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Analyzing AIA Flare Observations
Using Convolutional Neural Networks
Teri Love*, Thomas Neukirch and Clare E. Parnell

School of Mathematics and Statistics, University of St Andrews, St. Andrews, United Kingdom

In order to efficiently analyse the vast amount of data generated by solar space missions

and ground-based instruments, modern machine learning techniques such as decision

trees, support vector machines (SVMs) and neural networks can be very useful. In

this paper we present initial results from using a convolutional neural network (CNN)

to analyse observations from the Atmospheric Imaging Assembly (AIA) in the 1,600Å

wavelength. The data is pre-processed to locate flaring regions where flare ribbons are

visible in the observations. The CNN is created and trained to automatically analyse the

shape and position of the flare ribbons, by identifying whether each image belongs into

one of four classes: two-ribbon flare, compact/circular ribbon flare, limb flare, or quiet

Sun, with the final class acting as a control for any data included in the training or test

sets where flaring regions are not present. The network created can classify flare ribbon

observations into any of the four classes with a final accuracy of 94%. Initial results show

that most of the images are correctly classified with the compact flare class being the only

class where accuracy drops below 90% and some observations are wrongly classified

as belonging to the limb class.

Keywords: solar flares, ribbons, machine learning, classification, CNNs

1. INTRODUCTION

The steady improvement of technology and instrumentation applied to solar observations has led
to the generation of vast amounts of data, for example the Solar Dynamics Observatory (SDO)
collects approximately 1.5 terabytes of data everyday (Pesnell et al., 2012). The analysis of these data
products can be made much more efficient by the use of modern machine learning techniques such
as decision trees, support vector machines (SVMs) and neural networks. In this paper we describe
some initial results we obtain using a convolutional neural network (CNN) to analyse SDO data.
Basic applications of CNNs to solar physics data classification is shown in e.g., Kucuk et al., 2017;
Armstrong and Fletcher, 2019, however CNNs have also started being applied to the prediction of
solar events, in particular flares and CMEs, that can affect space weather as considered, for example,
by Bobra and Couvidat (2015), Nagem et al. (2018), and Fang et al. (2019).

In this paper we focus on solar flares and in particular on the classification of the morphology
of flares displaying visible flare ribbons (e.g., Kurokawa, 1989; Fletcher and Hudson, 2001).
Throughout this paper, flare observations from the Atmospheric Imaging Assembly (AIA) Lemen
et al. (2012) onboard SDO were used, specifically AIA 1,600Å. These observations clearly show the
flare ribbons as they appear on the solar surface.

The locations and shapes of flare ribbons are thought to be closely linked to the geometry and
topology of the solarmagnetic field in the flaring region. For example, the ribbon shapes and lengths
have been connected to the presence of separatrix surfaces and quasi-separatrix layers (QSLs) (e.g.,
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Aulanier et al., 2000; Savcheva et al., 2015; Janvier et al., 2016;
Hou et al., 2019). The ribbon shapes found and analyzed
throughout these studies are mostly two-ribbon flares with two
“J” shaped ribbons, however it is known that other ribbon shapes
can also occur with circular or compact flare ribbons also being
observed. One motivation of the work presented in this paper is
to create a tool that allows the classification of large data sets to
generate a catalog of flares associated with their ribbons, which
could automatically be detected and classified. The catalog could
then, for example, be used in connection with magnetic field
models to obtain better statistics on the possible correlation of
ribbon geometry and magnetic field structure.

This paper considers all C, M, and X class flares (see e.g.,
Fletcher et al., 2011, for a definition of GOES classes) that
occurred between November 2012 and December 2014 and
attempts to classify the shape of all observable flare ribbons. To
do this a CNN consisting of two hidden layers was created and
trained to predict four classes of ribbons and flares. These four
classes are two-ribbon flares, limb flares and circular/compact
ribbon flares, with the fourth class acting as a control class to
process quiet Sun images that may also be processed through
the CNN. The network was trained on a dataset containing 540
images (including validation images), and was tested using an
unseen dataset containing 430 images.

The paper is structured as follows. In section 2, we describe the
design and training of our CNN. The preparation of the data used
in the paper is discussed in section 3, our results are presented
in section 4 and we conclude with a discussion of our findings
in section 5.

