13,641 research outputs found

    A Framework for Design and Composition of Semantic Web Services

    Get PDF
    Semantic Web Services (SWS) are Web Services (WS) whose description is semantically enhanced with markup languages (e.g., OWL-S). This semantic description will enable external agents and programs to discover, compose and invoke SWSs. However, as a previous step to the specification of SWSs in a language, it must be designed at a conceptual level to guarantee its correctness and avoid inconsistencies among its internal components. In this paper, we present a framework for design and (semi) automatic composition of SWSs at a language-independent and knowledge level. This framework is based on a stack of ontologies that (1) describe the different parts of a SWS; and (2) contain a set of axioms that are really design rules to be verified by the ontology instances. Based on these ontologies, design and composition of SWSs can be viewed as the correct instantiation of the ontologies themselves. Once these instances have been created they will be exported to SWS languages such as OWL-S

    On the similarity relation within fuzzy ontology components

    Get PDF
    Ontology reuse is an important research issue. Ontology merging, integration, mapping, alignment and versioning are some of its subprocesses. A considerable research work has been conducted on them. One common issue to these subprocesses is the problem of defining similarity relations among ontologies components. Crisp ontologies become less suitable in all domains in which the concepts to be represented have vague, uncertain and imprecise definitions. Fuzzy ontologies are developed to cope with these aspects. They are equally concerned with the problem of ontology reuse. Defining similarity relations within fuzzy context may be realized basing on the linguistic similarity among ontologies components or may be deduced from their intentional definitions. The latter approach needs to be dealt with differently in crisp and fuzzy ontologies. This is the scope of this paper.ou

    Tractable approximate deduction for OWL

    Get PDF
    Acknowledgements This work has been partially supported by the European project Marrying Ontologies and Software Technologies (EU ICT2008-216691), the European project Knowledge Driven Data Exploitation (EU FP7/IAPP2011-286348), the UK EPSRC project WhatIf (EP/J014354/1). The authors thank Prof. Ian Horrocks and Dr. Giorgos Stoilos for their helpful discussion on role subsumptions. The authors thank Rafael S. Gonçalves et al. for providing their hotspots ontologies. The authors also thank BoC-group for providing their ADOxx Metamodelling ontologies.Peer reviewedPostprin

    Converting Instance Checking to Subsumption: A Rethink for Object Queries over Practical Ontologies

    Full text link
    Efficiently querying Description Logic (DL) ontologies is becoming a vital task in various data-intensive DL applications. Considered as a basic service for answering object queries over DL ontologies, instance checking can be realized by using the most specific concept (MSC) method, which converts instance checking into subsumption problems. This method, however, loses its simplicity and efficiency when applied to large and complex ontologies, as it tends to generate very large MSC's that could lead to intractable reasoning. In this paper, we propose a revision to this MSC method for DL SHI, allowing it to generate much simpler and smaller concepts that are specific-enough to answer a given query. With independence between computed MSC's, scalability for query answering can also be achieved by distributing and parallelizing the computations. An empirical evaluation shows the efficacy of our revised MSC method and the significant efficiency achieved when using it for answering object queries

    Comparing knowledge sources for nominal anaphora resolution

    Get PDF
    We compare two ways of obtaining lexical knowledge for antecedent selection in other-anaphora and definite noun phrase coreference. Specifically, we compare an algorithm that relies on links encoded in the manually created lexical hierarchy WordNet and an algorithm that mines corpora by means of shallow lexico-semantic patterns. As corpora we use the British National Corpus (BNC), as well as the Web, which has not been previously used for this task. Our results show that (a) the knowledge encoded in WordNet is often insufficient, especially for anaphor-antecedent relations that exploit subjective or context-dependent knowledge; (b) for other-anaphora, the Web-based method outperforms the WordNet-based method; (c) for definite NP coreference, the Web-based method yields results comparable to those obtained using WordNet over the whole dataset and outperforms the WordNet-based method on subsets of the dataset; (d) in both case studies, the BNC-based method is worse than the other methods because of data sparseness. Thus, in our studies, the Web-based method alleviated the lexical knowledge gap often encountered in anaphora resolution, and handled examples with context-dependent relations between anaphor and antecedent. Because it is inexpensive and needs no hand-modelling of lexical knowledge, it is a promising knowledge source to integrate in anaphora resolution systems

    Managing data through the lens of an ontology

    Get PDF
    Ontology-based data management aims at managing data through the lens of an ontology, that is, a conceptual representation of the domain of interest in the underlying information system. This new paradigm provides several interesting features, many of which have already been proved effective in managing complex information systems. This article introduces the notion of ontology-based data management, illustrating the main ideas underlying the paradigm, and pointing out the importance of knowledge representation and automated reasoning for addressing the technical challenges it introduces
    corecore