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Abstract— Ontology reuse is an important research issue. On-
tology merging, integration, mapping, alignment and versioning
are some of its subprocesses. A considerable research work has
been conducted on them. One common issue to these subprocesses
is the problem of defining similarity relations among ontologies
components. Crisp ontologies become less suitable in all domains
in which the concepts to be represented have vague, uncertain
and imprecise definitions. Fuzzy ontologies are developed to
cope with these aspects. They are equally concerned with the
problem of ontology reuse. Defining similarity relations within
fuzzy context may be realized basing on the linguistic similarity
among ontologies components or may be deduced from their
intentional definitions. The latter approach needs to be dealt
with differently in crisp and fuzzy ontologies. This is the scope
of this paper.

Index Terms— Ontology reuse, fuzzy set, fuzzy ontology, fuzzy
description logic, similarity relations.

I. I NTRODUCTION

In recent years, the number of online ontologies is on
the increase. The need for sharing and reusing independently
developed ontologies has become even more important and
attractive. Ontology reuse is now one of the important research
issues in the ontology field. In the following, we give a
definition of some of its subprocesses:

• Ontology merging. The process of ontology merging
creates a unique ontology that is a merged version of the
original ontologies. The obtained ontology contains all
the information from merged original ontologies, without
indication of their former origin [7]. This process is
usually performed when the original ontologies cover
similar or overlapping domains.

• Ontology integration. The process of ontology integra-
tion creates one ontology by aggregation, assemblage,
extension, combination, specialization or adaptation of
ontologies on different subjects [7], [15].

• Ontology mapping. The process of ontology mapping
determines the correspondence among ontologies entities.
It has as output a set of mapping assertions denoting re-
lations between these entities [21]. It allows ontologies to
share, exchange and reuse information from one another.

• Ontology alignment. The process of ontology alignment
between two ontologies consists on modifying one of
them to make it more consistent and coherent with the
other one [10].

• Ontology versioning. Ontology versioning consists on
handling changes in different versions of an ontology,
which implies versions recognition, ontologies update and
versions relationships traceability [11].

In all these processes, we may have to deal with an impor-
tant problem, which consists on the determination of similarity
relations among ontologies components. In ontology merging
or integration, concepts in different ontologies are combined
when their corresponding similarity relation correspondsto
equality. A mapping assertion returned by a process of on-
tology mapping may correspond to LessGeneral(C,D) when
a conceptC in the first ontology is subsumed by a concept
D in the second one. In ontology alignment, the modification
of one ontology depends on the relations existing between
concepts on the modified ontology and the other. Allowing
traceability in ontology versioning consists in establishing the
relationships between versions of the same concept.
In this paper, four levels of similarity relations are used:
subsumption, equivalence, overlapping and disjointness (see
Section IV for the definition of these levels). These simi-
larity relations are equally used in [8] to resolve semantic
heterogeneity in databases and in [6] for semantic coordination
between different models on the Semantic Web.
In all domains in which the concepts to be represented have
imprecise definitions, crisp ontology becomes less suitable.
Fuzzy ontology which is based on fuzzy description logics
has been proposed to overcome this problem [20]. The main
particularity of fuzzy ontologies is that a concept is considered
as a fuzzy set and an instance does not fully belong or not to
a given concept but possesses a membership degree being an
instance of that concept. The same is for roles.
On the other hand, fuzzy ontologies are also concerned by
the problem of ontology reuse: ontology mapping, merging,
integration, alignment and versioning. To our knowledge, there
is no research paper treating one of these reuse subprocesses
for fuzzy ontologies. Some solutions proposed for merging,
mapping, integration and alignment for crisp ontologies are
easily applicable for fuzzy ones as they deal generally with
linguistic similarities [12], [13]. Nevertheless, realizing these
subprocesses by deducing similarity relations among ontolo-
gies components based on their intentional definitions has to
be treated differently in crisp and fuzzy cases. This is the scope
of this paper.
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The paper goes as follows. Section II summarizes some
relevant topics, namely, ontology, description logic and fuzzy
set. Section III deals with fuzzy ontology and discusses some
properties on it. Section IV shows how similarity relations
among crisp ontologies components may be deduced. Then
it explains the extension to fuzzy ontologies. Section V con-
cludes the paper.

II. BACKGROUND

A. Ontology and description logic

An ontology is a shared model of some domain which
is often conceived as a typically hierarchical data structure
containing all relevant concepts, their relations, and instances
within that domain. The commonly defined components of an
ontology areconcepts, relations, roles, axiomsand instances.
In the following we define each of these components.