2. METHODS

Convolutional neural networks (CNNs) are a type of machine
learning technique commonly used to find patterns in data and
classify them. Instead of being given explicit instructions or
mathematical functions to work they use patterns and trends in
the data, initially found through a “training data” set. This data
set should be the set of inputs for the CNN—usually a subset of
the data that one would initially want to classify or detect. This
allows the network to “learn” the patterns and trends such that it
can independently classify unknown data.

2.1. CNN Design
To create a basic CNN there must be at least 3 layers; an input
layer, a hidden layer and an output layer (e.g., Cun et al., 1990;
Hinton et al., 2012; LeCun et al., 2015; Szegedy et al., 2015;
Krizhevsky et al., 2017). The input layer is the first initial network
layer which accesses the data arrays inputted into the model
which are to be trained upon. The data input has usually been
through some pre-processing before being used by the network,
the pre-processing used on the AIA data is discussed in section 3.

The hidden layer is a convolutional layer where instead of
applying a layer using matrix multiplication, as in general neural
networks, a layer using a mathematical convolution is used
instead. Although this is the basic set-up for a CNN, most CNNs
have multiple hidden layers before having a fully connected
output layer. The different types of hidden layers that can be used

are: convolutional, pooling, dropout (Hinton et al., 2012) and
fully connected layers. The final output layers are usually built
from fully connected (dense) layers. These layers take the output
from the hidden layers and process it such that for each data file
a pre-defined class is predicted by the network.

A convolutional layer performs an image convolution of the
original image data using a kernel to produce a feature map.
These kernels can be any size but are commonly chosen to be
of size 3 × 3. The stride of the kernel can also be set in the
convolutional layers indicating how many pixels it should skip
before applying the kernel to the input—this has been set as 1 for
the CNN here such that the kernel has been applied to every pixel
in the input. If larger features were to be classified larger strides
could be used.

The kernel moves over every point in the input data,
producing a single value for each 3 × 3 region by summing the
result of a matrix multiplication. The value produced is then
placed into a feature map which is passed onto the next layer.
As the size of the feature map will be smaller than the input, the
feature map is padded with zeros to ensure the resulting data
is the same size as the original input. After the feature map is
produced the convolutional layer has an associated activation
function which produces non-linear outputs for each layer and
determines what signal will be passed onto the next layer in
the network. A common activation function used is the rectified
linear unit (ReLU, Nair and Hinton, 2010), which is defined by;

f (x) = max(0, x). (1)

Other activation functions such as linear, exponential or softmax
(see Equation 3) can also be implemented, however for the
convolutional layers in our model only ReLU is used, as the
function can be calculated and updated quickly with gradients
remaining high (close to 1), with ReLU also avoiding the
vanishing gradient problem.

Although convolutional layers make up the majority of the
hidden layers within a CNN, other hidden layers are also
important to avoid over-training of the network. Implemented
after convolutional layers, pooling layers are commonly used
to deal with this. Pooling layers help to reduce over-fitting of
data and reduce the number of parameters produced throughout
training—which causes the CNN to learn faster. The most
common type of pooling is max pooling which takes the
maximum value in each window and places them in a new and
smaller feature map. The window size for the max pooling layers
can be varied similarly to the convolutional kernels, however
throughout this paper all max pooling layers had a kernel of size
2 × 2. Although the feature map size is being reduced, the max
pooling layers will keep the most important data and pass it onto
the next training steps.

For the CNN created to analyse the flare ribbons, two
convolutional layers were implemented after the input layer.
These layers were both followed by max-pooling layers with a
stride of 2. Both layers were implemented using ReLU activation
functions, however the first convolutional layer had 32 nodes
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FIGURE 1 | Layout of CNN created, including two convolutional and max pooling layers and two fully connected layers. The first convolutional layer has 32 channels

followed by max pooling layer and the second convolutional layer has 64 channels followed by a max pooling layer. The fully connected layer has 128 nodes and then

the final fully connected layer has four nodes which correspond to each of the classes—Quiet Sun, two-ribbon flares, limb flares, and circular/compact flares.

TABLE 1 | Details pf each CNN layer with the number of filters, size of kernels, and activation functions used shown.

Layer Number of nodes Kernel size (weights) Stride Activation function

Convolution 32 3× 3 1 ReLU

Max Pooling / 2× 2 2 /

Convolution 64 3× 3 1 ReLU

Max Pooling / 2× 2 2 /

Fully Connected 128 61 ∗ 61 ∗ 64× 128 / ReLU

Fully Connected (Output) 4 128× 4 / Softmax

whereas the second layer was implemented with 64 nodes before
being passed onto fully connected layers.

