

tx + EA
rx

)
+

(
pC

s

)3 (
1− pC

s pD
s

)
EA

t/o

}
, (72)

EFEC
TX = Esense + ER

tx + EC
rx + EC

dec + ED
tx , (73)

EHARQ
TX = Esense + ER

tx + EC
rx + EC

dec + ED1
tx

+(pC
s )2

(
1− pD

s

) (
EN

rx + EC
dec + ED2

tx

)
, (74)

for ARQ, FEC and hybrid ARQ, respectively, where Esense is the energy consumption

for sensing the region, Ex
tx, Ex

rx, and Ex
dec are the packet transmission, receiving, and

decoding energies for packets, where the superscripts R, C, D, A, and N refer to

RTS, CTS, DATA, ACK, and NACK packets, respectively, and Et/o is the energy

consumed before timeout. The subscripts D1 and D2 in (74) refer to the transmitted

packets for the first and second transmission in hybrid ARQ. In our calculations, we

assume that RTS and CTS packets are also encoded in order to fully exploit the

advantages of FEC codes. Using the same approach, the energy consumption of the

2We consider the length of RTS, CTS, ACK, and NACK packets the same.
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receiver node is given as follows:

EARQ
RX =

1

(pC
s )3pD

s

{
ER

rx + EC
tx + ED

rx + EA
tx

}
, (75)

EFEC
RX = ER

rx + ER
dec + EC

tx + ED
rx + ED

dec , (76)

EHARQ
RX = ER

rx + ER
dec + EC

tx + ED1
rx + ED1

dec

+(pC
s )2

(
1− pD

s

) (
EN

tx + ED2
rx + ED2

dec

)
. (77)

The last term in (71), Eneigh, is the energy consumed by the neighbors of the

transmitter and the receiver nodes, which is given as:

EARQ
neigh = EHARQ

neigh =
1

(pC
s )3pD

s

{(
ρδπR2

inf − 2
)
ER

rx

+
[
ρδ

(
πR2

inf − A(D, Rinf , D)
)− 2

]
EC

rx

}
, (78)

EFEC
neigh =

(
ρδπR2

inf − 2
)
ER

rx +
[
ρδ

(
πR2

inf − A(D, Rinf , D)
)− 2

]
EC

rx ,

(79)

for ARQ, hybrid ARQ, and FEC codes3. Using these derivations in (55), the end-to-

end energy consumption can be calculated.

5.5.3 Latency Analysis

The expression for end-to-end latency of a flow is found using the similar approach

above. The delay per hop is given by

E[Th] = ρδ

∫ D

γmin

∫ αγ

−αγ

γE[Tj]Q

(
β

σ

)
e−M(1−pk)dαdγ , (80)

where

E[Tj] =

∫ ∞

ψTh

Tcomm(ψ, d(i,j))fΨ(ψ, d(i,j))dψ , (81)

3We assume the header information is sufficient for backoff.
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and Tcomm is given as

TARQ
comm =

1

(pC
s )3pD

s

{
Tsense + 2

(
pC

s

)2
TCtrl +

(
1− (

pC
s

)2
)

TC
t/o

+
(
pC

s

)3
pD

s

(
TD + TCtrl

)
+

(
pC

s

)3 (
1− pC

s pD
s

)
TA

t/o

}
, (82)

T FEC
comm = Tsense + 2TCtrl + 2TC

dec + TD + TD
dec , (83)

THARQ
comm = Tsense + 2TCtrl + 2TC

dec + TD1 + TD1
dec

+(pC
s )2

(
1− pD

s

) (
TCtrl + TC

dec + TD2 + TD2
dec

)
. (84)

for ARQ, FEC, and hybrid ARQ, respectively, where Tsense is the time spent for

sensing, TCtrl and TD are the control and data packet transmission time, respectively,

Tt/o is the timeout value, and TCtrl
dec and TD

dec are the decoding latency for control and

data packets, respectively.

5.5.4 Decoding Latency and Energy

The major overhead of FEC codes is the energy consumption for encoding and de-

coding packets and the delay associated with it. It is well known that the encoding

energy for block codes is negligible [46]. Hence, we only consider the decoding energy

and latency in our calculations in Sections 5.5.2 and 5.5.3. The Mica2 and MicaZ

nodes that we consider for our analysis do not provide hardware support for FEC

coding [22], [23]. Hence, we assume that FEC coding is implemented in software.

According to [46], the latency of decoding for a block code (n, k, t) is given as

TBL
dec =

(
2nt + 2t2

)
(Tadd + Tmult) , (85)

where Tadd and Tmult are the energy consumption for addition and multiplication,

respectively, of field elements in GF(2m), m = blog2n + 1c [62]. Both Mica2 and

MicaZ nodes are implemented with 8-bit microcontrollers [21], which can perform

addition and multiplication of 8 bits in 1 and 2 cycles, respectively. As a result

Tadd + Tmult = 3
⌈m

8

⌉
tcycle , (86)
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where tcycle is one cycle duration, which is 250 ns [21]. Consequently, the decoding

energy consumption is EBL
dec = IprocV TBL

dec , where Iproc is the current for processor, V

is the supply voltage, and TBL
dec is given in (85).

5.5.5 Bit and Packet Error Rate

In this section, we derive the expressions for bit and packet error rate for Mica2 and

MicaZ nodes. Since the modulation schemes used in these nodes are significantly

different, it is necessary to investigate the effects of FEC and hybrid ARQ on these

nodes separately. Mica2 nodes are implemented with non-coherent FSK modulation

scheme. The bit error rate of this scheme is given by [46]

pFSK
b =

1

2
e−

Eb/No
2 , Eb/No = ψ

BN

R
, (87)

where ψ is the received SNR, BN is the noise bandwidth, and R is the data rate.

The modulation scheme used in MicaZ nodes is offset quadrature phase shift keying

(O-QPSK) with direct sequence spread spectrum (DSSS). The bit error rate of this

scheme is given by [43]

pOQPSK
b = Q(

√
(Eb/No)DS) , (88)

where

(Eb/No)DS =
2N × Eb/No

N + 4Eb/No(K − 1)/3
,

where N is the number of chips per bit, and K is the number of simultaneously

transmitting users.

Based on the bit error rate pb, the PER for the error control schemes can be

calculated as follows. For ARQ, the CRC-16 error detection mechanism is deployed

in both Mica nodes. Assuming all possible errors in a packet can be detected, the

PER of a single transmission of a packet with payload l bits is given by

PERCRC(l) = 1− (1− pb)
l . (89)
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For the BCH codes, assuming perfect interleaving at the transceiver, the block

error rate (BLER) is given by

BLER(n, k, t) =
n∑

i=t+1

(
n

i

)
pi

b(1− pb)
n−i . (90)

The block error rate for RS codes are found through simulations. More specifically,

Berlekamp-Massey algorithm is implemented and simulated to find the relationship

between block error rate and bit error rate.

Since a packet can be larger than the block length n, especially where small block

lengths are used, the PER for FEC is given by

PERFEC(l, n, k, t) = 1− (1−BLER(n, k, t))d
l
k
e , (91)

where d l
k
e is the number of blocks required to send l bits and d·e is the ceiling function.

Using (89), (90), and (91), the PER for the hybrid ARQ schemes are also found.

5.6 Numerical Results

In this section, we investigate the effects of FEC and hybrid ARQ schemes in terms of

PER, energy consumption and end-to-end latency in a multi-hop network via numer-

ical evaluations in MATLAB. The cases where FEC and hybrid ARQ can be more

favorable than ARQ are discussed. Moreover, an energy and latency-based taxonomy

is devised to qualitatively compare FEC schemes with ARQ. For this comparison,

two sensor node architectures are considered, i.e., Mica2 [22] and MicaZ [23]. We

consider a multi-hop network, where a random access scheme and a channel-aware

routing protocol is deployed as discussed in Section 5.4. Unless otherwise noted, the

parameters in Table 2 are used for the numerical results. For Mica2 nodes, the ex-

perimental values in [73] are used while for MicaZ, the values on the datasheet are

used [23].

The expected hop distance dhop, which is found in (59), is shown in Fig. 35 (a) as a

function of the received SNR threshold, ψTh, for different transmit power values, Pt. It
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Table 2: Parameters
D 300 m lC 8 bytes
Pt 0, -5, -15 dBm lD 38 bytes
PLd0 55 dB tcycle 250 ns
Pn -105 dBm Iproc 8 mA
η 3 V 3 V
σ 3.8

Mica2 MicaZ
erx 21 mJ 59.1 mJ
etx (Pt=0) 24 mJ 52.2 mJ
etx (Pt=-5) 21.3 mJ 42 mJ
etx (Pt=-15) 16.2 mJ 29.7 mJ
tbit = 1/R 62.4 µs 4 µs
N N/A 16 chips
K N/A 2

can be observed that for small values of the received SNR threshold, ψTh, the average

hop distance increases. Since lower ψTh allows nodes with lower channel quality to

be chosen as the next hop, further nodes may become the next hop. Therefore, the

number of hops from a node to a sink decreases for smaller ψTh values. Moreover,

when the transmit power of a node is decreased, the expected hop distance decreases

as expected.

In the following, we present the effects of two techniques to exploit FEC codes in

WSN, i.e., hop length extension and transmit power control. First, two FEC schemes,

BCH and RS codes, are compared with the ARQ scheme. Then, the effects of end-

to-end distance and the end-to-end target PER on the choice of error control scheme

are also discussed. Furthermore, the results for hybrid ARQ are presented.

5.6.1 Hop Length Extension

In Fig. 35 (b), the end-to-end energy consumption per useful bit is shown as a func-

tion of the SNR threshold, ψTh. The energy consumption is shown for ARQ with 7

retransmissions, three BCH schemes, and three RS schemes as discussed in Section

5.4. As shown in Fig. 35 (b), the energy consumption of a flow decreases for smaller
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Figure 35: (a) Avg. hop distance and (b) avg. energy consumption of a flow vs. ψTh

(DSSS+OQPSK).

ψTh value. This is mainly because of the increase in expected hop distance as shown

in Fig. 35 (a). However, the energy consumption for ARQ significantly increases as

ψTh is decreased below a specific value, e.g., 7 dB. A lower ψTh results in nodes with

lower channel quality to be selected as the next hop. As a result, retransmissions oc-

cur, which increase the energy consumption per hop. Although the expected number

of hops decreases, the increase in energy consumption per hop dominates the total

energy consumption for ARQ. Note that for ARQ, the energy consumption curve

reaches a peak point and decreases as ψTh is decreased. This point corresponds to

the case that the maximum number of retransmissions is not sufficient for reliable

communication.

When the FEC codes are considered, the energy consumption is proportional to

the error correcting capability, t, of the code. Since the code rate is decreased for

higher t, the energy consumption per useful bit increases. When ARQ and FEC

codes are compared, for high ψTh values, ARQ slightly outperforms the FEC codes.

However, BCH (128,106,3), BCH (128,78,7), and RS (15,9,3) codes are more energy

efficient for higher ψTh. Although this figure clearly shows the energy consumption

of the two schemes as a function of ψTh, the operating points of ψTh for ARQ and
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Figure 36: (a) End-to-end PER vs. received SNR and (b) avg. end-to-end latency
vs. ψTh (DSSS+OQPSK).

FEC has to be determined. Hence, next, we investigate the end-to-end packet error

rate (PER) performance.

