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ABSTRACT

Speech is generated by articulators acting on a phonatory source. Identification of

this phonatory source and articulatory geometry are individually challenging and

ill-posed problems, called speech separation and articulatory inversion, respectively.

There exists a trade-off between decomposition and recovered articulatory geometry

due to multiple possible mappings between an articulatory configuration and the

speech produced. However, if measurements are obtained only from a microphone

sensor, they lack any invasive insight and add additional challenge to an already

difficult problem. A joint non-invasive estimation strategy that couples articulatory

and phonatory knowledge would lead to better articulatory speech synthesis. In this

thesis, a joint estimation strategy for speech separation and articulatory geometry

recovery is studied. Unlike previous periodic/aperiodic decomposition methods that

use stationary speech models within a frame, the proposed model presents a non-

stationary speech decomposition method. A parametric glottal source model and an

articulatory vocal tract response are represented in a dynamic state space formulation.

The unknown parameters of the speech generation components are estimated using

sequential Monte Carlo methods under some specific assumptions. The proposed

approach is compared with other glottal inverse filtering methods, including iterative

adaptive inverse filtering, state-space inverse filtering, and the quasi-closed phase

method.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Speech is widely considered as a confluence of two fundamentally disjoint events,

perception and acoustic radiation. Language is the semantic content perceived by

the brain from an often discontinuous set of acoustic waves. On the other hand,

acoustic radiation is the physical phenomenon of wave propagation due to changes in

pressure inside a medium. In humans, acoustic radiation is produced as a consequence

of exciting the air in the lungs through a thin opening in the larynx called glottis (or

phonatory source). The air flows downstream of the glottis, and as it passes through

a series of biological resonators (or vocal tract), the frequency content of the radiated

acoustic waves is altered. In particular, a particular bandwidth of frequencies are

either dampened or intensified. For these frequencies, there exist spectral peaks that

form the basis for all acoustic radiation emitted and perceived as speech. Since, every

human has a unique resonator, speech varies in quality through timbre, granularity

and color. The study of speech is a challenging task and is broadly classified based

on these two events, perception and generation.

Speech recognition, which is the digital conversion of acoustic radiation to lan-

guage, connects the observed spectral content to human understanding of acoustic

radiation. This is essential for generating transcriptions (speech-to-text) that help

in deducing deeper meaning and understanding of language in the absence of human

supervision [4, 5]. Similarly, speech synthesis targets to reproduce speech for a given

context using our understanding of language. The synthesis process is segregated into
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two sub domains: a statistical framework, that exploits data obtained through math-

ematical transformations, and an articulatory framework, that follows the physics

and biological constructions of the human vocal apparatus [2, 6–9]. The statistical

framework includes, for example, Mel-frequency ceptral coefficents, logarithmic fea-

tures resident in observed speech, linear prediction coefficients, coefficients of an auto

regressive filter that approximate peaks in frequency [10], and deep neural network

generators. In articulatory speech synthesis, the resonator is influenced by biological

aids or articulators such as lips, incisors, tongue tip, tongue blade, tongue dorsum

and jaws. An envelope over positions of these articulatory units represents a struc-

tural configuration inside the vocal apparatus. The shape of this envelope forms an

individual’s personality, identity, and expression in voice [11]. Articulatory speech1

sounds more natural due to its resemblance to human biology [12]. In their respective

interpretations and usage, both frameworks have unique advantages.

Biologically, the glottal source and the vocal tract (VT) are the main two compo-

nents in speech generation. Contributing new quantitative results for each of these

components can provide information to help in speech learning studies, speech anal-

ysis, speech coding, speech synthesis and speaker recognition [13]. It is hence, im-

portant to study each source separately. This is similar to how understanding the

anatomy during speech production can help in identifying symptoms for major disor-

ders like dysarthia, ALS, and many more [14]. A long-standing issue in articulatory

speech research is the acoustic-articulatory inversion problem. This is the problem

of estimating a unique articulatory envelope and its mapping to acoustic parame-

ters [15]. In articulatory speech production, the synthesis process is time-varying. A

rapid transition between different articulatory states generates speech. Hence, the

extraction of the dynamic information of the articulatory envelope is crucial for iden-

1In this thesis, all future use of the word “speech” is synonymous to observed acoustic radiation.
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tifying and synthesizing speech. A non-invasive process in obtaining this anatomy

paves the way to many avenues in speech research [16].

1.2 Current Work on Glottal Source and VT Response Modeling

Numerous methods have been considered in the literature that jointly model the glot-

tal source and the VT response for speech generation. These methods mainly consider

speech as the output of a composition of linear and time-invariant (LTI) systems using

auto-regressive (AR) or auto-regressive moving-average (ARMA) models [1, 17–21].

Using these LTI system models of speech, the estimation of the VT response is tan-

tamount to obtaining a glottal signal. In particular, glottal inverse filtering and VT

response recovery are treated as interchangeable problems [22]. In contrast, clinically

observed glottal signals include jitter and shimmer, which are time-varying phenom-

ena in that their frequency content can change with time [23]. LTI models do not

incorporate any time-varying speech components within a locally analyzed frame; as

a result, the harmonic component of glottis is considered periodic. Furthermore, the

coupling of articulators, that are assumed absent in LTI models, least resemble bio-

logical phenomena [24]. In [25], linear time-varying (LTV) systems were introduced to

speech using ARMA models. Also, in [26], articulatory analysis-by-synthesis methods

were combined with the Maeda model for magnetic resonance imaging (MRI) data.

Note, however, that not much work has been done to study the glottal source and

the VT response jointly. Recently, in [27], a concatenated tube model has been used

to understand the coupling between the VT and glottis for glottal inverse filtering.

In [18, 19], an LTV system was used to model the VT response and a parametric

glottal source was estimated, assuming an ARMA model. In [13], a glottal inverse

filtering estimate was obtained using a sum of sinusoids model that better matched

empirical data obtained through Electromagnetic Midsaggital Articulography (EMA)
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and Electroglottalography(EGG).

The relationship between articulatory vectors and speech signals has been well-

studied using MRI, for the problem of speech-to-articulatory inversion [14, 20, 26,

28, 29]. Recently, in [30], a ResNet model was trained using MRI and speech data

to identify articulatory envelopes. However, a main concern in such formulations is

the requirement of sufficient MRI sampling. MRI signals are sampled at 200 Hz, as

compared to the much larger sampling frequencies of 16 to 48 kHz used by speech

signals. Recently, blind approaches were used in [28, 29] to attempt recovery based

on the sensitivity to acoustic features instead of the actual waveforms. To the best

of our knowledge, a non-invasive speech-to-articulatory inversion using time-domain

signal matching has not been attempted.