Once the convolutional and pooling layers have been
implemented as hidden layers, the final feature map output is
passed onto output layers which allows the data to be classified.
These classification layers are made up of fully connected (FC)
layers—similar to those in a normal neural network. FC layers
only accept one-dimensional data and so the data must be
flattened before being passed into them. The neurons in the FC
layers have access to all activations in previous layers—this allows
them to classify the inputs. The final fully connected layer should
have the number of classes as its units, with each output node
representing a class.

An additional output layer that can be implemented before a
FC layer is a dropout layer. This layer is implemented before a FC
layer to indicate that random neurons should be ignored in the
next layer i.e., they have dropped out of the training algorithm
for the current propagation. Hence if a FC layer is indicated to
have 10 neurons, a random set of these will be ignored when
training (see e.g., Hinton et al., 2012, for further information on
dropout layers).

The CNN was created and trained using Keras Chollet et al.
(2015), with the network layout shown in Figure 1. This shows

the two convolutional and pooling layers previously discussed,
with a dropout layer implemented before the data is passed onto
two FC layers, with 128 and 4 nodes, respectively. A breakdown
of all parameters used in each layer are shown in Table 1.

2.2. Model Training
The previous section described the basic design of the CNN used
throughout this paper. Here we will describe the training process
carried out on the model.

When data is passed through the network, at each layer a
loss function is used to update the model weights. This loss
function carries out the process known as back-propagation
(Hecht-Nielson, 1989), where differentiation takes place and the
network learns the optimal classifications for each training image.
The loss function chosen for our model is known as categorical
cross entropy. This cross entropy loss is calculated as follows;

CEP = −

M∑

c=1

y(xi)log(p(xi)), (2)

whereM is the number of classes (hereM = 4) and y is the binary
indicator (0 or 1) such that if y = 1 the observation belongs to the

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 3 June 2020 | Volume 7 | Article 34

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Love et al. Analyzing Flare Observations Using CNNs

class and y = 0 if it does not. Finally p is the probability that the
observation belongs to a class, c.

The probability, p(xi), of each class is calculated using a
softmax distribution such that;

p(xi) =
exi∑
k e

xi
. (3)

This function should tend toward 1 if an observation belongs to
a single class and tends to 0 for the other 3 classes to indicate that
the network does not recognize it as belonging to those classes.
The resultant classification is selected by choosing the largest
probability that lies above p(xi) = 0.5.

The network is trained on 540 1,600Å AIA images. The
data processing is discussed in section 3, with each image used
containing a single flare, unless it belongs to the quiet Sun class.
The four classes are as follows:

1. Quiet Sun

No brightenings present on the surface, hence should give
an indication of general background values (It should be noted
that none of these observations are taken on the limb).

2. Two-ribbon Flare

Two flare ribbons must be clearly defined in the
observations. However, the shape does not matter here e.g.,
if there are 2 semi circular ribbons the flare is classified as a
two-ribbon flare and not a circular flare.

3. Limb Flares

The solar limb must be clearly observed in this snapshot
observation with a flare brightening being visible. The limb
class was chosen to start at a specific distance from the solar
limb to reduce confusion with other classes. This will be
discussed further in section 4.

4. Circular Flare Ribbons
Here a circular ribbon shape of any size must be observed.

It should be ideally a singular ribbon so as not to be
confused with the two-ribbon flare class. Compact flares were
also included here, they appear in the data as round “dot”
like shapes.

Classes were divided almost evenly to stop observational bias
from entering the model during training and although there is a
slight class imbalance it is not large enough to affect the accuracy
of the model. From the training set used, 40% of the data was
used as a validation data set with the remaining 60% used to train
the model. The learning rate chosen was 10−4 with a batch size
of 32 selected for both training and validation to allow the use
of mini-batch gradient descent throughout training. Although
larger batch sizes would speed up the training process, to get
better generalization of the model a smaller batch size was picked
to improve the model accuracy.