The PER for CRC and FEC codes are given in (89) and (91), respectively. Since

these equations show the PER for a single hop, here we extend these equations for

the multi-hop case. Note that WSN applications are interested in the achievable end-

to-end PER bound rather than the single hop PER. Hence, the relation between ψTh

and the end-to-end PER bound can be used to determine the optimal point for ψTh.

Denoting the PER of a hop i by PERi, there exists a π such that

PERi ≤ π, for ψi ≥ ψTh ,

where ψi is the received SNR of the hop and π = f(ψTh), which can be calculated

using (87) - (91) depending on the modulation scheme, the error control scheme, the

channel characteristics, and the packet length. Since the end-to-end PER is

PERe2e = 1− Πnh
i=1(1− PERi) ,

where nh is the number of hops, PERe2e is bounded by

PERe2e ≤ 1− (1− π)nh , for ψi ≥ ψTh, ∀i . (92)
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Now assume that the end-to-end PER needs to be bounded by a certain threshold,

PER∗
e2e, according to the application requirements. Accordingly, the route selection

needs to be performed such that

ψTh = f−1
(
1− [1− PER∗

e2e]
1/nh

)
. (93)

The relationship between the end-to-end PER, PERe2e, and ψTh is shown in

Fig. 36 (a) for ARQ, BCH, and RS codes for MicaZ nodes. Note that for RS codes,

the results of the simulations are used whereas for ARQ and BCH, (89) and (91) are

used, respectively. According to Fig. 36 (a), the operating point for ψTh corresponding

to a target end to end PER can be found. As an example, if the target PER of an

application is 10−2, the minimum value for ψTh corresponds to ∼ 7 dB for ARQ, ∼ 3

dB for BCH(128,78,7), and 6.8 dB for RS(15,9,3). As a result, it can be observed

from Fig. 35 (b) that BCH (128,78,7) is slightly more energy efficient than ARQ. On

the other hand, the RS (15,9,3) code results in higher energy consumption compared

to the ARQ scheme. It is clear that more energy is consumed per hop for FEC

codes due to both transmission of redundant bits and decoding. However, since the

effective error rate of the channel is decreased with FEC codes, lower SNR values can

be supported. By deploying a routing protocol that exploits this property, longer hop

distances can be achieved leading to lower end-to-end energy consumption. However,

note that the energy consumption of the BCH (128,50,13) is still above the minimum

value achieved by ARQ as shown in Fig. 35 (b), which suggests that an optimal value

for t should be chosen.

Exploiting FEC schemes with channel-aware routing not only improves energy

consumption performance but the end-to-end latency can also be decreased signifi-

cantly as shown in Fig. 36 (b). It is clear that all the six FEC schemes outperform

ARQ since their optimal ψTh value is lower than ARQ. This is due to both longer hops

for FEC codes and the additional retransmissions of ARQ. Since the decoding delay

of the FEC codes is lower than the time consumed for retransmission of a packet,
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Figure 37: Taxonomy function vs. ψTh for (a) DSSS+OQPSK, (b) FSK, and (c)
FSK without Eneigh.

FEC schemes improve the latency performance of the WSN. Furthermore, RS codes

provide lower end-to-end latency when compared to the BCH codes. This is related

to the better error correction capability of RS codes when same number of redundant

bits are sent. Consequently, the end-to-end latency is slightly decreased.

In order to capture the efficiency of an error control scheme, we propose a taxon-

omy function that consists of the energy consumption, latency and PER performance.

This function is given as follows:

T =
lD

EflowTflow

(1− PERe2e) , (94)

where lD is the payload length, Eflow, Tflow, and PERe2e are the end-to-end energy
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consumption, latency and PER, respectively. Note that a similar efficiency function

has been proposed in [62], where the energy efficiency and the reliability of a single

hop has been considered. In our approach, we also consider the cost for latency and

propose a multi-hop taxonomy function.

In Fig. 37 (a) and (b), the taxonomy function is evaluated for MicaZ and Mica2

nodes, respectively. The taxonomy function is normalized for the maximum value of

ARQ . It is clear from (94) that a higher value of T corresponds to higher efficiency. It

can be observed from Fig. 37 (a) that for the MicaZ nodes, the FEC codes outperform

ARQ. Moreover, RS codes are less efficient compared to the BCH codes due to their

higher energy consumption. Moreover, an optimal error correction capability, t, can

be found for both BCH and RS codes that leverages the PER with energy consumption

and latency. On the other hand, for Mica2 nodes, ARQ is more efficient than the FEC

codes. This interesting result advocates that there is no clear winner for error control

techniques in WSN and their performance directly depends on the node hardware.

The reason behind the difference between MicaZ and Mica2 nodes can be explained

as follows: In Fig. 37 (c), the taxonomy function is re-evaluated for Mica2 without

considering the energy consumption of neighbor nodes, Eneigh, given in (71). In

this case, BCH (128,106,3), BCH (128,78,7), and RS (15,9,3) are more efficient than

ARQ. The major differences between Mica2 and MicaZ nodes are the data rate of the

transceivers and the modulation schemes. As shown in Table 2, the time consumed

for transmitting a bit is 15 times higher for Mica2 than MicaZ. This corresponds

to significant energy consumption for communication. Since the peak of the ARQ

curve corresponds to no retransmissions, it is clear that the FEC codes consume

more energy primarily due to the transmission of redundant bits. When the energy

consumption of the neighbors are considered, the energy consumption significantly

increases. Moreover, it can be observed from Figs. 33 that FEC codes lead to smaller

increase in expected hop length for Mica2 nodes than MicaZ nodes. As a result,
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Figure 38: (a) Avg. energy consumption and (b) avg. end-to-end latency vs. ψTh

for different values of transmit power (FSK).

for Mica2 nodes, the advantage of larger hop length provided by the FEC codes is

outweighed by the increase in energy consumption of neighbor nodes. This favors

ARQ for Mica2 nodes. It is also important to note that consideration of Eneigh is

important to accurately assess the performance of ARQ and FEC.

5.6.2 Transmit Power Control

Another technique to exploit FEC codes is to match the average hop distance of FEC

codes with ARQ. This can be achieved by decreasing the transmit power, Pt. In

order to investigate the effect of transmit power, Pt, we consider three power levels,

i.e., 0, −5, and −15 dBm supported by both Mica2 and MicaZ. Intuitively, decreas-

ing transmit power can improve the energy efficiency of the FEC schemes, since less

power is consumed for transmission of longer encoded packets. Although the re-

ceive power is fixed, since the interference range of a node decreases, the number of

neighbors that consume idle energy also decreases. On the other hand, decreasing

transmit power increases the number of hops. In Fig. 38 (a), the energy consumption

of BCH (128,50,13) and RS (15,9,3) are shown for three different transmit power

levels and ARQ at Pt = 0 dBm. Furthermore, the operating points of these schemes
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corresponding to PERe2e ≤ 10−2 are indicated. Note that the decrease in transmit

power decreases the end-to-end energy consumption for BCH (128,50,13), which out-

performs the ARQ scheme. On the other hand, RS (15,9,3) leads to higher energy

consumption when the transmit power is decreased. This difference is mainly due to

the relationship between decreased energy consumption per hop and the increased

number of hops. For the BCH (128,50,13), decreasing transmit power from 0 dBm to

−5 dBm and −15 dBm leads to a decrease of 97% and 99% in energy consumption

per hop, respectively. On the other hand, for RS (15,9,3), these values are 15% and

60% for −5 dBm and −15 dBm, respectively. Decreasing transmit power leads to a

decrease of 47% and 88% in hop length as shown in Fig. 36 (a), which increases energy

consumption since the number of hops increase. Accordingly, for BCH (128,50,13),

the decrease in energy consumption per hop dominates, which leads to overall de-

crease in the end-to-end energy consumption. However, RS (15,9,3) results in higher

end-to-end energy consumption when the transmit power is decreased.

While transmit power control provides energy efficiency for particular FEC codes,

its drawback is shown in Fig. 38 (b), where the end-to-end latency is shown. Con-

trary to the hop distance extension, since controlling transmit power has no effect

in the time required for transmitting a packet, the end-to-end latency depends on

the number of hops. Since transmit power control increases the number of hops, this

technique introduces a significant increase in latency, which is a tradeoff for BCH

(128,50,13) code.

5.6.3 Effects of End-to-End Distance and Target PER

In this section, we investigate the effects of end-to-end distance, D, and the target

PER, PER∗
e2e, on the performance of ARQ and FEC schemes. The end-to-end energy

consumption per useful bit is shown in Fig. 39 (a) and (b) as a function of the end-

to-end distance, D, for Mica2 and MicaZ nodes, respectively. In these figures, the
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Figure 39: Average energy consumption vs. end-to-end distance for (a) Mica2 and
(b) MicaZ nodes, and the average energy consumption vs. target end-to-end PER for
(c) Mica2 and (d) MicaZ nodes.

minimum ψTh is selected for each BCH and RS code such that PER∗
e2e ≤ 10−2

is satisfied4. For ARQ, two curves are shown. The solid line corresponds to the

minimum ψTh that satisfies the PER constraint. However, note from Fig. 38 (a)

that the minimum energy consumption of ARQ corresponds to a higher ψTh value

than the one found here. Since the energy consumption of the ARQ is minimum

without retransmissions, a higher link quality is required to achieve the optimum

performance. Hence, in Figs. 39 (a)-(d), the line denoted by ARQmin corresponds

4For clarity, only BCH (128,78,7) code is shown with the three RS codes. Results for the other
BCH codes can be found in [79].
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to ψTh that achieves the minimum energy consumption for ARQ. Accordingly, for

Mica2 nodes, ARQ is more energy efficient than both of the FEC codes irrespective

of the end-to-end distance. On the other hand, for MicaZ nodes, BCH code with

t = 7 results in energy consumption comparable to ARQ. In particular, ARQ is more

energy efficient for end-to-end distances up to 80 m, which corresponds to ∼ 5 hops

for ARQ and ∼ 3 hops for BCH (128,78,7) code. For hop counts higher than these

values, the BCH code consumes slightly less energy compared to ARQ. Furthermore,

RS codes result in energy consumption that is higher than the BCH (128,78,7) code.

As explained before, the operating point of ψTh is determined according to the

target PER of the WSN application. The effect of target PER is investigated in

Figs. 39 (c)-(d) for Mica2 and MicaZ nodes, respectively. Similar to our observations

above, ARQ is more energy efficient for Mica2 nodes irrespective of the target PER.

However, when MicaZ architecture is considered, BCH code outperforms ARQ for

target PERe2e > 0.002. When the target PER is increased, the optimal value of ψTh

is decreased, which improves the energy efficiency of FEC codes. As a result, the

energy consumption of BCH (128,78,7) code is more favorable than ARQ. On the

contrary, irrespective of the end-to-end PER requirement, RS codes always result in

higher energy consumption than BCH (128,78,7).

5.6.4 Hybrid Error Control

Hybrid ARQ schemes exploit the advantages of both ARQ and FEC techniques. In

this section, we compare the end-to-end energy consumption and the latency char-

acteristics of these schemes with the ARQ scheme and the BCH (128,78,7), which is

found to be the most energy efficient FEC scheme in the previous sections.

