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Abstract— Ontology reuse is an important research issue. On- « Ontology versioning Ontology versioning consists on
tology merging, integration, mapping, alignment and versioning handling changes in different versions of an ontology,

are some of its subprocesses. A consujerable research work has which implies versions recognition, ontologies update and
been conducted on them. One common issue to these subprocasse . . - .
versions relationships traceability [11].

is the problem of defining similarity relations among ontologies
components. Crisp ontologies become less suitable in all domains _ )
in which the concepts to be represented have vague, uncertain In all these processes, we may have to deal with an impor-

and imprecise definitions. Fuzzy ontologies are developed to tant problem, which consists on the determination of sirityla
cope with these aspects. They are equally concerned with therelations among ontologies components. In ontology mergin

problem of ontology reuse. Defining similarity relations within int fi ts in diff t ontolodi bi
fuzzy context may be realized basing on the linguistic similarity or Integration, concepts In diirerent ontologies are corad

among ontologies components or may be deduced from their When their corresponding similarity relation corresponds
intentional definitions. The latter approach needs to be dealt equality. A mapping assertion returned by a process of on-

with differently in crisp and fuzzy ontologies. This is the scope tology mapping may correspond to LessGenéralf) when
of this paper. a conceptC in the first ontology is subsumed by a concept

Index Terms—Ontology reuse, fuzzy set, fuzzy ontology, fuzzy D in the second one. In ontology alignment, the modification

description logic, similarity relations. : . PR

of one ontology depends on the relations existing between
concepts on the modified ontology and the other. Allowing
traceability in ontology versioning consists in estahlighthe
relationships between versions of the same concept.

In recent years, the number of online ontologies is OR this paper, four levels of similarity relations are used:
the increase. The need for sharing and reusing indepegdeRtibsumption, equivalence, overlapping and disjointness (
developed ontologies has become even more important asittion |V for the definition of these levels). These simi-
attractive. Ontology reuse is now one of the important nesea |arity relations are equally used in [8] to resolve semantic
issues in the ontology field. In the following, we give aeterogeneity in databases and in [6] for semantic codtidima
definition of some of its subprocesses: between different models on the Semantic Web.

« Ontology merging The process of ontology mergingin all domains in which the concepts to be represented have
creates a unique ontology that is a merged version of theprecise definitions, crisp ontology becomes less sugtabl
original ontologies. The obtained ontology contains alFuzzy ontology which is based on fuzzy description logics
the information from merged original ontologies, withouhas been proposed to overcome this problem [20]. The main
indication of their former origin [7]. This process isparticularity of fuzzy ontologies is that a concept is cdesed
usually performed when the original ontologies covess a fuzzy set and an instance does not fully belong or not to
similar or overlapping domains. a given concept but possesses a membership degree being an

« Ontology integration The process of ontology integra-instance of that concept. The same is for roles.
tion creates one ontology by aggregation, assemblag# the other hand, fuzzy ontologies are also concerned by
extension, combination, specialization or adaptation tiie problem of ontology reuse: ontology mapping, merging,
ontologies on different subjects [7], [15]. integration, alignment and versioning. To our knowledperé¢

« Ontology mapping The process of ontology mappingis no research paper treating one of these reuse subprscesse
determines the correspondence among ontologies entities. fuzzy ontologies. Some solutions proposed for merging,
It has as output a set of mapping assertions denoting mapping, integration and alignment for crisp ontologies ar
lations between these entities [21]. It allows ontologes easily applicable for fuzzy ones as they deal generally with
share, exchange and reuse information from one anotHarguistic similarities [12], [13]. Nevertheless, reafig these

« Ontology alignmentThe process of ontology alignmentsubprocesses by deducing similarity relations among ontol
between two ontologies consists on modifying one afies components based on their intentional definitions bas t
them to make it more consistent and coherent with thee treated differently in crisp and fuzzy cases. This is tope
other one [10]. of this paper.

