92 research outputs found

    Time-Varying Modeling of Glottal Source and Vocal Tract and Sequential Bayesian Estimation of Model Parameters for Speech Synthesis

    Get PDF
    abstract: Speech is generated by articulators acting on a phonatory source. Identification of this phonatory source and articulatory geometry are individually challenging and ill-posed problems, called speech separation and articulatory inversion, respectively. There exists a trade-off between decomposition and recovered articulatory geometry due to multiple possible mappings between an articulatory configuration and the speech produced. However, if measurements are obtained only from a microphone sensor, they lack any invasive insight and add additional challenge to an already difficult problem. A joint non-invasive estimation strategy that couples articulatory and phonatory knowledge would lead to better articulatory speech synthesis. In this thesis, a joint estimation strategy for speech separation and articulatory geometry recovery is studied. Unlike previous periodic/aperiodic decomposition methods that use stationary speech models within a frame, the proposed model presents a non-stationary speech decomposition method. A parametric glottal source model and an articulatory vocal tract response are represented in a dynamic state space formulation. The unknown parameters of the speech generation components are estimated using sequential Monte Carlo methods under some specific assumptions. The proposed approach is compared with other glottal inverse filtering methods, including iterative adaptive inverse filtering, state-space inverse filtering, and the quasi-closed phase method.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Singing information processing: techniques and applications

    Get PDF
    Por otro lado, se presenta un método para el cambio realista de intensidad de voz cantada. Esta transformación se basa en un modelo paramétrico de la envolvente espectral, y mejora sustancialmente la percepción de realismo al compararlo con software comerciales como Melodyne o Vocaloid. El inconveniente del enfoque propuesto es que requiere intervención manual, pero los resultados conseguidos arrojan importantes conclusiones hacia la modificación automática de intensidad con resultados realistas. Por último, se propone un método para la corrección de disonancias en acordes aislados. Se basa en un análisis de múltiples F0, y un desplazamiento de la frecuencia de su componente sinusoidal. La evaluación la ha realizado un grupo de músicos entrenados, y muestra un claro incremento de la consonancia percibida después de la transformación propuesta.La voz cantada es una componente esencial de la música en todas las culturas del mundo, ya que se trata de una forma increíblemente natural de expresión musical. En consecuencia, el procesado automático de voz cantada tiene un gran impacto desde la perspectiva de la industria, la cultura y la ciencia. En este contexto, esta Tesis contribuye con un conjunto variado de técnicas y aplicaciones relacionadas con el procesado de voz cantada, así como con un repaso del estado del arte asociado en cada caso. En primer lugar, se han comparado varios de los mejores estimadores de tono conocidos para el caso de uso de recuperación por tarareo. Los resultados demuestran que \cite{Boersma1993} (con un ajuste no obvio de parámetros) y \cite{Mauch2014}, tienen un muy buen comportamiento en dicho caso de uso dada la suavidad de los contornos de tono extraídos. Además, se propone un novedoso sistema de transcripción de voz cantada basada en un proceso de histéresis definido en tiempo y frecuencia, así como una herramienta para evaluación de voz cantada en Matlab. El interés del método propuesto es que consigue tasas de error cercanas al estado del arte con un método muy sencillo. La herramienta de evaluación propuesta, por otro lado, es un recurso útil para definir mejor el problema, y para evaluar mejor las soluciones propuestas por futuros investigadores. En esta Tesis también se presenta un método para evaluación automática de la interpretación vocal. Usa alineamiento temporal dinámico para alinear la interpretación del usuario con una referencia, proporcionando de esta forma una puntuación de precisión de afinación y de ritmo. La evaluación del sistema muestra una alta correlación entre las puntuaciones dadas por el sistema, y las puntuaciones anotadas por un grupo de músicos expertos