• Conceptsare descriptions of a group of individuals in
the ontology’s domain that share common properties (e.g.
HumanandAnimalare two concepts). They are typically
arranged in a taxonomy and each concept may have
super- and sub-concepts (e.g.Female is a sub-concept
of Human).

• Relationsdenote a type of interaction between concepts
of the ontology’s domain. Super- and sub-concepts are
particular type of relations that may exist between con-
cepts.

• Roles are associated with concepts to describe their
features and attributes. They may have various restrictions
defined on them.

• Axiomsare model sentences that are always true. They
are used to describe more precisely the semantics of
the concepts and to constrain how the instances of the
concepts could be created.

• Instancesare used to represent specific elements in the
ontology’s domain. For example, “Penguin” is an instance
of Animal concept.

The increasing importance of ontologies in many applica-
tions, especially the Semantic Web, make their construction,
maintenance, integration and evolution very crucial tasks.
Efficient realization of these tasks greatly depends on the avail-
ability of an unambiguous language such as Description logics
(DLs) [1]. One of the key advantages of using DLs is that
it is possible to support correct ontology design, to decrease
the risk of confusion among the domain experts and to make
it more accessible to automated processes. This combination
of features make DLs well-suited to the representation and
reasoning about ontologies and the base of many ontology
modelling languages [9].
Description logics are a logic-based knowledge representation
formalisms designed to represent the knowledge of an applica-
tion domain in a structured way [17]. They are characterized
by a set of constructors provided for building complex con-
cepts and roles from atomic ones. Atomic concepts (unary
predicates), atomic roles (binary predicates) and individuals
(constants or instances) are the basic syntax building blocks.
To indicate that an individual or a couple of individuals is
an instance of a given concept or role we use assertions. Let

{a, b, c...} be a set of individual names andC and R are a
concept and a role, respectively. Then, an assertion is of the
form 〈a:C〉 or 〈(b,c):R〉.
The semantic for description logic is based on interpretations.
An interpretationI = (∆I , •I) consists of a nonempty set∆I

called thedomainand an interpretation function•I over such
domain.•I maps every concept to a subset of∆I , every role
to a subset of∆I ×∆I and every individual to an element of
∆I .
We provide in Table I some examples of constructors, their
corresponding DL syntax and the corresponding semantic
given by an interpretationI = (∆I , •I).

TABLE I

EXAMPLES OF DL CONSTRUCTORS

Constructor DL Syntax Example Semantics
Atomic concept A Scientific AI⊆∆I

Atomic role R DISCOVERS RI⊆∆I × ∆I

Conjunction C⊓D happyman⊓famous CI⊓DI

Disjunction C⊔D happyman⊔famous CI⊔DI

Negation ¬C ¬famous DI\CI

Exists restriction ∃R.C ∃WRITE.article {x|∃y.〈x,y〉∈RI∧
y∈CI}

Value restriction ∀R.C ∀WRITE.article {x|∀y.〈x,y〉∈RI

⇒y∈CI}

The architecture of a knowledge representation system
based on a description logic comprises two components: the
TBox (Terminological box) and the ABox (Assertional Box).
The TBox contains concept definitions and axioms estab-
lishing equivalence and subsumption relationships between
concepts and roles. It is used to introduce the terminology
(i.e vocabulary of an application domain). On the other hand,
the ABox contains concept/role assertions and it is used to
describe the state of an application domain.
An ontology can be formalized in a TBox and an ABox. Thus,
we can consider that a TBox corresponds to a specification of
the intensional level of the ontology and an ABox corresponds
to a specification of the extensional one.

B. Fuzzy set

Fuzzy set concept introduced by Zadeh [23] is a natural
extension of the classical crisp set where either an object is
a member of a set or it is not a member of a set. Classical
two-valued logic apply when the set has crisp boundaries but
in real-world this is rarely the case.
Each fuzzy set is fully defined through itsmembership function
that maps the elements of the interest domain—often called
universe of discourse—to [0,1]. Mathematically, letU be the
universe of discourse andF a fuzzy set defined onU . Then,
the membership function associated with fuzzy setF is defined
as follows:

µF : U −→ [0,1]
u −→ µF (u)

