775 research outputs found

    A Combined Stochastic and Greedy Hybrid Estimation Capability for Concurrent Hybrid Models with Autonomous Mode Transitions

    Get PDF
    Robotic and embedded systems have become increasingly pervasive in applicationsranging from space probes and life support systems to robot assistants. In order to act robustly in the physical world, robotic systems must be able to detect changes in operational mode, such as faults, whose symptoms manifest themselves only in the continuous state. In such systems, the state is observed indirectly, and must therefore be estimated in a robust, memory-efficient manner from noisy observations.Probabilistic hybrid discrete/continuous models, such as Concurrent Probabilistic Hybrid Automata (CPHA) are convenient modeling tools for such systems. In CPHA, the hidden state is represented with discrete and continuous state variables that evolve probabilistically. In this paper, we present a novel method for estimating the hybrid state of CPHA that achieves robustness by balancing greedy and stochastic search. The key insight is that stochastic and greedy search methods, taken together, are often particularly effective in practice.To accomplish this, we first develop an efficient stochastic sampling approach for CPHA based on Rao-Blackwellised Particle Filtering. We then propose a strategy for mixing stochastic and greedy search. The resulting method is able to handle three particularly challenging aspects of real-world systems, namely that they 1) exhibit autonomous mode transitions, 2) consist of a large collection of concurrently operating components, and 3) are non-linear. Autonomous mode transitions, that is, discrete transitions that depend on thecontinuous state, are particularly challenging to address, since they couple the discrete and continuous state evolution tightly. In this paper we extend the class of autonomous mode transitions that can be handled to arbitrary piecewise polynomial transition distributions.We perform an empirical comparison of the greedy and stochastic approaches to hybrid estimation, and then demonstrate the robustness of the mixed method incorporated with our HME (Hybrid Mode Estimation) capability. We show that this robustness comes at only a small performance penalty

    Best-first Enumeration Based on Bounding Conflicts, and its Application to Large-scale Hybrid Estimation

    Get PDF
    With the rise of autonomous systems, there is a need for them to have high levels of robustness and safety. This robustness can be achieved through systems that are self-repairing. Underlying this is the ability to diagnose subtle failures. Likewise, online planners can generate novel responses to exceptional situations. These planners require an accurate estimate of state. Estimation methods based on hybrid discrete/continuous state models have emerged as a method of computing precise state estimates, which can be employed for either diagnosis or planning in hybrid domains. However, existing methods have difficulty scaling to systems with more than a handful of components. Discrete state estimation capabilities can scale to this level by combining best-first enumeration and conflict-directed search. Best-first methods have been developed for hybrid estimation, but the creation of conflict-directed methods has previously been elusive. While conflicts are used to learn from constraint violation, probabilistic hybrid estimation is relatively unconstrained. In this paper we present an approach to hybrid estimation that unifies best-first enumeration and conflict-directed search through the concept of "bounding" conflicts, an extension of conflicts that represent tighter bounds on the cost of regions of the search space. This paper presents a general best-first search and enumeration algorithm based on bounding conflicts (A*BC) and a hybrid estimation method based on this enumeration algorithm. Experiments show that an A*BC powered state estimator produces estimates faster than the current state of the art, particularly on large systems

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Goal-directed planning and plan recognition for the sustainable control of homes