1.3 Thesis Contribution

In this work, we propose a time-varying model that separately decomposes the glot-

tal source and the VT response speech generation components. The model indirectly

obtains the VT configuration in the form of a two-dimensional area function that

follows acoustic theory [31]. In particular, we select an articulatory model that trans-

lates the VT area function to impedances, and it produces a VT transfer function

that is biologically coupled for a glottal source [32]. We also assume a Liljencrant-

Fant parametric glottal source model that is coupled, due to the decomposition time

and complexity [33]. The resulting glottal source and VT response is formulated in

a dynamic state space formulation. The resulting glottal source, VT response, and

unknown state components are jointly estimated using the bootstrap particle filter

sequential Monte Carlo method. Note, however, that the estimated speech generation

components are highly dependent on the assumptions we made, and clearly state, in

the complexity of the equations in the dynamic state space formulation.
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Our proposed method is compared against other glottal inverse filtering methods,

including the iterative adaptive inverse filtering, the state-space inverse filtering, and

the quasi-closed phase method. In order to assess the error in glottal source estima-

tion, we use various metrics including the normalized amplitude quotient, formant

estimation error, and estimation mean-squared error. The estimated VT configura-

tion is compared using extracted VT areas from MRI data of selected speech samples.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 provides background

information on models for the glottal source and the VT response. Chapter 3 reviews

sequential Bayesian estimation methods. The dynamic state space formulation for

the speech generation components is described in Chapter 4, and comparative results

are provided in Chapter 5. Chapter 6 concludes and provides possible future work

extensions.
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Chapter 2

PHYSICAL MODELS FOR SPEECH SYNTHESIS

Speech synthesis has received immense interest since the discovery of electricity. It

has come a long way from nascent strategies to replicate voice by synthesizing robotic

sounds [31], to human-like voice synthesis [34]. Studying speech synthesis in the con-

text of articulators is important for applications in communication, health, and au-

tomation. A robust method for speech inversion can help one understand the physics

governing articulatory trajectories and thus improve speech coding methods [24]. Ar-

ticulatory knowledge can lead to new studies on the adaptation of conversational

behavior between two speakers to their interlocutors [35]. This adaptation between

speakers, called speech entrainment, could help reveal learning habits of second (L2)

or third (L3) languages in individuals [36]. Articulatory knowledge is also a vital key

for speech therapy in patients suffering from dysarthia, stuttering, or other neurologi-

cal speech disorders [16]. One efficient method to improve both synthesis and analysis

of speech is to use physical models of speech and compare synthesized signals to the

original speech signals

2.1 Speech Production

Different models have been considered for speech production. Figure 2.1 depicts

some selected elements of various voice production models. The color codes depict

various elements in each model: glottis is shown in red, passive structures in grey,

and articulators in blue. In a microphone recording, acoustic waves radiated from the

nostrils and mouth are recorded as data. During an utterance of a voiced phoneme,
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air pushed from the lungs travels along the vocal folds (glottis). At the intersection

between the glottis and the vocal tract, air is modulated by the vocal folds creating

a modulated acoustic source. This traveling air source is re-modulated by resonances

and anti-resonances of the oral, nasal and vocal cavities. As the air radiates from the

vocal tract, it is affected by impedances of the lip and nostrils until it is captured by

a microphone. A recording played through the speakers needs noise compensation to

remove any channel induced noise that may have altered the radiated acoustic wave.

For a physiological model, as the one shown in Figure 2.1(a), voice is synthesized

based on the physical model of the system and the mechanical properties of the

vocal fold/tract. Generally, the physics and mechanical properties are represented as

ordinary differential equations [37].

Figure 2.1(b) depicts an acoustic model of the vocal tract. This model simplifies

the physiology of the vocal apparatus (including the vocal folds) using approximate

solutions of ordinary differential equations in the physiological model. The larynx

and other articulators are simplified into impedance functions that are dependent on

the area of opening (usually as sections). In [32], the glottal flow (the air travelling

through the glottal area) is derived as a function of the glottal area and subglottal

pressure. Since it corresponds to the air flowing through a designated glottal area,

the glottal flow is an implicit function of the glottal area [8]. On the contrary, some

models consider the glottal area to be an implicit function of the glottal flow [9]. An

implicit formation of speech that strongly adheres to the mechanical properties of the

vocal folds may be represented by a single variable, a set of area sections called vocal

tract area (VTA) function.

Figure 2.1(c) depicts a well known source-filter model. This model assumes the

absence of any coupling between the vocal tract and the driving glottal source. Due

to the no coupling assumption, voice is considered to be due to a periodic pulse train

7



applied to a vocal tract filter (VTF). Mathematically, the voiced phonemes are then

represented by

S(ω) = G(ω)V (ω)L(ω) , (2.1)

where G(ω) is the spectrum of acoustic excitation at the glottis; V (ω) is the spectrum

of the vocal tract that merges all the vocal tract physiology, which is generally an all

pole filter with peaks (formants); and L(ω) is a single filter that merges the mouth and

nostril radiations. Together, these three responses form speech. This model is simple

and stable to use; it also has tractable error measurements and spectral estimation

properties. Hence, it is widely used in a range of applications.

It is important to differentiate between a source-filter model and an acoustic

model. A source-filter model aims to manipulate the perceived elements of the voice

by an all-pole estimate. This manipulation provides an easy approach to analyze

speech with relatively high accuracy. An acoustic model, On the other hand, may be

able to reproduce, both analytically and numerically, the voice production as closely

as possible to the physical measurement; this can be useful when studying the me-

chanical behavior of vocal folds, and when studying the different levels of coupling

between the acoustic source and the vocal tract impedance. As this study matches

with the latter objective, that of obtaining the articulatory parameters, we consider an

intermediate model. This is called the chain matrix method or hybrid time-frequency

synthesizer and consists of both articulatory parameters and perceptual based anal-

ysis [32].
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Figure 2.1: Different voice production models: (a) physiological model, (b) acoustic
model; (c) source-filter model [1].
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2.2 Physiology of Glottis

The physiology of glottis enables a periodic/aperiodic assumption of speech. When

a voiced phoneme is sustained, it is observed to have periodic components in time.

During this duration, the glottis has three phases. A resting time interval, called the

closed phase, an opened time duration called the open phase, and a recovery period,

called the return phase. The vocal folds are at rest during the closed phase. The

open phase is the duration when vocal folds expand and allow the passage of air. As

the thyroarytenoid (TA) and cricothyroid (CT) muscles lose energy, they contract to

their original position and create the return phase. This completes one period of the

glottal signal during a voiced phoneme. A typical speech waveform is shown in the

time domain in Figure 2.2(a); its spectrogram time-frequency representation is shown

in Figure 2.2(b) to have high peak frequencies in the periodic section. Figure 2.2(c)

shows a time domain close up representation of the of the vowel a.

Figure 2.2(a) reveals an inside view of the glottis. Ideally, the vibration of the vocal

folds generates an acoustic source. However, in reality, this vibration may be caused

by numerous agents. Similarly, the vocal tract harmonics result from articulatory

configurations that have a many-to-one mapping.

A first step towards articulatory speech synthesis is choosing an appropriate glot-

tal source model. There exist many physiological glottal models [38]. However, to

ascertain stability and reduce computational load, we consider parametric glottal

sources. Various methods have been proposed in the literature to define analytically

one period of glottal flow [33, 39–42]. The glottal flow, however, is well defined from

deterministic components [33]. In particular, the glottal flow g(t) is formed when

an analytical curve passes conditions of open and closed phase intervals. The set of

parameters that define these phases are listed below.
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Figure 2.2: Phonetically annotated speech waveform representations [2]: (a) time
domain; (b) spectrogram, using a 512 length window with 480 sample overlap; (c)
time domain close up of a vowel a.
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(a)

(b)

Figure 2.3: (a) Diagram of a vertical cut of the vocal folds; (b) High-speed videoen-
doscopic image of the larynx, taken from the oropharynx in the direction to the
larynx. The top of the image corresponds to the back (posterior) of the larynx, and
the glottis is the dark area in the center, which is delimited by the vocal folds [1].
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• t0: Time that corresponds to the start of a pulse in a voiced phoneme; this

relates to an integer multiple of the pitch period F0. In this work, it is assumed

that t0 = 0.

• tp: Time that corresponds to the start of the closing phase; the time of the first

zero crossing after reaching the maximum amplitude of the voicing E0 under an

acceleration of α and ω.

• te: Time instance of the maximum glottal flow derivative Ee.

• ta: Time that corresponds to the start of the closed phase, assuming that the

rest time for the glottal folds has a recovery rate ε.

• tc: Time elapsed for one pulse radiation.

• N0: The period of one pulse, called pitch, where the fundamental period is

T0 = 1/N0.

A detailed explanation of these parameters and their properties follows.

