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Abstract

The goal of this thesis is to design an autonomous control system for the sustainable
control of buildings. The control system focusses on satisfying three goals to encour-
age and facilitate a more sustainable lifestyle for the future: sustainability, comfort,
and convenience. First, the system must be sustainable, meaning it controls the home
to minimize the energy required to meet the living requirements of the resident. Sec-
ond, the home must also place the resident's comfort as first priority, and not sacrifice
comfort for energy savings. A central challenge facing the goal of comfort is uncer-
tainty. Uncertain weather conditions can result in violations of the resident's comfort
if the control system does not explicitly consider these factors. The home must proba-
bilistically guarantee to meet resident comfort and functional requirements even under
uncertain conditions. Finally, the system must be convenient and not place undue
burden on the resident. To accomplish these goals, we provide three solutions: (1)
goal-directed optimal planning, which supports efficiency, (2) risk-sensitive planning,
which addresses comfort, and (2) intent recognition, which supports ease of use.

Goal-direction improves efficiency by specifying what energy consuming activities
the users need and when, and enables peak demand to be reduced by specifying the
flexibility that the user has with respect to when activities can be performed. Risk
sensitive planning addresses user comfort by explicitly considering uncertain factors
and planning to limit the risk of violating resident requirements. This solution uses
a recently developed plan-executive called probabilistic Sulu (p-Sulu) that leverages
a recent algorithm called iterative risk allocation (IRA) to robustly find an optimal
control sequence for the home.

The second challenge, plan recognition, accomplishes our third goal of convenience.
To facilitate widespread adoption, the control system should require minimal user in-
teraction. Plan recognition solves this problem by predicting a resident's schedule
based on observations of the resident. p-Sulu can then optimally control the home
according to this schedule to minimize energy use, while ensuring the house is com-
fortable while the resident is home, and saving energy while the resident is away. We
present the concept design of a novel solution to plan recognition over timed concur-
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rent constraint automata (TCCA) that provides the initial capabilities necessary to
achieve this goal.

Thesis Supervisor: Brian C. Williams, Ph.D.
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Climate change has become one of society's most pressing issues, a challenge that does

not concern one individual country, but the entire globe. Much recent research effort

has been allocated towards developing new hardware, materials, and other physical

systems to harness renewable energies in more and more efficient ways. These efforts

in research have been matched by changes in policy encouraging sustainable living.

For example, the EU has set a goal that by 2020, 20% of all electricity would come

from renewables [8]. These research advances in wind turbines, solar cells, and related

technologies are an important step towards guaranteeing a more sustainable future

on this planet. However, much of this effort has been focussed on the supply side of

the energy market, especially on hardware to improve the production of electricity. A

complementary effort must be led on the demand side of the energy market. Currently,

energy demand is treated as inelastic; suppliers must respond to demand, and adjust

electricity generation to prevent blackouts. Greater emphasis must be placed on

controlling energy demand and encouraging efficient use of energy. In particular, in

this thesis we focus on the autonomous control of buildings for energy efficiency. The

ultimate goal of our work is to develop a control system for smart buildings that

minimizes the energy used to meet the daily requirements of a building's occupants.

In this thesis we make three main claims. First, we can save substantial energy

by providing building services to occupants only when needed, and when service are

needed, we do so in the most energy efficient manner possible and in a way that
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minimizes peak load. This can be achieved by performing optimal model predictive

control based on models of the building, the environment in which the building is

placed, and guided by the occupant's goal activities.

Second, sources of uncertainty in the system must be explicitly taken into consid-

eration for autonomous building control to achieve widespread adoption. Behavior of

occupants, supply of energy, and the external environment are all uncertain. These

uncertainties introduce a risk of failure to meet the occupant's comfort needs or

operational constraints. For example, the pipes may freeze or the occupant may be

sufficiently uncomfortable that he or she abandons the use of the technology. This can

be achieved by performing risk-sensitive planning, which explicitly considers sources

of uncertainty and plan to limit the risk of failing to meet constraints.

Third, users are unlikely to put in the time and effort to provide models of their

activities and schedule to the system. Instead, we propose that they be acquired

automatically.

The solution that this thesis delivers is in the form of an implemented risk-sensitive

optimal planner that is guided by the user goal activities, and the concept design of

a model-based recognizer for predicting user goal activites and schedules.

1.1 Motivation

In 2010, residential buildings consumed 21.52% of total energy usage in the U.S., or

21.54 quadrillion Btu of energy for that year [45]. Heating and cooling accounted for

the largest portion of the residential energy consumption: 38.2% of the energy con-

sumption in the residential sector. Thus, even small improvements in the intelligent

use of energy within buildings will result in great strides towards our goal of sus-

tainable living. The proposed approach will significantly reduce energy consumption

in the residential sector. Combined with similar improvements in efficiency achieved

elsewhere, this represents a substantial decrease in total energy consumption.

The vision of this thesis is to provide an autonomous control system for buildings

that will provide sustainable, comfortable, and convenient living, saving users money

16



and contributing to the sustainability of our energy supply. Each of these three design

goals is discussed in detail below.

1. Sustainability

To achieve maximum energy savings, the autonomous control system of the

building must minimize the energy use required to provide building services to

the occupant.

2. Comfort

Sustainable control of a building should not come at the cost of the occupant's

comfort, but instead improves his or her standard of living, otherwise the tech-

nology will fall into disuse. The control system allows the occupant to specify

comfortable living conditions, and controls the building so that these conditions

are maintained whenever the building is occupied. For the control system to be

adopted, the occupant's comfort must be first priority and should be guaranteed

even under uncertain conditions, such as weather.

3. Convenience

The control system of the building must require minimal effort on the part

of the occupant. In order to optimally control the building, the system must

have knowledge of the occupant's schedule. It must know when the occupant

will be away, so it can turn off heating and cooling, and it must know when

the building will be occupied, so it can guarantee the building is comfortable

and ready for the occupant's arrival. Inputting all of this information by the

user would become tedious and discourage use of the system. Thus, the system

should automatically determine the schedule of the occupant.

1.1.1 Connected Sustainable Home

Throughout this thesis, discussion will center around the Connected Sustainable

Home, a vision developed by William J. Mitchell and Federico Casalegno within
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the School of Architecture at MIT [32] [33]. The vision of the Connected Sustain-

able Home is to combine passive and active design elements to provide sustainable,

comfortable, and convenient living.

Figure 1-1: Artist's concept of the Connected Sustainable Home. A full-scale proto-
type will be built and completed in Rovereto, Italy in 2012.

Figure 1-2: Artist's concept of the inside of the Connected Sustainable Home. The
dynamic windows can be tinted to a spectrum of opacities.

The Connected Sustainable Home is designed with the goal of providing for a

sustainable lifestyle that relies on as little energy from the grid as possible. Part of

this goal is achieved through an array of solar panels on the roof to capture natural,

renewable energy from the sun. However, commercially available solar cells only offer

energy capture at an efficiency of 14-19% [44]. In the winter when heat is needed in

the home, it may be more efficient to use the sun to heat the house directly through
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a south-facing facade of windows. The Connected Sustainable Home has a facade of

electrochromic windows, referred to as "dynamic windows", that may be tinted to a

spectrum of opacities (Figures 1-1 and 1-2). Proper control of the dynamic windows

can lead to significant reduction in heating and cooling (HVAC) use, especially in

winter when heat from the sun can be captured during the day to reduce the need

for the heater at night. Similarly, in the summer the windows can be fully tinted to

block out heat to reduce the need for air conditioning.

Additionally, the Connected Sustainable Home is constructed with a large thermal

mass, to effectively store heat energy in the same way a battery or capacitor might

store electrical energy in a circuit. For example, in the winter day the dynamic

windows can be changed to their maximum clearness to store heat in the structure,

reducing the need for heating at night.

1.2 Challenges

In Section 1.1 we outlined three primary goals of the Connected Sustainable Home:

sustainability, comfort, and convenience. In this section we present the approaches

associated with each goal and the technical challenges of implementing each approach.

The first two goals, sustainability and comfort, will be addressed by Risk-Sensitive,

optimal, Goal-Directed Planning (Section 1.2.1), while the third will be addressed by

Plan Recognition (Section 1.2.2).

1.2.1 Goal-Directed Planning that is Risk-Sensitive and Op-

timal

An autonomous controller for a residential building must not only know how to mini-

mize energy use, but it must also be able to adapt to varying schedules of the resident.

Current HVAC systems do not adapt to the wide variety of schedules a resident may

keep. At the most primitive, heaters and air conditioners will provide the ability to set

one setpoint and will reactively control to maintain that set-point. More sophisticated
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systems allow residents to input a basic schedule and choose multiple setpoints. These

static systems often don't provide the expressiveness to fully represent a resident's

constraints, and they still control in a reactive manner. The Connected Sustainable

Home must provide an expressive language to represent a resident's schedule and

desired ranges of room temperature (i.e., state constraints in a continuous domain),

and the ability to plan over this language. We will refer to this capability as goal-

directed planning with continuous effect. The language we use to represent the

resident's schedule and constraints is called the chance-constrained qualitative state

plan (CCQSP)[3], and is described in more detail in Section 2.3.2.

Compared to current reactive controllers, it is predicted that an energy savings

of up to 35% is possible by optimizing the operation of a building's HVAC system

[14]. To capture the full benefits of the dynamic windows and large thermal mass

of the Connected Sustainable Home, the controller must be capable of analyzing the

dynamics of the home and calculating a control plan that minimizes use of the HVAC

system. To provide for sustainable living within the home, we say the controller must

achieve optimal planning of the HVAC system. That is to say, the home must

consume as little non-renewable energy as possible.

Finally, one of the most difficult challenges facing building control is uncertainty.

Weather patterns, including outside temperature and solar radiation, are inherently

uncertain due to the stochastic and unpredictable nature of the atmosphere. Weather

forecasts are notoriously error-prone. A control system that does not account for un-

certainty and attempts to plan optimally will inevitably lead to constraint violations

when operating in the stochastic environment. To provide a probabilistic guarantee

that the resident's comfort constraints are not violated, the Connected Sustainable

Home must explicitly consider sources of uncertainty and plan accordingly in a robust

manner. We refer to this approach as risk-sensitive planning.

To achieve all three capabilities of risk-sensitive, optimal, goal-directed planning

with continuous effect, we use a recently developed on-line risk-sensitive planner and

executive called Probabilistic Sulu (p-Sulu) [36]. p-Sulu leverages a recent anytime

algorithm, called Iterative Risk Allocation (IRA), to provide for robust planning in
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the Connected Sustainable Home. It also expands upon previous work [37] to extend

the off-line planning component of p-Sulu to include an executive component that

performs receding horizon control in an on-line manner.

1.2.2 Plan Recognition

If we assume the schedule energy-consuming activities of the resident is known, then

the control problem of the Connected Sustainable Home can be solved using goal-

directed planning. However, in reality the schedule of the resident is the most signif-

icant source of uncertainty to the control system. For example, Figure 1-3 displays

occupancy data taken from 10 different offices at Xerox PARC [12]. It is clear that

not only is human behavior uncertain, but it varies widely from person to person,

and even from day to day. Thus, the control system cannot simply plan over one

fixed schedule, but must adapt to the changing schedule of the resident. One solu-

tion would be to require the resident to input his or her schedule into the system

daily. However, this requirement is tedious and violates our goal of convenience. The

challenge of the system is to predict the resident's activity schedule with little or no

interaction required from the resident. It must observe the resident's behavior and

predict his or her future actions and plans. The problem of inferring an agent's plans

through observation is called plan recognition.

The plan recognizer must consider and satisfy the following requirements:

Consider temporal information The control system of the Connected Sustain-

able Home is operating in the physical world with real timing on events. Thus, the

model behind the plan recognition approach must be capable of expressing temporal

information. It should be able to accept a sequence of timed observations as input,

and produce consistent plan explanations with timing on events.

Allow for missing and noisy observations Sensors are often noisy and unreli-

able, or some components of a plan may not even be observable. The plan recognition

approach should reliably predict the plan of the resident, even in the face of missing
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Figure 1-3: Occupancy patterns for 10 different offices taken over the period of a day
at Xerox PARC. Grey shaded regions denote times that the office is occupied.

observations.

Represent human and machine activities Resident activities in a home are

determined by the interaction with machines in the home. Plans are executed through

a combination of human and machine activities operating concurrently. The plan

recognizer should provide a representation for this interaction, and be able to reason

over the states of the machines to predict resident activities.

Hybrid The behavior of machines can be described as a hybrid system with both

discrete and continous states. The plan recognizer should integrate a hybrid estima-

tion techniques within its framework.

Hidden state Human and device activities are often inferred indirectly through

physical sensors, such as line current and voltage.

To solve the plan recognition problem, we note that plan recognition is closely

related to planning. While in planning we are given a goal and must find a set of

controls to reach the goal, in plan recognition we are given observations taken on

control variables and must determine the plan pursued by the agent. Leveraging this

22
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notion, we encode the plan recognition problem into a planning problem, and then

use a planner to solve for the plan of the agent.

