
A Framework for Design and Composition of Semantic Web Services

Asunción Gómez-Pérez and Rafael González-Cabero
Departamento de Inteligencia Artificial, Facultad de Informática.

Campus de Montegancedo s/n, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid. Spain.
asun@fi.upm.es; rgonza@delicias.dia.fi.upm.es

Manuel Lama
Departamento de Electrónica e Computación, Facultad de Física.

Campus Sur s/n, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, A Coruña. Spain.
lama@dec.usc.es

Abstract
Semantic Web Services (SWS) are Web Services (WS)
whose description is semantically enhanced with markup
languages (e.g., OWL-S). This semantic description will en-
able external agents and programs to discover, compose and
invoke SWSs. However, as a previous step to the specifica-
tion of SWSs in a language, it must be designed at a
conceptual level to guarantee its correctness and avoid
inconsistencies among its internal components. In this
paper, we present a framework for design and (semi)
automatic composition of SWSs at a language-independent
and knowledge level. This framework is based on a stack of
ontologies that (1) describe the different parts of a SWS;
and (2) contain a set of axioms that are really design rules to
be verified by the ontology instances. Based on these
ontologies, design and composition of SWSs can be viewed
as the correct instantiation of the ontologies themselves.
Once these instances have been created they will be
exported to SWS languages such as OWL-S.

Introduction
Web Services (WSs) are interfaces that describe a collec-
tion of operations that are network-accessible through
standardized Web protocols, which are described using a
standard functional description language (Kreger 2001;
Cubera, Nagy, and Weerawana 2001). To enable WS ac-
cessible to programs or external agents, it is necessary an
infrastructure (Kreger 2001) that defines de facto standard
languages for WS publishing (UDDI (Bellwood et al.
2002)); functional description (WSDL (Christensen et al.
2001)); and composition (BPEL4WS (Thatte 2003)).
 Moreover, Semantic Web Services (SWSs) are Web
services in the semantic Web (Berners-Lee, Hendler, and
Lassila 2001), which means that SWSs are described using
semantically enriched markup languages (McIlraith, Son,
and Zeng 2001). This semantic description will facilitate
external agents to understand both functionality and inter-
nal structure of SWSs to be able to discover, compose, and
invoke SWSs (Hendler 2001). This language could be

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

DAML+OIL (Horrocks and van Harmelen 2001) or OWL
(Dean et al. 2003), but it must be combined with WS stan-
dard languages to be able to use the current infrastructure
of Web services (Sollazo et al. 2002). Following this ap-
proach, the OWL-S specification (formerly DAML-S
(Ankolenkar et al. 2002)) has been proposed to describe
services in a semantic manner, using OWL in combination
with WSDL and SOAP (Box et al. 2000).
 However, as a previous step to the specification of SWS
in a semantic Web-oriented language, the SWS should be
designed at a knowledge or conceptual level (Newell 1982)
to avoid inconsistencies or errors among the services that
constitute the SWS. In this context, SWS design consists in
specifying he descriptive, functional, and structural features
of a service. SWS composition, moreover, deals with the
combination of different services to obtain a new service.
Both design and composition of SWSs are very similar, but
composition operates with services already created, and it
emphasizes to be a (semi) automatic process; whereas
design means that services are (manually) created by users
through a graphic interface, although some support for
composition would be advisable.
 In this paper, we present a framework for design and
composition of SWSs that is based on (1) a stack of on-
tologies that describe explicitly the different features of a
SWS. Each one of these ontologies has a set of axioms
used to check the consistency and correctness of the ontol-
ogy instances, and, thus, of the service represented by the
ontologies; and (2) the assumption that a SWS is modeled
as a problem-solving method that describes how the service
is decomposed into its components, and which is the con-
trol of the reasoning process to execute the service. Based
on this modeling, manual or (semi) automatic design and
composition of SWSs are enabled at a knowledge and
language-independent manner.
 The paper is structured as follows: in the following sec-
tion we present a detailed description of the ontologies that
represent what a SWS is; then, the proposed framework for
SWS design and composition is introduced, and we present
an example that illustrates how the framework operates.
Finally, we compare the framework with related work and
summarize the contributions of the paper.