2.2.1 Closed Phase, Open Phase, Return Phase

The glottal source may be subdivided into three main phases. The air from the

lungs moves towards the vocal folds, as the pressure changes between both sides of

the vocal folds. The air pushes the vocal folds to open and release into the vocal tract.

The period when the vocal folds open and release air into the vocal tract causing a

rise in the air pressure is called the open phase.

Towards the end of the open phase, pressure across the vocal tract and the sub-

praglottal (behind the vocal folds) equalizes. This collapses the vocal folds into a brief

period of closure, called the return phase. The resulting closure of the vocal folds

allows the vocal folds to rest, as the pressure for the next pulse builds up. This brief
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period of resting is called the closed phase. The pressure expelled from inside the

lungs is the period of the non-nasalized vowels. Figure 2.4 depicts the three phases

in a glottal pulse cycle, together with its timing parameters.
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Figure 2.4: Phases of glottal flow and its derivative.

2.2.2 Excitation Amplitude, Shimmer, Pitch Period, Duration and Jitter

The maximum amplitude of the time-derivative of the glottal pulse at time te is

denoted by Ee. In our study, we prefer to characterize the amplitude excitation of

the glottal model by this value instead of the voicing amplitude E0 (the maximum

amplitude of the glottal pulse at time tp). In any natural voice, this pulse amplitude is

never perfectly constant. The inherent variations, termed shimmer, reveal voice qual-

ity and provide uniqueness to individuals. Consequently, an amplitude modulation

of the glottal source always exists. In this study, we assume that this modulation

is negligible inside a short window of observing speech (≈ 3 periods). However, a

variation would only increase the variance of the noise that would otherwise describe
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a perfect glottal pulse.

As per empirical evidence, a voiced speech signal has two main quasi-periodic

pulses, each with duration T0. This fundamental period of the glottal pulse is called

pitch and is denoted by N0. A periodic source is necessary in many contexts, such as

singing, voicing and nasals. However, these pulses can be irregular when the pressure

in the lungs varies or the atmospheric temperature changes or due to vocal fold

fatigue. Variations in pitch or jitter across multiple analysis windows exist in natural

voice. These irregularities add to a natural and healthy voice within an acceptable

transiency. The analysis window used has to be short enough to model fast variations

of the fundamental frequency.

2.2.3 Shape Parameters: Glottal Closure Instants, Glottal Opening Instant

The glottal opening instant (GOI) corresponds to the start of the open phase.

The glottal pulse starts to increase when compared to its minimal value, which is

generally taken to be zero. The glottal closure Instant (GCI) corresponds to the

minimum of the time derivative of the pulse. This instant is not symmetrical to the

GOI. Therefore, the instant when the glottal pulse reaches the minimum value of the

pulse (tc) is referred to as the effective closure instant.

2.2.4 Effective Duration of GOI and GCI

Additional parameters are used to control the shape of the pulse, and in partic-

ular to normalize the pulse’s duration, amplitude and excitation amplitude. These

parameters are as follows.

• Open Quotient (OQ): this is the duration from the GOI to the GCI, normalized

by the pulse period, OQ = te/T0. Even though the glottal pulse can be larger

than zero during the return phase, this phase is not considered in OQ. The sum
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of the return phase and the open phase is called the effective open quotient.

• Asymmetry: this is the skewness of the pulse and it is given by α= tp/te. The

closer this value is to 0.5, the more symmetric is the pulse.

• Return phase: this is the duration of the return phase, normalized by the pulse

duration, Qa = ta/T0. It is used to represent how abrupt the closure is; the

smaller this duration, the more abrupt the closure.

2.2.5 Spectral Properties: Glottal Formant and Spectral Tilt

The glottal pulse has a peak in its amplitude spectrum, called the glottal formant

because of its similarity to the shape of the vocal-tract formants. This glottal formant

is characterized by frequency Fm, which is the frequency that corresponds to the max-

imum of the amplitude spectrum of the time derivative of the pulse. This frequency

is not easy to determine, and it depends on the analytical form of the selected glottal

model. The glottal formant is also characterized by the frequency that corresponds

to the maximum value of stylization of the amplitude spectrum.

2.3 Glottal Parametric Models

Various glottal parametric models are presented next, that translate timing parame-

ters into pulses.

2.3.1 Rosenberg Model

Rosenberg initially proposed six models to fit a pulse estimated by inverse filtering

[39]. The model found to best fit the glottal source consists of two polynomial parts
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and is given by

g(t) =


t2(te − t), 0 < t < te

0, ta < t < T0

where, te = ta. This model has only one shape parameter, te, the instant of closure;

the instant of maximum flow is proportional to tp = 2
3
te.

2.3.2 Klatt Model

The Klatt glottal pulse model is similar to the Rosenberg; it has only two shape

parameters, an open quotient (OQ) and a spectral tilt parameter. The model is given

by

g(t) = a t3 − b t2, 0 ≤ t ≤ T0

where a/b is a ratio of the time of the opening to spectral tilt. The spectral tilt is

not explicitly modeled here, unlike in KLGLOTT88 [43]. The model is mainly used

in the KLSYN88 synthesizer [40].

2.3.3 Fant Model

This is the first version of the model proposed by Fant, and it consists of two

sinusoidal parts, [41]

g(t) =


1
2
(1− cos(Ω t)), 0 < t < tp

K cos(Ω(t− tp))−K + 1, tp < t < tc = tp +
(

arccos(K+1
K

)
)
/Ω

0, tc < t < T0
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where Ω =π/tp. This model has two shape parameters, tp and K, that control the

slope of the descending branch. When K = 0.5, the pulse is symmetric. When K ≥ 1,

then te = ta.

2.3.4 Liljencrant-Fant Model

The Liljencrants-Fant (LF) model is an acoustic model of the glottal source deriva-

tive [33]. The LF model is an extension of the Fant model, with curvature and

acceleration parameters. It is given by

g(t) =


E0 e

α t cos(Ωt), t0 ≤ t ≤ te

− Ee
ε ta

(
exp

(
− ε (t− te)

)
− exp

(
− ε (tc − te)

))
, te < t ≤ tc

0, tc < t ≤ T0

(2.2)

where α and ε are acceleration parameters, and Ω =π/tp is the curvature before

reaching the amplitude of voicing. Also,

ε ta = 1− exp
(
− ε (tc − te)

)
E0 =

Ee
eα te sin(Ω te)

Note that the following constraint must be satisfied

∫ T0

0

g′(t) dt = 0

where g′(t) = d
dt
g(t) is the derivative of the glottal flow. Also, Ee can be estimated

instead of E0 due to the strong dependence on te. This continuous time representa-

tion can be easily discretized using g[n] = g(nTs), where fs = 1/Ts is the sampling
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frequency.

This model has been extensively studied for both its time and spectral properties

[33, 44] and serves as an appropriate model of glottis to couple with an articulatory

synthesizer.

2.4 Vocal Tract Response

The interaction between the vocal tract (VT) and vocal folds can be described in

innumerable ways. There exist many models for the vocal tract [9, 45–47]. Broadly,

these can be classified into three categories: (i) ARMA models, (ii) physiological mod-

els, and (iii) acoustic models. The linear prediction (LP) model of speech considers

the vocal tract as an all pole filter model, as shown in Figure 2.5. In our study, we

use the physiological model. One prime consideration in the physiological models are

the types of synthesis methods used. These include: (a) the reflection model, that

considers propagation in a reflective environment such that the lips are closed; (b)

the transmission model, that approximates the vocal tract into RLC circuits; and (c)

the vortex model, that considers the air propagating as volumnar flow. Transmission

models are simplified into circuit impedances that are clumped together, hence are

also known as clumped circuit models, as shown in Figure 2.6.