I. INTRODUCTION
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The paper goes as follows. Section Il summarizes sonfe,b,c...} be a set of individual names ard and R are a
relevant topics, namely, ontology, description logic andzly concept and a role, respectively. Then, an assertion iseof th
set. Section Il deals with fuzzy ontology and discussesesorform (a:C) or {((b,c):R).

properties on it. Section IV shows how similarity relationdhe semantic for description logic is based on interpreftati
among crisp ontologies components may be deduced. Theminterpretation = (A, e!) consists of a nonempty sét’

it explains the extension to fuzzy ontologies. Section V-coralled thedomainand an interpretation functiosf over such
cludes the paper. domain.e! maps every concept to a subsetf, every role

to a subset oA’ x Al and every individual to an element of
[l. BACKGROUND Al
A. Ontology and description logic We provide in Table | some examples of constructors, their

) ) . corresponding DL syntax and the corresponding semantic
An ontology is a shared model of some domain Wh'CBiven by an interpretatiod = (A, e!)

is often conceived as a typically hierarchical data stmectu
containing all relevant concepts, their relations, andainses TABLE |

within that domain. The commonly defined components of an EXAMPLES OF DL CONSTRUCTORS
ontology areconceptsrelations roles axiomsand instances

. . Constructor DL Syntax | Example Semantics
In the following we define each of these components. Atomic concept | A Scientific ATCAT
» Conceptsare descriptions of a group of individuals in [ Atomic role R DISCOVERS RTCATx AT
the ontology’s domain that share common properties (e.g|—conuncton ¢nb happymanifamous ' MD
. . Disjunction CubD happymanifamous| C*LD
HumanandAmmaI are two concepts). They are typically [~Regation — famous DT
arranged in a taxonomy and each concept may have Exists restriction | 3R.C 3WRITE article {x\3¥.<x,y>eRfA
super- and sub-concepts (efgmaleis a sub-concept - . YEC ) 7
Value restriction | VR.C VYWRITE.article {X|Vy.(x,y)ER
of Humar). =yec’y

« Relationsdenote a type of interaction between concepts

of the ontology’s domain. Super- and sub-concepts areThe architecture of a knowledge representation system
particular type of relations that may exist between cofrased on a description logic comprises two components: the
cepts. TBox (Terminological box) and the ABox (Assertional Box).

+ Roles are associated with concepts to describe thefhe TBox contains concept definitions and axioms estab-
features and attributes. They may have various restr&tiofshing equivalence and subsumption relationships betwee
defined on them. concepts and roles. It is used to introduce the terminology

« Axiomsare model sentences that are always true. Th@Ye vocabulary of an application domain). On the other hand
are used to describe more precisely the semantics tak ABox contains concept/role assertions and it is used to
the concepts and to constrain how the instances of thgscribe the state of an application domain.
concepts could be created. An ontology can be formalized in a TBox and an ABox. Thus,

« Instancesare used to represent specific elements in thge can consider that a TBox corresponds to a specification of
ontology’s domain. For example, “Penguin” is an instana@e intensional level of the ontology and an ABox corresgond
of Animal concept. to a specification of the extensional one.