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 89-92).The goal of this thesis is to design an autonomous control system for the sustainable control of buildings. The control system focusses on satisfying three goals to encourage and facilitate a more sustainable lifestyle for the future: sustainability, comfort, and convenience. First, the system must be sustainable, meaning it controls the home to minimize the energy required to meet the living requirements of the resident. Second, the home must also place the resident's comfort as first priority, and not sacrifice comfort for energy savings. A central challenge facing the goal of comfort is uncertainty. Uncertain weather conditions can result in violations of the resident's comfort if the control system does not explicitly consider these factors. The home must probabilistically guarantee to meet resident comfort and functional requirements even under uncertain conditions. Finally, the system must be convenient and not place undue burden on the resident. To accomplish these goals, we provide three solutions: (1) goal-directed optimal planning, which supports efficiency, (2) risk-sensitive planning, which addresses comfort, and (2) intent recognition, which supports ease of use. Goal-direction improves efficiency by specifying what energy consuming activities the users need and when, and enables peak demand to be reduced by specifying the flexibility that the user has with respect to when activities can be performed. Risk sensitive planning addresses user comfort by explicitly considering uncertain factors and planning to limit the risk of violating resident requirements. This solution uses a recently developed plan-executive called probabilistic Sulu (p-Sulu) that leverages a recent algorithm called iterative risk allocation (IRA) to robustly find an optimal control sequence for the home. The second challenge, plan recognition, accomplishes our third goal of convenience. To facilitate widespread adoption, the control system should require minimal user interaction. Plan recognition solves this problem by predicting a resident's schedule based on observations of the resident. p-Sulu can then optimally control the home according to this schedule to minimize energy use, while ensuring the house is comfortable while the resident is home, and saving energy while the resident is away. We present the concept design of a novel solution to plan recognition over timed concurrent constraint automata (TCCA) that provides the initial capabilities necessary to achieve this goal.by Wesley Graybill.M.Eng

    Centralized learning and planning : for cognitive robots operating in human domains

    Get PDF

    Energy Management

    Get PDF
    Forecasts point to a huge increase in energy demand over the next 25 years, with a direct and immediate impact on the exhaustion of fossil fuels, the increase in pollution levels and the global warming that will have significant consequences for all sectors of society. Irrespective of the likelihood of these predictions or what researchers in different scientific disciplines may believe or publicly say about how critical the energy situation may be on a world level, it is without doubt one of the great debates that has stirred up public interest in modern times. We should probably already be thinking about the design of a worldwide strategic plan for energy management across the planet. It would include measures to raise awareness, educate the different actors involved, develop policies, provide resources, prioritise actions and establish contingency plans. This process is complex and depends on political, social, economic and technological factors that are hard to take into account simultaneously. Then, before such a plan is formulated, studies such as those described in this book can serve to illustrate what Information and Communication Technologies have to offer in this sphere and, with luck, to create a reference to encourage investigators in the pursuit of new and better solutions

    Temporal Markov Decision Problems : Formalization and Resolution

    Get PDF
    This thesis addresses the question of planning under uncertainty within a time-dependent changing environment. Original motivation for this work came from the problem of building an autonomous agent able to coordinate with its uncertain environment; this environment being composed of other agents communicating their intentions or non-controllable processes for which some discrete-event model is available. We investigate several approaches for modeling continuous time-dependency in the framework of Markov Decision Processes (MDPs), leading us to a definition of Temporal Markov Decision Problems. Then our approach focuses on two separate paradigms. First, we investigate time-dependent problems as \emph{implicit-event} processes and describe them through the formalism of Time-dependent MDPs (TMDPs). We extend the existing results concerning optimality equations and present a new Value Iteration algorithm based on piecewise polynomial function representations in order to solve a more general class of TMDPs. This paves the way to a more general discussion on parametric actions in hybrid state and action spaces MDPs with continuous time. In a second time, we investigate the option of separately modeling the concurrent contributions of exogenous events. This approach of \emph{explicit-event} modeling leads to the use of Generalized Semi-Markov Decision Processes (GSMDP). We establish a link between the general framework of Discrete Events Systems Specification (DEVS) and the formalism of GSMDP, allowing us to build sound discrete-event compatible simulators. Then we introduce a simulation-based Policy Iteration approach for explicit-event Temporal Markov Decision Problems. This algorithmic contribution brings together results from simulation theory, forward search in MDPs, and statistical learning theory. The implicit-event approach was tested on a specific version of the Mars rover planning problem and on a drone patrol mission planning problem while the explicit-event approach was evaluated on a subway network control problem

    Artificial cognitive architecture with self-learning and self-optimization capabilities. Case studies in micromachining processes

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura : 22-09-201
    • …
    corecore