242 research outputs found

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    Low-voltage tunable pseudo-differential transconductor with high linearity

    Get PDF
    A novel tunable transconductor is presented. Input transistors operate in the triode region to achieve programmable voltage-to-current conversion. These transistors are kept in the triode region by a novel negative feedback loop which features simplicity, low voltage requirements, and high output resistance. A linearity analysis is carried out which demonstrates how the proposed transconductance tuning scheme leads to high linearity in a wide transconductance range. Measurement results for a 0.5 μm CMOS implementation of the transconductor show a transconductance tuning range of more than a decade (15 μA/V to 165 μA/V) and a total harmonic distortion of −67 dB at 1 MHz for an input of 1 Vpp and a supply voltage of 1.8 V

    A tunable floating-gate CMOS transconductor based on current multiplication

    Get PDF
    In this paper a novel transconductor based on floating gate techniques that performs current multiplication for tuning is presented. The multiplication is achieved using transistors operating in weak and moderate inversion together with floating voltage sources implemented conveniently by floating capacitors. Besides, a tuning scheme is proposed to set the transconductance parameter accurately. The resulting circuit features compactness, low voltage operation, and rail-to-rail input range. Measurement and simulation results using a 0.5um CMOS technology are presented to confirm all the circuits and strategies proposed

    Power and area efficient MOSFET-C filter for very low frequency applications

    Get PDF
    New circuit design techniques for implementing very high-valued resistors are presented, significantly improving power and area efficiency of analog front-end signal processing in ultra-low power biomedical systems. Ranging in value from few hundreds of \hbox{M}\Upomega to few hundreds of \hbox{G}\Upomega , the proposed floating resistors occupy a very small area, and produce accurately tunable characteristics. Using this approach, a low-pass MOSFET-C filter with tunable cutoff frequency (f C =20Hz-184kHz) has been implemented in a conventional 0.18μm CMOS technology. Occupying 0.045mm2/pole, the power consumption of this filter is 540 pW/Hz/pole with a measured IMFDR of 70 d

    Power-efficient current-mode analog circuits for highly integrated ultra low power wireless transceivers

    Get PDF
    In this thesis, current-mode low-voltage and low-power techniques have been applied to implement novel analog circuits for zero-IF receiver backend design, focusing on amplification, filtering and detection stages. The structure of the thesis follows a bottom-up scheme: basic techniques at device level for low voltage low power operation are proposed in the first place, followed by novel circuit topologies at cell level, and finally the achievement of new designs at system level. At device level the main contribution of this work is the employment of Floating-Gate (FG) and Quasi-Floating-Gate (QFG) transistors in order to reduce the power consumption. New current-mode basic topologies are proposed at cell level: current mirrors and current conveyors. Different topologies for low-power or high performance operation are shown, being these circuits the base for the system level designs. At system level, novel current-mode amplification, filtering and detection stages using the former mentioned basic cells are proposed. The presented current-mode filter makes use of companding techniques to achieve high dynamic range and very low power consumption with for a very wide tuning range. The amplification stage avoids gain bandwidth product achieving a constant bandwidth for different gain configurations using a non-linear active feedback network, which also makes possible to tune the bandwidth. Finally, the proposed current zero-crossing detector represents a very power efficient mixed signal detector for phase modulations. All these designs contribute to the design of very low power compact Zero-IF wireless receivers. The proposed circuits have been fabricated using a 0.5μm double-poly n-well CMOS technology, and the corresponding measurement results are provided and analyzed to validate their operation. On top of that, theoretical analysis has been done to fully explore the potential of the resulting circuits and systems in the scenario of low-power low-voltage applications.Programa Oficial de Doctorado en Tecnologías de las Comunicaciones (RD 1393/2007)Komunikazioen Teknologietako Doktoretza Programa Ofiziala (ED 1393/2007

    Current-mode piecewise-linear function generators

    Get PDF
    We present a systematic design technique for current-mode piecewise-linear (PWL) function generators. It uses two building blocks: a high-resolution current rectifier, and a programmable current amplifier. We show how to arrange these blocks to obtain basic non-linearities from which generic characteristics are built through aggregations. Measurements from a 1.0 /spl mu/m CMOS prototype chip show 10 pA resolution in the rectification operation and 0.6% non-linearity errors in the programmable scaling operation for 2 /spl mu/A input current range

    Technology aware circuit design for smart sensors on plastic foils

    Get PDF
    corecore