The increasing importance of ontologies in many applica-
tions, especially the Semantic Web, make their construptiq3
maintenance, integration and evolution very crucial tasks’ ) )
Efficient realization of these tasks greatly depends onthi#-a ~ Fuzzy set concept introduced by Zadeh [23] is a natural
ability of an unambiguous language such as Descriptiorck)gieXtenS'or‘ of the classu_:a_l crisp set where either an ob;ec_t i
(DLs) [1]. One of the key advantages of using DLs is thé member of a set or it is not a member pf a set. Clgssmal
it is possible to support correct ontology design, to dmea.two-valued Iog|p gpply when the set has crisp boundaries but
the risk of confusion among the domain experts and to malereal-world this is rarely the case. . _
it more accessible to automated processes. This comhinatigich fuzzy setis fully defined through fteembership function
of features make DLs well-suited to the representation affift maps the elements of the interest domain—often called
reasoning about ontologies and the base of many ontoldgfjiverse of discourseto [0,1]. Mathematically, lelU be the
modelling languages [9]. universe of d|§course_ and a fu_zzy set defined o_bf. Then,
Description logics are a logic-based knowledge repretienta the membership function associated with fuzzy/Sés defined
formalisms designed to represent the knowledge of an appli@s follows:
tion domain in a structured way [17]. They are characterized
by a set of constructors provided for building complex con-
cepts and roles from atomic ones. Atomic concepts (unafpe functionur associate to each elememtof U a degree
predicates), atomic roles (binary predicates) and indifsl of membership (d.o.mur(u) in the range [0,1]; where O
(constants or instances) are the basic syntax buildingkblocimplies no-membership and 1 implies full membership. A
To indicate that an individual or a couple of individuals ivalue between 0 and 1 indicates the extent to whicban
an instance of a given concept or role we use assertions. betconsidered as an element of fuzzy Bet

Fuzzy set

/va: U — [0!1]
u  —  pr(u)
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Alternatively, a fuzzy sef" may be represented by its possi- 1, ) if 5 < cwidth <,
. Lo A—cwidth = if ~ < capidth < X;
bility distribution: L (cwidth) = pu v ;
parge (e cutdihoa if o < cwidth < 6

0, otherwise.

mx = ) fug, o p(wa) [y pum) [ This function is used to compute, for a given countgy

where(u;) € [0,1] represents a measure of the possibilit e degree of satisfaction afwidth.Large asso_ciated with
that a variableX that takes its values itV has the valua,;. Y22y concepiGreatCountry. In other words, it measures
It is easy to see thaiy = . the degree of largeness of the width of the coumtry
All crisp set operations can be easily extended to deal wilfie Semantic of IfuzIzy description logic is based on an inter-
fuzzy sets. LetA and B two fuzzy sets defined ori/. pretation] = (A*,e'). As for crisp description logic inter-

The union, intersection and complement set operations &&t@tion,A" is a nonempty set called the domain whereﬁs
extended to fuzzy sets as follows: is a function that associates to every conagém membership

function C7:A! — [0,1]; and to every roleR a membership
pavs = max(pa(u), us(u)) (1) function RT:AT x AT — [0,1]; and as for the crisp case,
“ to every individual an element oA’ [18]. C7 (resp.R’) is
thus interpreted as the membership degree function of fuzzy

pans = min(ua(u), pp(u)) (2) conceptC (resp. roleR). C(d) gives the degree af (d € AT)
being an element of the fuzzy conceptunder interpretation
I.
pr = 1—pa(u) 3)
Equation (1) and (2) can be easily extended to more than twgmge (width)

fuzzy sets.
The definition of the membership function is a crucial step in
all applications of fuzzy logic. Basically, we may distirgiu
three types of membership functions: trapezoidal, tri¢anrgor
sinusoidal. Several other special membership function my bl
derived from the basic ones. In Table IV we provide a rich set ! !
of membership functions along with some examples and their ! !
graphical representations. The fuzzy set on which a fuzty da ! !
is based is denoted in Table IV. As it is shown in Table 1V, ! !
each of these functions is fully defined in terms of a series of * * -
parameters. a B v A width

In the rest of the paper, ontology components within fuzzyg. 1. Trapezoidal representation of the linguistic tdrarge

context may be defined basing on linguistic attributes and/o

fuzzy mumblers and may use any model from Table IV.