Specifically, we use a convenient representation for the model of our planning do-

main called a Timed Concurrent Constraint Automaton (TCCA). This model allows

for a compact, intuitive encoding of a plan recognition problem.

1.3 Thesis Layout

This thesis presents two main innovations. First, we present an innovative application

and simulation-based validation of risk-sensitive, optimal, goal-directed planning to

the autonomous control of buildings. In Chapter 2, we describe the planning problem

for the Connected Sustainable Home and describe the technology behind the risk-

sensitive goal-directed planner, p-Sulu. Second, in Chapter 3 we present the concept

design of a novel approach to plan recognition over timed concurrent constraint au-

tomata (TCCA), which encodes the plan recognition problem as a planning problem,

and then uses a TCCA planner to find the solution. Then in Chapter 4 we summarize

our work and discuss extensions for future work.
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Chapter 2

Goal-Directed Planning and

Control of Buildings

In this chapter we demonstrate a building control approach that achieves sustainabil-

ity through the application of a risk-sensitive goal-directed model predictive controller

called probabilistic Sulu (p-Sulu), referred to in [36] as p-Sulu on-line. Compared with

traditional building control, p-Sulu is novel in that it explicitly considers the dynam-

ics of the building to control optimally over the planning horizon. Specifically, it is

innovative compared to recent model predictive control techniques for buildings in

that it (1) provides an expressive and flexible representation for an occupant's re-

quirements of the building, (2) prioritizes occupant comfort, explicitly considering

uncertainty and providing a probabilistic guarantee that occupant requirements are

satisfied, and (3) leverages flexibility in an occupant's schedule to produce further

energy savings. We apply p-Sulu to the prototype house, Connected Sustainable

Home, and compare its performance in simulation to both traditional building con-

trol and recent model predictive control techniques. We claim that p-Sulu achieves

two of our three goals for autonomous building control, in particular, sustainability

and comfort. We demonstrate that p-Sulu produces energy savings as high as 42% in

the winter compared with traditional PID control, with significant savings across all

other seasons as well. We also demonstrate that p-Sulu maintains resident constraints

under uncertain conditions, a feature necessary for adoption of the technology. While
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deterministic control yields comfort violations 30% of the time, the risk-sensitive p-

Sulu produces almost zero constraint violations. In Chapter 3, we describe our work

towards realizing the third goal of convenience.

2.1 Motivation and Goals for Autonomous Build-

ing Control

As we noted in Chapter 1, in 2010, residential buildings in the U.S. accounted for

21.52% of the total 100 quadrillion Btu of energy used in the country [45]. Heating and

cooling alone accounted for the largest portion: 38.2% of total energy consumption

in the residential sector. Compared to current reactive controllers, it is predicted

that energy used for heating and cooling can be reduced by 35% by optimizing the

operation of a building's HVAC system [14]. If this 35% savings is achieved across just

residential buildings, such an optimizing control system could reduce the aggregate

energy use in the U.S. by almost 3%, or almost 3 quadrillion Btu in annual energy

savings. The goal of this thesis is to realize this energy savings through the application

of p-Sulu to the control of homes. If the technology can achieve widespread use

across all homes, we will make great strides towards creating a sustainable future.

Our discussion in this section will focus on a single prototype house, the Connected

Sustainable Home, but the techniques described are not specific to the prototype, and

have the potential for wide-spread impact.

Recall that we outlined three goals of the Connected Sustainable Home: to provide

sustainable, comfortable, and convenient living. We briefly recap what we mean by

these goals in the context of building control:

1. Sustainability

The control system must control the dynamic components of the home in such

a way as to minimize the consumption of non-renewable energy and shift energy

demand to off-peak hours. The dynamic components considered in this section

include the dynamic windows and HVAC system, although one could also con-
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sider any other building element that consumes energy. In this chapter we focus

on minimizing total energy consumption, although the method described in this

chapter could be used to minimize total cost of energy. This alternative formu-

lation could have useful applications in shifting peak grid load at the demand

level.

2. Comfort

The control system should not sacrifice comfort of living for energy savings. It

should allow the resident to specify comfortable indoor conditions, and reliably

control the home to ensure that these conditions are maintained. Under uncer-

tain conditions, it should provide a probabilistic guarantee that comfort will be

maintained.

3. Convenience

The control system should require minimal effort from the resident to accom-

plish the first two goals of sustainability and comfort. It should not place undue

burden on the resident.

2.2 Related Work

Traditional HVAC controllers based on PID or "bang-bang" control take a simple

reactive approach to heating and cooling based on a single set-point, turning the

heat on when the temperature drops below a certain threshold, and turning the air

conditioning on when the temperature rises above a threshold. This approach will

violate the constraints of the resident, as it waits until the temperature falls out of a

comfortable range to take action. Also, it wastes energy maintaining the constraints

while the resident is away [14], or leads to constraint violations when the resident

returns if the system is turned off while away. Many modern thermostats, such as the

Hunter 44360 Set and Save programmable thermostat [13], permit users to input a

schedule of temperature setpoints. These systems prevent some wasted energy. Early

work in [2] showed that energy savings of 2-18% are possible using a programmable
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thermostat. However, these thermostats do not utilize knowledge of the dynamics of

the house to achieve further energy savings.

In [5][19][21][29], model-predictive control (MPC) approaches are applied to con-

trolling a building, using a model of the thermal dynamics of the building in order

to control indoor temperature for minimum energy use over the planning horizon.

This approach does not explicitly consider the uncertainty of the system. It assumes

deterministic weather and a fixed schedule of the resident as input. Yet weather is

inherently uncertain, as is a resident's behavior. An optimal control must account for

these uncertainties and plan to probabilistically guarantee that the constraints are

satisfied.

Application of stochastic MPC (SMPC) methods to building control has recently

become an active trend within the computational sustainability community. For ex-

ample, [30] employs an SMPC approach using a stochastic occupancy model to attain

a 4.3% energy reduction in a building HVAC. One of the most extensive efforts has

been the OptiControl project at ETH Zurich [49]. In on publication from the Opti-

Control project, the authors employ SMPC to analyze the tradeoff between energy

consumption and constraint violations [35]. The results of this work are complemen-

tary to ours, providing a necessary analysis of the cost of robust control. Although

our work is similar to these efforts in that p-Sulu is also built upon SMPC, we employ

a different problem formulation that is goal-directed with chance-constraints. A key

innovation behind our work is that we are able to leverage flexibility in a resident's

schedule to achieve further reduction in energy consumption.

2.3 Problem Statement

In this section we describe p-Sulu, and the problem it solves in terms of its inputs and

outputs. Then in Section 2.4 we describe the approach that p-Sulu takes to solving

this problem.

p-Sulu takes two inputs: a model of the dynamics of the home, and a plan encoding

the temporal and comfort constraints of the resident. The problem is to generate an
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on-line control sequence for the dynamic components of the home, given observations

of past state, that uses minimal energy while maintaining the constraints of the

resident.

We begin with a simple example of the requirements of the house a resident may

have for a day. We describe the requirements in plain English as follows:

"Maintain a comfortable sleeping temperature until I wake up. After

waking up, maintain room temperature until I go to work. I can do some

work at home, but I have to do 5 hours of work in the office sometime

between 9am and 6pm. No temperature constraints while I am away, but

when I get home, maintain room temperature until I go to sleep. The

probability of failure of these episodes must be less than 1%. The entire

time, make sure the house doesn't get so cold that the pipes freeze. Limit

the probability of such a failure to 0.01%."

The plan representation p-Sulu takes as input is called a chance-constrained qual-

itative state plan (CCQSP), which encodes the resident's schedule as well as comfort

preferences and the acceptable level of risk of a constraint violation. The schedule

and comfort prefereneces are encoded as time-evolved goals and the level of risk is rep-

resented by chance constraints on the system. A chance constraint is a bound placed

on the probability of a constraint violation. In our example, the 1% upperbound on

the probability of discomfort and the 0.01% upperbound on the probability of pipes

freezing are both chance constraints. Time-evolved goals are constraints placed on

the state of the system, together with temporal information describing the period over

which the constraints must be maintained. Time-evolved goals include "Maintain a

comfortable sleep temperature until I wake up", and "Maintain room temperature

until I go to sleep". Given a CCQSP, p-Sulu must find a control sequence that sat-

isfies all time-evolved goals within the probability of failure specified by the chance

constraints. We now describe the components of the problem more formally.
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2.3.1 Stochastic Plant Model

The plan executive p-Sulu takes as input a linear plant model to describe the system

being controlled. The model is of the form:

xte Atxt + Btut + wt (2.1)

where x is the state vector, u is the control vector, A and B are matrices, and w

is a disturbance. We assume that wt follows a normal distribution with covariance

matrix Et. In Section 2.5.1, we describe how we model the Connected Sustainable

Home in this form.

We also require an objective function J to be minimized,

min E[J(x,u)]. (2.2)
U

In our problem formulation, J is the total energy used by the home.

2.3.2 Chance Constrained Qualitative State Plan (CCQSP)

The Chance Constrained Qualitative State Plan (CCQSP) [3] is an extension of the

Qualitative State Plan (QSP) described in [23] to include risk preferences, or chance

constraints. It is used to represent a sequence of goals with temporal constraints, and

may be depicted as an acyclic directed graph. A CCQSP for the example schedule

from Section 2.3 is depicted in Figure 2-1.

An event, illustrated as a circle in Figure 2-1, represents a point of time, to

which a discrete execution time is assigned. An episode, depicted as a rectangle,

specifies the desired state of the system under control over a time interval. Each

episode is a three-tuple a = (es, eE, Ra, c), where ea and eE are the start and end

events of the episode, respectively. Each episode a has a feasible state region Ra.

For example, Ra for the "Maintain sleep temperature" is a closed interval on the

indoor temperature, [18'C 22'C]. In our encoding below, Ra is represented by a set

of linear state constraints. Each episode also has a chance constraint class c that will
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Figure 2-1: An example of a chance constrained qualitative state plan (CCQSP) for
a resident's schedule in a planning problem for the Connected Sustainable Home.

ita Home

Sleep

Away/Minimal Constraints

Time-----

Figure 2-2: The state space of the CCQSP in Figure 2-1.

be described in more detail later. A simple temporal constraint, denoted by two

numbers in a bracket as [1b;' ub|'), specifies an upper bound ub;' and a lower bound

lb;' on the temporal distance between two events e, e' E E. Note that ub;' = -lb|,.

Finally, a chance constraint specifies an upper bound on the risk of failing to satisfy

a set of episodes during execution. It is a two-tuple, c = (Ac 'Jc), where Ac is the

risk bound and Wc' is the set of episodes associated with a chance constraint c. For

example, in the CCQSP shown in Figure 2-1, the first chance constraint is associated

with three episodes: a "Maintain sleep temperature" episode and two "Maintain home
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temperature" episodes.

We define the notion formally as follows:

Definition 1. A Chance Constrained Qualitative State Plan (CCQSP) is

a tuple (S, A,T,C) where:

1. E is a set of events. Events are plan elements that can be assigned to a specific

point in time.

2. A is a set of episodes where each episode a c A is itself a tuple Kes, eE, h, g, c).

An episode is depicted graphically as a directed edge between events with con-

straints encoding the feasible state space. Episodes have a start event es, an end

event eF, and a set of linear state constraints represented by h and g as follows:

Ake Vjcj hT Txt - gkj < 0

where KC is an index set over the conjunction of the disjunctive constraints in-

dexed by J. c is the constraint class of the episode.

3. T is a set of temporal constraints represented as a simple temporal network

(STN) [9], which specifies lower and upper bounds on the duration between pairs

of events.

4. C is a set of chance constraint classes together with upper bounds Ae on the risk

of failure of executing a set of episodes. That is, for a specific chance constraint

class c, we require that the total probability of failure, over all episodes in that

class, is less than Ae.

2.3.3 Outputs

Optimal executable control sequence One of the two outputs of p-Sulu is an

executable control sequence u -... UT that minimizes a given cost function and satis-

fies all temporal and dynamical constraints specified by the input CCQSP according

to the probability specified by the chance constraints. In the case of the Connected
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Sustainable Home, the outputs are the opaqueness of the dynamic window, as well

as the heat output of HVAC. Minimization only occurs over finite horizons, as the

executive for building control must operate over an infinite time-horizon. We thus

only guarantee optimality over the finite planning horizon.

Optimal schedule The other output of p-Sulu is the optimal schedule. Let se C R+

be an execution time of the event e, where R+ is a set of non-negative real numbers.

A schedule s is a set of execution times se of all events e C S. If any temporal

constraints are flexible, then this corresponds to a choice of when to execute each

episode. If all temporal constraints are fixed, then the schedule is already fixed.

2.4 Robust Plan Executive: p-Sulu

In this section, we describe the prior work on the technology and algorithms behind

p-Sulu. p-Sulu consists of two nested loops. The outer loop performs continuous

receding horizon planning, through repeated calls to a stochastic CCQSP planner.

The CCQSP planning is implemented by the inner loop through the Iterative Risk

Allocation-CCQSP (IRA-CCQSP) algorithm, which performs a series of fixed-risk

CCQSP planning steps, finding an improved risk allocation at each step and replan-

ning using this allocation.