The functionµF associate to each elementu of U a degree
of membership (d.o.m)µF (u) in the range [0,1]; where 0
implies no-membership and 1 implies full membership. A
value between 0 and 1 indicates the extent to whichu can
be considered as an element of fuzzy setF .
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Alternatively, a fuzzy setF may be represented by its possi-
bility distribution:

πX = {µ(u1)/u1, · · · , µ(ui)/ui, · · · , µ(un)/un};

whereµ(ui) ∈ [0, 1] represents a measure of the possibility
that a variableX that takes its values inU has the valueui.
It is easy to see thatµF = πX .
All crisp set operations can be easily extended to deal with
fuzzy sets. LetA and B two fuzzy sets defined onU .
The union, intersection and complement set operations are
extended to fuzzy sets as follows:

µA∪B = max
u

(µA(u), µB(u)) (1)

µA∩B = min
u

(µA(u), µB(u)) (2)

µA = 1 − µA(u) (3)

Equation (1) and (2) can be easily extended to more than two
fuzzy sets.
The definition of the membership function is a crucial step in
all applications of fuzzy logic. Basically, we may distinguish
three types of membership functions: trapezoidal, triangular or
sinusoidal. Several other special membership function my be
derived from the basic ones. In Table IV we provide a rich set
of membership functions along with some examples and their
graphical representations. The fuzzy set on which a fuzzy data
is based is denotedA in Table IV. As it is shown in Table IV,
each of these functions is fully defined in terms of a series of
parameters.
In the rest of the paper, ontology components within fuzzy
context may be defined basing on linguistic attributes and/or
fuzzy mumblers and may use any model from Table IV.
Note that models of Table IV are a subset of several data
types proposed in [3]–[5] and devoted to model imperfect
information (i.e. vague, imprecise and/or uncertain) within
fuzzy databases.

III. F UZZY ONTOLOGY

Fuzzy ontology has been introduced by [20] to represent
knowledge in all domains in which the concepts to be rep-
resented have an imprecise definition. It is based on fuzzy
description logic introduced in [18], [19]. In fuzzy description
logic, concepts and roles are considered as fuzzy sets. Thus
an instance does not fully belong or not to a given fuzzy
concept (resp. fuzzy role) but possesses a membership degree
being an instance of that concept (resp. role). For instance,
GreatCountry is a fuzzy concept and is defined as follows:

GreatCountry = Country ⊓ ∃width.Large

The term “width” is a fuzzy attribute and has as value the
fuzzy linguistic termLarge. The linguistic termLarge may
be defined by a trapezoidal function as shown graphically in
Figure 1. Mathematically, it is defined as follows:

µLarge(c.width) =















1, if β ≤ c.width ≤ γ;
λ−c.width

λ−γ
, if γ < c.width < λ;

c.width−α
β−α

, if α < c.width < β;
0, otherwise.

This function is used to compute, for a given countryc,
the degree of satisfaction of∃width.Large associated with
fuzzy conceptGreatCountry. In other words, it measures
the degree of largeness of the width of the countryc.
The semantic of fuzzy description logic is based on an inter-
pretationI = (∆I , •I). As for crisp description logic inter-
pretation,∆I is a nonempty set called the domain whereas•I

is a function that associates to every conceptC a membership
function CI :∆I → [0, 1]; and to every roleR a membership
function RI :∆I × ∆I → [0, 1]; and as for the crisp case,
to every individual an element of∆I [18]. CI (resp.RI ) is
thus interpreted as the membership degree function of fuzzy
conceptC (resp. roleR). CI(d) gives the degree ofd (d ∈ ∆I )
being an element of the fuzzy conceptC under interpretation
I.

6

-

�
�

�
�

�
�

�

L
L
L
L
L
L
L

α β γ λ width

1

µLarge(width)

Fig. 1. Trapezoidal representation of the linguistic termLarge

The conjunction, disjunction and negation of fuzzy sets can
be easily applied to the interpretation of fuzzy concepts. Thus,
for all d ∈ ∆I , •I has to satisfy the following properties [18],
[22]:

⊤I(d) = 1
⊥I(d) = 0
(C ⊓ D)I(d) = min{CI(d),DI(d)}
(C ⊔ D)I(d) = max{CI(d),DI(d)}
(¬C)I(d) = 1 − CI(d)
(∀R.C)I(d) = mind′∈∆I{max{1 − RI(d, d′), CI(d′)}}
(∃R.C)I(d) = maxd′∈∆I{min{RI(d, d′), CI(d′)}}