Note that models of Table IV are a subset of several data . ) o . )

types proposed in [3]-[5] and devoted to model imperfect The conjunction, disjunction and negation of fuzzy sets can

information (i.e. vague, imprecise and/or uncertain) imith P €asily ap?”e? to the interpretation of fuzzy conceptaIsT
fuzzy databases. for all d € A’, o' has to satisfy the following properties [18],

[22]:
I1l. Fuzzy ONTOLOGY TI(d) = 1
Fuzzy ontology has been introduced by [20] to representLI(d) =0

min{C*(d), D(d)}
maz{C(d), D' (d)}
1—CI(d)

knowledge in all domains in which the concepts to be rep-(C'_'D)I(d)
resented have an imprecise definition. It is based on fuzzyC U D)’ (d)
description logic introduced in [18], [19]. In fuzzy desmtibn  (—C)’(d)
logic, concepts and roles are considered as fuzzy sets. Th(gR-C)'(d) mingear{maz{l — R'(d,d"),C"(d')}}
an instance does not fully belong or not to a given fuzzy(3R-C)'(d) maz gear{min{R'(d,d'), C*(d')}}
concept (resp. fuzzy role) but possesses a membershipedegrecuzzy ontology can be formalized in a fuzzy TBox and
being an instance of that concept (resp. role). For instangefuzzy ABox. As for crisp TBox, a fuzzy TBox contains
GreatCountry is a fuzzy concept and is defined as followsgoncept definitions and axioms establishing equivalenck an
subsumption relationships between concepts and roles. In a
fuzzy TBox we may have fuzzy or crisp concepts. Note
The term Wwidth” is a fuzzy attribute and has as value th¢hat a crisp concept is a particular case of a fuzzy concept
fuzzy linguistic termLarge The linguistic termLarge may and a primitive concept is a crisp one. For more flexibility,
be defined by a trapezoidal function as shown graphically we consider that definition of fuzzy concepts may be based
Figure 1. Mathematically, it is defined as follows: on fuzzy attribute(s) or number restriction(s). For ins@n

GreatCountry = Country M Jwidth. Large
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GreatCountrydefined earlier is a fuzzy concept based on the

fuzzy attributewidth. Models 1.1, 1.4, 1.5, 1.1, 11.2, 11.3 and V(d,d') e AT x AT, RI(d,d") = S'(d,d") (11)
1.4 in Table IV are different forms of fuzzy attributes that
may be associated with fuzzy concepts or roles.
Concerning number restrictions, the membership degrea of
individual being an instance of a concept defined based
a fuzzy number restriction. For instance (0 R), depends
partially on the “satisfaction degree” of>(n R) for this

instance. The parameter used on a number restrictior ( . . e .
: — ({(R=S n). An interpretation/ satisfies a fuzzy subsumption
n R may be a fuzzy number (Model 1.2 in Table IV) anO(CQD n) (resp. (RCS 1) if and only ifCCD)/>n (resp.

the corresponding number restriction is a fuzzy one. Fuz%?g I . . .
o _ . CSi>
number restriction have the same definitions as crisp ones: CS'=n). The same is for equivalence. The computing

details of the degree of subsumption or equivalence between
> n Rfor fuzzy at-least restriction two fuzzy concepts or roles is given in the next section.
< n Rfor fuzzy at-most restriction In a crisp ABox, assertions are of the foravA and @,b):R
wherea andb are individuals andA andR are a concept and
wheren may be a nonnegative integer as in a crisp TBox ¢f role, respectively. An assertion is added to an ABox if it is
to a fuzzy number (e.g. about 20). Basing on the interpm@tati proven that it is satisfiable with respect to the correspugdi
of crisp number restrictions of fuzzy description logicdiged TBox. In the case of fuzzy ABox, becaus® and R are
in [18], [19], we define the interpretations for these twozyiz ~gnsidered as fuzzy sets, then we consider that (resp.
number restrictions as follows: (a,b):R) is satisfiable with respect to the corresponding fuzzy
TBox if a (resp. b)) has a membership degree to be an
m instance of the fuzzy concept (resp. fuzzy roleR) strictly
(=n R)(d) = supg; ay,..ar enr /\ R'(d,d}) (4 greater than zero; otherwise, it is not satisfiable. A fuzBoR
i=1 contains then assertions of the forfaA n) and ((a,b):R n).
wherem = |[{d’ € AT : R'(d,d') > 0}|; m > n, and These assertions denote tlatresp. &,b)) has a membership
. degree of being an instance of the fuzzy condefresp. fuzzy
I(p 1 / role R) equal ton. It corresponds to which we call thaegree
(s R)(d) = infa; a,...a,en0 \/ PRdd) () of satisfiabilityof the assertiom:A (resp. ,b):R) with respect
to the corresponding fuzzy TBox. An interpretatidrsatisfies
wherem = [{d' € A" : R'(d,d’) > 0}[; m < n. a fuzzy assertiona:A n) (resp. ((ab):R n) if and only if
We can define these interpretations basing on the extensiona)>n (resp.R(a,b)>n) [18].
of the binary operators> and < to fuzzy context initially