The energy consumption of the type I and type II hybrid ARQ schemes are shown

in Fig. 40 (a) and (b), respectively, for MicaZ. An important result is that type II

hybrid ARQ schemes are more energy efficient than both ARQ and FEC schemes.
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Figure 40: Avg. energy consumption vs. ψTh for hybrid ARQ (a) Type I and
(b) Type II (DSSS+OQPSK), and average energy consumption vs. target end-to-end
PER for (a) Mica2 and (b) MicaZ nodes.

As shown in Fig. 40 (b), the energy consumption of different HARQ-II schemes are

similar for a given ψTh value. However, since the error resiliency of these protocols

depend on the BCH code used, the operating point of these schemes differ based on the

target PER. It is shown in Fig. 40 (a) that the energy consumption of the HARQ-

I scheme is dependent on the error correction code used in the first transmission.

Consequently, HARQ-I (7,13) scheme results in the highest energy consumption for

a given ψTh value. Our results also show that the end-to-end latency of HARQ-I

and HARQ-II schemes indicate that the hybrid ARQ schemes provide similar latency
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compared to the FEC scheme. This is particularly important for real-time traffic in

WSN.

The energy consumption graphs as a function of the SNR threshold, ψTh, illus-

trate the effect of this threshold on the performance of these error control schemes.

However, for a given end-to-end reliability requirement, the operating point can be

different for each scheme because of their different error resiliency. In Figs. 40 (c) and

(d), the end-to-end energy consumption is shown as a function of the target PER for

Mica2 and MicaZ, respectively. In both figures, it is shown that HARQ-II schemes

outperform ARQ, FEC, as well as HARQ-I schemes. This is particularly appealing

since the HARQ-II scheme is implemented through only a single BCH code. Hence,

the implementation cost of the HARQ-II scheme in consideration is also low compared

to the HARQ-I case, where two different encoding schemes can be implemented. Fur-

thermore, the energy efficiency of HARQ-II schemes improve when more powerful

FEC schemes are used. An important difference between the Mica2 and the MicaZ

hardware is that for MicaZ nodes, HARQ-I results in higher energy consumption than

both FEC and ARQ schemes. This is due to the fact that HARQ-I schemes send the

whole packet for retransmissions. Moreover, the error resiliency of the HARQ-I is not

high enough to compensate this overhead through hop length extension. On the other

hand, HARQ-II schemes introduce minimal overhead by sending only the redundant

bits for retransmission. Consequently, the error resiliency is improved by minimum

overhead.

5.6.5 Overview of Results

An overview of the energy and latency performance of the error control schemes that

are considered in this chapter is shown in Figs. 41. In the figures, the minimum end-

to-end energy consumption and latency of ARQ, BCH, RS, HARQ-I, and HARQ-II

schemes subject to an end-to-end PER target of 10−2 are shown as a function of
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Figure 41: Minimum energy consumption vs. error correcting capability for (a)
Mica2 and (b) MicaZ, and minimum latency vs. error correcting capability for (c)
Mica2 and (d) MicaZ nodes with PERe2e ≤ 10−2.

their error correction capability. In particular, in Fig. 41 (a) and (c), the minimum

energy consumption and latency of these schemes are shown for Mica2 nodes, re-

spectively. Consistent with our previous observations, both type-I and type-II hybrid

ARQ schemes outperform other error control schemes. Moreover, it can be observed

that for both BCH and RS error codes, an optimum error correction capability, t,

value can be found to minimize energy consumption and latency. The results for

MicaZ as shown in Fig. 41 (b) and (d) reveal that type-I hybrid ARQ codes are

inefficient in terms of both energy consumption and latency. Type-II hybrid ARQ
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scheme is more energy efficient compared to ARQ, BCH, and RS codes. Moreover,

the energy consumption of these three schemes, ARQ, BCH, and RS, are similar.

Furthermore, it can be observed from Fig. 41 (d) that RS (31,19,6) code performs

very close to the HARQ-II scheme in terms of end-to-end latency, which make both

of these schemes a suitable candidate for real-time traffic.
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CHAPTER VI

CROSS-LAYER PACKET SIZE OPTIMIZATION FOR

WIRELESS SENSOR NETWORKS

The final component of cross-layer communication in WSN is the determination of

the optimal packet size. In this chapter, a cross-layer methodology for packet size

optimization in WSN is proposed considering our cross-layer communication frame-

work. We first discuss the factors affecting the packet size optimizations and then,

propose the packet size optimization framework. The remainder of the chapter is

organized as follows: In Section 6.1, the motivation for this work is provided. In Sec-

tion 6.2, related work on packet size optimization in wireless networks is summarized.

A breakdown of various cross-layer effects of packet size on network performance is

presented in Section 6.3. More specifically, the effects of packet size on reliability and

collisions are investigated. Based on this investigation, in Section 6.4, the cross-layer

solution for packet size optimization is presented. The results of the optimization

framework are presented in Section 6.5. We further extend our work for underwater

and underground environment in Section 6.6.

6.1 Motivation

The unique characteristics of Wireless Sensor Networks (WSN) necessitate rethinking

of classical wireless networking in all aspects [7]. Among these, the determination of

the optimal packet size tailored for these unique characteristics constitutes a funda-

mental and still an unexplored problem in WSN. Especially, the cross-layer effects of

communication due to low power communication constraints and intrinsic properties

of low cost sensor nodes call for a cross-layer assessment of optimal packet size for
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communication in WSN.

Traditionally, packet size optimization is performed considering a point-to-point

link, where the goal is to ensure a successful and efficient transmission based on an

efficiency metric [44], [55], [62]. However, in this traditional approach, the influ-

ence of multi-hop and broadcast nature of wireless communication in WSN cannot

be captured. It is well-known that the packet size directly affects the reliability of

the communication since longer packet sizes are susceptible to wireless channel errors

given a certain level of link quality. However, in multi-hop WSN, the quality of the

communication links depend on the routes established in the network. Moreover, the

existence of neighbor nodes that contend for the shared wireless medium affect the

communication performance significantly leading to degradation in communication

success. Furthermore, the communication success also depends on both the charac-

teristics of the wireless channel and the error control technique deployed. Considering

these various factors that originate from different layers of the communication stack,

a cross-layer assessment of packet size optimization for WSN is crucial.

Another aspect in packet size optimization is the nature of the WSN. WSN has

found wide application areas since the development of highly sophisticated wireless

sensor nodes [7]. These networks are mainly being deployed in terrestrial areas such as

forests, factories, buildings, etc. In addition, recently, WSN research has developed in

to underwater and underground environments. Underwater acoustic wireless sensor

networks (UW-ASN) are characterized by very low bandwidth and high error rate

underwater channels [5]. Similarly, recently, the applications and requirements of

wireless underground sensor networks (WUSN) have been investigated [6], [45]. These

networks impose additional challenges in terms of channel characteristics. As a result,

an optimal packet size for these environments should also be determined.
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In this chapter, a cross-layer solution for packet size optimization in wireless terres-

trial, underwater, and underground sensor networks is presented such that the cross-

layer effects of multi-hop routing, the broadcast nature of the wireless channel, and the

effects of error control techniques are captured. For terrestrial sensor networks, the

effect of packet length on the collision probability is investigated. Moreover, the re-

lationship between routing decisions and the packet size is highlighted. Furthermore,

the effects of packet size on different performance metrics such as throughput, energy

consumption, latency, and success rate are investigated considering these cross-layer

effects. Finally, requirements of various types of applications in WSN are considered

to develop a comprehensive framework for packet size optimization. The results of

this framework provide optimal packet size values tailored for different application

types. The optimization framework is also extended to determine the optimal packet

size in two challenged environments, where wireless sensor networks find application

areas. More specifically, underwater and underground environments are investigated.

6.2 Related Work

Packet size optimization is a highly investigated topic in cellular networks [55]. How-

ever, the existing work mainly considers a single hop communication and performs

optimization accordingly. Therefore, these results cannot be directly applied to WSN

because of the multiple hop paradigm.

In [44], adaptive frame sizes are determined based on the varying properties of the

wireless channel, i.e., for bad channel conditions, shorter packets with powerful error

correction is used while longer packet sizes are selected for good channel conditions

by which a high reliability can be achieved. However, variable packet sizes are not

preferred in WSN due to strict hardware and computation constraints of wireless

sensor nodes. As a result, we advocate to use fixed packet sizes.
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The most relevant work in this topic is [62], where an optimal packet size frame-

work is proposed. In this work, the effects of error correction on energy efficiency are

investigated to determine the optimal packet size based on an energy channel model.

However, the energy channel model is based only on one hop behavior and does not

capture the effects of multi-hop routing or MAC collisions are not addressed in this

work.

6.3 Factors Affecting The Packet Size

We investigate the factors that affect the performance of the network both on bit and

packet levels.

6.3.1 Error Detection and Correction: Bit Level Energy Consumption

One of the main factors influencing the performance of communication protocols on

the bit level is the error detection and correction mechanism. Here we explore the

packet size effects of Automatic Repeat ReQuest (ARQ) and Forward Error Correc-

tion (FEC).

The energy consumption in WSN mainly depends on the energy required to trans-

mit a packet and the reliability of the network. Usually small packet sizes lead to

increased reliability due the decreased chance of bit errors over the wireless chan-

nel. On the other hand, small packet sizes lead to inefficient transmission due to the

overhead caused by network protocols and error correcting codes if applicable. In

our analysis, we consider a packet of length c with a header of α, payload of lD, and

trailer of τ such that c = α + lD + τ . The header length α depends on the control

information at each layer and for IEEE 802.15.4, has been determined as 15 bytes

including the CRC bits [37]. The trailer length τ depends on the error correcting

capability of an FEC code and is 0 for the ARQ scheme.

For the ARQ scheme, denoting the raw bit error rate of the channel as p and the

number of maximum retransmissions as T , the probability that a packet is successfully
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transmitted through a single hop is shown as

1− PER = (1− p)l+α

(
T−1∑
i=0

(
1− (1− p)l+α

)i
)

, (95)

where PER denotes the packet error rate. However, since we are interested in the

probability that the packet is transmitted to the sink successfully, a network relia-

bility notion is required. Assuming the packet belongs to a node with minimum and

maximum hop count of nmin and nmax, the reliability µ can be written as

µ =
nmax∑

n=nmin

p(n)
n∏

k=1

(
1− PERk

)
(96)

where PERk is the packet error rate at each link and p(n) is the probability that the

packet routes through n hops to reach the sink. This value depends on the routing

protocol and the location of the node sending the packet, which will be investigated

in more detail in Section 6.4.

FEC codes pose tradeoff between the energy consumption due to increased packet

size and energy gains due to error correcting capabilities of the codes. If a packet

contains errors that cannot be corrected by the FEC code, the whole energy con-

sumption to encode, transmit, and decode a packet is wasted. Based on the same

notion in (96), the reliability of FEC, µFEC , can also be shown as

µFEC =
nmax∑

n=nmin

p(n)
n∏

k=1

t∑
j=0

(
c

j

)
pj

k(1− pk)
c−j , (97)

where t is the error correction capability of the FEC code.

Figure 42(a) illustrates the effect of packet length on reliability (1-PER) for a

single hop. The values are found using (96) and (97) with p = 10−3 for ARQ with

4 retransmissions and 5 different BCH codes. It can be observed that when the

error correcting capability of the FEC code is low, i.e., t = 2, ARQ outperforms

FEC for small packet sizes. On the other hand, when the packet size is increased,

FEC codes provide higher resiliency for higher error correcting capability, t. This

advantage, however, is provided at the cost of increased energy consumption and
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Figure 42: (a) Packet error rate vs. payload length for ARQ and FEC. MAC failure
rate vs. payload length for (b) different values of M and(c) different values of FEC
rate.

latency due to encoding/decoding and transmission of longer packets. This tradeoff

will be investigated in Section 6.4.