2.5 Chain Matrix Vocal Tract Model

The chain-matrix model is a preferred approach for computing the spectral response of

the VT, given an area function [28]. The equations used to reduce ordinary differential

equations into transfer functions can be found in [32]. In this model, the pressure P

and volume velocity U are coupled at the input and output of a concatenated acoustic

tube. Under strict assumptions that the propagated wave has a planar wavefront, a

frequency relation exists and the resulting pressure for the jth section of this tube is
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Figure 2.5: The source-filter model for vowel production [3].

Figure 2.6: The electro-acoustic lumped circuit model of synthesis.
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given by

Pout
Uout

 = ψj(ω; aj)

Pin
Uin

 =

Aj(ω; aj) Bj(ω; aj)

Cj(ω; aj) Dj(ω; aj)


︸ ︷︷ ︸

ψj(ω; aj)

Pin
Uin

 (2.3)

where Aj(ω; aj),Bj(ω; aj), Cj(ω; aj),Dj(ω; aj) are chain matrix (CM) parameters of

the tube, in and out denote the input and output of the tube, aj is the jth sectional

area of the jth articulatory unit inside an S segment tube. The articulatory vector

a=
[
a1 . . . aS

]
represents the articulatory envelope (geometry or configuration). In

our simulations, we consider S= 44.

The matrix ψ(ω; a) formed as a result of S uniform tubes (starting at the glottis

and ending at the lips) is a product of S individual CMs

ψ(ω; a) = ψS(ω; aS)ψS−1(ω; aS−1)ψS−2(ω; aS−2) . . .ψ1(ω; a1)

=

A(ω; a) B(ω; a)

C(ω; a) D(ω; a)


The transfer function of the VT for a non-nasalized vowel can then be shown to be

V (ω; a) =
UL
UG

=
D(ω; a)ZL − B(ω; a)

A(ω; a)− C(ω; a)ZL
(2.4)

where UG and UL are volume velocities at the glottis and lips, and ZL is the radiation

impedance at the lips, often approximated by that of a pulsating disk of air at the

mouth opening [28]. The CM model can also be extended to compute the VT transfer

functions of other speech sounds, such as nasals, nasalized vowels, fricatives, and

laterals.

21



In this work, the chain matrix model is assumed to account for all losses due to air

viscosity, heat conduction, and yielding tract walls. The CM parameters of a uniform

lossy cylindrical tube of area aj, j= 1, . . . , 44 and length lj = 0.37cm2, j= 1, . . . , 44,

at frequency ω, is given by:

Aj(ω; aj, lj) = cosh

(
σ(ω) lj

c

)

Bj(ω; aj, lj) = −ρ c γ(ω)

aj
sinh

(
σ(ω)lj

c

)

Cj(ω; aj, lj) = − aj

ρ c γ(ω)
sinh

(
σ(ω) lj

c

)

Dj(ω; aj, lj) = cosh

(
σ(ω) lj

c

)

where ρ and c are the density of air and speed of sound in air, respectively, as described

in [32]. Note that γ(ω) and σ(ω) are independent of the area and the length of the

tube. Lastly, to obtain a time domain version of the VT frequency response, we take

the inverse discrete-time Fourier transform (DTFT), F−1 of (2.4)

v(a) = F−1 (V (ω; a))

where v ∈ RM and M is the length of the DTFT. In this study, as we only con-

sider periodic/vowel signals, we do not consider the modeling of fricatives and stop

consonants, as shown in [9].
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Chapter 3

REVIEW ON SEQUENTIAL BAYESIAN ESTIMATION METHODS

Parameter prediction is a well established statistical problem that allows one to ap-

proximate a set of hidden variables that transform into observed data [48]. Typically,

observed data or measurements yk ∈ Rn at time k, depend on implicit variables

xk ∈ Rm either in linear or non-linear manner. A task of estimating the distribution of

implicit variables for time k, xk, forms the basis of a prediction framework. Formally,

it is identifying distribution of xk in relation to observation yk: p(xk|yk), or posterior

density [49]. Once the density is available, any number of useful estimates can be

taken. The prediction of state distribution is found from the Chapman-Kolmogorov

equation [49].

p(xk|y0:k−1) =

∫
p(xk|xk−1)p(xk−1|y0:k−1)dxk−1 (3.1)

using Bayes’ rule, an update of the state distribution may be formed

p(xk|y0:k) =
p(yk|xk)p(xk|y0:k−1)∫
p(yk|xk)p(xk|y0:k−1)dxk

(3.2)

In this thesis, problem formulation is based on sequential estimation by Monte Carlo

methods. A review of generic state space formulation and solution methodology is

provided for completeness.
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3.1 Kalman Filter

The Kalman Filter is one of the best analytically tractable linear estimators, under

restricted conditions of having a state space model perturbed by Gaussian noise. The

filter’s origin can be historically traced back to R. E. Kalman (1960), who described

that solving a discrete data filtering problem is in essence solving a recursive error

relationship between observed data and predictions. A solution may be formed by

predicting posterior relationship from a priori states that take a random walk in a

single or multi-dimensional space. He described this process in control theory, that

paved way to many applications in warfare, stock markets, communications, GNSS,

satellite attitude corrections, remote sensing and ballistic tracking [48].

Mathematically, distribution of a normally distributed latent state variable, Xk

which forms a Markov chain, from a priori states is given as p(xk|x0:N−1) = p(xk|xk−1)

such that Xk = x0:k−1 = {x0, . . . ,xk−1}. Also given a normally distributed observa-

tion values Yk = y0:k−1 = {y0, . . . ,yk−1} that depend only on Xk, together form a

state space model. A joint distribution of p(x0, . . . ,xk,y0, . . . ,yk) and marginal dis-

tributions p(xk|y0, . . . ,yk) are used to predict the latent observation variable. The

Kalman filter intelligently combines the observations and predictions based on system

dynamic and state models to produce an estimate by reducing mean square error be-

tween predicted density and true posterior density [50]. Each time step of the Kalman

filter will output a current state estimate xk|k that is ideal in measure squared sense.

A general form of linear state space model is assumed for a Kalman filter:

xk = Fk−1xk−1 + wk (3.3)

yk = Hkxk + νk (3.4)

where, νk ∼ N (0, σ2
ν), wk ∼ N (0, σ2

w) are observation noise and state noise
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respectively.

In principle, this state-space may be solved using standard results obtained either

through MLE (Maximum Likelihood Estimation), LS (Least Squares) and their re-

spective variations [48]. However, the Kalman Filter approach embraces on an idea

of non-extant perpetual priori data, i.e. data is never stored and only available from

prior time k− 1. In a time series analysis this is highly attractive since it may not be

feasible to store data at all times [51]. The Kalman filter uses data available only at

previous time step to predict data at next time step by propagating the prior density

based on a gain, the Kalman gain. The a priori estimates xk−1,Σwk|k−1
update a

posterior estimate xk,Σwk|k by minimizing the likelihood p(yk|xk). The operation of

the Kalman filter has two recursive steps:

• Predict: The prediction process projects forward in time and obtains a priori

estimate at next time step with error covariance P .

x̂k|k−1 = Fk−1x̂k−1|k−1 (3.5)

Pk|k−1 = Σwk−1
+ Fk−1Pk−1|k−1F

T
k−1 (3.6)

Sk = HkPk|k−1H
T
k + Σνk (3.7)

Kk = Pk|k−1H
T
k S
−1
k (3.8)

• Update: Incorporates the new observation yk, into the a priori estimate to

obtain an improved a posteriori estimate.

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1) (3.9)

Pk|k = Pk|k−1 −KkHPk|k−1 (3.10)
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A detailed derivation along with an algorithm to implement the Kalman Filter for

time series data may be found in [49].