Fuzzy ontology can be formalized in a fuzzy TBox and
a fuzzy ABox. As for crisp TBox, a fuzzy TBox contains
concept definitions and axioms establishing equivalence and
subsumption relationships between concepts and roles. In a
fuzzy TBox we may have fuzzy or crisp concepts. Note
that a crisp concept is a particular case of a fuzzy concept
and a primitive concept is a crisp one. For more flexibility,
we consider that definition of fuzzy concepts may be based
on fuzzy attribute(s) or number restriction(s). For instance,
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GreatCountrydefined earlier is a fuzzy concept based on the
fuzzy attributewidth. Models I.1, I.4, I.5, II.1, II.2, II.3 and
II.4 in Table IV are different forms of fuzzy attributes that
may be associated with fuzzy concepts or roles.
Concerning number restrictions, the membership degree of an
individual being an instance of a concept defined based on
a fuzzy number restriction. For instance (≥ n R), depends
partially on the “satisfaction degree” of (≥ n R) for this
instance. The parametern used on a number restriction (≥
n R) may be a fuzzy number (Model I.2 in Table IV) and
the corresponding number restriction is a fuzzy one. Fuzzy
number restriction have the same definitions as crisp ones:

≥ n R for fuzzy at-least restriction
≤ n R for fuzzy at-most restriction

wheren may be a nonnegative integer as in a crisp TBox or
to a fuzzy number (e.g. about 20). Basing on the interpretations
of crisp number restrictions of fuzzy description logics defined
in [18], [19], we define the interpretations for these two fuzzy
number restrictions as follows:

(≥ n R)I(d) = supd′
1,d′

2,...,d′
m∈∆I

m
∧

i=1

RI(d, d′i) (4)

wherem = |{d′ ∈ ∆I : RI(d, d′) > 0}|; m ≥ n, and

(≤ n R)I(d) = infd′
1,d′

2,...,d′
m∈∆I

m
∨

i=1

¬RI(d, d′i) (5)

wherem = |{d′ ∈ ∆I : RI(d, d′) > 0}|; m ≤ n.
We can define these interpretations basing on the extension
of the binary operators≥ and ≤ to fuzzy context initially
proposed in [14] and further extended in [5]:

(≥ n R)I(d) = µ≥(n,m) (6)

and
(≥ n R)I(d) = µ≤(n,m) (7)

Functionµ≥(n,m) (resp.µ≤(n,m)) returns a value in the
range [0,1] that measures the degree to which fuzzy datan is
greater or equal (resp. less or equal) to fuzzy datam (see [14]
and [5] for a complete definition of these extended operators).
Let C andD be two fuzzy concepts andR andS be two fuzzy
roles. Basing on the Zadeh’s definition of fuzzy subset, a fuzzy
interpretationI satisfiesC⊑D (andR⊑S) iff:

∀d ∈ ∆I , CI(d) ≤ DI(d) (8)

and

∀(d, d′) ∈ ∆I × ∆I , RI(d, d′) ≤ SI(d, d′) (9)

In the other hand,I satisfiesC≡D (andR≡S) iff:

∀d ∈ ∆I , CI(d) = DI(d) (10)

and

∀(d, d′) ∈ ∆I × ∆I , RI(d, d′) = SI(d, d′) (11)

Terminological axioms in a crisp TBox are of the forms
C⊑D (R⊑S) or C≡D (R≡S) where C and D are concepts
(andR andS are roles). In a fuzzy TBox, concepts and roles
are considered as fuzzy sets andC (resp.R) may have a degree
n∈[0, 1] to subsume or to be equivalent toD (resp.S). Fuzzy
axioms are then of the form〈C⊑D n〉 (〈R⊑S n〉) or 〈C≡D n〉
(〈R≡S n〉). An interpretationI satisfies a fuzzy subsumption
〈C⊑D n〉 (resp. 〈R⊑S n〉) if and only if(C⊑D)I≥n (resp.
(R⊑S)I≥n). The same is for equivalence. The computing
details of the degree of subsumption or equivalence between
two fuzzy concepts or roles is given in the next section.
In a crisp ABox, assertions are of the forma:A and (a,b):R
wherea andb are individuals andA andR are a concept and
a role, respectively. An assertion is added to an ABox if it is
proven that it is satisfiable with respect to the corresponding
TBox. In the case of fuzzy ABox, becauseA and R are
considered as fuzzy sets, then we consider thata:A (resp.
(a,b):R) is satisfiable with respect to the corresponding fuzzy
TBox if a (resp. (a,b)) has a membership degree to be an
instance of the fuzzy conceptA (resp. fuzzy roleR) strictly
greater than zero; otherwise, it is not satisfiable. A fuzzy ABox
contains then assertions of the form〈a:A n〉 and 〈(a,b):R n〉.
These assertions denote thata (resp. (a,b)) has a membership
degree of being an instance of the fuzzy conceptA (resp. fuzzy
role R) equal ton. It corresponds to which we call thedegree
of satisfiabilityof the assertiona:A (resp. (a,b):R) with respect
to the corresponding fuzzy TBox. An interpretationI satisfies
a fuzzy assertion〈a:A n〉 (resp. 〈(a,b):R n〉) if and only if
AI (a)≥n (resp.RI (a,b)≥n) [18].