A key concept used by p-Sulu is that of risk allocation. For each planning horizon,

the CCQSP specifies a fixed risk tolerance Ac for each chance constraint class. Recall

that by risk, we mean the probability of violating the constraints of any episode in

the chance constraint class. The key idea behind IRA is that we can distribute this

global risk of failure across individual risk bounds 6t applied to each time step t. As

long as the constraint E < Ac holds, if we plan such that each individual risk

bound is satisfied, Boole's inequality shows that the total risk bound Ac is satisfied.

In this section, we describe p-Sulu from the outside in, first describing the outer

loop, and then moving into further detail with the inner loop. We begin in Section

2.4.1 by describing the p-Sulu executive that implements the receding horizon MPC

33



necessary for on-line control of the Connected Sustainable Home. In Section 2.4.2,

we then describe how the planning problem for each planning horizon is encoded

into a mixed integer linear program (MILP), given a fixed risk allocation. Then in

Section 2.4.3, we describe the Iterative Risk Allocation algorithm (IRA) that solves

the chance-constrained problem and outputs a risk allocation. For a more in-depth

explanation, see [37].

2.4.1 The p-Sulu Executive as Model Predictive Control

The control system for the Connected Sustainable Home must be operated contin-

uously over an infinite time horizon. It is impossible to plan and minimize non-

renewable energy use over this entire horizon, so we must instead plan over a finite

time horizon and repeat the planning step as time proceeds.

p-Sulu overcomes this challenge by employing a receding horizon control approach

[31]. At each planning cycle, a planning problem is solved with a finite duration,

which is called a horizon. In the next planning cycle, the planning problem is solved

again over a planning horizon with the same duration starting from the current time

(hence, the horizon is "receding"), by considering the latest observation of uncertain

parameters. This replanning process is repeated with a fixed time interval.

In this subsection we describe the outer loop of the p-Sulu executive that performs

receding horizon model predictive control. The loop repeatedly calls the inner loop,

IRA-CCQSP, to determine the optimal risk allocation and control plan for a given

planning horizon. IRA-CCQSP is described in Section 2.4.3.

Outer Loop: Receding Horizon Execution

The outer loop performs continuous receding horizon planning, through repeated calls

to IRA-CCQSP. It exploits the anytime behavior of IRA-CCQSP [36] by running as

many IRA-CCQSP iterations as possible within each planning horizon, in order to

obtain the best available solution for a given replanning interval. The outer loop is

outlined in Algorithm 1. We let t be the index of time steps, NE be the number of
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time steps in an execution horizon, E, be a set of unexecuted events, and u be a

control sequence.

Algorithm 1 p-Sulu
function pSulu(ccqsp)

1: EU <- F

2: while Eu # 0 do

3: Wait until t = (n - 1)NE + 1

4: u <- IRA-CCQSP(ccqsp, E,,)

5: Execute the first NE steps in u

6: Ve E ES, remove e from Eu if e has been executed

7: n - n +1

8: end while

At the start of continuous planning and execution, S is initialized with the full set

of events S in the given CCQSP ccqsp (Line 1). The executive replans every NE time

steps. It waits until the next scheduled replanning time in Line 3. A CCQSP planning

problem is solved over Np time steps at every planning cycle by IRA-CCQSP, in order

to generate a sequence of optimal control inputs u (Line 4), of which the first NE

control inputs are executed in this horizon (Line 5). Finally, the events that are

executed within this planning horizon are removed from Eu (Line 6). This iteration is

repeated until all the events are executed and hence the set S becomes empty (Line

2). In the application for Connected Sustainable Home, new events are continuously

added to the CCQSP so that the algorithm operates without termination.

2.4.2 The p-Sulu Planner

In this section we review how the planning problem for a CCQSP is encoded into a

deterministic constrained optimization problem. We assume a fixed risk allocation

and plan such that the risk bounds are maintained [37]. In Section 2.4.3, we describe

how an optimal risk allocation is found.
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Encoding the CCQSP

We take an approach to encode the CCQSP planning problem into a chance-constrained

optimization, which is eventually reduced into a deterministic constrained optimiza-

tion problem by the IRA-CCQSP algorithm. We begin by encoding the temporal

constraints, and then encode the episodes, as well as chance constraints.

The simple temporal constraints in a CCQSP are encoded as follows:

(lb' e Se' - Se < ube') (2.3)
eEEu e'GE,e'Oe

A (Se = se), (2.4)

where S is a set of unexecuted events. (2.3) imposes upper and lower bounds on

episodes that involve unexecuted events. The schedule of the events that have already

been executed, e E E\S, are fixed to their execution time se, as in (2.4).

Recall that we employ a receding horizon approach. We denote by T, := {(n -

1)NE + 1 ... (n - 1)NE + Np} the set of discrete time steps included in the nth

planning horizon, where NE and Np are the number of time steps in an execution

horizon and a planning horizon, respectively. Note that NE < Np. An episode a is

satisfied if the state xt is within the feasible region Ra whenever a is being executed

(i.e., ses < t < SeE). A chance constraint c is satisfied if all episodes in I, are satisfied

with probability 1 - Ac. Hence, for all chance constraints in C, the following must be

satisfied:

A[Pr AA((ses t se) =>xt E Ra) 1 - Ac. (2.5)
CC aC'I' tGW

Here T denotes the set of all discrete time steps. Note that since the inner conjunc-

tion is taken over 7, rather than just TF, the constraint (2.5) allows the plan executive

to postpone the execution of a by setting Ses larger than all the time steps in Tn.

Postponed episodes are executed in later planning horizons. However, whenever an

episode can be executed at the current horizon, the executive should not postpone its
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execution since there is no guarantee that the episode is still feasible with regard to

state and chance constraints at future time steps. Therefore, we penalize deferments

of episode execution. Let Pa be the penalty, and M be a large positive constant. We

require the following:

Ses > (n - 1)NE +NP -> Pa = M. (2.6)

Finally, we set the objective function. Let (u, s) be a cost function that is assumed

to be a piecewise linear function of a control sequence u and a schedule s. The penalty

Pa of all episodes must be added to the cost function. Hence, we minimize the following

objective function:

min J(u, s) + SPa. (2.7)
Us acA

For each planning horizon T, p-Sulu solves a chance constrained program with the

objective function (2.7) and constraints (2.1), (2.3), (2.4), (2.5), and (2.6).

Reformulation of Chance Constraints into a Risk Allocation

Next, we present a reformulation of chance constraints (2.5) to deterministic con-

straints. We first decompose the chance constraint (2.5) using the risk allocation

approach [38]. It follows from Boole's inequality that the following is a sufficient

condition for (2.5):

A A A Pr [(Ses < t SeE) - xt E Ra] > 1 - 6 a,t (2.8)
cCC aCc tETn

A 6a,t < Ac, (2.9)
cEC aEIc,teTn
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where 6 ,,t is the risk allocated to episode a at time step t. The above two constraints

can be transformed into a deterministic constraint as follows:

ses < t < se ) -> ztt C Ra(ca,t,U,6 a,t,L) (2.10)
cEC ac'J' tET,

A S+ 6L a c (2.11)
cEC aCIc/,tETn

where 6a,tu and 6 a,t,L are the risk allocated to the upper and lower temperature bounds

of episode a at time t. Note that 6 a,tU + 6 a,t,L = 6 a,t. itt is a nominal state, which

is a deterministic variable defined as et = E[xt]. Ra(6 a,t) is a range of temperatures

between what we call safety margins. A safety margin is a transformation of the

stochastic constraints in (2.8) into deterministic constraints. Recall that we model the

uncertainty wt as Gaussian. Thus, for a given risk allocation 6 a,t, we can calculate the

equivalent deterministic constraints from the inverse Gauss error function, erf-1 (.).

For the Connected Sustainable Home, recall that each episode in a CCQSP spec-

ifies an acceptable range of the indoor temperature. Hence, the state constraint

Xt E Ra(6a,t) in (2.10) is represented as follows:

Ta + jm(ot) < 5 T - m (6,)

where T" is the nominal (i.e., planned) indoor temperature, and TL and TU are

the lower and upper bound of the indoor temperature of episode a. o5L and 6 U are

the risk allocations to the lower and upper bounds, which are assigned by the IRA

algorithm, where 6 a,t = + o. The function mt(6 ) represents the width of the

safety margin at time step t given the risk allocation 6, defined as follows:

me,i(6) = -oV"2 erf -1(26 - 1),

where oi" is the standard deviation of T" and erf-1(.) is the inverse of the Gauss

error function. See [38] for the derivation.

Finally, since wt is assumed to have a zero-mean disturbance, the following de-
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terministic plant model is obtained from (2.1):

xt+ = At ±1 + Btut. (2.12)

Fixed-risk CCQSP planning problem

We formulate the fixed-risk CCQSP planning problem below, that is solved in IRA-

CCQSP to obtain nominal state trajectories with a given risk allocation. Let 6 be a

vector comprised of risk allocations 6 ,tj for all a E A, t E T7, and j E {U, L}.

Definition 2. Fixed-risk CCQSP Planning Problem 'P,(6) is a constrained

optimization problem with objective function (2.7) and constraints (2.3), (2.4), (2.6),

(2.10), (2.11), and (2.12), given a fixed risk allocation 6.

We argued above that Xt E Ra(6a,t,, a,tL) in (2.10) is equivalent to a set of two

linear constraints. Furthermore, the implication in (2.6) and (2.10) is equivalent to a

mixed-integer linear constraints [27]. Thus, the fixed-risk CCQSP planning problem

is a mixed-integer linear program, which can be efficiently solved by a commercial

solver, such as CPLEX.

2.4.3 Solving Chance-Constrained Problems through Itera-

tive Risk Allocation

In this section we review the Iterative Risk Allocation (IRA) approach, applied to

CCQSPs [37]. This algorithm is an iterative approach to finding the risk allocation

for a planning horizon that minimizes the objective function J. Intuitively, the algo-

rithm seeks to find the times at which taking risks provide the greatest benefit. In

the application to the Connected Sustainable Home, it takes more risk of violating

constraints at time points where the greatest energy can be saved.

Walk-Through of IRA-CCQSP

We walk through an example shown in Figure 2-3, a room temperature control prob-

lem with a 24 hour planning horizon in winter (hence the room must be heated). For
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(a) First Iteration (b) Second Iteration
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5 0 C I_ __ __>__ _ _ I_

0am 8am 12pm 5pm 12pm 0am 8am 12pm 5pm 12pm

: Safety margin
- :Optimal plan at current iteration
------- : Optimal plan at previous iteration

Figure 2-3: Intuitive explanation of the iterative risk allocation (IRA) algorithm.

the sake of simplicity of explanation, we assume a fixed schedule in this example,

where the resident wakes up at 8 a.m., leaves home at 12 p.m., comes back home at

5 p.m., and goes to bed at 12 p.m. The room temperature is required to be within

specified ranges according to the resident's state, as shown in Figure 2-3. For exam-

ple, when the resident is awake and in the room, the temperature must be between

20 to 25 degrees Celsius.

The IRA-CCQSP algorithm starts from an arbitrary feasible risk allocation, such

as the uniform one in Figure 2-3-(a), and improves the risk allocation through iter-

ation. IRA-CCQSP guarantees satisfaction of chance constraints by setting a safety

margin (shown as the shadowed areas in Figure 2-3) along the boundaries of the con-

straints, and planning a nominal state trajectory to remain outside of the margin.

The width of the safety margin is determined so that the probability of constraint

violation is below the risk allocated to each constraint. In Figure 2-3-(a) the safety

margin is uniform for all the time because the initial risk allocation is uniform. The

fixed-risk CCQSP planning problem, which is formally stated shortly, is solved to

obtain the optimal plan that does not violate the safety margin, as shown in Figure

2-3-(a). The plan minimizes energy consumption by lowering the temperature during

the night, while heating the room using sunlight during the day. It heats the room
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to the maximum before the sunset at around 5 p.m. to store heat in the structure,

so that the use of heater during the night can be minimized.

Note in Figure 2-3-(a) that, with this plan, constraints are active at a few points

of time, while they are inactive at other points of time. To improve cost, IRA removes

the risk that was allocated to the inactive constraints, and reallocates it to the active

constraint. Note that reducing risk allocation results in a wider safety margin, while

increasing risk allocation results in the opposite. Thus, the new risk allocation results

in the safety margin shown in Figure 2-3-(b). The algorithm then solves the fixed-

risk CCQSP planning problem again, in order to obtain the optimal plan that does

not violate the new safety margin. In our example, the new plan is more energy

efficient than the one in the previous iteration since the temperature can be lower

during the night, while it higher in the evening to store more heat. In this way, the

algorithm reallocates the risk again from inactive constraints to active constraints at

every iteration. It terminates when all constraints become active or all constraints are

inactive. The cost function value (i.e., energy consumption in this case) monotonically

during successive iterations. The path generated at each iteration always satisfies the

chance constraint since it does not violate the safety margin.

Inner Loop: CCQSP Planning using IRA-CCQSP

Next we present the IRA-CCQSP algorithm, which is used in every planning horizon

of p-Sulu. Previous work [38] developed the IRA algorithm and applied it to simple

path planning problems. This subsection presents IRA-CCQSP, which applies the

IRA concept to planning with time evolved goals.