SWS Description Ontologies for SWS Design
Conceptual architectures of both SWSs and WSs (Sollazo
et al. 2002; Fensel and Bussler 2002; Kreger 2001) sche-
matize the service design as the specification of a set of
layers that would potentially cover all the service features.
These features, which enable programs or external agents
to discover, invoke and compose new services, are the
following:
• Access (or communication) features describe the com-

munication protocol (e.g., SOAP (Box et al. 2000) or
HTTP) that is required to invoke the service execution.

• Descriptive features detail the e-commerce properties of
a SWS such as its geographical location, commerce clas-
sification (e.g., UNSPSC) or provider. These features are
generally used to define the domain (e.g., minerals in
UNSPSC) where the service operation is carried out, and
they could guide the service discovery by rejecting the
services that operates in another different domain (e.g,
medical).

• Functional features specify the SWS capabilities, de-
scribed in terms of their input/output data, effects and
pre/post-conditions of execution. These features enable
an external agent to determine, once the service domain
has been established, whether the service execution can
obtain the requested results. Furthermore, to invoke a
service it is necessary to specify the input/output data.

• Structural features describe the internal structure of a
composite service; that is, which are its structural com-
ponents (so-called sub-services) and how those compo-
nents are combined among them to execute the service.
Typically, agents will use these features for service com-
position, since they determine whether there are interac-
tions between the sub-services and the other services
used to compose a new service.

These features could be considered as the different, but
complementary, views of a service. Depending on the op-
eration to be performed by the agent that require the ser-
vice (invocation, discovery/publishing, or composition), the
feature set used to describe the SWS is different. For ex-
ample, to invoke a given SWS the agent need to specify
both its access and functional features (input/output pa-
rameters), whereas the agent does not need to know the
internal structure of the service (how it is executed). The
aim of designing SWSs is making explicit the four features
previously mentioned and specially each one of its struc-
tural components, guaranteeing the correctness of the pro-
posed design, and avoiding the inconsistencies among the
sub-services that are manual or automatically combined to
achieve the requirements of the service. For example, sub-
services should have the same commercial classification
(e.g., medical software in UNSPSC) to be able to operate
in the same domain.
Ontology-based SWS Description. Since our aim is to
design and compose (semi) automatically SWSs, we will
need to perform inferences about the service features to

determine whether the proposed design is correct. This
means that the service features (and the service itself)
should be explicitly and semantically described, and, for it,
the use of ontologies seems to be the most appropriate
solution. This approach has been also followed by other
authors (Ankolenkar et al. 2002), who use a semantic-
enriched markup language to create an ontology (so-called
OWL-S) that describes the service features. Our proposal
differs from OWL-S in that it claims to develop an ontol-
ogy set that describes the SWSs at the conceptual (or
knowledge) level and being independent of the language
used to specify the service. However, once the SWS model
has been created, it must be accessible to external agents.
Thus, the SWS needs to be translated to a SWS-oriented
language such as OWL-S.
 Figure 1 shows the stack of ontologies that describes all
the features of a SWS (and the service itself) using well-
known specifications or de facto standards. This will favor
the interoperability of the framework with applications or
solutions constructed following one of those specifications.
The stack is composed of the following ontologies: (1) an
ontology to describe problem-solving methods that will be
used to represent both the internal structure and functional
features of a SWS; (2) an ontology describing the upper-
level concepts that define the features of a semantic Web
service; (3) an ontology to define the knowledge represen-
tation entities used to model a SWS and a domain ontology
at the knowledge level; and (4) an ontology to describe the
data types to be used in the domain ontology. We will
explain each of these ontologies in the following sections.

Problem-Solving Method Description Ontology
Internal structure of both SWSs and WSs has been usually
modeled as a (business) process (Narayanan and McIlraith
2002; Leymann 2001), in which a set of activities or ac-
tions are carried out to execute the process (Schlenoff et al.
2000). In this approach, a process (or equivalently a ser-

Figure 1: Ontology set identified in the framework to SWS de-
sign. These ontologies have been developed based on well-known
specifications and de facto standards.