IV. SIMILARITY RELATIONS

Determining the similarity relation among ontology com-
ponents is crucial for many ontology reuse subprocesses. In
this section we propose an approach to determine similarity
relation among fuzzy ontologies components basing on their
intentional definitions. An intentional definition of an ontology
component is a set of description logic formulae that represent
the meaning of that component. As we work with fuzzy on-
tologies, our approach measures the similarity relations among
ontologies components in terms of a degree of satisfaction in
the range [0,1]. For more clarity, we illustrate our approach
only on concept component. The same idea applies for the
other fuzzy ontology components.
As in [6], [8], four levels of similarity relations are adopted
in this paper:

• Subsumption. A concept C is subsumed by a concept
D (C⊑D) if the intentional definition ofC implies the
intentional definition ofD. It also means that the concept
C (resp.D) is more general (resp. less general) than the
conceptD (resp. C). A fuzzy conceptC has a degree
n∈[0,1] to be subsumed by a fuzzy conceptD.

• Equivalence. Two conceptsC and D are equivalent
(C≡D) if each of them is subsumed by the other one.
A fuzzy conceptD has a degreen∈[0,1] to be equivalent
to a fuzzy conceptC.
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• Disjointness. Two conceptsC and D are disjoint if the
conjunction of their intentional definitions implies false.
We do not give a degree of disjointness between two
fuzzy concepts.

• Overlapping. Two conceptsC and D overlap if the
conjunction of their intentional definitions can not be
proven to be false and ifC⊓D is satisfiable with respect
to the corresponding terminological model. Two fuzzy
conceptsC andD have a degreen∈[0,1] to overlap each
other.

In the rest of this section, we first illustrate how similarity
relations are deduced in crisp ontologies. We then propose our
extension to fuzzy ontologies.

A. Deducing similarity relations in crisp ontologies

Because ontologies are based on description logics, it is
possible to perform specific kinds of reasoning on them. We
can for instance deduce by inference some implicit knowledge
that are not explicitly defined on the corresponding TBox or
Abox. Basing on this fact, it is possible to use an appropriate
inference mechanism to deduce similarity relation among two
concepts belonging to the same ontology. As it is mentioned
in [2], checking satisfiability of concepts is a key aspect
of inference as many important inference mechanisms can
be reduced to the (un)satisfiability. We can then reduce the
problem of determining similarity relations among concepts
belonging to the same ontology to an (un)satisfiability prob-
lem. We illustrate in Table II how subsumption (less general,
more general), equivalence and disjointness of concepts can
be reduced to the unsatisfiability checking problem.

TABLE II

REDUCTION TO UNSATISFIABILITY

Similarity relation Unsatisfiability checking
MoreGeneral(D,C) ¬D⊓C

LessGeneral(D,C) D⊓¬C

Equivalent(D,C) (¬D⊓C) and (D⊓¬C)
Disjoint(D,C) D ⊓ C

If we want to adopt the same idea to determine similarity
relations among concepts belonging to different ontologies we
have to construct a common terminology to perform needed
inferences (inferences for deducing subsumption, equivalence,
disjointness and overlapping). This terminology may corre-
spond to the union of different ontologies TBoxes. Never-
theless, we may have an important terminology that we may
not used on its totality. Alternatively, this terminology may
correspond to the intersection of different ontologies TBoxes.
Some axioms contained on this intersection may not be useful
if they are not related to the concepts for which we want
deduce the similarity relation. The solution consists on using
the smallest terminology that contains only these axioms that
are directly or indirectly related to the concepts for whichwe
want to determine similarity relations.
A similar approach is adopted in [6] where the authors reduce
the problem of determining similarity relation among concepts
to subsumption. We have chosen to reduce this problem
to unsatisfiability checking because we think that it can be