3.2 Extended Kalman Filter

The Kalman filter fails miserably in non-linear transitions, for ex: predicting the

flight path of a bee. This task is challenging due to non-linear dependence with

turn rate, acceleration, Earth’s gravitational laws and Coriolis effect. These non-

linear dependencies break assumptions made using the Kalman filter and restrict its

general use. In such situations, where models are non-linear an alternative method

is devised with sub-optimal performance, called the Extended Kalman Filter (EKF).

The idea is to naively linearize the model using Taylor expansion [51]. It may be

sufficient to describe non-linearity in a Jacobian matrix, allowing us to use a Kalman

filter. Consider the general state space model:

xk = fk−1(xk−1, k) + wk (3.11)

yk = hk(xk, k) + νk (3.12)

To obtain a linear approximation of fk(xk, k) about the value xk we drop all but

constant and linear terms in the Taylor expansion:

fk(xk, k) ≈ fk(x
R
k , k) + (xk − xRk )

∂fk(xk, k)

∂xk

∣∣∣∣
xk=xR

k|k

+O(2) + . . . (3.13)

where xRk is some reference trajectory and expansion maybe written as first order
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terms in a Jacobian of fk(.), defined as:

Fk =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 (3.14)

If we assume the functions to be time invariant we have Ḟ = Fk−1 = Fk and Ḣ =

Hk−1 = Hk. This simplifies the prediction and update steps to those obtained through

Kalman filtering:

• Predict: The prediction process projects forward in time and obtains a priori

estimate at next time step with error covariance P

x̂k|k−1 = Ḟxk−1|k−1 (3.15)

Pk|k−1 = Σw + ḞPk−1|k−1Ḟ
T (3.16)

Sk = ḢPk|k−1Ḣ
T + Σνk (3.17)

Kk = Pk|k−1Ḣ
TS−1k (3.18)

• Update: Incorporates the new observation yk, into a priori estimate to obtain

an improved a posteriori estimate

x̂k|k = x̂k|k−1 +Kk(yk − Ḣx̂k|k−1) (3.19)

Pk|k = Pk|k−1 −KkḢPk|k−1 (3.20)

The sub-optimality of EKF is evident when a) functions are not analytical and hard

to form a Jacobian b) when non-linear transformation severely alters the statistical

randomness into non-Gaussian distributions. The EKF still performs resonably well
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and is still widely used in many physical applications such as biological networks,

chemistry, stock markets, navigation systems etc. [51].

3.3 Unscented Kalman Filter

The EKF captures mean and covariance upto first order term and propagates it

through the non-linear dynamics. This approximation can be improved if a minimal

set of sample points can be carefully chosen to capture the true mean and covariance of

the Gaussian random vectors [49]. The unscented transformation (UT) is a statistical

method to calculate the statistics of a random variable which undergoes a non-linear

transformation through a set of sigma points [52]. Since UT no longer imposes a

requirement to compute Jacobian(s) for fk(xk) and hk(xk) in the dynamic state-

space. This method proves advantageous with reduced restrictions for signals to be

analytic albeit the noise to be still Gaussian.

Unscented Transform

Assume xk ∈ Rn that undergoes a nonlinear transformation yk = hk(xk), with mean

x̄ and covariance Px. Initialize a sigma vector χ ∈ R2N+1 with N sigma points, χi is
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the sigma weight associated with Nth random state [52].

χ0 = E[x] (3.21)

χi = E[x] +
(√

(N + λ)Px

)
i
, i = 1, . . . , N (3.22)

χi = E[x]−
(√

(N + λ)Px

)
i−N

, i = N + 1, . . . , 2N (3.23)

W
(m)
0 =

λ

N + λ
(3.24)

W
(c)
0 =

λ

N + λ
+ (1− α2 + β) (3.25)

W
(m)
i = W

(c)
i =

1

2(N + λ)
, i = 1, . . . , 2N (3.26)

where λ = α2(N+κ)−N is a scaling parameter, α determines the spread of the sigma

points around E[x] and is usually set to a small positive value, κ is a secondary scaling

parameter which is usually set to 0, β is used to incorporate prior knowledge of the

distribution of E[x] for Gaussian distributions, β = 2 is optimal, and
(√

(N + λ)Px

)
i

is the ith row of the matrix square root. These sigma vectors are propagated through

the nonlinear function [49].

Yi = hk(χi), i = 0, . . . , 2N (3.27)
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and the mean and covariance of xk are approximated using a weighted sample mean

and covariance of the posterior sigma points,

Ȳ = E[y] =
2N∑
i=0

W
(m)
i Yi (3.28)

Py =
2N∑
i=0

Wi(Yi − Ȳ)(Yi − Ȳ)T (3.29)

X̄ = E[x] =
2N∑
i=0

W
(m)
i Xi (3.30)

Px =
2N∑
i=0

Wi(Xi − X̄ )(Xi − X̄ )T (3.31)

These estimates of mean and covariance are accurate upto third order for Gaussian

priors for any non-linear function expanded using Taylor series. Errors introduced

may be scaled by the parameter κ. UKF is widely used in many mechanical problems

and is reported to be successful [52].

3.4 Overview of Monte Carlo Methods

Monte Carlo(MC) methods were invented in the late 1940s to evaluate complex and

often intractable integrals [49]. Integrals like:

I =

∫ x1

x0

f(x)dx =

∫ x1

x0

h(x)p(x)dx = E[h(x)] (3.32)

for f : Rn 7→ Rn. It was suggested that to evaluate such integrals a set of pseudo-

random number generators could be used in such a way that one could decompose

f(x) = h(x)p(x) where p(x) is a valid PDF with domain p(x) = {x : x0 ≤ x0 ≤ x1}

that we can draw samples from. To obtain sample mean, we need p(x) or we can

sample Np independent random variables from x such that {x(i)}Np

i=1, then by central
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limit theorem, first moment of p(x) approaches empirical measure as:

1

Np

Np∑
i=1

x(i)
Np>>1−−−−→ E[x] (3.33)

A general assumption that could be thought of is sampling the data would converge

the estimated mean to it’s true mean, such that:

1

Np

Np∑
i=1

h(x(i))
Np>>1−−−−→ E[h(x)] (3.34)

Hence, we may approximate the integral from all Np independent samples.

I ≈ 1

Np

Np∑
i=1

h(x(i)) (3.35)

Behind this general principle of Monte Carlo we can establish a ground basis for a

class of distributions. Often a limitation of standard MC integration technique arises

when sampling from a very complex p(x). In such cases where it may not be possible

to directly sample from p(x) and in these cases we resort to utilizing Markov chain

properties.

A Markov process/model is one which directly depends on the previous value(s)

of the random variable x. The temporal dependence is called order of Markov process

and determines maximum time dependence of a random variable, such as k|k − 1 is

said to be first order. Let p(xk|xk−1) be prior distribution to a first order Markov

process such that all current values of x depend only on previous time instance. We

may then represent this Markov chain in its traditional stochastic matrix K.

Given an initial distribution vector π0 ∈ Rn with π01
T = 1. We can determine
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the probability distribution at time step k as:

πk = πk−1K = π0K
k (3.36)

this is a discrete version of the Chapman-Kolmogorov equation. The equilibrium

distribution of a Markov chain is the distribution vector πe, such that:

πe = πeK (3.37)

and πe can be found from solving the eigenvalue problem

yTm(λmI−K) = 0 (3.38)

max
i

λi(K)ni=1 = λm = 1 (3.39)

where for a stochastic matrix, the maximum eigenvalue is 1. Therefore, the left

eigenvector of K with maximum eigenvalue of λ = 1 is the equilibrium distribution

πe. Such a vector is scale invariant even when being multiplied with a transition

kernel matrix K, as shown in (3.38).

3.5 Particle Filters

The basis of particle filtering methods lies in sequentially updating a distribution

using importance sampling techniques. One particle filtering method is the sequen-

tial importance sampling (SIS) method, introduced in [49, 53]. SIS involves using

importance sampling to solve the recursion equation.