vice) is broken down into activities whose interactions can
be modeled as workflow patterns (van der Aalst et al.
2003) that basically describe the coordination of those
activities in the process execution. Taking this into account,
some process-based languages such as BPEL4WS (Thatte
2003) (for WS) and OWL-S (Dean 2004) (for SWS) have
been proposed. They describe the internal structure of a
service using a predefined set of workflow-like patterns
(sequence, choice, parallel split, etc.).
 From a point of view of modeling, the main drawback of
this approach is the lack of an explicit and declarative
decoupling between the functional features of a process
(what) and the structural description of such process (how).
This means that the functional features are directly linked
to the parameters used in the internal structure of a process,
and, therefore, that process will be specifically designed to
carry out a particular operation (e.g., to book) in a particu-
lar domain (e.g., flight booking). With this approach, reuse
of processes among domains is difficult and service com-
position, where software agents (re)use services to obtain a
new service, must be programmatically solved. For exam-
ple, a service that deals with theatre booking share some
operations with a service in flight booking (select seat,
check credit card, confirm booking, etc.). Processes that
execute such operations should be (quasi) reusable among
both services, but that requires an explicit separation be-
tween the description of those operations and how they are
solved.

Problem-Solving Method-based approach. To decouple
the functional features of a service from its internal specifi-
cation, we propose to apply Problem-Solving Methods
(PSM) (Benjamins and Fensel 1998) for modeling SWSs,
because of they claim to be knowledge components that are
reusable among different domains and tasks. The Unified
Problem-solving Method Language (UPML) (Fensel et al.
2003) is a de facto standard that describes the components
of a PSM (Figure 2):
• Task describes the operation to be solved in the execu-

tion of a method that solves such task, specifying the in-
put/output parameters and the pre/post-conditions (com-
petence) required to be applicable. This description is
independent of the method used for solving the task.

• Method details the control of the reasoning process to
achieve a task, describing both the decomposition of the
general tasks into sub-tasks and the coordination of those
sub-tasks to achieve the required result (control flow).
The UPML, however, does not define a set of program
elements to specify the control flow of a method.

• Adapter (Fensel 1997) specifies mappings among the
knowledge components of a PSM, adapting a task to a
method and refining tasks and methods to generate more
specific components. Therefore, the adapters are used to
achieve the reusability at the knowledge level, since they
bridge the gap between the general description of a PSM
and the particular domain where it is applied.

 The UPML language was developed in the context of the
IBROW project (Benjamins et al. 1999) with the aim of
enabling the (semi) automatic reuse and composition of
PSMs distributed throughout the Web. This objective
seems to be very similar to composition of services, and it
can be considered that the IBROW project highlights the
close relation between PSMs and SWSs (Benjamins 2003).
PSM Description Ontology. Based on the UPML specifi-
cation we have created a PSM ontology that enhances the
description of the UPML elements by adding new relation-
ships among those elements, concepts, and axioms that
describe more exactly the main PSM components. These
add-ons, showed as dashed lines in Figure 2, are the
following:
• Explicit relationships between tasks and methods are

defined: a method, which can be primitive or composite,
solves a task; composite methods decompose a task into
sub-tasks, and they have an operational description that
is composed of a sequence of program elements which
specify the control flow required to solve the general
task. Moreover, both tasks and methods have effects,
which are associated with changes in the environment
that are not related with input/output data. These effects
should be modeled as concepts of an effect ontology to
favor the interoperability among services.

• A minimal set of programming primitives to describe the
operational description of a composite method have been
proposed. These primitives will operate with concept in-
stances (parameters) and tasks (usedTasks), and they can

Figure 2: Ontology of Problem-Solving Method based on the
UPML specification and a programming ontology that describes
the different elements that compose the operational description of
a method.

Figure 3: Semantic Web Service ontology that is based on
both the OWL-S specification and the PSM description
ontology.

express instance assignments; conditions applied to in-
stances and tasks; and loops (both conditional and itera-
tive) and parallel execution of other program elements or
tasks. Although those primitives are selected from pro-
gramming languages, a combination of them allow us to
derive several basic workflow-like patterns such as se-
quence or exclusive and multiple choice (Schlenoff et al.
2000; van der Aalst et al. 2003).

• A set of axioms that describe interactions among in-
stances of the PSM ontology that should be avoided:
there are instantiations of both method and task concepts
that are inconsistent with the PSM theory. For example,
a method cannot decompose any of the sub-tasks of
which it is composed of (subsumption problems); inputs
of a (general) task shall be included in the collection of
inputs of its sub-tasks, since the composite method that
describes the interactions among those sub-tasks must
have the same inputs as the general task; and so on.
Therefore, these axioms can be used to decide whether a
task is correctly decomposed by a composite method or
not.