easily extended to the fuzzy case as we will see in the next
subsection.
In order to perform the needed inferences shown in Table II,
we have to use a DL system that supports the conjunction
operator “⊓” and allows to form the negation “¬” of a
description. Even so, the systems having these properties are
based on crisp DL and are not suitable for deducing similarity
relations on fuzzy ontologies. Then, in order to adopt the same
approach to deduce similarity relations in fuzzy ontologies, we
have to use/define fuzzy conjunction and negation operators.
We show in the next section how the approach is extended
to deduce similarity relations in fuzzy ontologies. We show
equally how the degree of satisfiability of a given similarity
relation is computed.

B. Extension to fuzzy ontologies

Two fuzzy concepts have a degreen ∈ [0, 1] to be related
by a given similarity relation. Whenn is equal to0 the two
concepts have no similarity at all and whenn is equal to1
the two concepts are fully similar. A value between 0 and 1
measures the level to which the two concepts are similar. In the
previous section we have reduced the problem of determining
similarity relation within two crisp concepts to unsatisfiability
checking. Then determining if a conceptC is subsumed by a
conceptD is reduced to unsatisfiability checking ofC⊓¬D.
This means that a conceptC is subsumed by a conceptD if
and only if C⊓¬D is false. WhenC⊓¬D is true, there is no
subsumption between conceptsC andD.
Within fuzzy context, the degree of subsumption of a fuzzy
concept C by a fuzzy conceptD, denotedµ⊑(C,D), is
computed as follows:

µ⊑(C,D) = 1 − µ⊓(C,¬D) (12)

This equation apply also for crisp cases. In fact, when
µ⊓(C,¬D) is equal to0 (equivalent toC⊓¬D is false in the
crisp case), thenµ⊑(C,D) is equal to1 (equivalent toC is
subsumed byD in the crisp case); and whenµ⊓(C,¬D) is
equal to1 (equivalent toC⊓¬D is true in the crisp case),
thenµ⊑(C,D) is equal to0 (equivalent toC is not subsumed
by D in the crisp case). The crisp case is simply a special case
of fuzzy reasoning which is reduced to the extreme values of
the range [0,1].
The same idea is used for the other types of relationships.
In Table III we provide the different formulae for computing
the satisfiability degree of these relationships. As explained
earlier, these formulae apply for both crisp and fuzzy cases.
We call satisfiability degree of MoreGeneral(D,C) the degree
of subsumption ofC by D. The same is for the other similarity
relations.

TABLE III

SATISFIABILITY DEGREE OF SIMILARITY RELATIONS

Similarity relation Satisfiability degree
MoreGeneral(D,C) µ⊑(D, C) = 1 − µ⊓(¬D, C)
LessGeneral(D,C) µ⊒(D, C) = 1 − µ⊓(D,¬C)
Equivalent(D,C) µ≡(D, C) = 1 − min(µ⊓(¬D, C), µ⊓(D,¬C))
Disjoint(D,C) µ⊔(D, C) = 1 − µ⊓(D, C)
Overlap(D,C) µ⊓(D, C) = min(µ⊓(D, C), µ⊓(C, D))
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To compute µ⊓(X,Y )—where (X,Y ) ∈
{(D,C), (D,¬C), (¬D,C)}—in Table III, we use the
following formula [5]:

µ⊓(x̃, ỹ) = sup
z∈X

T
Y

min(p(x̃, ỹ), πx̃(z), πỹ(z)) (13)

wherex̃ andỹ are two fuzzy data; andπx̃(z) andπỹ(z) are
the possibility distributions defined onU ; and p(x̃, ỹ) is the
“proximity relation” defined on the domainsX and Y . The
proximity relation measures the level to which two fuzzy data
are semantically equivalent (see e.g. [16]). For fuzzy numbers,
p(x̃, ỹ) is equal toδ(x̃, ỹ) whereδ is a Diracs delta [14].
As mentioned earlier, a fuzzy concept is defined basing on
fuzzy attribute(s) or number restriction(s). Thus, determining
the degree of satisfiability of a similarity relation among
two fuzzy concepts is function of the degree of conjunction,
disjunction and/or negation of their corresponding fuzzy at-
tribute(s) values and/or their number restriction(s). In the fol-
lowing, we illustrate through two examples how we determine
the degree of subsumption among two concepts defined basing
on fuzzy attributes and number restrictions, respectively.