To begin, let us describe our model as
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xk = fk(xk−1,wk) (3.40)

yk = hk(xk, ηk) (3.41)

where we choose state noise wk to be white Gaussian wk ∼ N (0, σ2
v), similarly we

choose dynamic noise ηk to be ηk ∼ N (0, σ2
η). Our aim is to find a posterior distribu-

tion p(xk|y0:k) from prior distribution p(xk|xk−1) and observation density p(yk|xk).

An estimate of the state can be determined for any performance criterion and filtering

distribution. The distribution of interest is the marginal or joint distribution of the

latent variables at time k, given all observations up to that point.

p(xk|y0:k) =
p(xk|y0:k−1)p(yk|xk)∫
p(xk|y0:k−1)p(yk|xk)dxk

(3.42)

Furthermore, the predictive distribution can be expressed as:

p(xk|y0:k−1) =

∫
p(xk|xk−1)p(xk−1|y0:k−1)dxk−1 (3.43)

The basis of a particle filter is to draw a sufficient number of particles, such that

the pdf of the likelihood p(.) is approximated by the probability mass function (PMF).

p(x) =

Np∑
i=0

w
(i)
k δ(xk − x

(i)
k ) (3.44)

where the particle weight w
(i)
k ∝ π(.)/q(.). In case of a state space modeling the
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recursive weight update equation approximates the PDF and defined as:

w
(i)
k = w

(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1,yk)

(3.45)

This leave the update equation as

w
(i)
k = w

(i)
k−1p(yk|x

(i)
k ) (3.46)

It is proved in [49], that the variance weights w
(i)
k will increase with time k. However,

after a few iterations almost all of the normalized weights will be very small and causes

loss of convergence. This problem is solved using a technique known as resampling

as described in [49]. A sampling importance sampling particle filter is described in

algorithm 1.1

1For sake of simplicity as well as tractability we assume all models to have AWGN (additive
white Gaussian noise) and the prior knowledge about x0 given by p(x0).
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Algorithm 1: Sequential Importance Resampling

1 begin

2 // Initialize

3 forall particles p = 1, . . . Np do

4 Draw xp,0 ∼ π(xk) from an initial prior distribution

5 end

6 for k ← 1, . . . N − 1 do

7 forall particles p = 1, . . . Np do

8 // Correct

9 wp;k = wp;k−1
p(yk|x

(p)
k )p(x

(p)
k |x

(p)
k−1)

q(x
(p)
k |x

(p)
k−1,yk)

10 end

11 wp ← wp{Σpwp}−1; // Normalize

12 x̂k ← Σpwpxp; // Estimate

13 xp ← R(wp,xp); // Resample

14 forall particles p = 1, . . . Np do

15 //Predict

16 xp,k ∼ π(xk)

17 Propagate xp = f(xp, ek)

18 end

19 end

20 end
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Chapter 4

ESTIMATION OF GLOTTAL SOURCE AND VOCAL TRACT DYNAMIC

MODEL PARAMETERS

4.1 State Space Formulation of Glottal Source and Vocal Tract Model

4.1.1 Glottal Source and Vocal Tract Model State Parameters

In Chapter 2, we presented various parametric glottal source models and an articula-

tory model that results in a vocal tract transfer function that is biologically coupled

to the glottal source. Considering the problem of speech decomposition of a non-

nasalized vowel, we devise a dynamic state space formulation for the models of the

two speech generation components. The formulation is highly nonlinear, as it is based

on an acoustic parametric model of the glottal source and a physiological based model

for the vocal tract response. In addition, the unknown time-varying state parameters

to be estimated have high dimensionality. Note that solving problems in dynamic

state-space formulations can provide estimates of the model parameters at each time

step [54,55]. Such estimation formulations have been applied in functional magnetic-

resonance imaging (fMRI) applications [56] and in biological networks [57].

The dynamic state-space formulation is given by

xk = fk−1
(
xk−1,wk−1

)
(4.1)

yk = hk(xk) + ηk . (4.2)

In our formulation, the unknown parameter state vector xk at time step k consists
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of all the unknown glottal source model parameters and vocal tract response model

parameters. In particular, the state (row) vector is defined as

xk =
[
θk gk(θk) ak vk(ak) Ck

]
, (4.3)

where θk and gk(θk) are parameters of the glottal source model, ak and vk(ak) are

parameters of the vocal tract response model, and Ck is a covariance matrix for both

models.

In more detail, using the Liljencrants-Fant (LF) glottal source parametric model

described in Section 2.3.4, the (1×4) row vector θk is defined in terms in of acceleration

and voicing amplitudes as

θk =
[
αk Ωk E0

k Ee
k

]

in (4.3). Using the LF model in Equation (2.2), we can obtain the (1×N) row vector

gk(θk), that corresponds to a glottal waveform whose nth sample,
[
gk(θk)

]
n
, for

n=n0, . . . , N + n0 − 1, is given by

[
gk(θk)

]
n

=


E0
k e

αk n cos(Ωk n), n0 ≤ n ≤ ne

− Ee
k

ε na

(
exp

(
− ε (n− ne)

)
− exp

(
− ε (nc − ne)

))
, ne < n ≤ nc

0, nc < n ≤ N − 1

Here, N is the fundamental pitch of the speech waveform, and n0, ne, nc, and na are

timing parameters that are evaluated offline based on a codebook.

Using the chain-matrix (CM) vocal tract (VT) model in Section 2.5, S= 44 uni-

form tubes are formed from a concatenated acoustic tube, starting at the glottis and

ending at the lips. The (1×S) row vector of sectional articulatory areas inside the
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segmented tube is given by

ak =
[
a
(1)
k a

(2)
k . . . a

(S)
k

]

in (4.3). The CM model provides the VT impulse response function vk(n; ak) ob-

tained as the inverse discrete-time Fourier transform (DTFT) of the transfer function

V(ω; ak). Specifically, if the DTFT relationship is given by

vk(n; ak)
DTFT←−−→ V(ω; ak) , (4.4)

to obtain a length M impulse response sequence, then we obrain the (1×M) row

vector vk(ak) in (4.3). The transfer function V(ω; ak) in (4.4) is obtained from the

CM model as

V(ω; ak) =
Ak(ω; ak)ZL − Bk(ω; ak)

Ak(ω; ak)− Ck(ω; ak)ZL
, (4.5)

where ZL is the radiation impedance at the lips. The parameters in (4.5) are obtained

from matrix

ψk(ω; ak) =

Ak(ω; ak) Bk(ω; ak)

Ck(ω; ak) Ak(ω; ak)


which is given as the final (or chain) matrix formed as the result of multiplying S

segment matrices according to

ψk(ω; ak) = ψ
(S)
k−1

(
ω; a

(S)
k

)
ψ

(S−1)
k

(
ω; aS−1k

)
ψ

(S−2)
k

(
ω; a

(S−2)
k

)
. . . ψ

(1)
k

(
ω; a

(1)
k

)
(4.6)
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where

ψ
(j)
k (ω; a

(j)
k ) =

A
(j)
k−1(ω; a

(j)
k ) B(j)

k−1(ω; a
(j)
k )

C(j)k−1(ω; a
(j)
k ) A(j)

k−1(ω; a
(j)
k )

 , j = 1, . . . , S . (4.7)

The matrix elements in (4.7) are given by

A(j)
k (ω; a

(j)
k , ljk) = cosh

(
σ(ω) l

(j)
k

c

)

B(j)
k−1(ω; a

(j)
k , ljk) = −ρ c γ(ω)

a
(j)
k

sinh

(
σ(ω) l

j)
k

c

)

C(j)k (ω; a
(j)
k , l

(j)
k ) = − a

(j)
k

ρ c γ(ω)
sinh

(
σ(ω)l

(j)
k

c

)
(4.8)

where ρ and c are the density of air and the speed of sound in the air, respectively,

and the frequency parameters γ(ω), and σ(ω) are evaluated based on [32], and ZL is

a load impedance as calculated in [45].