Terminological axioms in a crisp TBox are of the forms
CD (RCY or C=D (R=S where C and D are concepts
a}pd R andS are roles). In a fuzzy TBox, concepts and roles
are considered as fuzzy sets dh@resp.R) may have a degree
ne(o, 1] to subsume or to be equivalent Bb(resp.S). Fuzzy
axioms are then of the fordCCD n) ((RCS n)) or (C=D n)

i=1

proposed in [14] and further extended in [5]: IV. SIMILARITY RELATIONS
Determining the similarity relation among ontology com-
I —
(= n R) (d) = p(n,m) ®) ponents is crucial for many ontology reuse subprocesses. In
and this section we propose an approach to determine similarity
(>n R (d) = p<(n,m) @) relation among fuzzy ontologies components basing on their

intentional definitions. An intentional definition of an otagy
component is a set of description logic formulae that regres
Functiony> (n, m) (resp.u<(n,m)) returns a value in the the meaning of that component. As we work with fuzzy on-

range [0,1] that measures the degree to which fuzzy ddsa tologies, our approach measures the similarity relationsray
greater or equal (resp. less or equal) to fuzzy datgsee [14] ontologies components in terms of a degree of satisfaction i
and [5] for a complete definition of these extended operatorthe range [0,1]. For more clarity, we illustrate our appltoac
Let C andD be two fuzzy concepts arfd andS be two fuzzy only on concept component. The same idea applies for the
roles. Basing on the Zadeh'’s definition of fuzzy subset, ayfuzother fuzzy ontology components.

interpretation/ satisfiesCCD (and RCS) iff: As in [6], [8], four levels of similarity relations are adaat
in this paper:
vd e A',C'(d) < D'(d) (8) o SubsumptionA conceptC is subsumed by a concept
and D (CCD) if the intentional definition ofC' implies the
intentional definition ofD. It also means that the concept
C (resp.D) is more general (resp. less general) than the
! I I 1 U I U
v(d,d') € AT x AT, R(d, d') < 57(d, d) ©) conceptD (resp.C). A fuzzy conceptC has a degree
In the other hand| satisfiesC=D (and R=9) iff: ne(0,1] to be subsumed by a fuzzy concépt
« Equivalence Two conceptsC and D are equivalent
vd e AT,01(d) = D'(d) (10) (C=D) if each of them is subsumed by the other one.

A fuzzy conceptD has a degrea<[0,1] to be equivalent
and to a fuzzy concepC.
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« Disjointness Two conceptsC and D are disjoint if the easily extended to the fuzzy case as we will see in the next
conjunction of their intentional definitions implies falsesubsection.
We do not give a degree of disjointness between twa order to perform the needed inferences shown in Table I,
fuzzy concepts. we have to use a DL system that supports the conjunction
« Overlapping Two conceptsC and D overlap if the operator f1” and allows to form the negation—" of a
conjunction of their intentional definitions can not belescription. Even so, the systems having these properties a
proven to be false and €MD is satisfiable with respect based on crisp DL and are not suitable for deducing simylarit
to the corresponding terminological model. Two fuzzyelations on fuzzy ontologies. Then, in order to adopt theesa
conceptsC andD have a degreec<[0,1] to overlap each approach to deduce similarity relations in fuzzy ontolggige
other. have to use/define fuzzy conjunction and negation opetators
In the rest of this section, we first illustrate how similgrit We show in the next section how the approach is extended
relations are deduced in crisp ontologies. We then propose & deduce similarity relations in fuzzy ontologies. We show
extension to fuzzy ontologies. equally how the degree of satisfiability of a given simibarit
relation is computed.