The PSM ontology does not incorporate details related to
how a method can be network-accessible, since we assume
that communication protocol description is directly associ-
ated with the SWS itself.

Semantic Web Service Ontology
As Figure 3 shows, SWS ontology replicates the upper-
level nodes (or concepts) of the OWL-S ontology, where a
service is described in terms of its descriptive and func-
tional features (profile); its access protocol (grounding);
and its internal structure (model). The SWS ontology in-
corporates all the OWL-S concepts and attributes of the
service grounding and profile (except its functional fea-
tures, which are replaced by task descriptions); whereas the
concepts associated with the service model, which is proc-
ess-based, are completely substituted by method descrip-
tions. Considering this, the SWS ontology defines the fol-
lowing relationships with the PSM ontology (Figure 3):
• Profile concept establishes a relationship (hasTask) with

the concept task of the PSM ontology. That is consistent
with the notion of both tasks and functional features:
they specify an interface to describe the capabilities of a
service in terms of its input/output data and the pre/post-
conditions of execution of the task (or service). There-
fore, a service profile will have only a task that defines
the functional features of the service.

• Model concept defines a relationship (hasMethod) with
the concept method of the PSM ontology. This means
that a service will be executed by a method, which, fur-
thermore, solves or decomposes the task associated with
the profile of the service itself. Moreover, consistencies
in the relationships between tasks, methods, and services
are guaranteed: if a service is functionally described by a
task, and that task is solved by a method, then the service
should be associated to such method. Although a task
can be solved by several methods, a service must be as-

sociated with only one of those methods. For example, a
theatre booking service could have a method in which
the sub-task user register is mandatory or a different
method without such task.

• Grounding concept establishes relationships with an
ontology based on the WSDL/SOAP specification (like
in OWL-S). This ontology defines relationships with the
inputs and outputs of the task related to the service pro-
file.

According to the SWS ontology, a composite method de-
scribes the internal structure of a service (so-called com-
posite service), and decomposes a task into sub-tasks. Each
one of these sub-tasks specifies the functional features of
the profile of a service (so-called sub-service), which has
an internal structure described by a method that solves or
decomposes such sub-task. Therefore, unlike process-based
approaches (like OWL-S), the description of sub-services
in the SWS ontology follows the same structure as for
composite services. It means that sub-services are services
per se: they are described independently of any service.
 This approach facilitates the SWS design and composi-
tion, since analysis of the service features does not depend
on the services in which they are integrated. For example, if
check credit card is a sub-service of theatre booking, then
to decide whether it is included in a car booking service, it
is not necessary to analyze the features of theatre booking.
Moreover, in this approach, service (or PSM) adapters are
specified based on description of the features of each ser-
vice.

Knowledge Representation (KR) Ontology
This ontology describes the primitives of the knowledge
representation (KR) model in which the domain ontology,
that contains descriptions about the knowledge and data
used by the SWS, is represented. This explicit representa-
tion of the domain ontology is necessary to perform infer-
ences about the input and output data used by the SWS in
its operations. For example, in service composition we
need to determine the primitive type of its inputs (e.g., a
concept) to look for services that use inputs with such
primitive.
 Taking this into account, we have selected the WebODE
knowledge model (Arpírez et al. 2001) as the KR ontology.
WebODE is frame-based and it incorporates formulae
(first-order logic) to represent ontology axioms. Moreover,
WebODE is a workbench for ontological engineering that
offers reasoning capabilities (using ontology axioms) and
facilities to export/import ontologies into/from semantic
Web-oriented languages.
Data Types (DT) Ontology. As Figure 1 shows, the KR
ontology is constructed on the top of an ontology that de-
scribes the types of the concepts and attributes. This ontol-
ogy will be based on the XML Schema Datatypes (XSD)
(Biron and Malhotra 2001), that is a standard specification
formally incorporated to the SWS (and WS) oriented lan-
guages such as OWL-S (and WSDL). Using this ontology
we will facilitate the translation from the SWS conceptual
model into the SWS languages used to service specifica-
tion.