6.3.2 Collision: Packet Level Energy Consumption

One of the most important source of energy consumption is collisions that occur in

the high density environment such as WSN. While the MAC scheme in use affects the

collision rate of the network, here, we show that the packet size has also an important

effect on collisions in WSN.
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Generally, the packet size is assumed to have negative effect on collisions. In cel-

lular networks and, recently, ad hoc networks, it is accepted that longer packet sizes

increase the collision rate of the network. This is due to the fact that a node occu-

pies the channel for a longer time during and the probability that another terminal

transmits a packet during this transmission increases. This is particularly accurate

considering the traffic properties of cellular and ad hoc networks. These networks

are characterized by independent traffic properties of each user. As a result, a MAC

layer frame size is calculated assuming a fixed traffic load.

In WSN, however, the generated traffic is directly related to the physical phe-

nomenon that is being sensed and the properties of the onboard sensors 1. This

dependence results in close correlation of generated traffic in sensors that are closely

located to each other. Consequently, since the collisions occur due to transmissions

of these closely located sensor nodes, the dependence of collision rate on packet size

can easily be analyzed.

For medium access, we assume that a node performs carrier sense mechanism to

assess the availability of the channel and transmits a packet thereafter2. Many work

focus on the investigation of medium access performance of carrier sense mechanisms

[12, 14, 19, 66]. Without loss of generality, here, we refer to the work in [66]. Note that

our contribution is not to produce yet another analysis of carrier sense mechanism.

Rather, we aim to illustrate the impact of packet size on collision rate in WSN, which,

to the best of our knowledge, has not been performed before.

We first illustrate the formulation in [66] and then present our results. Accordingly,

a successful allocation of the channel depends on both successful carrier sense and

the fact that the transmission encounters no collisions. Denoting the probability of

1Although control packets that are generated by various protocols exist, we consider the majority
of the traffic is constituted by the sensed information.

2Note that if a reservation-based protocol is used, collisions may not occur. In those cases, the
remainder of our framework still applies.
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successful carrier sense by pcs, it can be denoted as follows [66]:

pcs = 1− (1− pcf )
K+1 (98)

where K is the number of re-sensings allowed for one transmission and pcf is the

probability of sensing the channel free, which is given by:

pcf = e−λnet(τcs+Tcomm) (99)

where τcs is the carrier sense period and Tcomm is the duration of a packet transmission.

After a successful carrier sense, a collision can only occur if another node transmits

during the vulnerable period of τcs. As a result, the probability of no collisions, pcoll,

is given by

pcoll = e−λnetτcs (100)

The term λnet that appears both in (99) and (100) refers to the overall traffic that

is generated by the nodes inside the transmission range of a node, which is given by

λnet = λ
pcs

pcomm

(
1− (1− pcomm)L+1

)
, (101)

where λ is the total generated traffic in the transmission range of a node and pcomm

is the probability of successful transmission. Accordingly, the probability that a

node can successfully acquire the channel is given by pcspcoll, which can be found

by solving equations (98), (100), and (101). The effect of packet size on the MAC

failure rate, i.e., 1 − pcspcoll, can be observed clearly through (99) and (100). First

of all, the probability of sensing the channel free, pcf , depends on the duration of

a packet transmission, Tcomm. Longer packet sizes decrease this probability since a

node will acquire the channel for a longer time. Second, the packet size, lD, impacts

the generated traffic rate λ, which affects both the probability of no collisions, pcoll,

and the probability of successful carrier sense, pcs.

The total generated packet rate, λ, depends on both the generated traffic rate

and the size of the packet. The generated traffic in WSN can be characterized in two
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main classes, periodic and event based [7]. Periodic traffic is generated especially in

monitoring applications, where a certain characteristic of the physical phenomenon,

e.g., temperature, humidity, etc, is constantly monitored. For event-based traffic,

data is only generated if the sensing results match a certain criterion, i.e., an event

occurs. Since collision is higher for higher data rate, in this analysis, we consider a

worst case scenario where each node monitors the physical phenomenon and generates

packets accordingly.

Let us assume that the sensor node has an average sampling rate of b bits/s.

Denoting the length of the packet payload as lD, on the average, the packet generation

rate of a node i is λii = b/lD pkts/s. Since a node will also relay packets from other

nodes to the sink, the packet transmission rate of a node is higher than this value.

If a routing scheme that equally shares the network load among nodes is considered,

on the average, the packet transmission rate of a node is λi = ciλii, where ci > 1.

Consequently, λ in (101) is given by λ =
∑M

i=1 λi, where the number of nodes that

are in the transmission range of a node is given by M − 1. It can be clearly seen

that an increase in packet size directly affects the rate of channel access attempts

and hence the traffic on the channel. The traffic rate affects both the probability of

successful carrier sense, pcs, and the probability of no collisions, pcoll. Although the

packet transmission duration, Tcomm, is increased with increasing packet length, the

overall probability of successful channel access will improve.

The MAC failure rate, 1−pcspcoll, which is found using (98), (99), (100), and (101)

as a function of payload length for different values of M and b = 5 bits/s for a WSN

is given in Fig. 42(b). The above observation, where an increase in payload length

decreases the MAC failure rate, can also be seen in Fig. 42(b). It is a well known

fact that longer packet sizes result in higher efficiency, when the packet overhead is

concerned. This important observation further motivates longer packet sizes when

effects of collisions in WSN are considered.
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One of the main shortcomings of using longer packet sizes is the increased sus-

ceptibility to channel errors. In this respect, FEC codes can be exploited to mitigate

the effects of wireless errors on longer packets. Note that compared to ARQ pro-

tocols, when FEC codes are used, the generated traffic rate λ is not affected. On

the other hand, the duration of packet transmission increases due to redundant bits

in the transmitted packet. Although the error performance of the communication

is improved, the collision rate may increase when FEC codes are used. In order to

investigate the effect of FEC codes, the MAC failure rate, 1 − pcspcoll, is also found

for different code rates as shown in Fig. 42(c). The curve for 1 corresponds to no

FEC coding, while the code rate is decreased corresponding to powerful codes. It is

clearly seen that, higher packet sizes still decrease the MAC failure rate. However,

this effect is small for higher rate FEC codes since the packet transmission duration,

Tcomm, is increased.

The results of this analysis reveal that longer packet sizes are favorable in WSN

when collisions are considered alone. This is motivated by the cross-layer interdepen-

dency of generated traffic and the packet size in WSN. Moreover, the susceptibility

of longer packets to wireless errors can be alleviated through the use of FEC. Al-

though these results are significant, an overall assessment of the packet size on the

network performance is required. Especially the energy consumption of the overall

communication needs to be investigated to provide a complete solution for packet size

optimization in WSN. In the following sections, we provide a comprehensive analysis

of packet size based on the observations in this section.

6.4 Packet Size Optimization Framework

As explained in Section 6.2, most of the work on packet size determination in wire-

less networks focus on point-to-point links. Generally, the optimal packet size was

determined based on an efficiency metric [62], where the overall energy consumption
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to transmit a packet in one hop is compared with the ideal energy consumption to

transmit the payload of the packet.

In multi-hop WSN, however, where the broadcast nature of the wireless channel

plays an important role, it is not trivial to present an ideal way to transmit a packet

from a sensor node to the sink. First, the multi-hop nature of the WSN necessitates

an end-to-end analysis since an optimization framework considering only a single

link may not reveal the intrinsic properties of the multi-hop communication. More

specifically, it is not clear which route is the ideal route between a particular node

and a sink. Second, the broadcast nature of the wireless channel results in neighbor

nodes to overhear a communication, and hence to waste energy. On the other hand,

this overhearing may be beneficial to the network with respect to routing, clustering

or channel quality measurements and thus, needs to be considered in the optimization

framework. In light of these cross-layer effects of communication in WSN, a definition

of efficiency metric in WSN may not be feasible since an ideal way of communication

may not be defined.

Consequently, we formalize our optimization framework based on end-to-end met-

rics. More specifically, the communication performance metrics such as energy con-

sumption, throughput, latency, and reliability are derived for a flow that is generated

at a sensor node until it reaches the sink. We formalize our optimization solution by

using three different objective functions. Each objective function highlights a different

aspect of communication in WSN and can be selected according to the requirements

of the application in use. Furthermore, we investigate the effects of end-to-end la-

tency and reliability constraints that may be required by a particular application.

As a result, a flexible optimization framework is developed to determine the optimal

packet size in WSN. Before we present the optimal packet size results, in the next

sections, we first define these objective functions.
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6.4.1 Optimization Metrics

We define three optimization metrics as packet throughput, energy consumption, and

resource utilization.

6.4.1.1 Packet Throughput

The packet throughput function considers the end-to-end packet success rate and

the end-to-end delay to transmit a packet of payload lD. Consequently, the packet

throughput objective function, U tput, is defined as follows:

Definition 1 Packet throughput:

U tput =
lD (1− PERe2e)

Tflow

, (102)

where lD is the payload length, PERe2e is the end-to-end packet error rate, which

considers the entire packet including header and trailer, and Tflow is the end-to-end

latency, which is the time spent between a packet is generated at a sensor and received

at the sink through the multi-hop route.

6.4.1.2 Energy Consumption

The energy consumption for useful bit between a particular node and the sink. More

specifically the utility function, U eng, is the energy per useful bit, which is defined

as the total energy consumed for each bit successfully received at the sink as defined

below:

Definition 2 Energy per useful bit:

U eng =
Eflow

lD (1− PERe2e)
(103)

where Eflow is the end-to-end energy consumption to transport a packet from a source

to a destination. Minimizing U eng results in optimal packet size values that achieve

high energy efficiency.
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6.4.1.3 Resource Utilization

Minimizing energy consumption is the main goal in WSN. However, U eng in (103)

does not consider the delay associated with the optimal value of the packet size that

minimizes this function. Since end-to-end delay is also important in WSN, the third

objective function considers the energy-delay product consumed for useful bit. We

refer to this function as resource utilization:

Definition 3 Resource utilization:

U res =
EflowTflow

lD (1− PERe2e)
(104)

Minimizing U res leverages the tradeoff between energy consumption and latency.

We believe this utility function serves best for practical implementation of WSN,

especially for delay sensitive traffic.

In the remainder of this section, we present the derivation of each term of the

utility functions, U tput in (102), U eng in (103), and U res in (104). For the derivation,

we consider a channel-aware routing algorithm, where the next hop is determined

according to the received signal to noise ratio (SNR) of a packet sent from a specific

node i at a distance D from the sink. Among the neighbors of i, the neighbor, j, that

is closest to the sink and with SNR value, ψj > ψTh is selected as the next hop, where

ψTh is the received SNR threshold. Note that this approach can be implemented

using a cross-layer approach as in [9] or through signaling [67]. The medium access

is performed through RTS-CTS-DATA exchange in addition to ACK and retransmis-

sions for ARQ. To illustrate specific results for FEC codes, we consider block codes

due to their energy efficiency and lower complexity compared to convolutional codes

[68, 62]. We consider a block code, which is represented by (n, k, t), where n is the

block length, k is the payload length, and t is the error correcting capability in bits.