If the fixed-risk CCQSP planning problem P,(6) is feasible with a risk allocation 6,

and 6 satisfies (2.11), we call such 6 a feasible risk allocation. For the IRA-CCQSP al-

gorithm, we assume that an initial feasible risk allocation is known. This assumption

is reasonable since a fixed-risk CCQSP planning problem converges to the correspond-

ing deterministic planning problem by increasing the risk bounds Ac with a uniform

risk allocation, otj = Ac/Nc, Va E Jc, t c T, j E {U, L}, where Nc is a number of

constraints in c. Hence, for any feasible deterministic planning problem, we can find
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a feasible risk allocation for the corresponding fixed-risk CCQSP planning problem

by choosing appropriate risk bounds A,.

Algorithm 2 IRA-CCQSP

1: Set initial risk allocation o1
2: k= 1

3: repeat
4: Solve P,(6k)
5: for allcEC do
6: Nc <- number of active constraints in c; 7c +- 0
7: for all a E Te, t E Ta, j E {U, L} such that the constraint with index (a, t, j)

is inactive do
8: 6+ + (1 - a)Pa,t,j(40

9: c - Yc + (aj - a1$)

10: end for
11: for all a E Tc, t E T, j E {U, L} such that the constraint with index (a, t, j)

is active do
12: o - 6k, tj + 7cy/Nc

13: end for
14: end for
15: k <- k + 1
16: until VcEc Nc = 0 or VCEC 7c 0

IRA-CCQSP is described in Algorithm 2. Here, k is the index of iteration. We

denote by 6 k the risk allocated to the constraint (a, t, j) at iteration k, and by 6 k

the vector comprised of all risk allocations at iteration k. The algorithm is initialized

with a feasible risk allocation o1 is set in Line 1. Such a feasible risk allocation is

found by Assumption 1. At each iteration, an optimal nominal state trajectory is

obtained by solving the fixed risk CCQSP planning problem with a risk allocation

6 k (Line 4). In Lines 6-13 the algorithm reallocates risk from inactive constraints

to active constraints. It reduces the risk allocated to inactive constraints (Line 8),

and deposits the amount of risk removed from the inactive constraints in 7c. In

Line 8, 0 < a < 1 is an interpolation coefficient, and pa,tJ (t) is the probability of

violating the constraint with index (a, t, j), given a nominal state t. In the case of

the Connected Sustainable Home, Pat,J is evaluated as follows:

Pa,ty(Tt") = 1 - F(Tf), pa,t,(§U) =F(Tf),
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where T" is the nominal indoor temperature at time t, Ft(-) is the cumulative distri-

bution function of the indoor temperature T7", and T , Tf are the upper and lower

bound of the comfortable temperature range of episode a. Intuitively, Line 8 obtains

a new safety margin by interpolating the current safety margin and the current nom-

inal state. Therefore, In Line 8 guarantees that the new safety margin is not violated

by the current nominal state trajectory xt. Then algorithm reallocates the amount

of risk saved in -y to the active constraints. It splits the deposit of risk equally to the

Nc active constraints in Line 12. By going through one iteration, the risk allocation

is updated from 6 k to ok+1.

2.5 Application to the Connected Sustainable Home

In this section we describe our approach for applying p-Sulu to controlling the Con-

nected Sustainable Home. We begin by describing the features of the home, and then

in Section 2.5.1 we describe how the construction of the home is modeled using a

stochastic plant model.

The Connected Sustainable Home is a one-story house with a single open room.

It has a south-facing facade consisting of a 5 x 9 array of electrochromic window

panes (dynamic windows). The 5 x 9 array of windows is split into two sections,

one vertical 3 x 9 array and one slanted 2 x 9 array. Since the angle of incidence

of solar radiation is different on each section, the opacities of the two sections are

treated as separate control variables. It also has a heater and air conditioner, each of

which can be set to output energy at a given power level. The external environment

includes solar radiation, intermittent cloud cover, and varying outside temperature,

all of which are uncertain. We assume that the home has a single occupant, so we

do not need to concern ourselves with reconciling conflicting constraints of multiple

occupants.
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Figure 2-4: Model of temperature flow between lumped elements is analogous to
an electric circuit (left). Depiction of state variables T and control variables
QHeat, QAC, UDw (right).

2.5.1 Building Model

Recall that p-Sulu requires as input a stochastic plant model (2.1). We obtain a

stochastic plant model of Connected Sustainable Home in the form of (2.1) by using

a lumped parameter model for a thermal system [24]. The lumped parameter model

is analogous to an electrical circuit. Separate components, or "lumped elements", of

a building store heat according to its heat capacity Ci similar to how an electrical

capacitor stores charge. Heat transfers between lumped elements subject to a thermal

resistance Ri. Both Ci and Ri are physical properties of the materials. In our model

of the home, we break the home down into a single lump for the indoor air mass, as

well as a lump for each wall and window, as shown in Figure 2-4. In total the house is

decomposed into 11 lumber elements: 4 for windows, 6 for walls, and 1 for the indoor

air mass. For each component i, the following holds for a short time interval At:

Ci(T1 - TI) = AQconat + AQ'onv,t +A QRad,t, (2-

here, T is the temperature of the ith component at the time step t. AQZ

'AQ'Cn,,, and AQ1aat are heat inputs to the ith component during the time interval

through conduction, convection, and radiation, respectively. The outdoor environ-

ment is treated as a heat source, similar to a voltage source in the circuit analogy.
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The conductive heat input AQ'Condt accounts for all heat transfer through each

wall. For example, the conduction heat input for the indoor air mass component is:

A-
AQ 'Odt (T - T")At, (2.14)

where T" is the indoor temperature, T is the temperature of wall i, Ai is the area of

contact between components i and j, and Rj is the heat resistance (R-value) between

components i and j. The R-value of a material is a measure of how resistant the

material is to thermal change. The convection term accounts for any heat transfer

from the heater and air conditioner:

AQ AQ at _ AQc, (2.15)

where AQHeat and AQAC are the outputs of the heater and air conditioner, respec-

tively. Finally, the radiation term accounts for heat transfer from the sun through

the glass facade:

AQiaat =A r(t) - uIwAt (2.16)

where A is the area of the facade, r is the solar radiation, and u Dw is a control variable

for the emissivity of the dynamic windows. By substituting (2.14)-(2.16) into (2.13),

we obtain the following:

Ti" + Ai At(T - Ti) +AQ t - AQAC +w(tUT =l T1 t ain (zn ± - + Ar t~t At) (2.17)

Similarly, the thermal model for the walls are obtained as follows:

1 AiAt(Tf - Ti) A At(T u - T)
T+I = TtI + Ci R" ARad,,. (21

We assume that future outdoor temperature Ttout has uncertainty, which is repre-

sented by a Gaussian distribution. Hence,

To -o t (2.19)
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-out
where To is a constant representing the predicted temperature at time t, and wt is a

random variable that has a zero-mean Gaussian distribution with a known standard

deviation o-t.

Finally, the stochastic plant model (2.1) is obtained from (2.17)-(2.19) by defining

the state vector and the control vector as follows:

x = [TinT,...,Tt N-1]T

ut [AQHeatt AQAC, UDWlT.

Cost Function The cost function J in (2.7) is the total energy consumption over

a planning horizon, give as follows:

Np QAC Hea t

J(u, s) = Ac + Het
t=1Heat

where r7Ac and WHeat are the thermal efficiencies of the air conditioner and heater,

respectively, and Np is the number of time steps in a planning horizon.

p-Sulu is also capable of controlling for other relevant parameters, such as illumi-

nation and humidity. These extensions are a focus of our future work to be included

in the physical prototype.

2.6 Experimental Design

In our experimental design, we evaluate the performance of p-Sulu on the basis of

two criteria. First, we evaluate the energy saved by p-Sulu. Specifically, we evaluate

the energy saved from two features: model predictive control and occupant activities

with flexible time bounds. Second, we evaluate the degree to which occupant comfort

is improved by enforcing chance constraints. This section describes our experimental

design and evaluation of success. In Section 2.7, we present and discuss the results

of our experiments.
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2.6.1 Experimental Setup

In this section we describe the setup of our experiment.

Schedules In our experiments, we assume the resident can specify one of 3 ranges:

Home, Asleep, and Away, although in general we can select any number of temper-

ature ranges. We assume that the temperature must be between 20 and 25 degrees

celsius while the resident is home, between 18 and 22 degrees while sleeping, and be-

tween 4 and 35 degrees while away to ensure pipes do not freeze. With all Home and

Asleep episodes, we associate a single chance constraint class with risk bound 10%,

the risk the resident is willing to take that the temperature becomes uncomfortable.

With all Away episodes, we associate a single chance constraint class with risk bound

0.01%, the risk the resident is willing to take that his or her pipes freeze.

In our experiments, we use two different schedules to illustrate the benefits of

flexible control, one that takes advantage of flexible time bounds, and one that only

uses fixed time bounds. Both schedules represent a typical work week of a resident

living in the house; they consist of five work days followed by two weekends.

In the flexible schedule, each of the work days follows the schedule described in

Section 2.3 and depicted in Figure 2-1. On these days, the resident sleeps until 8am,

and then is at home for at least one hour. He must be gone from the house for 5

hours between 9am and 6pm to work at the office. The rest of the time he is at home.

Each weekend is similar except that the resident does not go into work. That is, he

sleeps until 8am and is at home all day.

The fixed schedule is similar to the flexible one, except that it does not capture

the flexibility of when the resident goes into the office. On the work days, the resident

sleeps until 8am, and then is at home for one hour. He leaves for work at 9am and

arrives back home at 2pm. The rest of the time he is at home. The weekends of the

fixed schedule are identical to those of the flexible schedule.

In all simulations, we let At = 1 hour, so there are 168 total time steps over the

week-long schedules.
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Baseline Controllers In our experiments we use two baseline controllers for com-

parison with p-Sulu: (a) a PID controller, and (b) Sulu, the deterministic predecessor

to p-Sulu.

A PID controller (proportional-integral-derivative) is a controller that sets the

control variable u(t) as a function of the error of the state variable x(t) from a given

setpoint [1]. Let e(t) denote this difference. The function is a linear combination

of the error, the integral of previous errors, and the derivative of the error. In our

PID controller, we let u(t) be the heat Q added to the indoor air mass from both

solar radiation and HVAC. The error e(t) is calculated as the difference of the indoor

temperature Ti" from the setpoint T*. Q is calculated by the PID linear combination

of the error, scaled by gains for each term. The windows are set so that the maximum

amount possible of the heat input Q needed to add to the indoor air mass comes from

solar radiation. The HVAC is set to provide the remainder of Q to the house. The

setpoint of the PID controller was chosen to be 210 C, a point that is feasible in every

state. All gains were hand-tuned so that the temperature converges to the setpoint

rapidly with minimal oscillation.

Sulu is an executive that is only different from p-Sulu in that it does not incor-

porate uncertainty into its planning algorithm. The original executive from [26] was

not used; instead, it was replicated by using p-Sulu and setting all chance constraints

AC to 1.

Weather Data Nominal weather values for the simulation come from historical

weather data from 2005 in Trento, Italy, a city close to Rovereto, the site of the

prototype. The weather data consists of hourly measurements of outside temperature,

global irradiation, diffuse horizontal irradiation, and direct normal irradiation.

Uncertainty For each weather parameter, the standard deviation of wt for each

hour is calculated based on the standard deviation of that parameter on each day

within one week before and after the given day. For example, the standard deviation

of the outside temperature at 9am on June 21st is calculated as the standard deviation
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of all of the outside temperatures at 9am from June 14th to June 28th.

In simulation, all controllers use the weather data as the nominal "forecast" for the

weather. The controllers plan according to the forecast, and then the output control

parameters ut are executed on the same model of the home, but with a disturbance

introduced to the weather parameters drawn from a Gaussian distribution with the

calculated standard deviation. At the end of each execution horizon, the controllers

are given the actual, nominal value of x to use as the initial state in the next planning

horizon.

Planning Parameters For all simulations, we use a planning horizon of 24 hours

and an execution horizon of 12 hours.

2.6.2 Evaluation of Energy Savings

We separate our analysis of energy saved by p-Sulu to focus on two aspects: (1) robust

model predictive control, and (2) flexible time bounds. For each aspect, we ask how

much less energy p-Sulu uses compared to a baseline controller.

To evaluate (1), we compare the energy used by p-Sulu with the energy used by

the traditional PID controller. To evaluate (2), we use p-Sulu to plan and execute

the control over both the flexible and the fixed schedules, comparing the energy use

for each. Results are given in Section 2.7.1.

2.6.3 Evaluation of Occupant Comfort

To evaluate the benefit of p-Sulu to occupant comfort, we compare the number of

constraint violations resulting from a plan execution from both Sulu and p-Sulu. This

measure evaluates how effectively p-Sulu maintains resident comfort requirements. In

many trials, Sulu failed to complete due to infeasibility. These trials are not included

in our measure of comfort as they do not provide an accurate measure of constraint

violations. The number of failures is, however, included in our discussion to further

support the argument for planning with chance constraints. Results are given in
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Section 2.7.2.