A. Deducing similarity relations in crisp ontologies

Because ontologies are based on description logics, itBs Extension to fuzzy ontologies
possible to perform specific kinds of reasoning on them. We Two fuzzy concepts have a degreec [0, 1] to be related
can for instance deduce by inference some implicit knowdedgy a given similarity relation. When is equal to0 the two
that are not explicitly defined on the corresponding TBox @oncepts have no similarity at all and whenis equal tol
Abox. Basing on this fact, it is possible to use an approgriathe two concepts are fully similar. A value between 0 and 1
inference mechanism to deduce similarity relation among twneasures the level to which the two concepts are similahdn t
concepts belonging to the same ontology. As it is mention@devious section we have reduced the problem of determining
in [2], checking satisfiability of concepts is a key aspedimilarity relation within two crisp concepts to unsatibildy
of inference as many important inference mechanisms camecking. Then determining if a conceptis subsumed by a
be reduced to the (un)satisfiability. We can then reduce tbenceptD is reduced to unsatisfiability checking 6f1—D.
problem of determining similarity relations among coneepiThis means that a concept is subsumed by a concept if
belonging to the same ontology to an (un)satisfiability proland only if CT1—-D is false WhenCmn—D is true, there is no
lem. We illustrate in Table 1l how subsumption (less generaubsumption between conceftsand D.
more general), equivalence and disjointness of concepts &&ithin fuzzy context, the degree of subsumption of a fuzzy
be reduced to the unsatisfiability checking problem. conceptC' by a fuzzy conceptD, denotedpc(C,D), is

computed as follows:

TABLE II
REDUCTION TO UNSATISFIABILITY ME(C7 D) -1 ,um(C’, _'D) (12)
,\Sﬂ'ggzgézig'g Bgﬁgsf'ab'my checking This equation apply also for crisp cases. In fact, when
LessGeneral§,C) | Dri—C un(C,—D) is equal to0 (equivalent toCT1—-D is falsein the
EquivalentD,C) (=DnNC) and Or1—-C) crisp case), thenu(C,D) is equal tol (equivalent toC' is
Disjoint(D,C) pnc subsumed byD in the crisp case); and whem(C,—D) is

. . _ . .equal tol (equivalent toCT1-D is true in the crisp case),

If we want to adopt the same '|dea to'determlne S'm_'lar'tt}ﬁenu;(C,D) is equal to0 (equivalent toC' is not subsumed
relations among concepts belonging to different ontolgie 1,y 1 in the crisp case). The crisp case is simply a special case
have to construct a common terminology to perform needggl 72y reasoning which is reduced to the extreme values of
inferences (inferences for deducing subsumption, ecgriva, e range [0,1].
disjointness and overlapping). This terminology may corrhe same idea is used for the other types of relationships.
spond to the union of different ontologies TBoxes. Nevefy Taple |1l we provide the different formulae for computing
theless, we may have an important terminology that we Mgye satisfiability degree of these relationships. As exgai
not used on its totality. Alternatively, this terminologyan egyjier, these formulae apply for both crisp and fuzzy cases
correspond to the intersection of different ontologies X&0 \\ie call satisfiability degree of MoreGenemIC) the degree

Some axioms contained on this intersection may not be usefiglsybsumption of” by D. The same is for the other similarity
if they are not related to the concepts for which we wangstions.