In our analysis, we use extended BCH codes, which enable the evaluation of the effect

of error correction capability, t, by fixing the block length, n = 128. However, other
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FEC schemes can also be used in our framework.

First, we explain the channel model used for the analysis. Then, the general

analysis model and the derivation of each component is given.

6.4.2 Channel Model

For our derivations, we use the log-normal channel model, which has been experimen-

tally shown to model the low power communication in WSN accurately [88]. In this

model, the received power at a receiver at distance d from a transmitter is given by

Pr(d) = Pt − PL(d0)− 10ηlog10

( d

d0

)
+ Xσ , (105)

where Pt is the transmit power in dBm, PL(d0) is the path loss at a reference distance

d0 in dB, η is the path loss exponent, and Xσ is the shadow fading component, with

Xσ ∼ N (0, σ). Moreover, the SNR at the receiver is given by ψ(d) = Pr(d) − Pn in

dB, where Pn is the noise power in dBm.

Considering the shadow fading component, Xσ, the probability that the received

SNR, ψj, of the channel between two nodes ni and nj that are at a distance d(i,j) is

above some threshold, ψTh, is

P{ψj > ψTh} = P{Xσ > β(d(i,j), ψTh)}

= Q
(β(d(i,j), ψTh)

σ

)
, (106)

where

β(d, ψTh) = ψTh + Pn − Pt + PL(d0) + 10ηlog10

(
d

d0

)
(107)

and Q(x) = 1/
√

2π(
∫∞

x
e−(t2/2))dt. Based on this channel model, the end-to-end

energy consumption for a packet, Eflow, will be derived as will be shown in the

following section.

6.4.3 End-to-End Energy Consumption

The end-to-end energy consumption, Eflow, of a packet sent from a node at a distance

D from the sink is derived based on the model in Chapter 5 and [79], which is extended
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here to accommodate medium access collisions according to the discussion in Section

6.3.2. We first summarize the end-to-end energy consumption framework and the

extensions are discussed then. The end-to-end energy consumption for a packet,

Eflow, is given as follows:

Eflow = E[Eh]

(
D −Rinf

E[dh]
+ 1

)
, (108)

where E[Eh] is the expected energy consumption per hop, D is the distance between

the source node and the sink, Rinf is the approximated transmission range of a node,

and E[dh] is the expected hop distance. Accordingly, the expected hop distance is

given by

E[dh] = ρδ

∫ D

γmin

∫ αγ

−αγ

γd(i,j)Q

(
β

σ

)
e−M(1−pk)dαdγ , (109)

where ρ is the node density, δ is the duty cycle value, γ is the distance between the

next hop and the sink, d(i,j) is the distance between the source node and the next

hop, β is as given in (107), and e−M(1−pk) is the probability that the next hop is at

least at a distance γ from the sink.

Similarly, the expected energy consumption per hop, E[Eh], in (108) can be found

as

E[Eh] = ρδ

∫ D

γmin

∫ αγ

−αγ

γE[Ej]Q

(
β

σ

)
e−M(1−pk)dαdγ , (110)

where E[Ej] is the expected energy consumption, which is given as

E[Ej] =

∫ ∞

ψTh

Ecomm(ψ, d(i,j))fΨ(ψ, d(i,j))dψ . (111)

In (111), fΨ(ψ, d(i,j)) = 1/(σ
√

2π)e
−β2

2σ2 is the pdf of the SNR. Moreover Ecomm(ψ, d(i,j))

is the energy consumption for communication between nodes i and j given that they

are at a distance d(i,j) with a SNR value of ψ at node j, which has three components

as given by3

Ecomm = ETX + ERX + Eneigh , (112)

3We drop the indices ψ and d(i,j) for ease of illustration.
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where ETX is the energy consumed by the node transmitting the packet (node i),

ERX is the energy consumed by the node receiving the packet (node j), and Eneigh is

the energy consumed by the neighbor nodes [79].

In Chapter 5, ETX , ERX , and Eneigh are found considering the four-way RTS-

CTS-DATA-ACK handshake for ARQ or the three-way RTS-CTS-DATA handshake

for FEC codes. However, the affect of collision rate on the success of the transmission

of each packet were not considered. The energy consumption for transmitter node,

ETX , for ARQ and FEC are found to be:

EARQ
TX =

pcs

1− pcs + pcspcoll(pC
s )3pD

s

{
Esense + EC

tx + pcollp
C
s EC

rx +
(
1− pcollp

C
s

)
EC

t/o

+pcoll

(
pC

s

)2
ED

tx + pcoll

(
pC

s

)2
pD

s EC
rx + pcoll

(
pC

s

)2 (
1− pD

s

)
ED

t/o

}
(113)

EFEC
TX =

pcs

1− pcs + pcspcoll(pC
s )2

{
Esense + EC

tx + pcollp
C
s

(
EC

rx + EC
dec

)

+
(
1− pcollp

C
s

)
EC

t/o

}
+ pcspcoll

(
pC

s

)2
ED

tx (114)

respectively, where the effects of collisions are also reflected. The first term in each

equation is the retransmission rate, where pcs is the probability of successful carrier

sense given in (98), pcoll is the probability of no collisions given in (100), and pC
s and

pD
s are the probability of success for control and data packets, respectively, which are

found using (96) and (97). The terms in the parentheses in (113) and (114) denote

the average energy consumption resulting from transmission and reception of control

and data packets. Similarly, the values for ERX and Eneigh can also be found, which

are not shown here for space limitations. Once the Ecomm in (112) is found, the end-

to-end energy consumption, Eflow, is calculated using (109-111) in (108). Moreover,

the end-to-end latency, Tflow, and the end-to-end packet error rate, PERe2e, are also

found using the similar approach in Chapter 5 and the extension discussed above.

Next, we formalize our optimization problem for packet size optimization in WSN.
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6.5 Packet Size Optimization

It can be observed from (108-112) that the energy consumption of a flow is mainly

affected by the packet size and the SNR threshold parameter, ψTh. This is also true

for end-to-end packet error rate and end-to-end delay. Consequently, these two pa-

rameters affect the utility functions in (102-104). In Fig. 43(a) and Fig. 43(b), the

energy per useful bit is shown as a function of payload length lD for three different

values of SNR threshold ψTh for ARQ and FEC with t=5, respectively. It is also evi-

dent from these figures that the optimum value for packet size for a specific objective

function depends on the routing decisions and hence ψTh.

The effect of the SNR threshold value ψTh can be explained as follows. ψTh

controls the minimum quality of the wireless channel at each hop since the routes are

constructed according to this value. Moreover, the average hop length increases for

a lower ψTh value [79]. This has two consequences in overall energy consumption of

the communication. If low quality channel is chosen, the energy consumption may

increase due to retransmissions or packet drops. On the other hand, since longer hops

are constructed, the overall energy consumption can still be decreased. For a low ψTh

value, low quality links may be chosen, which necessitates smaller packet sizes to

maintain an acceptable reliability. However, this causes inefficiency due to increased

affect of header and trailer of the packet and may decrease the energy efficiency. As

a result, packet size optimization is significantly affected by the routing decisions.

Therefore, the value of ψTh is also considered in our optimization framework.

In Fig. 43(a) and Fig. 43(b), it is observed that the energy consumption first

decreases with increasing payload size. This decrease is due to many reasons. As

discussed in Section 6.3.2, longer packet sizes result in lower contention in the wireless

channel. As a result, the energy consumed to transmit a single packet at one hop

decreases. Moreover, as shown in Fig. 42(a), packet error rate is not affected when

the packet size is increased up to a specific value. As a result, the efficiency of
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Figure 43: Energy per useful bit (103) vs. payload length for (a) ARQ and (b) BCH
with t=5. (c) Energy consumption per bit with optimum packet length and lD = 250
bytes.

the communication improves. However, the utility function has a minimum at a

particular payload length value and increases above this value. This is mainly due to

the increasing packet errors and hence retransmissions or packet drops. It can also

be observed that the choice of SNR threshold value, ψTh, determines the minimum of

the energy consumption and also the optimum packet size associated with this value.

It is clear that the choice of both packet size and the SNR threshold value, ψTh,

is crucial to minimize/maximize the utility functions (102-104). Hence, in our opti-

mization problem, our goal is to find both ψTh and packet size lD. Consequently, our
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Table 3: Optimal lD and ψTh values
Problem ECC Type lD ψTh U eng Tflow U tput pflow

(byte) (dB) (mJ/bit) (ms) (kbps)
ARQ (N=4) 152 7.5 0.2659 76.7 15.8 0.9996
FEC (t=5) 1103 4.5 0.2204 1419 6.1 0.9813

Ptput
max FEC (t=7) 546 3 0.2450 944 4.5 0.9674

FEC (t=9) 1133 2.5 0.2389 2482 3.6 0.9840
ARQ (N=4) 473 9 0.2497 248.3 15.2 0.9994
FEC (t=5) 4933 5 0.2167 6521 5.9 0.9849

Peng
min FEC (t=7) 2915 3.5 0.2302 5106 4.4 0.9719

FEC (t=9) 5342 3 0.2360 12019 3.5 0.9910
ARQ (N=7) 25 5 0.5190 17.5 11.2 0.9998
FEC (t=5) 53 3.5 0.5028 93.9 4.4 0.9797

Pres
min FEC (t=7) 39 2 0.5917 90.7 3.2 0.9495

FEC (t=9) 26 1 0.7496 85.4 2.3 0.9437

optimization problems become:

Ptput
max: Packet throughput maximization

Given : D, η, σ, n, k, t (115)

Find : ψTh, lD (116)

Maximize : Utput = lD(1−PERe2e)
Tflow

(117)

Peng
min: Energy consumption per useful bit minimization

Given : D, η, σ, n, k, t (118)

Find : ψTh, lD (119)

Minimize : Ueng =
Eflow

lD(1−PERe2e)
(120)

Pres
min: Resource utilization minimization

Given : D, η, σ, n, k, t (121)

Find : ψTh, lD (122)

Minimize : Ures =
EflowTflow

lD(1−PERe2e)
(123)

164



The optimum values of lD and ψTh have been found using the optimization toolbox

of MATLAB. In Table 3, the results are shown for the three optimization problems,

Ptput
max, Peng

min, and Pres
min. The columns lD, ψTh, U eng, Tflow, U tput, and pflow refer

to optimal payload length, optimal SNR threshold, energy consumption per useful

bit, end-to-end latency, packet throughput, and end-to-end success rate, respectively.

When the throughput maximization problem, Ptput
max, is concerned, ARQ scheme with

a payload length of 152 bytes achieves the highest throughput, U tput. Note that for

this optimization problem, FEC schemes result in lower throughput. This is due to

the encoding and decoding latency incurred by the FEC schemes as well as increased

packet length and the increased collisions and transmission latency associated with

it.

The energy per bit minimization problem, Peng
min, results in favor of FEC schemes

with higher packet sizes, lD. It can be observed that the FEC can accommodate

longer packet sizes without affecting the energy efficiency. However, an interesting

result is that very high packet sizes are determined for this problem. This is due

to the fact that longer packet sizes are more efficient when a sufficient link quality

is guaranteed. This result is evident when the optimal ψTh values are compared for

Ptput
max and Peng

min. However, this selection results in very high end-to-end latency values

as shown in the Tflow column. Furthermore, optimal packet values may not be feasible

in current wireless sensor nodes. As an example, the ZigBee standard defines 250 byte

as the maximum packet length [37]. In Fig. 43(c), the optimal energy consumption

per bit is shown for both the optimum lD values and a fixed 250 byte packet size for

various error correcting capability, t. The values for t = 0 correspond to the ARQ

case. It is evident that when high packet lengths can not be accommodated, energy

efficiency decreases as much as 20%.