µage

1

α

age

young in O1

young in O2

Fig. 2. Graphical representation of the linguistic term “young” in O1 and
O2

1) Degree of subsumption of fuzzy attributes-based con-
cepts: Given two fuzzy conceptsYoungPersonand Teenager
defined in two fuzzy ontologiesO1 andO2 as follows:

Younger = Person⊓ ∃ age.young
Teenager = Person⊓ ∃ age.young

Figure 2 shows the definition of fuzzy linguistic termyoung
in ontology O1 and O2. We usey1 and y2 to denote the
linguistic termyoungin ontologyO1 andO2, respectively. We
want to determine the degree of subsumption of the fuzzy con-
ceptYoungerby the fuzzy conceptTeenager. Basing on Table
III, the satisfiability degree of MoreGeneral(Teenager,Younger)
is equal to 1-µ⊓(¬Teenager,Younger). We suppose that the
concept Person defined both inO1 and O2 is primitive
one (i.e. crisp) and that it models the same thing. Thus,
µ⊓(¬Teenager,Younger) may be computed as follow:

µ⊓(¬Teenager, Y ounger) = µ⊓(¬y2, y1) (14)

andµ⊓(¬y2, y1) is computed through Equation (13), i.e.

µ⊓(¬ỹ2, ỹ1) = sup
z∈Y2

T
Y1

min(p(¬̃y2, ỹ1), π ˜¬y2
(z), πỹ1

(z))

(15)
and where

µ¬y2
(d) = 1 − µy2

(d). (16)

Then, we obtain

µ⊓(¬ỹ2, ỹ1) = min(p(¬ỹ2, ỹ1), α); (17)

and then

MoreGeneral(Teenager,Younger)=1 − min(p(¬ỹ2, ỹ1), α).

(18)6

-

\
\

\
\

\
\

\

1

β

7 nb of children

“< high” “ ≥ 7”

Fig. 3. Graphical representation of “< high” and “≥ 7” number restrictions

2) Degree of subsumption of fuzzy numbers restriction-
based concepts:Given two fuzzy conceptsGreatFamilyand
NumFamilydefined in two ontologiesO1 andO2 as follows:

GreatFamily = Family ⊓ (≥ 7 hasChild)
NumFamily = Family ⊓ (≥ high hasChild)

We want to determine the degree of subsumption of
the fuzzy concept GreatFamily by the fuzzy concept
NumFamily. Basing on Table III, the satisfiability degree
of MoreGeneral(NumFamily,GreatFamily) is equal to 1-
µ⊓(¬NumFamily,GreatFamily). We suppose that the con-
cept Family defined in the two ontologies is primi-
tive one and that it has the same signification. Then,
µ⊓(¬NumFamily,GreatFamily) is computed as follow:

µ⊓(¬NumFamily,GreatFamily) = µ⊓(¬(≥ high),≥ 7)

= µ⊓(< high,≥ 7).

(19)
The right side of Equation (19) may be computed as follows:

µ⊓(< high,≥ 7) =

sup
z∈X

T
Y

min(p(x̃, ỹ), πx̃;z<high(z), πx̃;z≥7(z)). (20)

The graphical representations of “< high” and “≥ 7
number restrictions are shown in Figure 3. Then, we obtain

µ⊓(< high,≥ 7) = min(p(x̃, ỹ), β). (21)
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TABLE IV

DIFFERENT MEMBERSHIP FUNCTIONS

Linguistic label Model Representation Parameters µA(z)

Fuzzy range label e.g.age= more
or less between 20 and 30

I.1

6

-
�
�

L
L

α β γ λ z

1

α, β, γ, λ
µA(z) =

8>>>><>>>>: 1, if β ≤ z ≤ γ;
λ−z
λ−γ

, if γ < z < λ;
z−α
β−α

, if α < z < β;

0, Otherwise.

Approximate value e.g.age=about
35

I.2

6

-
�

�
T
T

cc− c+ z

1

c, c−, c+

µA(z) =

8>>>>>><>>>>>>: 1, if z = c;

c+−z

c+−c
, c < z < c+ ;

z−c−

c−c−
, c− < z < c;

0, Otherwise.

Interval e.g.age∈ [25, 35]

I.3

6

-
α β z

1

α, β
µA(z) =

�
1, if α ≤ z ≤ β;
0, Otherwise.