When we say the planner failed due to infeasiblity, we mean that the planner

failed to generate a feasible control sequence because of a constraint violation or

overly restrictive constraints. In all of the failed trials, this was due to the final

temperature of some execution horizon falling out of the feasible region. Then the

initial temperature of the next planning horizon violates the temperature constraints,

leading to an infeasible planning problem. This is a deficiency in general of MPC

approaches that do not consider uncertainty'. Because MPC is formulated as an

optimization program, the optimization will choose states it that are at the edge of

constraints. A small deviation in the system from nominal can cause xt to violate

the constraint.

2.7 Simulation Results

In this section we present and analyze the results of our experiments. In each subsec-

tion, we begin by taking a qualitative look at the results of the planning and execution

of the single-day schedule depicted in Figure 2-1. We then analyze the quantitative

results and discuss our conclusions. All values presented are averaged over 100 trials.

2.7.1 Analysis of Energy Savings

In this section we present and discuss the results of our experiments analyzing the

energy that is saved by using p-Sulu to control the Connected Sustainable Home.

Figures 2-5a and 2-5b illustrate the results of a stochastic simulation over two

different days in the year. Notice how both Sulu and p-Sulu take advantage of the

schedule of the resident, planning so that energy can be saved during the day by

allowing the temperature to rise while the occupant is away. Also, Sulu and p-Sulu

are capable of reasoning over the model of the home, taking advantage of the large

thermal mass of the home by capturing solar heat during the day to offset energy costs

'This issue is typically addressed by introducing slack variables, which allow constraints to be
violated, but strive to minimize these violations.
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at night. The PID controller is naive, only planning to meet a particular setpoint and

not taking advantage of the variation in the resident's schedule and the dynamics of

the home.

Analysis of Savings from Robust Model Predictive Control In Table 2.1

we present the results of the stochastic simulation on the flexible week-long scenario,

averaged over 100 Monte Carlo trials each. We see that in the winter, p-Sulu yielded

energy savings of 42.8% over the PID controller; in the spring, summer, and autumn,

we saw 15.3%, 16.8%, and 4.4% savings respectively. We conjecture that the savings

in the winter are much higher because of the advantages afforded by the south-facing

facade of dynamic windows. In the winter, the difference between indoor and outdoor

temperature is largest compared to other seasons. Intuitively, this difference leads to

greater benefit from harnessing heat from the sun to offset heat that is lost more

rapidly due to the larger temperature differential. Although not as substantial, the

savings in the other three seasons show significant strides towards achieving the 35%

possible energy reduction predicted by [14] by optimizing HVAC control. The savings

in these seasons provide a more reasonable estimate of how p-Sulu would perform on

the average home without the facade of electrochromic windows, although future work

in applying p-Sulu to a variety of homes is needed to verify this statement. This data
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Table 2.1: Comparison of energy use and failure rate for a simulation of the PID,
Sulu, and p-Sulu controllers over a week-long schedule in all four seasons. Failure
rate is measured as the percentage of time steps with constraint violations.

Winter Summer

Energy Violation Rate Energy Violation Rate
p-Sulu 1.9379 x 104 0.000 3.4729 x 104 0

Sulu 1.6506 x 104  0.297 -
PID 3.9783 x 104 0 4.1731 x 104  0

Spring Autumn

Energy Violation Rate Energy Violation Rate

p-Sulu 3.3707 x 104 0 3.8181 x 104 0
Sulu 3.0954 x 104 0.308 3.6780 x 104  0.334
PID 3.9816 x 104 0 3.9955 x 104 0

2.2: Comparison of energy use for a simulation on the

using both fixed and flexible time constraints.

Connected Sustainable

Winter Summer
Flexible 1.9379 x 104 3.4729 x 104

Fixed 2.1625 x 104 3.5295 x 104

Spring Autumn
Flexible 3.3707 x 107 3.8181 x 104

Fixed 3.4253 x 104 3.8445 x 104

illustrates the large energy savings to be had by

model predictive control.

leveraging knowledge of the home in

Analysis of Savings from Flexible Temporal Constraints In Table 2.2 we

present a comparison of the results of the stochastic simulation on both the flexible

and fixed week-long scenarios. Compared to the fixed schedule, the temporally flexible

schedule shows energy savings of 10.4%, 1.6%, 1.6%, and 0.7% in the winter, spring,

summer, and autumn respectively. Again, we see the most energy savings in the

winter at 10.4%. Refer to Figure 2-6 for a possible explanation of why the savings

are so large. If the occupant leaves for work at 9am as he does in the fixed schedule,

he is back by 2pm when the sun is still out. We postulate that instead of the control
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Figure 2-6: Results of execution of p-Sulu control on January 1st with both a flexible
schedule (left) and a fixed schedule (right)

system being able to store the solar energy in the house generated from 2pm until

the sun sets, it must allow the house to cool off by 2pm, effectively wasting any heat

the system could have captured in the thermal mass of the home. If we control with

flexible temporal bounds, then p-Sulu can choose the optimal schedule, and find the

control sequence that minimizes energy use according to this schedule. This data only

illustrates the energy savings from exploiting one aspect of flexibility in a resident's

schedule. If all flexibility in a resident's activities is leveraged, we expect to see larger

energy savings under the adoption of this technology.

2.7.2 Analysis of Occupant Comfort

Look again at Figures 2-5a and 2-5b. Notice that Sulu plans right up to the edge of the

constraints, often violating constraints when a disturbance is introduced, while p-Sulu

leaves a margin. The deterministic planning of Sulu leads to frequent uncomfortable

conditions for the resident when constraints are violated.

This fact is reflected in the quantitative results of our simulations. Out of the 100

total trials of Sulu in the winter, 78 failed to complete due to infeasibility. In the

spring 22 of 100 trials completed and in the autumn 11 of 100 completed. All trials of

Sulu in the summer failed due to infeasibility. As a measure of comfort, we look at the

trials that completed and consider the fraction of time steps on which a constraint
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Figure 2-7: Results of execution of p-Sulu control on July 1st with both a flexible
schedule (left) and a fixed schedule (right)

is violated. From Table 2.1, we see that out of the 168 time steps, Sulu violated

constraints on 29.7% of time steps in the winter, 30.8% in the spring, and 33.4%

in the autumn. On the other hand, only one single trial of p-Sulu violated a single

constraint in winter. For all other seasons, all other trials satisfied all temperature

constraints. Using constraint violations as a measure of success, the robust MPC

approach of p-Sulu outperforms the deterministic MPC approach of Sulu on every

trial. Averaged across all trials, p-Sulu exhibits a difference of 30.88% in improvement

in comfort over Sulu. These results illustrate how critical risk-sensitive control is in

guaranteeing resident comfort and encouraging the adoption of the technology. A

control system that produces uncomfortable conditions 30% of the time would quickly

be abandoned by any users.

There is, naturally, a tradeoff to the improvement in comfort afforded by risk-

sensitive control. p-Sulu resulted in increased energy consumption of 17.4%, 8.9%,

and 3.8% in the winter, spring, and autumn respectively. Future work is needed to

properly analyze the tradeoffs between comfort and energy savings.
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Chapter 3

Plan Recognition using Timed

Concurrent Constraint Automata

In order to use the building control system described in Chapter 2, the system must

know the plan of the occupant, that is, the activities that the occupant would like

to perform and constraints on when they should be performed (i.e. the occupant's

qualitative state plan). We could require that the occupant input his or her schedule

into the system. However, this would place undue burden on the occupant and violate

our goal of convenience set forth in Chapter 1. Instead, we propose to automatically

detect the plan of the resident based on home sensors, such as power sensors on

outlets monitoring electricity usage, touch sensors on objects in the home to detect

when they're used, and motion sensors in the home to detect when the resident enters

a room. The problem of determining the plan of the resident based on observation is

referred to in the literature as plan recognition [43][6][15].

In this chapter we begin in Section 3.1 by describing our vision for the inter-

action of the home control system with the resident. We then present preliminary

work towards achieving this vision, an approach to plan recognition based on Timed

Concurrent Constraint Automata (TCCA). We begin in Section 3.2 by presenting

the motivation for this work and describing a motivating example that will be used

throughout the chapter. In Section 3.3 we sketch our approach to solving the problem.

Then in Section 3.4 we describe the representation we use for the problem. Next, in
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Section 3.5, we formulate the plan recognition problem and in Section 3.6 describe the

requirements we have of a solution. In Section 3.7 we present a discussion of related

works. Finally in Section 3.8 we describe the technical details of our approach.

3.1 Vision for an Integrated Autonomous Control

System

We envision an integrated home environment in which an autonomous control system

in the home can work with the resident to sustainably accomplish home tasks. This

includes not only providing a comfortable living environment, but also facilitating

in performing other energy-consuming tasks, such as running a washing machine

or charging an electric vehicle. For example, the house could be responsible for

scheduling the charging of the vehicle during off-peak hours to save the resident

money on energy during costly peak hours, and contribute to off-loading this peak

grid-wide. To sustainably assist the resident in any of these tasks, the autonomous

control system must have extensive knowledge of not only the plan of the resident, but

also the infrastructure of the home, including appliances and the resident's interaction

with these appliances. That is, the control system must have a model that describes

the entire infrastructure, humans, appliances, and sensors.

Recognition is not just about the human, but the collective system. For example,

the activity of making breakfast can be described by the interaction of the human

with a coffee pot, a toaster, and a refridgerator, perhaps. Human behavior can be well

defined in terms of interaction with the entire infrastructure, devices and sensors. In

[39], the authors describe the "invisible human hypothesis", which states this notion:

activities are well-defined by the objects manipulated during their performance. There

must be a unified representation for recognition that integrates devices with human

plans. We now describe our vision for this representation. In our discussion, we break

the system down into three components: humans, devices, and sensors.

An issue that arises when defining a unifying representation is that a model suit-
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able for describing humans is not suitable for describing devices, and vice versa.

PDDL has become the standard for modeling tasks and plans that a human (or

robot) performs for good reason, as it is a natural representation for the domain.

When a human performs a task, often there is a set of preconditions that must be

true to execute the task. For example, to make coffee, one has to first put a coffee

filter in the machine and then fill the filter with coffee grounds. Once the task has

been executed, there is a set of effects, or postconditions, that result from the task.

When coffee is done brewing, one now has a cup of coffee that he or she may drink.

However, from this author's experience, modeling devices in PDDL is awkward and

unnatural.

Devices are better expressed as automata. They have states that they operate

in, they transition between these states subject to some constraints, or after a time

period has elapsed. The device may be affected by an external input, which serves as a

requirement for transitioning. Pressing the on button on a coffee machine transitions

the machine from off to brewing coffee. In this chapter we use TCCAs to represent

devices.

To unify these two disparate representations, we propose to reformulate human ac-

tions into a unifying representation. In [111, the authors describe a general algorithm

for reducing the state encoding size of a PDDL domain, and compactly encoding

the domain in an alternative representation. Many modern PDDL planners utilize

this technique to generate an alternative internal representation more efficient and

amenable to the planning task. Within the MERS group at MIT, recent research has

been focussed on translating a PDDL domain into a TCCA. To unify the represen-

tations for human actions and devices, we propose representing each in their natural

language, PDDL for humans and TCCAs for devices. We then translate PDDL into

a TCCA and perform plan recognition over the combined human-device representa-

tion. In this chapter we describe human plans as TCCAs; however, in our vision these

TCCAs would be compiled from PDDL.

On top of this representation, a sensing framework is necessary to take observa-

tions on the human to enable recognition. Since we describe human behavior in terms
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of devices, we require sensing to determine the states of devices. For appliances in the

home that consume energy, we propose leveraging research on energy disaggregation.

Energy disaggregation is the problem of analyzing an aggregate home line voltage

and separating out the states of component appliances in the home. This topic is

discussed further in Section 4.1.4.

Once a representation framework has been defined, another set of problems must

be solved to enable seamless interaction of the home and resident. First, the models

must be learned. Much previous research has been devoted to the task of model

learning [16] [10]. Once models for device and human behavior have been learned, the

system must recognize plans of the human over this framework to enable the house

to react to the resident. In this chapter we describe one piece of our vision: using

TCCAs to perform plan recognition over devices.

3.2 Motivation for Plan Recognition to Predict

Resident Behavior

Recall from Chapter 2 that our autonomous building controller p-Sulu can sustainably

control the Connected Sustainable Home while satisfying all occupant requirements if

p-Sulu knows the plan of the occupant. For the system to be completely autonomous,

it must be capable of automatically detecting this plan.

We now describe a motivating example that will guide our exposition through the

chapter. Suppose the occupant follows a similar routine everyday. He wakes up, goes

into the kitchen, and turns on the coffee pot to start coffee brewing. Once the coffee

is ready, he drinks the coffee and then exits the kitchen. On work days he is usually

running late, so he only has 5-10 minutes to sit down and drink his coffee. However,

on days that he spends at home, he takes his time drinking the coffee, often taking

20-30 minutes to leisurely sip at his cup. The entire time he leaves the coffee pot

warming, but makes sure to turn it off before leaving the kitchen.