Framework for SWS Design and Composition
The proposed framework for SWS design and composition
is directly based on the stack of ontologies that describe all
the features of a SWS. The framework details how to create
a SWS with the capabilities required by an external agent
or a user (Figure 4):
• Instance model. Design and composition of SWS means

to instantiate all the ontologies that describe what a ser-
vice is: the domain ontology used by the service is in-
stantiated in both DT and KR ontology, whereas the ser-
vice features are instances of both PSM and SWS on-
tologies. The whole instances constitute a model that
specifies the SWS at the knowledge level. This specifica-
tion can be carried out through a graphic interface that
facilitates a user to introduce easily the service features,
and generates the instances through wrappers from the
graphic representations.

• Checking model. Once the instance model has been
created, it is necessary to guarantee that the ontology in-
stances do not present inconsistencies among them. For
example, inputs/outputs of a composite method must be
included in the collection of all the inputs/outputs of the
sub-tasks of that method; sub-services should have the
same commerce classification; and so on. Therefore, we

will need design rules to check that there are not incon-
sistencies or errors when ontology instances are auto-
matically created. These rules are codified as axioms of
each one of the ontologies that constraint how the in-
stances are related among them. As Figure 4 shows, if an
axiom is violated by an instance or set of instances, they
shall be replaced with correct instances.

In this framework we will suppose that the domain on-
tology has been previously and correctly created through
a platform for ontology development (like WebODE),
and, thus, instances of both DT and KR ontology do not
need to be checked.

• Translate model. Although a service is modeled at the
knowledge level, it must be specified in a SWS-oriented
language to enable programs and external agents to ac-
cess to its capabilities. SWS ontology instances must be
translated to languages such as OWL-S combined with
WSDL/SOAP. These translations are usually carried out
through wrappers and we can assume that the translation
process will be correct.

This framework enables the (semi) automatic composition
of SWSs using (1) PSM refiners and bridges to adapt the
PSM ontology instances to the required capabilities of the
new service; and (2) design rules to reject both PSM and
SWS ontology instances that present errors or inconsisten-
cies among them. Design rules are used to reduce the ser-
vice candidates combined to obtain the new service. For
example, to check whether the required inputs of the ser-
vice to be composed are included in the collection of the
inputs of the candidate sub-services, it is necessary to
adapt, when possible, those sub-service inputs to the ontol-
ogy used by the composite service. Then, axiom checking

Figure 4: Framework for design and composition of SWSs based
on the ontologies that describe the service features.

could be performed once this adaptation has been carried
out (probably establishing ontology mappings).
 Finally, following this framework we have implemented
a prototype of an environment for development of SWSs,
called ODE SWS (Corcho et al. 2003a, 2003b) that has
been integrated in WebODE.

Framework Operation Example
Let us suppose that, through a graphic interface of an envi-
ronment for development of SWSs at a conceptual level (as
ODE SWS), a user designs a service, called theatre book-
ing, with the aim of booking a theatre ticket for a particular
film (filmF) in a given city (cityC). Figure 5 shows the de-
sign of this service using the ODE SWS development envi-
ronment: the user specifies graphically the input/output
interactions among the sub-services that compose the thea-
tre booking service (left side). As we can see, this service is
composed of three sub-services: select theatre, select time-
table, and buy ticket. Information about credit card is com-
piled in the user data (used dataU) and its validation is
performed by the service buy service.
 Once the service has been graphically designed, in-
stances of the all framework ontologies are created. Figure
6 shows the instantiation of the main concepts of both PSM
and SWS ontologies for the service theatre booking. The
method theatreBookingMethod decomposes the tasks asso-

ciated with this service (theatreBookingTask) into sub-tasks
related to the sub-services.
 Following the framework, once the ontology instantia-
tion has been carried out, it is necessary to check whether
the service is correctly designed or not. From the input and
output data of the services, shown in Figure 6, the violation
of an axiom is detected: input cityC of the service theatre-
Booking does not appear as an input of any sub-service.
This means that cityC is not used in the execution of the
service, and the method that decomposes the service into
sub-services (theatreBookingMethod) does not provide the
capabilities required by the task associated with the service
theatreBooking. Thus, design of this service shall be re-
vised to include a method that solves correctly the task
related to such service.
 Finally, once the design has been checked, wrappers
perform the translations from the instances of the frame-
work ontologies into the OWL-S specification.

