3,438 research outputs found

    Minimum-time trajectory generation for quadrotors in constrained environments

    Full text link
    In this paper, we present a novel strategy to compute minimum-time trajectories for quadrotors in constrained environments. In particular, we consider the motion in a given flying region with obstacles and take into account the physical limitations of the vehicle. Instead of approaching the optimization problem in its standard time-parameterized formulation, the proposed strategy is based on an appealing re-formulation. Transverse coordinates, expressing the distance from a frame path, are used to parameterise the vehicle position and a spatial parameter is used as independent variable. This re-formulation allows us to (i) obtain a fixed horizon problem and (ii) easily formulate (fairly complex) position constraints. The effectiveness of the proposed strategy is proven by numerical computations on two different illustrative scenarios. Moreover, the optimal trajectory generated in the second scenario is experimentally executed with a real nano-quadrotor in order to show its feasibility.Comment: arXiv admin note: text overlap with arXiv:1702.0427

    Mobile Robots in Human Environments:towards safe, comfortable and natural navigation

    Get PDF

    Navigation Among Humans

    Get PDF

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Social Navigation in a Cognitive Architecture Using Dynamic Proxemic Zones

    Get PDF
    [EN] Robots have begun to populate the everyday environments of human beings. These social robots must perform their tasks without disturbing the people with whom they share their environment. This paper proposes a navigation algorithm for robots that is acceptable to people. Robots will detect the personal areas of humans, to carry out their tasks, generating navigation routes that have less impact on human activities. The main novelty of this work is that the robot will perceive the moods of people to adjust the size of proxemic areas. This work will contribute to making the presence of robots in human-populated environments more acceptable. As a result, we have integrated this approach into a cognitive architecture designed to perform tasks in human-populated environments. The paper provides quantitative experimental results in two scenarios: controlled, including social navigation metrics in comparison with a traditional navigation method, and non-controlled, in robotic competitions where different studies of social robotics are measured.SIGobierno de España (TIN2016-76515-R grant for the COMBAHO project, supported with Feder funds )Comunidad de Madrid (RoboCity2030-DIH-CM (S2018/NMT-4331)

    Socially aware robot navigation system in human-populated and interactive environments based on an adaptive spatial density function and space affordances

    Get PDF
    Traditionally robots are mostly known by society due to the wide use of manipulators, which are generally placed in controlled environments such as factories. However, with the advances in the area of mobile robotics, they are increasingly inserted into social contexts, i.e., in the presence of people. The adoption of socially acceptable behaviours demands a trade-off between social comfort and other metrics of efficiency. For navigation tasks, for example, humans must be differentiated from other ordinary objects in the scene. In this work, we propose a novel human-aware navigation strategy built upon the use of an adaptive spatial density function that efficiently cluster groups of people according to their spatial arrangement. Space affordances are also used for defining potential activity spaces considering the objects in the scene. The proposed function defines regions where navigation is either discouraged or forbidden. To implement a socially acceptable navigation, the navigation architecture combines a probabilistic roadmap and rapidly-exploring random tree path planners, and an adaptation of the elastic band algorithm. Trials in real and simulated environments carried out demonstrate that the use of the clustering algorithm and social rules in the navigation architecture do not hinder the navigation performance
    • …
    corecore