The results for Pres
min show how our proposed resource utilization metric leverages

energy consumption and end-to-end latency performance. By compromising from
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Figure 44: Boundaries for the acceptable ξTh - packet size region subject to (a)
end-to-end packet error rate and (b) end-to-end delay. (c) Optimal packet length for
different error control techniques.

energy consumption per bit, U end, (2-fold increase), end-to-end latency, Tflow, can

be significantly decreased (15 times decrease) leading to optimal payload length, lD,

values in the range of 25-50 bytes. In this case, when energy efficiency is concerned,

FEC with t = 5 and payload length of lD = 53 bytes is optimal. If throughput, U tput,

and end-to-end success, pflow are also important, ARQ scheme with packet length of

lD = 25 bytes is the optimal value with a slight increase in energy consumption per

bit, U eng.
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Table 4: Overview of Results
Application Requirement Error lD

Energy. Throughput. Delay Reliability Control (byte)
- High - - ARQ 152

Low - - - FEC Max*
Low - Low - ARQ 25
Low - Low High ARQ 162

As shown in Table 3, minimizing energy consumption per bit, U eng, indepen-

dently leads to possibly unacceptable end-to-end latency, Tflow, and success rate,

pflow, values. Since long payload lengths, lD, lead to both degradation of success rate,

pflow, and increase in latency, Tflow, the optimization problem should also take this

into account. Furthermore, certain WSN applications that focus mainly on real-time

monitoring require strict end-to-end latency and success rate (reliability) constraints.

Based on these observations, we need to develop an optimization framework for energy

minimization subject to delay and reliability constraints.

The optimization problem with delay and reliability constraints can be cast as

follows:

Peng
min,con: Energy consumption per useful bit minimization with delay

and reliability constraints

Given : D, η, σ, n, k, t, Ptarget, Ttarget (124)

Find : ψTh, lD (125)

Minimize : Ueng =
Eflow

lD(1−PERe2e)
(126)

Subject to : Tflow ≤ Ttarget (127)

PERe2e ≤ Ptarget (128)

where Ttarget and Ptarget are end-to-end delay and end-to-end packet error rate con-

straints, respectively.

167



Considering an end-to-end packet error rate of Ptarget = 10−3 and end-to-end la-

tency of Ttarget = 100ms, in Fig. 44(a) and Fig. 44(b), the boundaries for the feasible

ψTh - lD region for the optimization is shown for various error control techniques,

respectively. In Fig. 44(a), the feasible region is the area that falls to the right and

below each curve. Similarly in Fig. 44(b), the ψTh-lD values that fall to the left

and below each curve satisfy the end-to-end delay requirement, Ttarget. Consequently,

the composite of each curve defines the feasible region for the optimization problem

Peng
min,con. In Fig. 44(c), the optimum packet sizes including the header and trailer

for each error control technique are shown. Note that the values for FEC with t > 9

are not shown since the end-to-end delay requirements, Ttarget, cannot be satisfied for

FEC codes with very high error correcting capabilities. This observation also agrees

with our results in Chapter 5. An important observation is that when end-to-end de-

lay and reliability constraints are used, the optimal packet sizes range between 25-160

bytes. When end-to-end delay, Tflow, and success rate, pflow, is important, our re-

sults show that ARQ with optimal payload length of lD = 162 bytes result in optimal

performance. An overview of the result for the cross-layer packet size optimization is

shown in Table 4.

6.6 Packet Size Optimization in Wireless Underwater and
Underground Sensor Networks

In this section, we will extend our analysis of packet size optimization for underwater

and underground sensor networks. Considering the unique properties of these net-

works compared to terrestrial wireless sensor networks, the optimization framework

will be extended and the optimal packet sizes for each of these networks will be found.

We first present the channel models for these networks and discuss the unique prop-

erties of these networks. Then, we provide the results for our optimization problems

in these challenging environments.
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6.6.1 Underwater Channel Model

Wireless Underwater Sensor Networks are characterized by an acoustic communica-

tion channel [5]. The acoustic channel is characterized by the Urick path loss formula

which is given below:

TL(d, f) = χ · log(d) + α(f) · d + A (129)

where the path loss, TL(d, f) is shown in dB as a function of internode distance

d and operating frequency f . The term χ is the geometric spreading which can

be spherical for deep water and cylindrical for shallow water. The last term A is

the transmission anomaly and accounts for the degradation of the acoustic intensity

caused by multiple path propagation, refraction, diffraction, and scattering of sound.

Moreover, the propagation delay in underwater acoustic channel varies between 1460

m/s and 1520 m/s.

Moreover, we model the randomness in the channel using the Rayleigh fading

channel model [35], where the envelope of the signal is modeled as a Rayleigh dis-

tributed random variable, α. Consequently, the received energy per bit per noise

power spectral density is given by γ = α2Eb/No, which has a distribution as follows:

fΓ(γ) =
1

γ0

exp

(
γ

γ0

)
, (130)

where γ0 = E[α2]Eb/No. Eb/No can be directly found from the signal-to-noise ratio

(SNR) of the channel, which is given in dB in underwater acoustic channels as

ψ0,dB(d, f) = SLdB re uPa − TLdB(d, f)−NLdB re uPa (131)

where SLdB re uPa and NLdB re uPa are the signal level at the transmitter and the

noise level given in dB with reference to µPa. Then, Eb/No = ψ BN/R, where

ψ = 10ψdB(d,f)/10, BN is the noise bandwidth, and R is the data rate. The signal level,

SL, in (131) can be related to the intensity, It and, hence, the transmit power, Pt of
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the transceiver as follows:

It =
Pt

2π 1mH
, (132)

SL = 10log

(
It

0.67× 10−18

)
, (133)

where Pt is the transmit power in Watts, and H is the depth in m.

An important observation about underwater communication is the effect of sur-

face reflected rays as shown through experiments in [18]. More specifically, it has

been observed that the received signal follows a 2-path Rayleigh model, where the

direct path and the surface reflected path contributes to the received signal strength.

Moreover, the signal from each path can be modeled as an independent Rayleigh

distributed signal. Consequently, the bit error rate experienced at a node is a result

of combination of these signals.

In underwater acoustic modems, generally, binary non-coherent FSK is used.

Therefore, the bit error rate in underwater acoustic networks is given by:

pFSK
b =

1

2 + γ0

(134)

Finally, (106) for underwater acoustic channel is given by

P{ψj > ψTh} = exp

(
−ψTh

ψ0

)
, (135)

where ψ0 is given in (131).

In order to apply our results to the underwater channel, the bit error rate and the

probability that the received signal to noise ratio (SNR) is higher than a threshold

needs to be found. Since the 2-path Rayleigh channel model does not have a closed for

expression for SNR distribution, we have performed simulations to find these values.

In our simulations, 5000 independent pairs of Rayleigh distributed random vari-

ables are generated. The received signal strength for each location is then found for

these independent trials. Consequently, the empirical cdf found as a result of these

trials is used for (106). This value is used to find the expected bit error rate, energy

consumption, and latency at each point in the simulations.
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6.6.2 Underground Channel Model

The channel model for underground wireless communication has been developed in

[45]. This model follows a 2-path location-based Rayleigh fading channel model.

While the details of this model can be found in [45], here, we provide an overview of

the underground channel model.

The path loss, Lp, in an underground environment is given as follows:

Lp = L0 + Lm1 + Lα (136)

where L0 is the path loss due to attenuation in free space, Lm1 is the attenuation

loss due to the difference of the wavelength of the signal in soil, λ, compared to the

wavelength in free space, λ0, and Lα is the transmission loss caused by attenuation.

Consequently, Lm1 and Lα are given by:

Lm1 = 154− 20log(f)(Hz) + 20log(β) , (137)

Lα = 8.69αd , (138)

respectively, where f is the operating frequency, alpha is the attenuation constant in

1/m and beta is the phase shifting constant in radian/m.and beta. Given that the

path loss in free space is L0 = 20log(4πλ0), the path loss of an EM wave in soil is

given by:

Lp = 6.4 + 20log(d) + 20log(β) + 8.69αd , (139)

Note that the path loss, Lp, in (139) depends on the attenuation constant, α, and the

phase shifting constant, β. The values of these parameters depend on the dielectric

properties of soil. Using Peplinski’s principle [53], the dielectric properties of soil in

the 0.3-1.3 GHz band can be calculated as follows:

ε = ε′ − jε′′ , (140)

ε′ = 1.15[1 +
ρb

ρs

(εα′
s ) + mβ′

v ε′α
′

fw
−mv]

1/α′ − 0.68, (141)
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ε′′ = [mβ′′
v ε′′α

′
fw

]1/α′ , (142)

where εm is the relative complex dielectric constant of the mixture of soil and water,

mv is the volumetric water content (VWC) of the soil, ρb is the bulk density in grams

per cubic centimeter, ρs = 2.66g/cm3 is the specific density of the solid soil parti-

cles, α′ = 0.65 is an empirically determined constant, and β′ and β′′ are empirically

determined constants, dependent on soil-type and given by

β′ = 1.2748− 0.519S − 0.152C , (143)

β′′ = 1.33797− 0.603S − 0.166C , (144)

respectively, where S and C stand for the mass fractions of sand and clay, respectively.

ε′fw
and ε′′fw

are the real and imaginary parts of the relative dielectric constant of water.

The Peplinski principle [53] governs the value of the complex propagation constant

of the EM wave in soil, which is given as γ = α + jβ with

α = ω

√
µε′

2
[

√
1 + (

ε′′

ε′
)2 − 1] , (145)

β = ω

√
µε′

2
[

√
1 + (

ε′′

ε′
)2 + 1] , (146)

where ω = 2πf is the angular frequency, µ is the magnetic permeability, and ε′ and

ε′′ are the real and imaginary parts of the dielectric constant as given in (141) and

(142), respectively.

As we have shown in [45], if the sensors are buried at a depth less than 2 m, i.e.,

low depth, the influence of the wave reflection by ground surface should be considered.

Consequently, the total path loss of two-path channel model can be deduced as follows:

Lf (dB) = Lp(dB)− VdB , (147)

where Lp is the path loss due to the single path given in (139) and VdB is the atten-

uation factor due to the second path in dB, i.e., VdB = 10 log V .
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Consider the case where two sensors are buried at a depth of H1 and H2, respec-

tively, with a horizontal distance of L, and an end-to-end distance of d. Then, the

attenuation factor, V , can be deduced as follows [15]:

V 2 = 1 + (Γ · exp (−α∆(r)))2

−2Γ exp (−α∆(r))

× cos

(
π −

(
φ− 2π

λ
∆(r)

))
, (148)

where, Γ and φ are the amplitude and phase angle of the reflection coefficient at

the reflection point P, ∆(r) = r − d, is the difference of the two paths and α is the

attenuation constant given in (145).