Conclusions and Related Work
There exists some proposals to support (semi) automatic
composition of both SWSs and WSs. Sirin, Hendler, and
Parsia (2003) describe a service in OWL-S, and they use
directly the reasoning capabilities of DAML+OIL to de-
termine whether the features of the services to be composed
match the functionality required for the new service or not.

Figure 5: Design of the service theatre booking using ODE SWS, where services are denoted as ellipses whereas data (concepts and attrib-
utes) are identified as rectangles.

 Narayanan and McIlraith (2002) translate the semantic
behind the OWL-S specification to a first-order logic lan-
guage, obtaining a set of axioms that describes the service
features. Based on these axioms, they use the Petri Nets
formalism to represent the process-based service model for
reasoning about the interaction among the processes that
compose the structure of a service. This approach seems
similar to our framework, since it uses an ontology that
describe what a service is (OWL-S), and, then, it translates
this ontology to a formalism for reasoning about the struc-
ture and features of the service.
 However, the main difference between both proposals
and our framework is related to the modeling of the service.
We have consider a PSM-based approach where the tasks
specify the functional features of a service, the methods
describe the interactions among the components of a ser-
vice, and the adapters describe in a declarative manner how
reuse is achieved among services to be composed.

Acknowledgments
Authors would like to thank the Xunta de Galicia and the
Esperonto project (IST-2001-34373) for their financial
support in carrying out this work.

References
Ankolenkar, A.; Burstein, M.; Hobbs, J.R.; Lassila, O.;
Martin, D.L.; McIlraith, S.A.; Narayanan, S.; Paolucci, M.;
Payne, T.; Sycara, K.; and Zeng, H. 2002. DAML-S: Web
Service Description for the Semantic Web. In Proceedings
of the First International Semantic Web Conference, 348–
363. Sardinia, Italy.

Arpírez, J.C.; Corcho, O.; Fernández-López, M.; and Gó-
mez-Pérez, A. 2001. WebODE – A Scalable Ontological
Engineering Workbench. In Proceedings of the First Inter-
national Conference on Knowledge Capture, 1–13. Victo-
ria, Canada: ACM Press.

Bellwood, T.; Clément, L.; Ehnebuske, D.; Hately, A.;
Hondo, M.; Husband, Y.L.; Januszewski, K.; Lee, S.;
McKee, B.; Munter, J.; and von Riegen, C. 2002. Univer-
sal Description Discovery & Integration (UDDI) Specifi-
cation. http://uddi.org/pubs/uddi-v3.00-published -
20020719.htm.

Benjamins, V.R., and Fensel, D. eds. 1998. Special Issue
on Problem-Solving Methods. International Journal of
Human-Computer Studies (IJHCS), 49(4): 305–313.

Figure 6: Operation of the framework for design of the service theatre booking, where the steps of
the framework execution are specified: (1) ontology instantiation; (2) checking of the ontology axi-
oms; and (3) translation from the ontologies into OWL-S.

Benjamins, V.R.; Wielinga, B.; Wielemaker, J.; and
Fensel, D. 1999. Brokering Problem-Solving Knowledge
at the Internet. In Proceedings of the European Knowledge
Acquisition Workshop (EKAW-99): Springer-Verlag.

Benjamins, V.R. 2003. Web Services Solve Problems, and
Problem-Solving Methods Provide Services. IEEE Intelli-
gent Systems, 18(1):76–77.

Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web. Scientific American, 284(5):34–43.

Biron, P.V., and Malhotra, A. 2001. XML Schema Part 2:
Datatypes. http://www.w3.org/TR/xmlschema-2.

Box, D.; Ehnebuske, D.; Kakivaya, G.; Layman, A.; Men-
delsohn, N.; Nielsen, H.F.; Thatte, S.; and Winer, D. 2000.
Simple Object Access Protocol (SOAP) Version 1.1.
http://www.w3.org/TR/2000/NOTE-SOAP-200000508.

Christensen, E.; Curbera, F.; Meredith, G.; and Weer-
awarana, S. 2001. Web Service Description Language
(WSDL) 1.1. http://www.w3c.org/TR/2001/NOTE-wsdl-
20010315.

