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Abstract 
Semantic Web Services (SWS) are Web Services (WS) 
whose description is semantically enhanced with markup 
languages (e.g., OWL-S). This semantic description will en-
able external agents and programs to discover, compose and 
invoke SWSs. However, as a previous step to the specifica-
tion of SWSs in a language, it must be designed at a 
conceptual level to guarantee its correctness and avoid 
inconsistencies among its internal components. In this 
paper, we present a framework for design and (semi) 
automatic composition of SWSs at a language-independent 
and knowledge level. This framework is based on a stack of 
ontologies that (1) describe the different parts of a SWS; 
and (2) contain a set of axioms that are really design rules to 
be verified by the ontology instances. Based on these 
ontologies, design and composition of SWSs can be viewed 
as the correct instantiation of the ontologies themselves. 
Once these instances have been created they will be 
exported to SWS languages such as OWL-S. 

Introduction  
Web Services (WSs) are interfaces that describe a collec-
tion of operations that are network-accessible through 
standardized Web protocols, which are described using a 
standard functional description language (Kreger 2001; 
Cubera, Nagy, and Weerawana 2001). To enable WS ac-
cessible to programs or external agents, it is necessary an 
infrastructure (Kreger 2001) that defines de facto standard 
languages for WS publishing (UDDI (Bellwood et al. 
2002)); functional description (WSDL (Christensen et al. 
2001)); and composition (BPEL4WS (Thatte 2003)). 
 Moreover, Semantic Web Services (SWSs) are Web 
services in the semantic Web (Berners-Lee, Hendler, and 
Lassila 2001), which means that SWSs are described using 
semantically enriched markup languages (McIlraith, Son, 
and Zeng 2001). This semantic description will facilitate 
external agents to understand both functionality and inter-
nal structure of SWSs to be able to discover, compose, and 
invoke SWSs (Hendler 2001). This language could be 
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DAML+OIL (Horrocks and van Harmelen 2001) or OWL 
(Dean et al. 2003), but it must be combined with WS stan-
dard languages to be able to use the current infrastructure 
of Web services (Sollazo et al. 2002). Following this ap-
proach, the OWL-S specification (formerly DAML-S 
(Ankolenkar et al. 2002)) has been proposed to describe 
services in a semantic manner, using OWL in combination 
with WSDL and SOAP (Box et al. 2000). 
 However, as a previous step to the specification of SWS 
in a semantic Web-oriented language, the SWS should be 
designed at a knowledge or conceptual level (Newell 1982) 
to avoid inconsistencies or errors among the services that 
constitute the SWS. In this context, SWS design consists in 
specifying he descriptive, functional, and structural features 
of a service. SWS composition, moreover, deals with the 
combination of different services to obtain a new service. 
Both design and composition of SWSs are very similar, but 
composition operates with services already created, and it 
emphasizes to be a (semi) automatic process; whereas 
design means that services are (manually) created by users 
through a graphic interface, although some support for 
composition would be advisable. 
 In this paper, we present a framework for design and 
composition of SWSs that is based on (1) a stack of on-
tologies that describe explicitly the different features of a 
SWS. Each one of these ontologies has a set of axioms 
used to check the consistency and correctness of the ontol-
ogy instances, and, thus, of the service represented by the 
ontologies; and (2) the assumption that a SWS is modeled 
as a problem-solving method that describes how the service 
is decomposed into its components, and which is the con-
trol of the reasoning process to execute the service. Based 
on this modeling, manual or (semi) automatic design and 
composition of SWSs are enabled at a knowledge and 
language-independent manner. 
 The paper is structured as follows: in the following sec-
tion we present a detailed description of the ontologies that 
represent what a SWS is; then, the proposed framework for 
SWS design and composition is introduced, and we present 
an example that illustrates how the framework operates. 
Finally, we compare the framework with related work and 
summarize the contributions of the paper. 



SWS Description Ontologies for SWS Design 
Conceptual architectures of both SWSs and WSs (Sollazo 
et al. 2002; Fensel and Bussler 2002; Kreger 2001) sche-
matize the service design as the specification of a set of 
layers that would potentially cover all the service features. 
These features, which enable programs or external agents 
to discover, invoke and compose new services, are the 
following: 
• Access (or communication) features describe the com-

munication protocol (e.g., SOAP (Box et al. 2000) or 
HTTP) that is required to invoke the service execution. 

• Descriptive features detail the e-commerce properties of 
a SWS such as its geographical location, commerce clas-
sification (e.g., UNSPSC) or provider. These features are 
generally used to define the domain (e.g., minerals in 
UNSPSC) where the service operation is carried out, and 
they could guide the service discovery by rejecting the 
services that operates in another different domain (e.g, 
medical). 

• Functional features specify the SWS capabilities, de-
scribed in terms of their input/output data, effects and 
pre/post-conditions of execution. These features enable 
an external agent to determine, once the service domain 
has been established, whether the service execution can 
obtain the requested results. Furthermore, to invoke a 
service it is necessary to specify the input/output data. 

• Structural features describe the internal structure of a 
composite service; that is, which are its structural com-
ponents (so-called sub-services) and how those compo-
nents are combined among them to execute the service. 
Typically, agents will use these features for service com-
position, since they determine whether there are interac-
tions between the sub-services and the other services 
used to compose a new service. 