Finally, assuming 2PSK is used as the modulation, the bit error rate (BER) is

shown as

pb =
1

2
erfc(

√
SNR) , (149)

where erfc(·) is the error function and SNR is given by

ψ = Pt − Lf − Pn , (150)

where Pt is the transmit power, Lf is the total path loss given in (147), and Pn is the

energy of noise, which is found to be -103 dBm. Next, we present the results of our

packet size optimization for underwater and underground sensor networks.

6.6.3 Results

In this section, we present the results for packet size optimization for underwater and

underground environment. More specifically, the optimum packet size is found by

solving three different optimization problems, i.e., Peng
min, Ptput

max, and Peng
Min defined in

Section 6.4. The solutions of these problems apply to specific application requirements

of both underwater and underground wireless sensor networks. Furthermore, we

present the results for constrained optimization problem, where the optimum packet
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size is determined subject to reliability and latency constraints. We also discuss the

effects of error control techniques, and environmental effects on the optimum packet

size. Our results focus on two major communication environments, i.e., underwater

(Section 6.6.3.1) and underground (Section 6.6.3.2). For the underwater case, we

consider a deep water network, the sensor nodes are deployed at a depth so that

reflections from surface or the bottom is negligible. These networks can be used for

water quality measurement as well as drift observations. We also consider a deep

water network, where the sensors are deployed close to the surface. For this case

we use the two-ray underwater channel model explained in Section 6.6.1. These

networks are used for ocean bottom measurements and surveillance. For the shallow

water case, we consider a network deployed close to the surface of the water, where

reflections from the sea surface needs to be considered. Finally, we investigate the

packet size optimization problem in wireless underground sensor networks according

to the channel model presented in Section 6.6.2 and [45]. In particular, we present

the effects of bury depth and volumetric water content on the optimum packet size.

6.6.3.1 Wireless Underwater Sensor Networks

As explained before, for the underwater case, we investigate both the deep water

and the shallow water sensor networks. It is important to note that the differences

between propagation characteristics for deep and shallow water result in significantly

different optimum packet lengths for these environments. Next, we present the results

for packet size optimization in deep water and shallow water environment.

Deep Water Environment Communication in deep water can be mainly charac-

terized by two different architectures. First, the sensors can be deployed in the middle

of the ocean where the effects of reflections from surface and bottom are negligible.

Consequently, the communication is characterized by a single ray communication as

explained in Section 6.6.1. The results for the energy consumption minimization is
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Figure 45: Optimum energy consumption vs. ψTh for (a) deep water and (b) shallow
water, and optimum packet size for (c) deep water and (d) shallow water.

shown in Fig. 45(a) and Fig. 45(b), where the optimum packet sizes and the optimum

energy consumption is shown as a function of the received SNR threshold, ψTh. We

investigate four different error control schemes: ARQ, RS (255,251,2), RS (255,239,8),

and RS (255,223,16). It can be observed from Fig. 45(a) that the optimum packet

size increases with ψTh. This related to the increased channel quality for higher values

of ψTh. When routes are constructed with higher ψTh value, longer packet sizes can

be accommodated without errors. Consequently, the optimum packet size increases.

Furthermore, while ARQ scheme results in packet sizes up to 125 bytes, longer packet
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Figure 46: Sensitivity of (a) energy consumption and (b) throughput to packet size
for ARQ and FEC in deep water.

sizes can be accommodated via RS codes. This is related to the error resiliency of

these schemes in the underwater channel, which is characterized by high bit error

rates. In Fig. 45(b), the optimum energy consumption is shown as a function of the

received SNR threshold, ψTh, which shows that the minimum energy consumption is

a function of both the packet size and ψTh. Moreover, ARQ scheme is highly energy

inefficient when compared to the three RS codes. Since the underwater channel is

characterized by high bit error rates and high propagation delay, the retransmissions

required by the ARQ protocol significantly decreases the efficiency. This is further

amplified since shorter packets can be supported by the ARQ scheme.

The results of the throughput maximization problem, Ptput
max, which is defined in

Section 6.5, are shown in Fig. 45(c) and Fig. 45(d). Figure 45(d) clearly shows that

ARQ scheme is inefficient in terms of packet throughput since it provides values up

to several bps. On the other hand, the packet throughput of the RS schemes increase

for higher error correction capability, t. Similarly, the value of φTh that leads to

the optimum value of packet throughput is lower for RS codes with higher t. This is

particularly important since choosing a lower φTh value relaxes the constraints in route
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construction. Furthermore, in Fig. 45(b), it can be observed that RS (255,223,16) is

also more energy efficient when compared to the other schemes. As a result, lower

deployment density can be possible for more powerful error correction codes without

hampering the energy consumption.

The results of our optimization problem reveals that packet sizes of 18 bytes and

612 bytes are optimal for ARQ and RS (255,223,16) schemes, respectively. In Fig.

46(a) and Fig. 46(b), the sensitivity analysis of our optimization solutions are shown.

More specifically, in both figures, the x-axis shows the deviation, in percentage, from

the optimum packet size. We consider the cases where the optimum packet size is

decreased up to the half of the optimum value and increased up to the twice the

optimum value. In both figures, it can be observed that the ARQ protocol is more

sensitive to the deviation from the optimum value. Furthermore, for RS (255,223,16),

the energy consumption minimization problem is more sensitive to the deviations

from the optimum value than the throughput maximization problem. As an example,

doubling the optimum packet size leads to and increase of 7% in energy consumption,

while a decrease of less than 1% in throughput. The sensitivity analysis is of particular

important since the actual value of the packet size that will be used in the network

may be different from the optimum value because of hardware constraints. Hence,

packet size values can be chosen according to this analysis.

The second case for the deep water analysis is ocean bottom deployment, where

reflections from the ocean bottom is effective in communication. The optimization

results for this case are shown in Figs. 47. In Fig. 47(a), the optimum packet size for

the three optimization problems, Peng
min, Ptput

max, and Peng
Min are shown as a function of

the error correction capability, t. Note that t = 0 corresponds to the ARQ scheme.

The corresponding optimum values for energy consumption, throughput, and resource

utilization are also shown in Fig. 47(c) - Fig. 47(e). Since the resource utilization

minimization problem also considers end-to-end latency, the optimum packet size
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Figure 47: Optimization results for Peng
min, Ptput

max, and Peng
Min.

found for this problem is significantly smaller than that found for the other two

problems as shown in Fig. 47(a). Moreover, for each problem, the ARQ scheme can

accommodate smaller packet sizes than the FEC codes. As an example, the optimum

packet size for the throughput maximization problem is 547 bytes for ARQ scheme

and 616 kbytes for RS (255,239,8) code. Despite this significant increase in optimum

packet size for the RS (255,239,8) code, the throughput is also increased 9% compared

to the ARQ scheme. Note also that the reflection from the ground surface provides

higher channel quality for a given node distance and results in a higher throughput for

the ARQ scheme, which can be seen by comparing Fig. 45(d) and Fig. 47(d). It can

be observed from Fig. 47(c) that the energy consumed per successfully received bit is

very similar (0.25 J/bit for ARQ and 0.24 J/bit for RS (255,239,8), which shows that
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Figure 48: Constrained optimization results as a function of error correction capa-
bility, t, for different delay bounds in shallow water.

forward error correction code provide significant data transmission capability without

hampering the energy consumption.

Shallow Water Environment Shallow water communication is characterized by

a lower propagation loss compared to deep water because of both the cylindrical

spreading and reflection from the water surface. In this section, we present our

optimization results for the shallow water environment. The optimum packet size

values for each of the optimization problems are shown in Fig. 47(b). Compared
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to the deep water environment, in shallow water environment, channel errors are

not severe and hence, the ARQ scheme also results in optimum packet size values

comparable to the FEC schemes. Moreover, optimum packet size does not vary

significantly for different error correction capabilities of FEC codes. As an example,

the energy maximization problem results in optimum packet sizes between 300 bytes

- 4.4 kbytes. Similarly, the resource utilization problem results in optimum packet

sizes between 140-440 bytes. Furthermore, as shown in Fig. 47(c) and Fig. 47(d),

RS (255,251,2) code is the most energy efficient and leads to highest throughput.

Moreover, it is observed from Fig. 47(e) that RS codes are more resource efficient

than the ARQ schemes.

We also present the results for the constrained optimization problems, Peng
min,con

and Ptput
min,con, in Figs. 48. In these optimization results, we use Ptarget = 10−3 and

three different values for the end-to-end delay as shown in Figs. 48. An important

results of the constrained optimization is the significant decrease in optimum packet

size for both of these problems. Since the end-to-end delay is bounded, packet sizes

between 2-16 bytes are optimal depending on the error correction capability. The

optimal packet sizes and the resulting energy consumption for the constrained en-

ergy consumption minimization problem are shown in Fig. 48(a) and Fig. 48(b),

respectively. While increasing the end-to-end delay increases the optimum packet

size for the RS codes, the energy consumption is slightly decreased for larger Ttarget.

Moreover, the optimum packet size for the ARQ scheme is not affected by the delay

constrained. On the other hand, end-to-end delay constraint has an important impact

on the packet throughput as shown in Fig. 48(d). An increase in Ttarget from 30s to

100s increases the packet throughput 20%.
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(c) Optimum packet size vs. depth.
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Figure 49: Optimization results for Peng
min and Ptput

max in underground environment as
a function of depth.

6.6.3.2 Wireless Underground Sensor Networks

In this section, we present the optimization results for underground sensor networks.

As we have investigated in [45], the underground communication is characterized by

the composition as well as the volumetric water content of the soil. Furthermore, the

burial depth of the wireless sensors is an important factor in communication under-

ground. Consequently, we investigate the effects of burial depth and the volumetric

water content on optimal packet size in underground sensor networks. We consider

the ARQ scheme and BCH (128,78,7) FEC code for our results. Moreover, we use the
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Figure 50: Optimization results for Peng
min and Ptput

max in underground environment as
a function of volumetric water content.

typical operation parameters for the Mica2 nodes [22], which are shown to be feasible

for wireless underground sensor networks at frequencies 400 MHz [45].

Energy consumption is of particular importance in wireless underground sensor

networks since the deployment of nodes poses significant problems compared to the

terrestrial case. Therefore, it is difficult, if not impossible, to recharge or re-deploy

sensors in an WUSN after deployment. Optimizing the packet size for longer network

lifetime, i.e., smaller energy consumption is, hence, important in WUSN. In Figs. 49,
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the results for the problems, Peng
min and Ptput

max, are shown as a function of the burial

depth. The optimum packet size for the BCH code is not affected by the burial depth.

However, it can be seen that, burial depth influences the energy consumption signif-

icantly. More specifically, the energy consumption is higher for burial depth of 1m.

This is because of the destructive effects of the reflected rays from the ground surface

at this depth, which is also discussed in [45]. Furthermore, energy consumption is

lowest for burial depth of 1.5m and increases slightly above this value. The reason

for this increase is the increased error rate at higher depth because of the higher

attenuation underground. Similar observations can also be made for the throughput

maximization problem. The packet throughput decreases at depth 1m as shown in

Fig. 49(d). Note that for both problems, ARQ scheme is preferable with packet size

values between 500bytes and 1.5kB.

The effect of volumetric water content is shown in Figs. 50. The change in

optimum packet size for energy consumption minimization and packet throughput

maximization is different as shown in Fig. 50(a) and Fig. 50(c), respectively. Increase

in volumetric water content results in higher packet sizes for the energy consumption

minimization problem, where the optimum energy consumption also increases for

higher values of volumetric water content. On the other hand, the optimum packet

size decreases for the packet throughput maximization problem. More specifically,

smaller packets are used to combat the increased bit error rate. As shown in Fig.