Figure 2 shows the results from training and testing the
model. Figures 2A,B show the results from training, with the
training and validation accuracy plotted in Figure 2A. It is
shown that the network was trained only for 10 epochs to
prevent over-fitting. The training accuracy was 98% and the
validation accuracy was slightly lower at 94%, these are excellent
accuracies for the number of epochs used. Figure 2B shows the

training and validation loss for the same number of epochs.
Both losses fall quite sharply and then start to level off, these
could be improved with a larger data set which could be
run for more epochs. The loss leveling out indicates that
training should be stopped to prevent over-fitting and further
improvements can be made from creating larger data sets. To
further validate the training process and its outputs, k-fold
cross validation was implemented, similar to that implemented
by Bobra and Couvidat (2015). The loss and accuracy values
from five-fold cross validation are shown in Figure 2E, with
the mean accuracy across the five-folds being approximately
92.9 ± 2.98%.

3. DATA PREPARATION

To create a neural network that can analyse the flare ribbons
observed, a robust data set of flaring regions and their
ribbons was created. The data set must be created from
observations from the same wavelength and instrument
to ensure the CNN will not train on varying parameters
such as wavelength or smaller features that would perhaps
only be found by using a certain instrument. Due to
this the data has been collected from the AIA on board
the Solar Dynamics Observatory (SDO) at the 1,600Å
wavelength. This wavelength has been chosen as it observes
the upper photosphere and transition region allowing for a
clearer view of the flare ribbons than those observed in the
EUV wavelengths.

To find dates where flares were observed on the solar disk,
the flare ribbon database created by Kazachenko et al. (2017)
was used. From this database all flares that occurred between
November 2012 and December 2014 were included in the
training set, this included all C, M, and X class flares. To create a
training set all of the flares included must be labeled as belonging
to a class that is defined for the CNN. Flares where ribbons
were not well-defined were removed from the data set. This
resulted in a training set containing 540 image samples with 160
quiet Sun regions, 160 two-ribbon flares, 95 limb flares, and 125
circular flares.

When creating the training and test sets, flares have been
chosen such that they should clearly fall into a particular
class. To be able to classify each image the following process
was implemented.

For each flare, the observation was chosen at peak flare
time according to the Heliophysics Event Knowledgebase (HEK)
(Hurlburt et al., 2012). It should be noted that this means the
CNN does not take into account the evolution of the flare
ribbons from the start to the end of the flare, although this is
something that could possibly be included in further work. For
some observations there is more than one flare present and in
this case both regions are processed and classified separately,
although they occurred on the solar disc simultaneously.

Once the flare position has been located, a bounding box
is created around the central flare position. For each flare this
creates a bounding box of size 500× 500× 1 pixels. This step was
included to reduce the size of the data the neural network would
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FIGURE 2 | (A) Training accuracies with both validation and training accuracies shown over 10 epochs; (B) Training and validation loss shown over 10 epochs; panel

(C) shows the confusion matrix created on the test set, with the diagonal showing the correctly identified ribbon types; panel (D) shows the receiver operating

characteristic (ROC) curve which has been modified to include a curve for each class and the micro and macro average curves; panel (E) shows the results for loss

and accuracy whilst using k-fold cross validation, where k = 5.

have to process due to large data sets increasing the number of
training parameters quickly. The original AIA level 1 data files
are 4, 096 × 4, 096 × 1 in size, hence this step allows the data

input size to be drastically reduced. This code works in a similar
way to that of an object detector creating bounding boxes around
objects to be classified.
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FIGURE 3 | Model output on previously unseen images in the test set. All of the data should belong to the limb flare class, however confusion is seen between limb

flares and compact flares.

Once located each image is labeled manually according to
the classes previously discussed; the quiet sun, two-ribbon flares,
circular/compact ribbon flares, or limb flares. Once one of these
has been chosen, the label is entered into an array ready for
training the CNN.

Once each image has been classified the final steps of the data
preparation is to ensure all ROIs were of a suitable size for the
CNN to process, hence the data was down-sampled so each image
was of size 250× 250× 1. Hence the final set of input data would
be of size n× 250× 250× 1, where n is the total number of ROI
samples contained within the training data.

The final step for the data preparation was to normalize the
data slightly before training, this will ensure the best results when
training the CNN and so all of the ROIs were normalized using
their z-scores as follows:

normalized =
data−mean(data)

standard deviation(data)
.

Once all of the above processes had been carried out on the
observations the CNN could begin training as discussed in
section 2.2.

4. RESULTS

Once training was completed the network was tested using a
previously unseen data set. This test set contained 430 images
consisting of 160 quiet sun images, 160 two-ribbon flares, 47 limb
flares, and 63 circular ribbon. Note that some flares included in
the test data may have occurred in the same active regions as
images included in the training data set. The test outputs are
shown using a confusion matrix and ROC curves as shown in
Figures 2C,D.