Lastly, the (Q×Q) covariance matrix in (4.3), where Q= (4+N +S+M) is given

by

Ck = diag
(

Σθk , Σgk , Σak , Σvk

)
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where

Σθk =
{
σ2
k;θ1

, . . . , σ2
k;θ4

}
Σgk =

{
σ2
k;g1

, . . . , σ2
k;gN

}
Σak =

{
σ2
k;a1

, . . . , σ2
k;aS

}
Σvk =

{
σ2
k;v1

, . . . , σ2
k;vM

}
.

Note that the state parameter xk in (4.3) is an (1×Q) row vector.

4.1.2 State Transition Equation

The state transition equation in (4.1) must provide a relationship between the

unknown state parameter vector xk at time step k and its value xk−1 at the previous

time step (k − 1). This equation is needed in order to predict the unknown state

vector xk using its previously estimated value, before using the given measurement

at time k to update the estimated xk. The random process wk in (4.1) models a

transition modeling error; it becomes important when the transition model used is

empirically based and not based on any available physical models.

For the estimation of the glottal source and VT parameters, the transition equa-

tion depends on the unknown function fk(xk) in Equation (4.1). We can make certain

assumptions based on the models used. For example, we can use the fact that for

voiced sounds, it has been shown that formants vary slowly with time [19]. So, vocal

tract behavior in the vector ak can be modeled as a first order Markov chain

ak = ak−1 + w
(a)
k−1 .
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However, this slow variation in ak does not necessarily imply a slow variation in the

VT impulse response or VT transfer function in Equation (4.5). The state transition

equation for the VT impulse response,

vk(ak) = fv
k−1(vk−1, ak−1) + w

(v)
k−1 ,

could affect the estimation results based on the choice of the transition function;

possible choices include fv
k−1(vk−1, ak−1) =vk−1(ak) or fv

k−1(vk−1,vk−1) =vk−1(vk−1).

Other possibilities may affect, for example, how the chain matrix is formed in (4.6)

when transitioning from time step (k−1) to time step k. Similar problems could arise

for the LF glottal source model. For this thesis, and without testing for accuracy, we

assumed the following transition equation

[
θk gk(θk) ak vk(ak) Ck

]
=
[
θk−1 gk−1(θk−1) ak−1 vk−1(ak−1) Ck−1

]
+
[
w

(θ)
k−1 w

(a)
k−1 w

(g)
k−1 w

(v)
k−1 w

(C)
k−1

]
.

Note that the glottal source undergoes variations due to the changing physical

surroundings such as temperature, pressure, humidity etc. These variations along

with physiological variations from muscle fatigue and perceptual language modifica-

tions affect an ideal glottal source [14]. It was seen in [19] that when a glottal source

is considered stochastic, it improves the estimation of inverse filtering. Considering

gk to be stochastic is realistic as glottis is not always ideal.

In this thesis, the VT model articulatory geometry length is considered constant,

l
(j)
k = 0.37 cm, in (4.8). It may be of interest to increase dimension of vector ak

to obtain higher resolution geometrical description. However, doing so results in

additional complexity and cascade estimation errors. It is of further interest to note
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that the vocal tract is a contiguous tube and any biological shrinking/elongation

influences another length/section of the VT. It is possible to obtain perceptually

similar speech even if we consider length and areas to be uncorrelated and ignore

any coupling between them [45]. Hence, under this assumption of independence, we

design the articulatory vector ak.

4.2 Time Varying Observation Model

As described in Chapter 2, a vowel is produced upon convolving the response of the

VT and glottal input. This can be viewed as a blind decomposition/deconvolution

problem [58]. There are numerous developed methods to separate these signals based

on a stationary concept [58], [25], [19]. However, it is advantageous to express speech

as a time-varying signal. This time-varying nature resembles speech production,

where VT and glottis are coupled temporally [14]. A speech utterance can be written

as follows:

yk =
N−1∑
m=0

v[n; k]g[n−m; k] (4.9)

where a shortened VT impulse response vk(ak−1) ∈ RM is chosen at time k equal to

gk, given by:

vk(ak−1) = [v[0; k] v[1; k] . . . v[M ; k]]T (4.10)

The LF glottal input gk(θk−1) ∈ RM is mirrored after being obtained from xk and is

given as

gk(θk−1) = [g[M − 1; k], . . . , g[0; k]]T (4.11)
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where M is the fundamental pitch period which may be calculated using any pitch

calculation technique [59, 60]. We use RAPT for due to its time domain pitch calcu-

lations [61].

We denote (4.9) as hk(xk), a function of states xk. In a state-space representation

this is simply given by:

yk = hk(xk) + ηk (4.12)

that is perturbed by AWGN noise source ηk ∼ N (0, σ2
y) with variance σ2

y, and xk is

parameter-state vector of glottal input and VT. Under this state-space framework,

one may use numerous state-estimation methods to solve for posterior states.

4.3 Boostrap Particle Filter

Sampling Importance Resampling particle filter requires the ability to evaluate and

draw particles from a proposal distribution p(xk). An optimal choice optimal choice

that minimizes particle weight variance is p(xk|xk−1,yk). However, this is difficult

to obtain and instead an alternative is to set importance density as prior density

p(xk|xk−1). The importance weight then reduces to

w
(i)
k = w

(i)
k−1p(y

(i)
k |x

(i)
k ) (4.13)

By resampling the particles at every iteration, the particle weights are forced to be

equal.

w
(i)
k = p(y

(i)
k |x

(i)
k ) (4.14)
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which can be derived explicitly from the observation likelihood p(yk|x(i)
k ). Drawing

from the prior distribution is then a matter of propagating the previous estimate

xp,k−1 from each particle through the state evolution model (??). In this process, the

propagation of each particle state includes a sampled realization of the process noise

for all of the random variables in the model equations. The resulting distribution of

particle states is then a discrete approximation to p(xk|xk−1). The complete bootstrap

particle filter algorithm is summarized in algorithm 2.

The bootstrap particle filter provides an estimator for the system and works well

provided sufficient particles are used. However, the required number of particles grows

exponentially with the number of dimensions in the estimated state.

4.4 Biomechanical constraints

The recovered data is unconstrained and hence may obtain unrealistic estimates of

area function and glottal voicing thresholds. Acoustic theory by Fant [31], describes

temporal change in area function to be minimized, since muscles move very slowly.