Assume the coffee pot operates in one of three states: off, brewing, or warming.
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Suppose the house is outfitted with two sensors: one power sensor on the coffee pot

outlet capable of detecting commands to the appliance, and one motion sensor to

detect if the kitchen is occupied or vacant. The sensor on the outlet might leverage

techniques of energy disaggregation [20][25] to determine the state of the coffee pot.

Since the building control system can save energy by turning off the HVAC system

while the occupant is away, it must be able to determine, based on observations from

the sensors, which plan the occupant is following, the rushed morning or the leisurely

morning. Suppose we observed that the occupant entered the kitchen at 8am and

switched the coffee machine off at 8:12am. The sensors missed him turning on the

coffee machine and him later leaving the kitchen. We want to infer these missing

observations and recognize that he must be on his way to work since he drank his coffee

so quickly. This is the problem we solve in this chapter using plan recognition. In

general, the plan recognition problem is to take a set of plans as input and a sequence

of observations, and to output the plans that are consistent with the observations.

3.3 Overview of Approach

In this section we present an overview of our approach before going into the technical

details in the following sections. In our motivating example, we separate the vari-

ous components discussed into two categories: state variables and control variables.

State variables include the state of the coffee machine, which can be off, brewing, or

warming, and the state of the kitchen, which can be occupied or vacant. They also

include the state of the occupant in pursuing his plan. For example, his state might

be "in kitchen waiting on coffee", or "done with coffee". The control variables are

the inputs to the system. The button on the coffee machine is a control variable.

It sends an "on" or "off" control signal to the machine when flipped on or off. All

observations are taken on control variables by sensors.

In plan recognition, we want to take the observations on control variables and

determine what goal or plan the occupant is pursuing. That is, we're given control

variables and ask what evolution of state variables is consistent with these controls.
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In the related field of planning, we are given a goal state, and must determine the

control sequence that is needed to reach that state. Essentially, plan recognition takes

controls as input and outputs states, while planning takes states as input and outputs

controls. This observation leads to the conclusion that plan recognition is essentially

planning in reverse. This notion serves as the motivation for our approach.

To perform plan recognition we leverage the extensive body of work from the plan-

ning community. We propose using a planner to do plan recognition. The essential

idea is to encode the control variables of observations as state variables in a planning

domain. Specifically, we use timed concurrent constraint automata (TCCA) [7]. We

encode the observations in such a way that enforces the control values and timing of

the observations to be included in the control sequence output by the planner. That

is, given an observation sequence, we encode the sequence as an automaton that per-

mits the sequence. The planner will output a valid control sequence if and only if the

observations are consistent with the plan of the occupant.

3.4 Plan Representation and Background

In this subsection we describe our representation for the plans of the occupant. We

begin by explaining the requirements we have of the representation, and then we

formally describe our representation that meets those requirements, timed concurrent

constraint automata (TCCA).

As an occupant living in a house, we assume that most of one's plans are de-

termined by interaction with various components of the house, be they devices, or

perhaps rooms. In our example scenario, the resident's plan to make coffee is deter-

mined by his interaction with the coffee machine, and his entrance and exit to the

kitchen. We assume the occupant's plans are fully described in terms of these inter-

actions, and we choose to represent the actions he or she takes towards completing

the plan in terms of states and transitions of these components.

We structure our representation of the world the occupant is acting in into two

layers, an action layer and a plan layer. The action layer consists of the building
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devices, their states, and transitions between states. The plan layer describes the

occupant's plan in terms of the states of these devices.

The representation of the occupant's plan within the house must be capable of

capturing both the various operating states of appliances and devices in the house,

and it must be capable of representing how these lower-level states relate to higher-

level states of the occupant. Since we must differentiate between similar plans with

different temporal relations, the representation must express the notion of time and

durative actions. Also, since the house contains many devices, it must be capable of

representing many concurrently operating devices.

The representation we will use that has all of these properties is the timed concur-

rent constraint automaton. A TCCA is a way of representing multiple concurrently

operating automata, called timed constraint automata (TCA), and the interaction

between them. Each individual automaton has a state that it is operating in, as well

as input variables that control the automaton, and output variables that allow the

automaton to affect other automata. The input variables will serve as the observ-

ables in the devices on which the sensors act. The automaton transitions between

two states dependent on a given condition, or guard, that must be true to take the

transition. The guard is represented as a propositional formula that is a function of

the input variables to the automaton. The transition function also places lower and

upper bounds on the duration for which the guard must remain true for the transition

to occur.

The TCA will serve as our representation of both the building devices in the action

representation, and the plan representation of the resident. The TCCA will connect

the action representation to the plan representation, capturing the role each device

takes in the occupant's plan.

3.4.1 Action Representation

In this section we introduce our representation of the behavior of each component of

the house, the timed constraint automaton (TCA).

We first introduce the concept of a TCA by way of an example, a coffee machine.
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Consider the automaton representation of a coffee machine depicted in Figure 3-1.

The coffee machine has three states: off, brewing, and warming. To transition from

off to brewing, the automaton must receive the on command. To transition from

brewing to warming, that is, for the coffee to finish brewing, the machine must not be

turned off for 5 minutes. Once it is done brewing, the automaton outputs the coffee

warming signal for the duration that it stays in the warming state. As we will see,

this output will serve to signal a transition in another automaton representing the

resident's plan for making and eating breakfast.

Formally, we describe a single constraint automaton C in the following definition

inspired by [47] and [7].

Definition 3. A Timed Constraint Automaton (TCA) is defined as a tuple

(X, 6, Q} where:

* X is the set of variables x E X with finite domain D(x) describing the state

of the automaton. An assignment to the variable x is denoted as a pair (x, v)

for some v G D(x). These variables are further partitioned into a single state

variable xm, a set of input, or control, variables Xu, and a set of output variables

XY. We refer to an assignment (Xm, v) to the state variable as the state of the

automaton.

* 6 is the transition function that associates with each pair of states a guard over

Xu and a lower and upper time bound. A guard is a propositional formula that

must evaluate to true for the automaton to transition between the two states.

The lower and upper time bounds are bounds on the length of time for which

the guard must remain true in order to make the transition. Note that the

automaton does not enter the new state until this time has elapsed.

* Q is a state-constraint function that associates with each state, an input-output

relation expressed as a propositional formula over the variables in Xu U Xy. In

the given state, the state-constraint must evaluate to true. The state-constraint

function provides a simple mechanism for describing the relationship between

inputs and outputs.
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Figure 3-1: A TCA model of a coffee machine.

In Figure 3-1, states are represented by squares and transitions by directed edges.

Guards are expressed as propositional formula on the edges, together with time

bounds of the form [lb, ub]. State-constraint functions describing outputs are ex-

pressed as propositional formula on the states.

Throughout this thesis, we will sometimes refer to a TCA as simply an "automa-

ton". When a TCA represents a device or component of the house, we refer to it as

a device TCA, or device automaton. From this point forward we will let AD denote

the set of device automata in the house.

3.4.2 Plan Representation

Our representation of a resident's plan also takes the form of a TCA, which we will

call a plan TCA, or simply a plan automaton. The plan automaton has the same

representation as the device automata, except that we require its input to come from

the output of the device automata. Suppose X' is the set of output variables of

the device automata. We require that a plan TCA is a TCA who's input variables

come from the set of output variables X' of AD. In the next section we describe how

the plan representation and action representation interact, that is, how the output

variables of the device automata are connected to the input of the plan automaton.
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3.4.3 Connecting the Action and Plan Representations: Timed

Concurrent Constraint Automata (TCCA)

The home contains more than one device, all of which play a role in the plan of

the resident. Now that we have defined a single timed constraint automaton, we

can describe how to connect them together to relate how the devices of the home

interact with the plan representation of the resident. The timed concurrent constraint

automaton describes how multiple timed constraint automata act on one another.

Before we define the notion formally, recall the example from Section 3.2. We

can represent this scenario using three separate TCAs: one representing the coffee

machine, one representing the occupancy of the kitchen, and another plan TCA track-

ing the progress of the occupant towards finishing breakfast. The coffee machine is

represented by the automaton already discussed and illustrated in Figure 3-1. The

automaton for kitchen occupancy has two states, occupied and vacant, where a tran-

sition occurs when the occupant walks through the kitchen door. The progress of the

occupant is represented as a sequence of states. He starts off in the state in bedroom.

When the kitchen occupancy automaton signals that he entered the kitchen, we tran-

sition to the state in kitchen. When the coffee machine is in the warming state, it

means that the coffee is ready to be drunken. It stays in the warming state for 5-10

minutes while the occupant drinks the coffee before we transition to the state coffee

finished. Finally, he leaves the kitchen and we transtion to the gone state.

This TCCA describing the resident's plan is represented in Figure 3-2.

Definition 4. A Timed Concurrent Constraint Automaton is described by the

tuple M = (X, Xc, A, I), where:

" A is a set of timed constraint automata,

" X =U) Xi is a set of variables. Xi denotes the set of variables of automaton

A EA,

" Xc C X is the set of control variables of the automaton. By control variable,

we mean a variable whose value can be assigned by the planner, and
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Figure 3-2: A TCCA model of making coffee on a rushed morning. All transitions
without time bounds have bound [0, oc].

I is a set of interconnection constraints composed of equalities between vari-

ables of different automaton. These equalities provide a mechanism to allow the

variables of one TCA to affect the behavior of another TCA.

For a given plan automaton and a set of device automata, we connect them to-

gether into a TCCA, which we will call the planning automaton. Recall that all

inputs of the plan automaton are taken from the outputs of the device automata.

The planning automaton is constructed by defining interconnection constraints that

reflect this, namely, they set the inputs of the plan automaton equal to the corre-

sponding outputs of the device automata. We denote a planning automaton for the

plan P E Ap as the tuple (P, AD)-

3.4.4 Observables

Recall our example of the resident making coffee. In this example, we had two

components in AD that were observable, the coffee machine and the occupancy of

the kitchen. On the coffee machine, we could observe the input of the switch, on or

off. On the kitchen, we could observe when someone enters or exits. In this section

we describe our assumptions about observability and define what we mean by an

observation.

First, we assume that the devices are partially observable. Let AD f 1 , .- ,n
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denote the set of device automata. We specify a subset Ao c AD of the device

automata that are observable. By observable, we mean that all observations are

taken on the input variables of the automata in Ao. It may not be the case that

every input to these automata is observed.

Next, we assume that the observations are only partially observable. That is, not

every input to the observable automata Ao is observed.

Also, we assume that observations are not noisy. That is, every input that is

observed actually occurred. We assume any error correction is handled by the lower-

level sensing framework.

An observation oi is an assignment to a single control variable of Ao together

with a start time and an end time to the observation. Note that we allow for instan-

taneous controls by setting the start time and end time to be equal. Formally, we

describe an observation as a tuple oi = ((xc, v), ts, tE) where

" (xc, v) is an assignment of the control variable x' to the value v E D(xc),

* tS, tE E R+ with ts < tE are start and end times to the observation. We let

At, = tE - tS denote the duration of the observation.

3.4.5 Space of Candidate Plans

Each individual plan a resident may be following is represented as a set of plan

automata. We say that the space of candidate plans is the set of all plan automata

that the resident might be following. We denote this set by Ap.

3.5 Problem Formulation

This section describes the problem of plan recognition more formally.

Let us turn back to our example of making coffee. This example had two device

automata in AD, the coffee machine and the occupancy of the kitchen, both of which

are observable. There were also two plans of the resident we were trying to distinguish

between, the leisurely coffee or the rushed coffee. These two plans comprise our set of
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candidate plans Ap. Recall our example sequence of observations saying the occupant

entered the kitchen at 8am and switched the coffee machine off at 8:12am. We require

our problem to take as input these observations 0, the device automata AD, and the

candidate plans AP, and determine which plans are consistent with the observations.

We present this problem formally in the following definition.

Definition 5. A Plan Recognition Problem over TCCAs is described by the tuple

{ AD, AP, I, 0, G), where:

o AD is a set of device automata representing the devices of the house.

o Ap is a set of plan automata encoding the candidate plans of the occupant.

o I is the initial state. I is a full assignment of states to the state variables of

each TCA in AD and AP-

* O = (01,. . . , o') is a sequence of observations.

o G specifies the end goals of each candidate plan in Ap. For each plan, G specifies

an end state in the automaton, together with time bounds lb and ub specifying

bounds on the time by which the end state must be achieved.

3.6 Solution Definition

The solution to the plan recognition problem is the subset of plans P E Ap for which

there exists a satisfying control plan that reaches the goal G(P) within the specified

time bound. By control plan, we mean an assignment to the input variables over

time. By "satisfying", we mean that the control plan contains all observations in 0,

and the goal is reached when the control plan is applied to the planning automaton

created from P and the device automata AD. We define these notions formally as

follows.

In order to describe the solution to the plan recognition problem, we introduce

the Qualitative Control Plan (QCP). The QCP is an expressive representation

of a control plan that encodes assignments to input variables over time.
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Definition 6. A Qualitative Control Plan (QCP) is a tuple (8, A, T) where:

* E is a set of events. Events are plan elements that can be assigned to a specific

point in time.