deduce the similarity relation. The solution consists omgis
the smallest terminology that contains only these axiomas th TABLE il
are directly or indirectly related to the concepts for whieé SATISFIABILITY DEGREE OF SIMILARITY RELATIONS
Wal’.]t t.O determine §|m|lar|ty re!atlons' Similarity relation | Satisfiability degree
A similar approach is adopted in [6] where the authors reduce MoreGenerab,C) | - (D,C) = 1 — un (=D, C)
ini imilari ; LessGeneraly,C) nwo(D,C)=1— pun(D,~C)
the problem qf determining similarity relation among cquise Equvalentd C) ui(D,C) —— m”in(um(ﬂD) T D=0
to subsumption. We have chosen to reduce this problembisjiointo,0) 0 (D,C) =1 = pn(D, C)
to unsatisfiability checking because we think that it can be_©verlapD.C) pn(D, €) = min(un(D, C), pn (¢, D))
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To compute  pn(X,Y)—where (X,Y) €
{(D,C),(D,-C),(—~D,C)}—in Table Ill, we use the o . o
following formula [5]: pn (=92, 1) = L min(p(=yz2, ¥1), T, (2), 7 (2))
(15)
s o and where
pn(Z,9) = sup min(p(z,9), mz(2), m5(2))  (13)
z€XNY
K=y (d) =1- oy (d) (16)
wherez andy are two fuzzy data; and;(z) andw;(z) are Th btai
the possibility distributions defined ofi; and p(z,7) is the en, we obtain
“proximity relation” defined on the domainX andY. The N - )
pr(—Y2, y1) = min(p(—y2, ¥1), @); (17)

proximity relation measures the level to which two fuzzyadat
are semantically equivalent (see e.g. [16]). For fuzzy rensb  and then
p(Z,7) is equal tod(Z,§) whered is a Diracs delta [14]. , -
A<s mZantioned earlger, :);1 fuzzy concept is defined basing 0nMoreGenerar(eenageNounge):l = min(p(~42, 41), ).
fuzzy attribute(s) or number restriction(s). Thus, deieiny ] (18)
the degree of satisfiability of a similarity relation among
two fuzzy concepts is function of the degree of conjunction, ‘< high® s
disjunction and/or negation of their corresponding fuzry at m T - - T T -
tribute(s) values and/or their number restriction(s).Ha fol- /
lowing, we illustrate through two examples how we determine /
the degree of subsumption among two concepts defined basin \

/

on fuzzy attributes and number restrictions, respectively

" ;
fage young in Op 7 nb of children

1

Fig. 3. Graphical representation of“high” and “> 7" number restrictions
young in Og

2) Degree of subsumption of fuzzy numbers restriction-
based conceptsGiven two fuzzy concept&reatFamily and

\ NumFamilydefined in two ontologie®); and O, as follows:
age
gg 2. Graphical representation of the linguistic tergoting” in O; and Elrjerﬁltzze:r?rlgl/y z E:m::ig Ei ;igr?shcazlcl?r)lnd)

We want to determine the degree of subsumption of
the fuzzy conceptGreatFamily by the fuzzy concept

1) Degree of subsumption of fuzzy attributes-based cdjumFamily Basing on Table Ill, the satisfiability degree
cepts: Given two fuzzy concept¥oungPersorand Teenager Of MoreGeneraNumFamilyGreatFamily is equal to 1-
defined in two fuzzy ontologie®; and O, as follows: pn(-NumFamilyGreatFamily. We suppose that the con-

cept Family defined in the two ontologies is primi-
Younger = Personr 3 age.young tive one and_ that it hgs _the same signification. Then,
Teenager = Personr 3 age.young pn(-NumFamilyGreatFamily is computed as follow:

Figure 2 shows the definition of fuzzy linguistic tegaung . , ,
in ontology O; and O,. We usey; and y, to denote the pr(=NumFamily, GreatFamily) = pun(=(2 high), 2 7)
linguistic termyoungin ontologyO; andO,, respectively. We = pn(< high, > 7).
want to determine the degree of subsumption of the fuzzy con- (19)
ceptYoungerby the fuzzy concepteenagerBasing on Table
11, the satisfiability degree of MoreGeneradienagelyoungey
is equal to 1u~(—Teenageiyounge)y. We suppose that the
concept Person defined both inO; and Oy is primitive

The right side of Equation (19) may be computed as follows:

pn(< high,>7) =

one (i.e. crisp) and that it models the same thing. Thus, sup min(p(Z,9), Tz;2<high(2), Ta:2>7(2)). (20)
un(—TeenageiYounge)y may be computed as follow: Z€EXNY
The graphical representations ok *“ high” and “> 7
pn(—Teenager, Y ounger) = pn(—ys2, y1) (14) number restrictions are shown in Figure 3. Then, we obtain

and un(—ys2,y1) i1s computed through Equation (13), i.e. un (< high, > 7) = min(p(Z, 3), 6). (21)
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TABLE IV
DIFFERENT MEMBERSHIP FUNCTIONS

Linguistic label Model | Representation Parameters na(z)
A
Fuzzy range label e.cage= more 1 L W <<
3 z ,
or less between 20 and 30 o, B,7, A T S N
1.1 1 ={ 2z '
a8 A A Ha(z) Zoe fa<z<p
0, Otherwise.
A
Approximate value e.gage=about 1 1, ifz=c
35 c,c”,ct et -z c<z<ch
1.2 Aﬂ—’f PR e natz) =4 e
£2—c T <z< ¢
c—c
0, Otherwise.

Interval e.g.age € [25, 35] 1
a?ﬁ
i > 1, fa<z<g;
1.3 o B z na(z) = { 0, IOther\?lise._ .
y
Less than value e.g. age= less than 17
35 . 5 Y, A 1, itz <
1.4 R ia(z) = O itz < X
AT A 3=E, v <<
A
More than value e.g. age= more 1 ‘
than 35 { a, B 1, it 2> 8;
1.5 T B 2 na(z) = Oz,ia if z < a;
== ifa <z < B.

Real number e.gage=30 1

o
I
o k
w
e}

_ 1, if 2z =c¢;
nA(2) = 0, Otherwise.

Linguistic label e.gage=young !
a,c
il — 1 .
1.1 - z pa(z) = (T@e—o' z>0
1onp
Linguistic label e.gage=young . 1 .tz <agtby
” ai,az2,bi,b2 1+$
11.2 R 2 pa(z) =14 1, ifa; +by <2< ag — by
a1 a2 ——L ., fz>ap-bo
142722702 ab?z 2
1 111
Linguistic labelage=very old s
' a1, b — 1 fz<ap+by
n3 | — x pa(z) =4 gt
1 1, ifag + b1 < 2
2
Linguistic label e.g. age=very j
young h as, by 1, ) if 2 < ag — by:
1.4 B > z “A(z):{ W it 2> ag — ba.
Finally we obtain consists in returning the one that has the highest degree of
satisfiability.
MoreGenerallumFamilyGreatFamily=1 — min(p(Z, §), 8).
(22) V. CONCLUSION AND FUTURE WORKS

These two examples show how the degree of satisfiabilityOntology reuse is an important issue in the ontology field.
of subsumption similarity relation is computed. The samBetermining similarity relation among ontology comporseist
reasoning applies for the other similarity relations sintteof essential for many reuse subprocesses. In all domains hwhi
them are expressed (as shown in Table 1ll) in terms of fuztlge concepts to be represented have an imprecise definition,
conjunction and negation operators which their definitiad a crisp ontology becomes less suitable. Fuzzy ontology which
use are illustrated in the two previous examples. is based on fuzzy description logics has been proposed to
Finally, we note that when two concepts are related by moogercome this problem. Both crisp and fuzzy ontologies are
than one similarity relation, one intuitive and simple d¢mo concerned with the problem of ontology ruse. Deducing sim-
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