Similarly, a rapid change in geometry of a concatenated tube is unrealistic so the

sectional change should be smooth. To accommodate this we impose

κa ≤ |aik − ai−1k | ≤ κb (4.15)

where 2 ≤ i ≤ S, are S VT sections. A similar expression may be formed for VT

length l. Empirical observation through MRI suggests a maximum threshold for area

physically possible to achieve [62]. We hence impose this physical limit as a biological

constraint (typically maximum articulatory area ≈ 14cm2).
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Algorithm 2: Bootstrap Particle Filtering

1 begin

2 // Initialize

3 forall particles p = 1, . . . Np do

4 Draw xp,0 ∼ π(xk) from an initial prior distribution

5 end

6 for k ← 1, . . . N − 1 do

7 forall particles p = 1, . . . Np do

8 // Correct

9 wp ← N (hk(xp), σ
2
s,p);

10 end

11 wp ← wp{Σpwp}−1; // Normalize

12 x̂k ← Σpwpxp; // Estimate

13 xp ← R(wp,xp); // Resample

14 forall particles p = 1, . . . Np do

15 //Predict

16 //Sample xp,k ∼ p(xk|xp,k−1)

17 Propagate xp = f(xp, ek)

18 end

19 end

20 end

Evidence of potential and kinetic energy change during onset and offset of vowels

also suggest minimization of temporal energy, consequently temporal area in VT [29].
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The resulting constraint Cνk is:

Cνk = ‖ak − ak−1‖22 (4.16)

If ak−1 = arest, rest configuration of the vocal tract we instead minimize potential

energy [31]. This is applicable when VT dynamics are constant or negligible. We

define constraint CTk as:

CTk =
δCνk
δak
Cνk (4.17)

where,

δCνk
δak

=


2∆ak, k = 0

2 [∆ak −∆ak−1] , 2 ≤ k ≤ N − 2

2∆ak, k = N − 1

(4.18)

Equations (4.15), (4.16), and (4.17) impose constraints on articulatory geometry. We

may consider combined contribution from energy constraints as:

κc ≤ cpotCTk + ckinCνk+ ≤ κd (4.19)

cin and cpot are empirically chosen parameters such that cpot + ckin < 1. A final con-

straint is imposed on glottal parameters as described Equations (??) - (??). Together

these form a set of constraints

εLB ≤ Υ(xk) ≤ εUB (4.20)
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where ε determines upper and lower bound of constraints. One possible way to impose

these constraints is projection of the unconstrained density onto a constraint set. A

widely used alternative is constrained sequential Monte Carlo by acceptance/rejection

approach [63]. The acceptance/rejection process does not make any assumption on

distributions and therefor maintains generic properties of the particle filter. However,

due rejection the number of samples will be reduced, the resulting conditional mean

distribution comes from a truncated set of particles, this effectively lowers accuracy

if there are insufficient number of particles. An extreme example is when all particles

violate the constraints and algorithm fails. One way to overcome this issue is by initi-

ating high number of particles Np. This is a brute force approach and results in high

complexity. The rejection also reduces support on proposal distribution generates

a truncated distribution, a truncated Gaussian in our case. However, an elaborate

proof of convergence is shown in [64]. Algorithm 3 shows a bootstrap particle filter

with constraints and acceptance/rejection approach.
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Algorithm 3: Bootstrap Particle Filtering with Constraints

1 begin

2 // Initialize

3 forall particles p = 1, . . . Np do

4 Draw xp,0 ∼ π(xk) from an initial prior distribution

5 if violates εLB ≤ Υ(xk) ≤ εUB then

6 // Reject particle

7 // Resample rejected particle from π(x0)

8 else

9 // Continue

10 end

11 end

12 for k ← 1, . . . N − 1 do

13 forall particles p = 1, . . . Np do

14 // Correct

15 wp ← N (hk(xp), σ
2
s,p);

16 end

17 wp ← wp{Σpwp}−1; // Normalize

18 x̂k ← Σpwpxp; // Estimate

19 xp ← R(wp,xp); // Resample

20 if violates εLB ≤ Υ(xp,k) ≤ εUB then

21 // Reject particle

22 else

23 Propagate xp = f(xp, ek+1)

24 end

25 forall particles p = 1, . . . Np do

26 //Predict

27 //Sample xp,k+1 ∼ p(xk+1|xp,k)

28 // Resample rejected particles from π(xk|k−1)

29 end

30 end

31 end
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4.5 Computational Complexity

The asymptotic computational complexity of the proposed estimator is dominated

by the following factors. First is calculation of weight updates in bootstrap particle

filter for each particle. This involves estimating posterior from 2M + 88-dimensional

multivariate Gaussian. To obtain frequency response Vk(ω; ak) given size of CM

ψ(ω; ak) as 2 × 2 and S = 44, is O(Nω × 22 × (S − 1)). The complexity of inverse

Fourier of Vk(ω; ak) is O(Nω log(Nω)), for this thesis Nω = Fs. The estimation of

glottal input is O(M). The calculations above must be completed for every particle,

hence total complexity is:

O(Np(M +Nw × (S − 1)× 22 +Nω logNω))) (4.21)

The number of particles in the preceding equation can be approximately expressed

in terms of the other dimensions of the problem, sampling rate and pitch (M = N0).

Depending on target constraints this could require parallel processing for Np particles.

In this study, a GPU NVIDIA GTX 1070 with Max-Q design is used.
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Chapter 5

RESULTS

For synthesized glottal flows, the Normalized Amplitude Quotient(NAQ) was esti-

mated for each cycle. In order to compare the NAQ values of the original and the

estimated glottal flows.

NAQk =
E0k

Eek · T0
(5.1)

NAQ scored obtained through mngu0 corpus [2] are considered to be true values and

an error metric is calculated using

NAQerror;k =
1

k

k∑
1

‖NAQref ;k −NAQestimated;k‖22
NAQref ;k

(5.2)

these are shown in Table 5.1 as percentages and compared against [17], IAIF method

[22], conventional LP method [3], SSIF [19] and QCP [27].

After obtaining a VT response, we looking at the conventional LP method to

validate peaks for our estimates as depicted in Table 5.3

eFi;k
= 100

√√√√ 1

N

N∑
n=1

(
F̂i;k − Fi;k

Fi;k

)2

(5.3)

where Fi;k is the ith formant at time k.

Lastly, we have H1H2 index which are the difference between the first harmonic
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Table 5.1: NAQ Error for glottal input
NAQ 100 Hz 200 Hz 300 Hz

IAIF 60.2 76.9 81.2
SSIF 59.3 70.2 70.3
QCP 42.2 55.2 80.2

BSSAR 30.8 24.4 30.7

Table 5.2: H1H2 Error for glottal input
H1-H2 100 Hz 200 Hz 300 Hz

IAIF 1.3 43.4 50.9
SSIF 0.3 35.4 14.9
QCP 0.15 25.6 10.8

BSSAR 0.1 8.2 2.9

and second harmonics of glottis

H1 −H2 = −6 + 0.27 · exp(5.5OQ) (5.4)

with OQ as open quotient of recovered glottal pulse. An error metric is computed as

eH1−H2;k =
k∑
p=1

|H1H2ref ;k −H1H2estimate;k
| (5.5)

Table 5.3: Vocal tract formant (root-mean square error) RMSE error
/i/ /a/ /u/

F1 F2 F3 F1 F2 F3 F1 F2 F3

SSIF 0.39 0.5 0.72 0.42 0.61 0.77 0.67 0.75 0.99
IAIF 0.31 1.54 0.68 0.39 0.95 0.45 1.23 0.97 0.88
QCP 5.62 2.0 0.48 3.55 2.42 0.78 2.58 1.51 0.91
BSSAR 0.22 0.15 0.41 0.15 0.29 0.13 0.19 0.17 0.1
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(a)

(b)
Figure 5.1: Speech Waveform is shown in (a) with F0 = 198Hz, (b) shows the
recovered glottal waveform

Table 5.4: MSE for raw speech output
/i/ /a/ /u/

MSE 0.13 0.15 0.12
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Figure 5.2: The Vocal tract estimate and the true spectrum of speech signal for the
vowel /e/

Figure 5.3: The recovered area function of the vowel /e/
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Chapter 6

CONCLUSIONS

The chosen framework proves reliable and is able to decompose speech better than

previous quasi-stationary methods. Computational complexity is a concern, as the

pitch decreases and dimension of the state vector grows. To handle this better, one

possible solution is to isolate the state-parameter augmentation and solve parameters

to be independent of state estimation. This however, leads to poor performance when

matching of signals is concerned. Future work will target reducing the time required

for decomposition and finding alternative ways to impose constraints on particle filter.

The general state space model can be extended for fricatives, consonants and stop

explosives using [9]. This would allow a time varying recovery of non-nasalized vowels

to help decoding all parts of speech.
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