" A is a set of episodes where each episode a E A is itself a tuple (es, e, (4

An episode is represented as a directed edge between events with constraints

on control variables. Episodes have a start event es, an end event eE, and a

state constraint that must be true over the duration of the episode, given as an

assignment of v to the control variable x.

" T is a set of temporal constraints represented as a simple temporal network

(STN), which specifies lower and upper bounds on the duration between events.

We say that a QCP C satisfies a given plan P E Ap of the plan recognition

problem (AD, Ay, I, 0, G) if the following conditions hold:

* For every observation oi E 0 with o = ((4, v), ts, tE), there is an episode

a (es, eE, (i = v)) in C such that all legal assignments of times t', tE to

the events es, eE respectively have the property that t' < ts and tE > tE-

That is, there exists an episode in the QCP that holds the observed control

variable to the given value over at least the same time period as the original

observation. We say that p explains the observation oi. Note that we allow

the control variable to be held at the value for longer than the observed time

period.

" The state and temporal bounds of the goal G(P) are satisfied under legal runs

of the control plan C on the planning TCCA (P, AD)-

We now formally define what we mean by a solution to the plan recognition

problem, namely, the set of plans for which there exists a satisfying QCP.

Definition 7. A solution to the plan recognition problem (AD, AP, I, 0, G) is the

set of plans {P} C Ap such that for each P, there exists a QCP that satisfies P.
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3.7 Related Work

In 1978, Schmidt et. al. first described the plan recognition problem in very general

terms [43]. They said "the problem of plan recognition is to take as input a sequence

of actions performed by an actor and to infer the goal pursued by the actor and also to

organize the action sequence in terms of a plan structure." This statement succinctly

describes the problem and the work serves as a source of motivation for this thesis.

Existing plan recognition algorithms use a variety of techniques, from context

free grammars and parsing algorithms, to Bayesian network inference, to specialized

procedures. In [15], the authors use string parsing to probabilistically recognize plans

based on specialized grammars. In [6], the authors create a variant of Hidden Markov

Models to represent a plan domain and use a Rao-Blackwellised Particle Filter to

perform probabilistic inference on the domain. All of these works use specialized

domain representations or algorithms that are specialized or unstandardized within

the planning community. In [28], the authors do use a standardized extension of

STRIPS called UWL as their planning domain; however, they use a specialized graph

representation and algorithms to check observations for consistency with plans.

Some more recent effort in the community has been put towards the idea of plan

recognition as planning. In [40], Ramirez and Geffner argue that plan recognition is

essentially planning in reverse. Whereas a planning problem seeks to find actions to

achieve a specified goal, in plan recognition we seek to find the goal that best explains

a sequence of actions. In later work, the authors extended their previous work to

utilize off-the-shelf classical PDDL planners for plan recognition [41]. This work is a

notable breakthrough in that it enables plan recognition to leverage decades of work

from the planning community. Great effort has been put towards standardizing and

optimizing the PDDL language and PDDL planners, and to the knowledge of this

author, no such standardization exists for plan recognition.

While the work of Ramirez and Geffner exhibited the viability of plan recogni-

tion as planning, their recognition encoding does not leverage the structure of the

problem, specifically when considering a human's interaction with devices. TCCAs
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allow the recognition subset of the encoded domain to be compactly represented in

a single Timed Constraint Automaton. Also, the authors did not provide a method

for handling time. The work in this chapter allows for plan recognition with time.

3.8 Approach to Plan Recognition

In this section we present our approach to plan recognition using TCCAs. As we

described in Section 3.3, we leverage the idea that plan recognition is planning in

reverse. We will encode the plan recognition problem as a planning problem, and then

solve it with a black-box TCCA planner. The problem is encoded by mapping control

variables that appear in the observations into state variables in a new automaton,

referred to as a recognizing automaton. The start time and end times on observations

are encoded in our new automaton to force the planner to hold each control variable

to the same value and same duration as in each observation.

We begin this section by describing the planning problem and defining the black-

box TCCA planner. We then walk through encoding the example of the occupant

making coffee. Then in Sections 3.8.2-3.8.6 we formally describe the algorithms for

performing the encoding. For ease of exposition, in these sections we make the as-

sumption that observations are non-overlapping. That is to say, for pairs of adjacent

observations oi and oi+1, we require that tEi S' tS,i+1. In Section 3.8.7 we relax this

assumption and give an overview of how to extend our method to allow for concurrent

observations.

3.8.1 TCCA Planner as a Black Box

In order to describe how to perform plan recognition using planning, we must define

the notion of a planning problem. We define the problem formally as follows:

Definition 8. The planning problem over TCCAs is given by the tuple (M, I, g)

where:

SM is a TCCA,
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" I is the initial state of the TCCA, given as a full assignment to the mode

variables of M, and

" g is the goal of the planning problem, encoded as a QSP.

A solution to the planning problem is a QCP that satisfies the input goal QSP g.

That is, all legal executions of the QCP from the initial state results in all episodes

in g being observed.

A QSP is the same as the QCP presented in Section 3.6, except that constraints

on episodes are over state variables of the the TCCA, not control variables. Formally,

we define it as:

Definition 9. A Qualitative State Plan (QSP) is a tuple (, A, T) where:

S 8 is a set of events. Events are plan elements that can be assigned to a specific

point in time.

" A is a set of episodes where each episode a E A is itself a tuple Kes, eE, (Xc ~ v-))

An episode is represented as a directed edge between events with constraints on

state. Episodes have a start event es, an end event eE, and a state constraint

that must be true over the duration of the episode, given as an assignment of v

to the state variable xT".

" T is a set of temporal constraints represented as a simple temporal network

(STN), which specifies lower and upper bounds on the duration between events.

Let TCCA-PLAN denote a TCCA planner that solves the planning problem. It

takes as input a TCCA, the initial state, and a goal, expressed as a QSP. It outputs

True if a satisfying control plan, or False otherwise. We define the following black

box that will be used when checking plans for consistency.
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Algorithm 3 TCCA-PLAN
function TCCA-PLAN(M, I, g)

1: Solve planning problem on inputs (M , g)

2: if Satisfying QCP C exists then

3: return TRUE

4: else

5: return FALSE

6: end if

As our candidate planner inspiring this work, we use a TCCA planner called tBur-

ton developed within the Model-based Embedded Robotic Systems (MERS) group

at MIT. tBurton is based off of the work described in [7] on CCAs, extended to

plan over time-evolved goals. It is a temporal generative planner that leverages tech-

niques of causal-graph decomposition to quickly reason over concurrently operating

timed automaton. The key to its efficiency and scalability is a divide-and-conquer

approach that combines constraint decomposition and causal order decomposition to

generate a least-commitment plan. Constraint decomposition verifies the constraints

encoded in each automaton, and if necessary, reorganizes them into other automaton

more amenable to the planning task. Causal order decomposition identifies natural

hierarchy within the automata and groups cyclically dependent automata.

3.8.2 Outer Loop: Checking Each Plan for Consistency

We begin by describing the outer loop to the algorithm. Recall that the plan recogni-

tion problem takes as input a set of all possible candidate plans Ap that the occupant

could be following. In this loop, we iterate over all plans, checking if each is consistent

with the observations.
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Algorithm 4 Check each plan for consistency
function CHECK-PLANS(AD, Ap, I, 0, G)

1: consistent-plans <- {}
2: for all P c AP do

3: AR < GET-RECOGNIZING-TCA(P, AD, 0)

4: M MAKE-TCCA(P, AD, AR)

5: g <- GET-RECOGNIZING-QSP(G(P), 0)

6: p-consistent <- TCCA-PLAN(M, I, g)

7: if p-consistent then

8: Add P to consistent-plans

9: end if

10: end for

11: return consistent-plans

The outer loop is described in Algorithm 4. For each plan P E Ap, the algorithm

start by constructing the recognizing automaton (Line 3). This step is described in

Section 3.8.4. It then constructs a TCCA by connecting together the plan automaton

P, the device automatons AD, and the recognizing automaton AR that was just

constructed (Line 4). This step is described in Section 3.8.5. The algorithm finishes

the encoding in Line 5 by encoding the temporal information of the observations into

a QSP and combining this with the final goal of the plan P. This step is described

in Section 3.8.6. The encoded TCCA M and QSP are then input into the black-box

planner on Line 6 to check if P is consistent. If so, it is added to a list of consistent

plans (Line 8).

In the next section we walk through the execution of this algorithm on the example

problem, before describing the technical details in the following sections.

3.8.3 Walk-Through of Plan Recognition

In this section we walk through the process of encoding our example plan recognition

problem of drinking coffee into a planning problem. Throughout the section we will
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Figure 3-3: A recognizing automaton encoding two observations on an example sce-

nario of making coffee.

reference lines in Algorithm 4. We suppose our two components in AD are the coffee

machine and the occupancy of the kitchen. In our library of plans Ap we have two

plans, one for leisurely coffee and one for rushed coffee, each with the goal (G(P)) of

finishing the coffee. Suppose we observe the kitchen being entered at 8am, and the

coffee machine being turned off at 8:12am. We will walk through the encoding for

the rushed coffee plan, but the other plan is similar.

In Line 3 we construct an automaton that encodes the durations and values of each

observation. Each observation has a start state and an end state corresponding to

the start and end time of the observation (Figure 3-3). In our case, the observations

are instantaneous, so we place a lower time bound of 0 on the transition of each

observation. We place no state or temporal constraints on transitions between the

end of one observation and the start of another, so as to allow any missing observations

to be filled in by the planner.

In Line 4 we connect the automaton in Figure 3-2 with the recognizing automaton

in Figure 3-3 to construct the TCCA that is input into the planner (Figure 3-4). The

ouput variables (coffee-state and kitchen-state) of the device automata are connected

to the corresponding input variables of the plan automaton as in Figure 3-2. Also,

the control variables (c-cmd and motion) of the device automata are connected to

the input variables of the recognizing automaton so that the automaton ensures that

all observations are explained in the output control plan of the planner.

In Line 5 we construct the QSP that will be given to the planner. This QSP

encodes the absolute start and end times for each observation. As can be seen in

Figure 3-5, we include one sequence of episodes for each observation. The first event
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Figure 3-4: The TCCA created from combining the plan, device, and recognizing
automatons for an example scenario of making coffee.
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Figure 3-5: A recognizing QSP encoding two observations in an example scenario of
making coffee.
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E, in each sequence represents the start time of the observation, and the second event

Ee represents the end time. On each episode, we place state constraints that ensure

that the recognizing automaton follows a state trajectory through each state si and

ei.

3.8.4 Encoding the Observations into a Recognizing Automa-

ton

Next we present the construction of the recognizing automaton. The recognizing

automaton is our tool for transforming the control variables in the observations into

state variables that can be planned over by the planner TCCA-PLAN. For each

observation, the automaton will include one state that represents the start to the

observation, and another that represents the end of the observation. Transitions

between the start and the end states of an observation are given temporal constraints

that require the value of the control variable observed to be held for the duration of

time the observation was observed.

Algorithm 5 Create recognizing automaton
function GET-RECOGNIZING-TCA(P, AD, 0)

1: Create state variable x' of the automaton

2: N <- length(O)

3: Define domain variable D(x') ={si,... , sN, el, - - , eN

4: X" +- Set of observable controls variables of AD

5: XR X7 4U Xu

6: QR {}

7: Initialize transition function 6R

8: for all ((Xki, v), ts,i, tE,i) E 0 do

9: +- ADD-TRANSITION(si, ei, (Xk, - v), At0o, oc)

10: +- ADD-TRANSITION(e, sig, TRUE, 0, oc)

11: end for

12: return (XR, 6 R, QR)
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The construction of the recognizing automaton is presented in Algorithm 5. We

start by letting x be the state variable of the automaton. The domain of x consists

of two states for every observation, a start si and an end ej. In Line 4, we collect

all of the variables of the control variables that are observable. The variables of the

recognizing automaton are this set X' together with the state variable x (Line 5).

We then iterate over the observations oi = ((Xki, v), ts,i, tE,i). For each observation we

add two transitions. In Line 9 we add a transition from the start of the observation si

to the end of the observation ej, with a guard requiring that the control variable Xk

be held to the value v observed for at least the duration of the observation tE,i - tSi-

In Line 10 we add a transition from the end of the observation ei to the start of

the next observation si±1. We place no guards on this transition to allow for any

value on control variables in between observations. After all transitions are added,

the construction of the recognizing automaton is complete.

3.8.5 Connecting the Automata into a TCCA

In this section we describe how the TCCA is constructed by connecting together the

plan automaton P, the device automatons AD, and the recognizing automaton AR.
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Algorithm 6 Combine automata together to create the encoded TCCA
function MAKE-TCCA(p, AD, AR)

1: xo +- State variable of AR

2: xm <- State variable of pp

3: X31 +- Set of state variables in AD

4: XR XT UIx",x'}

5: XR', +- Set of control variables of AD

6: AR <- AD U {p, AR

7: Initialize set of interconnection constraints I[

8: for all Control variables xc do

9: IR <- Add connection between x in AD and x in AR

10: end for

11: for all Output variables xy in AD do

12: IR +- Add connection between xy in AD and corresponding input x in p

13: end for

14: return (XR, XR,c AR, R)

Algorithm 6 describes this process of how the automaton in our encoding are

connected together into a TCCA. In Lines 1-4, we collect together all of the state

variables of the component automata. In Line 5, we specify that the control variables

of the TCCA are the set of all control variables of the device automata in AD. Then

we collect together all of the component automata of the TCCA (Line 6. Then in

Lines 8-13 we define how variables of the component automata are connected together.