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference

    An investigation into glottal waveform based speech coding

    Get PDF
    Coding of voiced speech by extraction of the glottal waveform has shown promise in improving the efficiency of speech coding systems. This thesis describes an investigation into the performance of such a system. The effect of reverberation on the radiation impedance at the lips is shown to be negligible under normal conditions. Also, the accuracy of the Image Method for adding artificial reverberation to anechoic speech recordings is established. A new algorithm, Pre-emphasised Maximum Likelihood Epoch Detection (PMLED), for Glottal Closure Instant detection is proposed. The algorithm is tested on natural speech and is shown to be both accurate and robust. Two techniques for giottai waveform estimation, Closed Phase Inverse Filtering (CPIF) and Iterative Adaptive Inverse Filtering (IAIF), are compared. In tandem with an LF model fitting procedure, both techniques display a high degree of accuracy However, IAIF is found to be slightly more robust. Based on these results, a Glottal Excited Linear Predictive (GELP) coding system for voiced speech is proposed and tested. Using a differential LF parameter quantisation scheme, the system achieves speech quality similar to that of U S Federal Standard 1016 CELP at a lower mean bit rate while incurring no extra delay

    Multi-parametric source-filter separation of speech and prosodic voice restoration

    Get PDF
    In this thesis, methods and models are developed and presented aiming at the estimation, restoration and transformation of the characteristics of human speech. During a first period of the thesis, a concept was developed that allows restoring prosodic voice features and reconstruct more natural sounding speech from pathological voices using a multi-resolution approach. Inspired from observations with respect to this approach, the necessity of a novel method for the separation of speech into voice source and articulation components emerged in order to improve the perceptive quality of the restored speech signal. This work subsequently represents the main part of this work and therefore is presented first in this thesis. The proposed method is evaluated on synthetic, physically modelled, healthy and pathological speech. A robust, separate representation of source and filter characteristics has applications in areas that go far beyond the reconstruction of alaryngeal speech. It is potentially useful for efficient speech coding, voice biometrics, emotional speech synthesis, remote and/or non-invasive voice disorder diagnosis, etc. A key aspect of the voice restoration method is the reliable separation of the speech signal into voice source and articulation for it is mostly the voice source that requires replacement or enhancement in alaryngeal speech. Observations during the evaluation of above method highlighted that this separation is insufficient with currently known methods. Therefore, the main part of this thesis is concerned with the modelling of voice and vocal tract and the estimation of the respective model parameters. Most methods for joint source filter estimation known today represent a compromise between model complexity, estimation feasibility and estimation efficiency. Typically, single-parametric models are used to represent the source for the sake of tractable optimization or multi-parametric models are estimated using inefficient grid searches over the entire parameter space. The novel method presented in this work proposes advances in the direction of efficiently estimating and fitting multi-parametric source and filter models to healthy and pathological speech signals, resulting in a more reliable estimation of voice source and especially vocal tract coefficients. In particular, the proposed method is exhibits a largely reduced bias in the estimated formant frequencies and bandwidths over a large variety of experimental conditions such as environmental noise, glottal jitter, fundamental frequency, voice types and glottal noise. The methods appears to be especially robust to environmental noise and improves the separation of deterministic voice source components from the articulation. Alaryngeal speakers often have great difficulty at producing intelligible, not to mention prosodic, speech. Despite great efforts and advances in surgical and rehabilitative techniques, currently known methods, devices and modes of speech rehabilitation leave pathological speakers with a lack in the ability to control key aspects of their voice. The proposed multiresolution approach presented at the end of this thesis provides alaryngeal speakers an intuitive manner to increase prosodic features in their speech by reconstructing a more intelligible, more natural and more prosodic voice. The proposed method is entirely non-invasive. Key prosodic cues are reconstructed and enhanced at different temporal scales by inducing additional volatility estimated from other, still intact, speech features. The restored voice source is thus controllable in an intuitive way by the alaryngeal speaker. Despite the above mentioned advantages there is also a weak point of the proposed joint source-filter estimation method to be mentioned. The proposed method exhibits a susceptibility to modelling errors of the glottal source. On the other hand, the proposed estimation framework appears to be well suited for future research on exactly this topic. A logical continuation of this work is the leverage the efficiency and reliability of the proposed method for the development of new, more accurate glottal source models
    corecore