25,683 research outputs found

    Analyzing AIA flare observations using convolutional neural networks

    Get PDF
    TL acknowledges support by the UK's Science and Technology Facilities Council (STFC) Doctoral Training Centre Grant ST/P006809/1 (ScotDIST). TN and CP both acknowledge support by the STFC Consolidated Grant ST/S000402/1.In order to efficiently analyse the vast amount of data generated by solar space missions and ground-based instruments, modern machine learning techniques such as decision trees, support vector machines (SVMs) and neural networks can be very useful. In this paper we present initial results from using a convolutional neural network (CNN) to analyse observations from the Atmospheric Imaging Assembly (AIA) in the 1,600Ã… wavelength. The data is pre-processed to locate flaring regions where flare ribbons are visible in the observations. The CNN is created and trained to automatically analyse the shape and position of the flare ribbons, by identifying whether each image belongs into one of four classes: two-ribbon flare, compact/circular ribbon flare, limb flare, or quiet Sun, with the final class acting as a control for any data included in the training or test sets where flaring regions are not present. The network created can classify flare ribbon observations into any of the four classes with a final accuracy of 94%. Initial results show that most of the images are correctly classified with the compact flare class being the only class where accuracy drops below 90% and some observations are wrongly classified as belonging to the limb class.Publisher PDFPeer reviewe

    Compact Deep Neural Networks for Computationally Efficient Gesture Classification From Electromyography Signals

    Get PDF
    Machine learning classifiers using surface electromyography are important for human-machine interfacing and device control. Conventional classifiers such as support vector machines (SVMs) use manually extracted features based on e.g. wavelets. These features tend to be fixed and non-person specific, which is a key limitation due to high person-to-person variability of myography signals. Deep neural networks, by contrast, can automatically extract person specific features - an important advantage. However, deep neural networks typically have the drawback of large numbers of parameters, requiring large training data sets and powerful hardware not suited to embedded systems. This paper solves these problems by introducing a compact deep neural network architecture that is much smaller than existing counterparts. The performance of the compact deep net is benchmarked against an SVM and compared to other contemporary architectures across 10 human subjects, comparing Myo and Delsys Trigno electrode sets. The accuracy of the compact deep net was found to be 84.2 +/- 0.06% versus 70.5 +/- 0.07% for the SVM on the Myo, and 80.3+/- 0.07% versus 67.8 +/- 0.09% for the Delsys system, demonstrating the superior effectiveness of the proposed compact network, which had just 5,889 parameters - orders of magnitude less than some contemporary alternatives in this domain while maintaining better performance

    Deep SimNets

    Full text link
    We present a deep layered architecture that generalizes convolutional neural networks (ConvNets). The architecture, called SimNets, is driven by two operators: (i) a similarity function that generalizes inner-product, and (ii) a log-mean-exp function called MEX that generalizes maximum and average. The two operators applied in succession give rise to a standard neuron but in "feature space". The feature spaces realized by SimNets depend on the choice of the similarity operator. The simplest setting, which corresponds to a convolution, realizes the feature space of the Exponential kernel, while other settings realize feature spaces of more powerful kernels (Generalized Gaussian, which includes as special cases RBF and Laplacian), or even dynamically learned feature spaces (Generalized Multiple Kernel Learning). As a result, the SimNet contains a higher abstraction level compared to a traditional ConvNet. We argue that enhanced expressiveness is important when the networks are small due to run-time constraints (such as those imposed by mobile applications). Empirical evaluation validates the superior expressiveness of SimNets, showing a significant gain in accuracy over ConvNets when computational resources at run-time are limited. We also show that in large-scale settings, where computational complexity is less of a concern, the additional capacity of SimNets can be controlled with proper regularization, yielding accuracies comparable to state of the art ConvNets

    Support vector machine for functional data classification

    Get PDF
    In many applications, input data are sampled functions taking their values in infinite dimensional spaces rather than standard vectors. This fact has complex consequences on data analysis algorithms that motivate modifications of them. In fact most of the traditional data analysis tools for regression, classification and clustering have been adapted to functional inputs under the general name of functional Data Analysis (FDA). In this paper, we investigate the use of Support Vector Machines (SVMs) for functional data analysis and we focus on the problem of curves discrimination. SVMs are large margin classifier tools based on implicit non linear mappings of the considered data into high dimensional spaces thanks to kernels. We show how to define simple kernels that take into account the unctional nature of the data and lead to consistent classification. Experiments conducted on real world data emphasize the benefit of taking into account some functional aspects of the problems.Comment: 13 page
    • …
    corecore