Less than value e.g. age= less than
35

I.4

6

-
L
L

γ λ z

1

γ, λ
µA(z) =

8><>: 1, if z ≤ γ;
0, if z < λ;
λ−z
λ−γ

, if γ ≤ z ≤ λ.

More than value e.g. age= more
than 35

I.5

6

-
�
�

α β z

1

α, β
µA(z) =

8><>: 1, if z ≥ β;
0, if z ≤ α;
z−α
β−α

, if α < z < β.

Real number e.g.age=30

I.6

6

-
c z

1

c
µA(z) =

�
1, if z = c;
0, Otherwise.

Linguistic label e.g.age=young

II.1 z

1

c

a a, c
µA(z) = 1

(1+(a(z−c)2
; z ≥ 0

Linguistic label e.g.age=young

II.2 z

1

.5

b2

a2

b1

a1

a1, a2, b1, b2
µA(z) =

8>>>>><>>>>>: 1

1+
z−a1−b1

b1

, if z < a1 + b1 ;

1, if a1 + b1 ≤ z ≤ a2 − b2 ;
1

1+
z−a2+b2

b2

, if z > a2 − b2 .

Linguistic labelage=very old

II.3 z

1

.5

b1

a1

a1, b1
µA(z) =

8><>: 1

1+
z−a1−b1

b1

, if z < a1 + b1 ;

1, if a1 + b1 ≤ z;

Linguistic label e.g. age=very
young

II.4 z

1

.5

b2

a2

a2, b2
µA(z) =

8><>: 1, if z ≤ a2 − b2 ;
1

1+
z−a2+b2

b2

, if z > a2 − b2 .

Finally we obtain

MoreGeneral(NumFamily,GreatFamily)=1 − min(p(x̃, ỹ), β).

(22)
These two examples show how the degree of satisfiability
of subsumption similarity relation is computed. The same
reasoning applies for the other similarity relations sinceall of
them are expressed (as shown in Table III) in terms of fuzzy
conjunction and negation operators which their definition and
use are illustrated in the two previous examples.
Finally, we note that when two concepts are related by more
than one similarity relation, one intuitive and simple solution

consists in returning the one that has the highest degree of
satisfiability.

V. CONCLUSION AND FUTURE WORKS

Ontology reuse is an important issue in the ontology field.
Determining similarity relation among ontology components is
essential for many reuse subprocesses. In all domains in which
the concepts to be represented have an imprecise definition,
crisp ontology becomes less suitable. Fuzzy ontology which
is based on fuzzy description logics has been proposed to
overcome this problem. Both crisp and fuzzy ontologies are
concerned with the problem of ontology ruse. Deducing sim-
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ilarity relations among ontology components basing on their
intentional definitions need to be treated differently in crisp
and fuzzy cases.
In this paper our description of fuzzy ontologies is based
on fuzzy logic descriptions proposed in [18], [19]. We have
added which we have called fuzzy number restrictions but
omitted fuzzy constraints. We have also proposed a solutionto
deduce similarity relation among crisp ontology components.
A similar approach is adopted in [6] where the authors reduce
the problem of determining similarity relation among concepts
to subsumption. We have chosen to reduce this problem to
unsatisfiability checking since it can be easily extended tothe
fuzzy case as it is shown in paragraph IV-B. In this paragraph,
we have shown the way the degree of satisfiability of a given
similarity relation among fuzzy concepts is computed.
Actually we work on the implementation of the proposed
solution on Protege. We tend also to apply this solution for
fuzzy spatial ontologies merging.
Similarity relations among ontology components may be used
as in [6] to resolve semantic heterogeneity in conventional
databases. In the same way, our approach may be used to
resolve semantic heterogeneity in fuzzy databases.

REFERENCES

[1] F. Baader, I. Horrocks, and U. Sattler,Description logics for the semantic
web. KI – Künstliche Intelligenz, Vol. 4, 2002.

[2] F. Baader and W. Nutt,Basic description logics. In: F. Baader, D. Cal-
vanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider,editors, The
description logic handbook: Theory, implementation, and applications.
Cambridge University Press, 2003.

[3] A. Bahri, R. Bouaziz, S. Chakhar, Y. Naı̈ja and A. Telmoudi,Implement-
ing the fuzzy semantic model through a fuzzy relational object database
model. IEEE Transactions on Fuzzy Systems, Submitted.
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