Corcho, O.; Fernández-López, M.; Gómez-Pérez, A.; and
Lama, M. 2003a. An Environment for Development of
Semantic Web Services. In Proceedings of the IJCAI-2003
Workshop on Ontologies and Distributed Systems, 13–20.
Acapulco, México. http://CEUR-ORG.com/Vol-71/

Corcho O.; Fernández-López, M.; Gómez-Pérez, A.; and
Lama, M. 2003b. ODE-SWS: A Semantic Web Service
Development Environment. In Proceedings of the VLDB-
2003 Workshop on Semantic Web and Databases, 203–
216. Berlin, Germany.

Curbera, F.; Nagy, W.A.; and Weerawana, S. 2001. Web
Service: Why and How?. In Proceedings of the OOPSLA-
2001 Workshop on Object-Oriented Services. Tampa,
Florida.

Dean, M.; and Schreiber, G. eds. 2003. OWL Web Ontol-
ogy Language Reference. W3C Candidate Recommenda-
tion. http://www.w3c.org/TR/owl-ref/

Dean, M. ed. 2004. OWL-S: Semantic Markup for Web
Services. http://www.daml.org/services/owl-s/1.0/owl-s.pdf

Fensel, D. 1997. The Tower-of-Adapter Method for Devel-
oping and Reusing Problem-Solving Methods. In Proceed-
ings of the Seventh Knowledge, Modeling and Manage-
ment Workshop, 97–112: Springer-Verlag.

Fensel, D. and Bussler, C. 2002. The Web Service Model-
ing Framework WSMF. In Proceedings of the NFS-EU
Workshop on Database Information System Research for
Semantic Web and Enterprises, 15–20. Georgia, USA.

Fensel, D.; Motta, E.; van Harmelen, F.; Benjamins, V.R.;
Crubezy, M.; Decker, S.; Gaspari, M.; Groenboom, R.;
Grosso, W.; Musen, M.A.; Plaza, E.; Schreiber, G.; Studer,
R.; and Wielinga, B. 2003. The Unified Problem-Solving
Method Development Language UPML. Knowledge and

Information Systems (KAIS): An International Journal.
Forthcoming.

Hendler, J. 2001. Agents and the Semantic Web. IEEE
Intelligent Systems, 16(2):30–37.

Horrocks, I., and van Harmelen, F. eds. 2001. Reference
Description of the DAML+OIL Ontology Markup Lan-
guage, Technical Report, http://www.daml.org/2001/03/
reference.html.

Kreger, H. 2001. Web Services Conceptual Architecture.
http://www.ibm.com/software/solutions/webservices/pdf/W
SCA.pdf.

Leymann, F. 2001. Web Service Flow Language (Version
1.1). http://www.ibm.com/software/solutions/webservices/
pdf/WSDL.pdf.

McIlraith, S.; Son, T.C.; and Zeng, H. 2001. Semantic Web
Services. IEEE Intelligent Systems, 16(2):46–53.

Narayanan, S. and McIlraith, S. 2002. Simulation, Verifica-
tion and Automated Composition of Web Services. In
Proceedings of the Eleventh International World Wide Web
Conference (WWW-2002), 77-88. Hawaii, USA.

Newell, A. 1982. The Knowledge Level. Artificial Intelli-
gence, 18(1):87–127.

Schlenoff, C.; Gruninger, M.; Tissot, F.; Valois, J.; Lubell,
J.; and Lee, J. 2000. The Process Specification Language
(PSL):Overview and Version 1.0 Specification. Technical
Report NISTIR 6459, National Institute of Standards and
Technology, Gaithersburg, MD.

Sirin, E.; Hendler, J.; and Parsia, B. 2003. Semi Automatic
Composition of Web Services using Semantic Descriptions.
In Proceedings of the ICEIS-2003 Workshop on Web Ser-
vices: Modeling, Architecture and Infrastructure.

Sollazo, T.; Handshuch, S.; Staab, S.; and Frank, M. 2002.
Semantic Web Service Architecture – Evolving Web Ser-
vice Standards toward the Semantic Web. In Proceedings
of the Fifteenth International FLAIRS Conference. Pensa-
cola, Florida.

Thatte, S. eds. 2003. Business Process Execution Language
for Web Services (Version 1.1). http://www.ibm.com/
developerworks/library/ws-bpel.

van der Aalst, W.P.; ter Hofstede, A.H.; Kiepuszewski, B.;
and Barros, A.P. 2003. Workflow patterns. Distributed and
Parallel Databases, 14(2):5–51.