Every control variable in the device automata must be connected to the corresponding

control variable in the recognizing automaton (Line 8). Also, every output variable of

the device automata must be connected to the corresponding input in the occupant's

plan automata p (Line 11).
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3.8.6 Encoding the Goal and Observations into a Recogniz-

ing QSP

The recognizing automaton constructed in Section 3.8.4 is only enough to ensure that

the planner explains the duration of each observation, but it is not capable of enforcing

constraints on specific points in time. That is, it can ensure that a control variable

will be held for 5 seconds, but it cannot ensure that it is held for 5 seconds starting at

8am. The recognizing QSP presented in this section provides these complementary

constraints to the recognizing automaton.

Algorithm 7 Create recognizing QSP
function GET-RECOGNIZING-QSP(g, 0)

1: E <-{Eo, EN}

2: A<-{}

3: T+-{}

4: for all ((Xk, v), tsi, tE,i) c 0 do

5: E +- E U {Es,i, Ee,i}

6: A, T + ADD-EPISODE(Eo, E,i, TRUE, [ts,j, tsi])

7: A, T < ADD-EPISODE(E,i, Ee,2 , (Xr = s,), [Atoi, At 0j)

8: A, T <- ADD-EPISODE(E, 2 , EN, (XI ei), [0, oc])

9: end for

10: With g ((x, v), tsg, tE,g):

11: E <- ' U {Es,g, Ee,g}

12: A, T <- ADD-EPISODE(Eo, Es,,, TRUE, [ts,g, ts,gl)

13: A, T < ADD-EPISODE(E,,, Ee,,, (xM' = v), [Atg, Atg])

14: return (E, A, T)

Algorithm 7 describes the construction of the recognizing QSP. It is constructed

by first adding episodes for each observation that enforce the absolute times on the

observation (Lines 4-8). First, we create two events Eo and EN that will serve as the

start and end events of the QSP (Line 1). Eo corresponds to time t = 0. For each
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Figure 3-6: An encoding of observations into a recognizing QSP.

observation oi = ((Xkz v), ts,, tE,i , we first add an episode from EO to E,,i (Line 6).

This episode is given a temporal constraint of [ts,i, ts,i] to ensure that the control

value v of observation o. will start at time tsi in the QCP output by the planner.

Then an episode is added in Line 7 that ensures that v will be held for the proper

duration. By construction of the recognizing automaton, AR can only transition to

state e if the value v is held for the correct duration. The last episode added in Line

8 ensures that the state ei is reached. In Figure 3-6 we depict this portion of the

recognizing QSP encoding the observations. Then in Lines 10-13 we add the end goal

of the occupant's plan so that the TCCA planner will generate a control plan that

reaches this goal.

3.8.7 Extending to include concurrent observations

For clarity of exposition, in the previous section we assume that observations are non-

overlapping. However, we can easily extend this technique to concurrent observations

by including a recognizing automaton for each input variable x E X'. In this section

we present the intuition behind including concurrent observations.

In the previous section we were limited by the use of a single automaton for rec-

ognizing observations. The state trajectory of the recognizing automaton followed a

linear path; each observation must be recognized before recognizing the next obser-
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vation.

This limitation can be overcome by using a separate recognizing automaton for

each control variable x' E Xc. The recognizing automaton for the variable x' is

responsible for ensuring that the planner generates a plan that recognizes all ob-

servations of x in 0. The ability to handle concurrent observations so seamlessly

is one of the most useful features of our choice of TCCAs as our planning domain

representation.

3.9 Summary of Insights into Autonomous Con-

trol

In this chapter we presented the concept for a fully integrated autonomous control

system for the sustainable control of homes. In our discussion we described a vision

for a unifying representation for human interaction with a house. A key insight is

that the behavior of each component of the system should be modeled in a language

natural to that component. The languages should then be compiled into one unifying

representation, over which plan recognition could be performed.

We also provided the concept design for plan recognition over TCCAs in which

we reformulate a plan recognition problem as a planning problem to be solved by a

planner. This design provides the foundation for plan recognition over a system with

devices interacting with humans.
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Chapter 4

Conclusions

This chapter begins by presenting several ideas for future extensions of the research

presented in this thesis necessary for the adoption of the technology. We then conclude

our discussion and discuss our contributions in Section 4.2.

4.1 Future Work

4.1.1 Handling Postponed Episodes

When performing receding horizon control over flexible temporal constraints in a

CCQSP, often a planning horizon will end between the temporal bounds, and we

must decide whether the episode should be executed in the current planning horizon,

or postponed to the next. In Section 2.4.2, we described our method for handling this

problem by adding a penalty to the objective function for postponed episodes. We

argued that this penalty was reasonable because there is no guarantee the episode

will be still be feasible if postponed. However, this may not be the optimal solution.

Future work is needed to determine the best approach for handling temporally flexible

episodes across planning horizons.
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4.1.2 Modeling Uncertainty in Occupant Behavior

In Chapter 2, we assumed that the start and end times of episodes in an occupant's

schedule are controllable. However, this does not hold in general. We might not know

when the occupant arrives or leaves, and must explicitly consider this uncertainty in

our model. In future work, we could model the start and end times as distributions.

The p-Sulu algorithms must be modified to plan according to these distributions.

In particular, equation (2.3) must be reformulated to include chance constraints. In

[30], the authors use stochastic occupancy models in robust model predictive control

of homes. In particular, the authors assume the occupancy of a building is determined

by Markov chains, and formulate the robust MPC problem around this assumption.

One could draw ideas from this work when approaching the occupancy problem under

our problem formulation.

4.1.3 Expand Analysis of Energy Savings

In Chapter 2, we described p-Sulu and its application to the Connected Sustainable

Home. Preliminary results showed the great impact such a controller could have on

efficient use of energy in the home, producing energy savings of 42.8% in the winter,

15.3% in the spring, 16.8% in the summer, and 4.4% in the autumn. However, these

results were taken over only a single scenario. To illustrate the true savings, we must

analyze the results over a wide variety of realistic scenarios for typical residents of a

house.

Also, we only analyzed the performance on the single prototype house. To en-

courage widespread use of the technology, we must demonstrate its benefit on a wide

variety of homes, especially older buildings that aren't outfitted with the building

technologies present in the Connected Sustainable Home.

4.1.4 Energy Disaggregation using Hybrid Mode Estimation

In Section 3.1, we set forth a vision for seamlessly integrating an autonomous home

control system into a resident's daily life. In this discussion, we described a sensing
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framework in which states, or modes, of an appliance are sensed through energy

disaggregation. Energy disaggregation is the problem of taking a whole home energy

signal and decomposing it into its component appliances. Previous authors have

approached this problem using a variety of techniques. Early work simply looked

at jumps in the energy signal to classify transitions in appliance state [20]. More

recent work leverages additive factorial HMMs to perform energy disaggregation in

an unsupervised setting [25]. See [48] for a recent survey of energy disaggregation

techniques.

Through the course of this author's investigations, he experimented with apply-

ing a technique called hybrid mode estimation to the problem of energy disaggrega-

tion. In this approach, an appliance is modeled as a probabilistic hybrid automaton

(PHA)[22]. A PHA is a representation of a device who's state can be represented by

a combination of discrete states, or modes, and continuous variables. When in a par-

ticular state, the dynamics of the continuous variables are described by a set of linear

dynamical systems. Hybrid mode estimation is the technique of estimating the mode,

or state, of a PHA. Multiple PHAs that are interacting and are jointly observable can

be represented as concurrent PHAs (cPHA). Multiple appliances on a circuit can be

modeled as a cPHA where the aggregate power signal is the only observable. Previous

research has already explored techniques for estimation of the states of concurrently

operating automata (i.e. the operating state of an appliance) [22][4]. Preliminary ex-

periments on a small subset of 6 appliances showed that each appliance could be well

modeled as a probabilistic hybrid automaton. Applying hybrid mode estimation pre-

dicted the operating modes of single appliances with near perfect accuracy, although

the findings were not pursued with enough rigor to present in this thesis. Although

these experiments were not rigorous, they showed promise that concurrent hybrid

mode estimation is a promising technique for energy disaggregation, especially when

estimating the operating states of only a small number of appliances. This should be

a topic of future research.

Although this problem is often framed as looking at the aggregate energy signal of

the home, the level of fidelity required in plan recognition may require a more robust
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sensing framework. For greater sensing granularity, one could consider applying the

techniques at the circuit level, or even the outlet level. Individual energy monitors

on each outlet are becoming more common in the growing web-of-things movement

[17][34], so this level of sensing is not unreasonable. In [18], the authors introduce an

API for interfacing with wireless smart outlets that would be useful for implementing

this level of sensing granularity.

4.1.5 Probabilistic Plan Recognition

Currently our plan recognition algorithm only checks if the observations are consistent

with a given plan, and if so, outputs a satisfying plan. Our algorithm allows for

missing observations, but it is not forgiving of noisy observations. If an incorrect

input is observed, a given plan may be declared inconsistent, even if it is in fact the

correct goal.

Also, it may be the case that the observations are consistent with multiple plans.

We need a mechanism to differentiate between the multiple consistent plans to find

the best candidate.

One solution to these problems is to introduce probability into the model and rank

the plans P E Ap based on their probability Pr(P 0) conditioned on the observa-

tions. Many prior estimation techniques on HMMs [42], PHCAs [46], or POMDPs

[42] could offer valuable insight into this problem of probabilistic plan recognition.

4.1.6 Model Learning

One of the biggest hinderances to performing plan recognition in the home is creating

the model that describes the resident's behavior. As discussed in Chapter 1, humans

can behave drastically different from one another. So the problem isn't to create

one model that governs the entire system. Rather, models must be created on an

individual basis. Requiring each individual user to describe his or her behavior is

completely infeasible, especially in a modeling language completely foreign to the

user. Thus, we need an algorithm that can autonomously learn models describing the
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resident's behavior, with little or no interaction required from the user. Much prior

work, such as [10], has focussed on the problem of learning and could offer useful

insight into this problem.

4.2 Conclusions

In this thesis we presented an approach to autonomous control of buildings, and

applied it to a prototype called the Connected Sustainable Home. Our goals were

threefold: to provide sustainable, comfortable, and convenient living to the occupant

of a building.

The first two goals were accomplished in Chapter 2 by our application of the risk-

sensitive goal-directed executive probabilistic Sulu (p-Sulu) to the domain of building

control. The first goal of sustainability is achieved through goal-directed optimal

planning. We showed the contribution of p-Sulu to sustainable living in two ways.

First, p-Sulu's explicitly considers the stochastic plant model of the home and the

goal-directed representation of a resident's schedule (CCQSP), and is able to plan and

control over the model and schedule in a near-optimal manner. We saw energy savings

as high as 42.8% in the winter compared to a traditional PID controller, with savings

of 15.3%, 16.3%, and 4.4% in the other three seasons. The second contribution comes

from the ability to leverage flexibility in a resident's schedule. Comparing fixed and

flexible schedules on an example scenario, flexible scheduling yielded energy savings

of 10.4% in the winter. Savings in the other three seasons were less significant: 1.6%,

1.6%, and 0.7% in spring, summer, and autumn respectively.

Our executive p-Sulu contributes to the comfortable living of the resident through

it's risk-sensitive control approach using chance constraints. Since the outdoor en-

vironment surrounding the home is uncertain, we assume a risk that the resident's

comfort requirements may be violated if the weather deviates from the forecast. p-

Sulu allows users to specify a bound on the risk they are willing to take that their

comfort requirements are violated, and it executes a control sequence that achieves

this level of risk. To evaluate its performance, we compared p-Sulu to its deterministic
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counterpart Sulu, analyzing the fraction of time that the two controllers violate the

resident's temperature constraints. We saw that Sulu violated constraints 30.88% of

the time, while p-Sulu violated constraints on only one trial. This feature is critical to

the adoption of the technology. If an autonomous building controller were to produce

an uncomfortable living environment 30% of the time, the user would likely abandon

the technology.

p-Sulu requires knowledge of the resident's activity schedule to maximize energy

savings. Forcing a user to input his or her schedule would place undue burden on the

resident and would likely be a barrier to adoption of the technology. To make the con-

trol system convenient for the resident, we must automatically predict their behavior.

In Chapter 3 we presented a concept design that contributes towards achieving the

third goal of convenience. We presented a method for plan recognition that would

be able to predict the plan of a resident by observing him or her. The technique

uses timed concurrent constraint automata (TCCA) to represent components in a

house the resident may interact with, and predicts the resident's behavior based on

these interactions. We leverage a novel encoding of the plan recognition problem as

a planning problem, to be solved by a TCCA planner.
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