50(d), packet throughput decreases for higher values of volumetric water content. As

an example, the ARQ scheme results in a decrease of 47% when the volumetric water

content is increased from 5% to 20%.

Finally, in Fig. 51, the results of the constrained optimization problem for the

underground environment are shown. More specifically, the optimum packet sizes

as well as the optimum energy consumption and packet throughput associated with

them are shown as a function of end-to-end delay bound for different burial depth and
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Figure 51: Constrained optimization results as a function of end-to-end delay bound
in underground environment for (a-c) burial depth and (d-f) volumetric water content.

volumetric water content (VWC) values. In Fig. 51(a) and Fig. 51(d), it is shown that

the optimum packet size increases with increasing delay bound. Moreover, the effect

of burial depth on energy consumption and packet throughput can be observed in

Fig. 51(b) and Fig. 51(c), respectively. Consistent with our results in Fig. 49(b), the

optimum energy consumption is highest for burial depth of 1m and lowest for 1.5m.

An important observation is that relaxing the end-to-end delay bound cannot provide

lower energy consumption higher than a specific value, i.e., 5s. More specifically, the

optimum energy consumption stays constant above this value of the end-to-end delay

constraint.

It is shown in Fig. 51(d) that an increase in volumetric water content decreases

the optimum packet size. Furthermore, this has an important effect on both energy

consumption and packet throughput. In particular, increasing the volumetric water

content from 5% to 20% increases energy consumption by 60% and decreases packet
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throughput by 37%. This significant dependance on the volumetric water content

necessitates the communication protocols be tailored to account for changes in the

water content of the soil.

185



CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Research Contributions

7.1.1 Theory of Correlation in Wireless Sensor Networks

In addition to the collaborative nature of the WSN, the existence of spatial and

temporal correlations among the sensor observations are significant and unique char-

acteristics of the WSN. The correlation in WSN can be considered in developing new

energy-efficient networking protocols specifically tailored for WSN paradigm. These

protocols utilizing the correlation to conserve energy resources may drastically en-

hance the overall network performance. In Chapter 2, a theoretical framework is de-

veloped to capture the spatial and temporal correlations in wireless sensor networks.

More specifically, theoretical analysis of spatio-temporal correlation characteristics of

point and field sources in WSN is performed. This analytical work provides tools

for finding the feasible operating region in terms of spatial and temporal resolu-

tion for a specific distortion constraint considering spatio-temporal correlation, signal

properties, and network variables in WSN. Furthermore, our theoretical framework

constitutes a basis for the development of energy-efficient communication protocols

for WSN. Moreover, based on our framework, we discuss possible efficient medium

access and reliable event transport approaches taking advantage of the spatial and

temporal correlations in WSN, respectively. We show via mathematical analysis, their

results, case studies and discussions that correlation in WSN can be exploited to sig-

nificantly improve the energy-efficiency in WSN. Extensions of this work include the

study of spatio-temporal characteristics of point and field sources with different cor-

relation models. Moreover, different reconstruction models such as filtering or nearest
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node representation can be investigated. Furthermore, the effect of the impurities of

the wireless channel will be investigated. Finally, the comparison of the correlation

models with empirical data will be conducted.

7.1.2 Spatial Correlation-based Collaborative Medium Access Control in
WSN

The theoretical framework developed in Chapter 2 provides important tools for the

design of energy-efficient communication protocols. Among these, exploiting spatial

correlation at the MAC layer is a powerful means of reducing the energy consumption

in WSN under collective performance limits. This can be achieved by collaboratively

regulating medium access so that redundant transmissions from correlation neigh-

bors are suppressed. By allowing only a subset of sensor nodes to transmit their data

to the sink, the proposed MAC protocol not only conserves energy, but also mini-

mizes unnecessary channel access contention and thereby improves the packet drop

rate without compromising the event detection latency. This is in contrast to the

energy-latency tradeoffs that have been the main focus of many energy efficient MAC

proposals for WSN [74, 59, 83].

The spatial Correlation-based Collaborative MAC (CC-MAC) protocol proposed

in Chapter 3 is designed for distributed implementation and has two components:

Event MAC (E-MAC) that filters out the correlation in source records and Network

MAC (N-MAC) that prioritizes the transmission of route-thru packets over other

packets. Route-thru packets are representative of an entire correlation region and

hence given higher priority on their way to the sink. Using simulations, the perfor-

mance of the CC-MAC protocol is investigated and significant performance gains in

terms of energy consumption, latency and packet drop rate are shown.
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7.1.3 XLM: Cross-layer Module for Efficient Communication in WSN

The unique characteristics of the WSN phenomenon such as energy consumption lim-

itation and limited processing capabilities necessitate highly efficient communication

protocols for long lasting, robust WSNs. Recently, cross-layering in designing a com-

munication stack such that state information flows throughout the stack has been

investigated. Recent work on WSNs [61], [75], [81] also reveals that cross-layer inte-

gration techniques result in significant energy gains. Although the literature shows

the advantages of this approach, previous work focused on the joint design of two

to three layers only, such as the physical, media access control (MAC), and routing

layers. In Chapter 4, a unified cross-layer module (XLM) is designed for unified event

transmission in WSNs.

XLM is a cross layer communication module for WSNs, which replaces the entire

traditional layered protocol architecture that has been used so far in WSNs. The

design principle of XLM is complete unified cross-layering such that both the infor-

mation and the functionalities of traditional communication layers, i.e., transport,

network, and MAC layers, are melted in a single module. The protocol operation

of XLM is governed by the new concept of initiative determination. Based on this

concept, XLM performs receiver-based contention, initiative-based forwarding, local

congestion control, and distributed duty cycle operation in order to realize efficient

and reliable communication in WSNs. In a cross-layer simulation platform, the state-

of-the-art layered protocol configurations have been implemented along with XLM

to provide a complete evaluation. Analytical performance evaluation and simulation

experiment results show that XLM significantly improves the communication perfor-

mance and outperforms the traditional layered protocol architectures in terms of both

network performance and implementation complexity.
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7.1.4 Cross-layer Analysis of Error Control in WSN

In Chapter 5, a cross-layer analysis of error control schemes is presented. Forward

error control (FEC) coding improves the error resiliency by sending redundant bits

through the wireless channel. It is shown that this improvement can be exploited

by transmit power control or hop length extension through channel-aware cross-layer

routing protocols in WSNs. The results of our cross-layer analysis reveal that hop

length extension decreases both energy consumption and end-to-end latency for cer-

tain FEC codes when compared to ARQ. On the other hand, transmit power control

can be exploited in situations where energy consumption is of paramount importance

and can be traded off for end-to-end latency. In Chapter 5, the effects of hybrid

ARQ schemes are also investigated and a comprehensive comparison of these three

error control schemes are presented. Moreover, it has been shown that the selection

of suitable error control scheme depends on the physical architecture of the sensor

nodes as well as the end-to-end distance and target PER. Finally, FEC and hybrid

ARQ schemes are shown to significantly improve the end-to-end latency performance

of WSNs through hop length extension without hampering the energy efficiency and

the end-to-end PER. This makes these schemes important candidates for delay sen-

sitive traffic in WSN when used in combination with retransmissions in hybrid ARQ

schemes.

7.1.5 Cross-layer Packet Size Optimization

In Chapter 6, a cross-layer optimization framework for packet size optimization in

WSN is developed. This framework considers medium access collisions, routing deci-

sions, as well as wireless channel affects to determine the optimal packet length. A

key result of this analysis is that contrary to conventional wireless networks, longer

packets improve the performance of medium access control in WSN. On the other

hand, the packet size is limited in terms of energy efficiency due to wireless channel
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errors. Our cross-layer framework clearly reveals this tradeoff. In this framework,

three objective functions are used to investigate the various performance metrics

such as throughput, energy consumption per bit, latency, and packet error rate. The

results of our analysis show that the routing choices significantly affect overall per-

formance and hence the optimal packet length in WSN due to the multi hop nature

of the network. Optimal packet length is found considering this important factor in

WSN. The results of this analysis highlight that the optimal packet length is closely

affected by the error control technique and the requirements of the application. As an

example, when high throughput is required where energy consumption, latency, and

reliability are not important, a payload length of 152 bytes is necessary. Moreover,

for applications with only energy efficiency requirements where delay and reliability

can be traded off, our results show that the maximum available packet length should

be used. The resource utilization objective function and the constraint optimization

framework can be utilized to determine optimal packet length values for applications

that leverage energy consumption, delay, and reliability such as real-time monitoring.

Furthermore, the cases for underwater and underground sensor networks are inves-

tigated to determine the optimal packet size in these challenged environments. The

developed optimization framework provides a flexible tool to determine the optimal

packet size for different application requirements and network topologies.

7.2 Future Research Directions

The investigation of correlation in the context of cross-layer communication in wireless

sensor networks provide many research areas in various fields of wireless networking.

7.2.1 Correlation in Multimedia Sensor Networks:

Recent advances in the CMOS technology have enabled the realization of cost effec-

tive cameras that can be attached to wireless sensor nodes. This development has

led to research in wireless multimedia sensor networks (WMSNs). The correlation
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characteristics of these networks are fundamentally different than WSNs since the

information content depends on the directivity of the cameras of the sensors instead

of their positions. Exploiting this correlation in WMSNs has potential improvements

in the fields of telecommunication, networking, and video encoding.

7.2.2 Vast Area Sensor Network Testbed

Design and implementation of communication protocols for WSNs, so far, have mainly

focused on simulations. However, recent studies reveal that cross-layer effects such as

wireless channel and sensor node imperfections significantly affect the performance

of the proposed protocols. While research in WSNs has recently started considering

testbed evaluations and practical protocol implementation, most of these studies have

limited scope in terms of network size. To overcome this, design and deployment of a

vast area sensor network testbed that consists of heterogeneous wireless sensor motes

is necessary. Such a large scale network will enable the comprehensive testing of the

scalability of communication protocols, highlight novel cross-layer interactions that

are not foreseen through theoretical work, and lead to many novel WSN paradigms

such as wireless sensor network management, data mining, and network health mon-

itoring.

7.2.3 Cross-layer Communication in Cognitive Radio Networks

Cognitive radio networks are characterized by the vast amount of available spectrum

and the spectrum sensing capabilities of cognitive radios. Thus, communication in

cognitive radio network necessitates a cross-layer approach to exploit the available

spectrum for the applications. This necessitates a design of a complete communi-

cation suite for cognitive radio networks that focuses on cross-layer design including

spectrum sensing, spectrum characterization, spectrum sharing, and spectrum mobil-

ity.
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7.2.4 Integration of Sensor Networks and Wireless Internet

The evolution in wireless technology has enabled the realization of various network

architectures for different applications such as cognitive radio networks, mesh net-

works, and wireless sensor networks. In order to extend the applicability of these

architectures and provide useful information anytime and anywhere, integration of

these networks with Internet is an important challenge. So far, research has pro-

gressed in each of these areas separately, however, realization of these networks will

require tight integration and interoperability. In this respect, it is crucial to de-

velop location- and spectrum-aware cross-layer communication protocols as well as

heterogeneous network management tools for integration of wireless sensor networks,

cognitive radio networks, mesh networks, and Internet.
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