A confusion matrix is a good way to visualize model
performance on test data that has already been labeled. It
summarizes the number of correct and incorrect classifications
and shows them by plotting the predicted classes against the true
classes of the data. The confusion matrix shown in Figure 2C

indicates the percentage of data correctly classified by the
diagonal. It shows that for the quiet Sun, two-ribbons and limb
classes approximately 95% of all test data was correctly classified,
however for compact flares only 88% of the data is being
correctly classified with approximately 11% being incorrectly
classified as limb flares. This may be due to the distortion of
ribbons on the limb, making them look almost compact or
circular in shape. The 11% being incorrectly classified could
possibly be corrected by training the model further on a larger
data set.
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Figure 2D shows multiple receiver operating characteristic
(ROC) curves. A ROC curve is plotted as the true positive rate
(TPR) against the false positive rate (FPR) at various thresholds.
The area under the ROC curve (AUC) indicates the performance
of the model as a classifier. The closer to 1 the AUC is indicates
how well the model works, with 0 indicating that the model is
not classifying anything correctly. hence the further to the left
of the diagonal the ROC curve lies the better the classifier. The
ROC curves in Figure 2D show how well the model works for
each class, with high AUC values found—all approximately 99%.

To further investigate the model outputs for the limb class,
three different images from the test set were considered. Figure 3
shows these three flares and their probabilities of belonging to
each class. The first flare is clearly identified as a limb flare
with the flaring region sitting just away from the limb. For
the second flare it is shown that the model is confused, with
very little difference in the confidence that the flare is either a
compact or limb flare, both with approximately 50% probability
that the flare could belong to either class. For the final limb flare
considered, the model is almost 100% confident that the flare
belongs to the compact/circular ribbon class. This may be due
to the flare being slightly further from the limb and so instead of
picking up the limb region and the flare, the network has only
identified the flare which looks to belong to the circular ribbon
class. To rectify this problem in further work some changes to
the network and its input could be applied, this could include
the inclusion of spatial co-ordinates as one of the inputs which
could help with the confusion about which images belong to the
limb class.

5. DISCUSSION

In this paper, we have demonstrated a basic application
of CNNs to solar image data. In particular, the model
classifies the shapes of solar flare ribbons that are visible
in 1,600Å AIA observations. The four classes chosen (Quiet
Sun, two-ribbons, Limb flares, Compact/Circular ribbons)
were picked due to there being obvious differences between
each class, hence more complicated classes could have been
chosen but may have effected the overall performance of
the CNN. Each of the classes chosen when tested were all
found to be well-defined with most of the images being
correctly classified by the network, with an overall accuracy of
approximately 94%.

The network created is a shallow CNN with only two
convolutional layers, unlike deeper networks used on solar image
data (Kucuk et al., 2017; Armstrong and Fletcher, 2019). Both of
these papers tried to classify solar events such as flares, coronal
holes and sunspots, with varying instruments used. However,
even with such a shallow CNN as used here, the accuracy
of the overall model is still good at approximately 96%. Our
model currently focuses on flare ribbon data and Analyzing their
positions and shapes. This model and data could be compared
to a similar setup used to analyse the MNIST dataset containing
variations of the numbers 0 to 9 (e.g., Lecun et al., 1998).

However, to generalize the model further training could be
carried out on features such as sunspots or prominences which
can also be viewed in the current wavelength, although to do
this a deeper network would be needed to extract finer features
in the data. Varying the image wavelengths for the AIA data or
using a different instrument such as SECCHI EUVI observations
from STEREO (Solar Terrestrial Relations Observatory) or EIS
EUV observations from Hinode could also make the model
more robust.

If it was chosen to implement more layers in the
network, a CNN such as the VGG network could be
used (Simonyan and Zisserman, 2014). These networks
would take longer to train, particularly on larger data sets
containing more images and classes and would require
more epochs to properly train the network. As well as
increasing the number of convolutional layers used, other
layers or parameters could also be modified to alter the
model speed and performance. The parameters discussed
in Table 1 could all be altered to affect the model speed
and accuracy.

The main result from this paper shows that even with a
shallow CNN we can get excellent accuracy in the dataset
that we considered here. Such a result is encouraging and
shows basic CNNs can be very useful tools in analyzing large
datasets. The model created in this paper can be applied to other
data pipelines and can be used to locate many more features
from Solar observations obtained from both space and ground-
based instruments.
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