These features could be considered as the different, but 
complementary, views of a service. Depending on the op-
eration to be performed by the agent that require the ser-
vice (invocation, discovery/publishing, or composition), the 
feature set used to describe the SWS is different. For ex-
ample, to invoke a given SWS the agent need to specify 
both its access and functional features (input/output pa-
rameters), whereas the agent does not need to know the 
internal structure of the service (how it is executed). The 
aim of designing SWSs is making explicit the four features 
previously mentioned and specially each one of its struc-
tural components, guaranteeing the correctness of the pro-
posed design, and avoiding the inconsistencies among the 
sub-services that are manual or automatically combined to 
achieve the requirements of the service. For example, sub-
services should have the same commercial classification 
(e.g., medical software in UNSPSC) to be able to operate 
in the same domain. 
Ontology-based SWS Description. Since our aim is to 
design and compose (semi) automatically SWSs, we will 
need to perform inferences about the service features to 

determine whether the proposed design is correct. This 
means that the service features (and the service itself) 
should be explicitly and semantically described, and, for it, 
the use of ontologies seems to be the most appropriate 
solution. This approach has been also followed by other 
authors (Ankolenkar et al. 2002), who use a semantic-
enriched markup language to create an ontology (so-called 
OWL-S) that describes the service features. Our proposal 
differs from OWL-S in that it claims to develop an ontol-
ogy set that describes the SWSs at the conceptual (or 
knowledge) level and being independent of the language 
used to specify the service. However, once the SWS model 
has been created, it must be accessible to external agents. 
Thus, the SWS needs to be translated to a SWS-oriented 
language such as OWL-S. 
 Figure 1 shows the stack of ontologies that describes all 
the features of a SWS (and the service itself) using well-
known specifications or de facto standards. This will favor 
the interoperability of the framework with applications or 
solutions constructed following one of those specifications. 
The stack is composed of the following ontologies: (1) an 
ontology to describe problem-solving methods that will be 
used to represent both the internal structure and functional 
features of a SWS; (2) an ontology describing the upper-
level concepts that define the features of a semantic Web 
service; (3) an ontology to define the knowledge represen-
tation entities used to model a SWS and a domain ontology 
at the knowledge level; and (4) an ontology to describe the 
data types to be used in the domain ontology. We will 
explain each of these ontologies in the following sections. 

Problem-Solving Method Description Ontology 
Internal structure of both SWSs and WSs has been usually 
modeled as a (business) process (Narayanan and McIlraith 
2002; Leymann 2001), in which a set of activities or ac-
tions are carried out to execute the process (Schlenoff et al. 
2000). In this approach, a process (or equivalently a ser-

Figure 1: Ontology set identified in the framework to SWS de-
sign. These ontologies have been developed based on well-known 
specifications and de facto standards. 



vice) is broken down into activities whose interactions can 
be modeled as workflow patterns (van der Aalst et al. 
2003) that basically describe the coordination of those 
activities in the process execution. Taking this into account, 
some process-based languages such as BPEL4WS (Thatte 
2003) (for WS) and OWL-S (Dean 2004) (for SWS) have 
been proposed. They describe the internal structure of a 
service using a predefined set of workflow-like patterns 
(sequence, choice, parallel split, etc.). 
 From a point of view of modeling, the main drawback of 
this approach is the lack of an explicit and declarative 
decoupling between the functional features of a process 
(what) and the structural description of such process (how). 
This means that the functional features are directly linked 
to the parameters used in the internal structure of a process, 
and, therefore, that process will be specifically designed to 
carry out a particular operation (e.g., to book) in a particu-
lar domain (e.g., flight booking). With this approach, reuse 
of processes among domains is difficult and service com-
position, where software agents (re)use services to obtain a 
new service, must be programmatically solved. For exam-
ple, a service that deals with theatre booking share some 
operations with a service in flight booking (select seat, 
check credit card, confirm booking, etc.). Processes that 
execute such operations should be (quasi) reusable among 
both services, but that requires an explicit separation be-
tween the description of those operations and how they are 
solved. 

Problem-Solving Method-based approach. To decouple 
the functional features of a service from its internal specifi-
cation, we propose to apply Problem-Solving Methods 
(PSM) (Benjamins and Fensel 1998) for modeling SWSs, 
because of they claim to be knowledge components that are 
reusable among different domains and tasks. The Unified 
Problem-solving Method Language (UPML) (Fensel et al. 
2003) is a de facto standard that describes the components 
of a PSM (Figure 2): 
• Task describes the operation to be solved in the execu-

tion of a method that solves such task, specifying the in-
put/output parameters and the pre/post-conditions (com-
petence) required to be applicable. This description is 
independent of the method used for solving the task. 

• Method details the control of the reasoning process to 
achieve a task, describing both the decomposition of the 
general tasks into sub-tasks and the coordination of those 
sub-tasks to achieve the required result (control flow). 
The UPML, however, does not define a set of program 
elements to specify the control flow of a method. 

• Adapter (Fensel 1997) specifies mappings among the 
knowledge components of a PSM, adapting a task to a 
method and refining tasks and methods to generate more 
specific components. Therefore, the adapters are used to 
achieve the reusability at the knowledge level, since they 
bridge the gap between the general description of a PSM 
and the particular domain where it is applied. 

 The UPML language was developed in the context of the 
IBROW project (Benjamins et al. 1999) with the aim of 
enabling the (semi) automatic reuse and composition of 
PSMs distributed throughout the Web. This objective 
seems to be very similar to composition of services, and it 
can be considered that the IBROW project highlights the 
close relation between PSMs and SWSs (Benjamins 2003). 
PSM Description Ontology. Based on the UPML specifi-
cation we have created a PSM ontology that enhances the 
description of the UPML elements by adding new relation-
ships among those elements, concepts, and axioms that 
describe more exactly the main PSM components. These 
add-ons, showed as dashed lines in Figure 2, are the 
following: 
• Explicit relationships between tasks and methods are 

defined: a method, which can be primitive or composite, 
solves a task; composite methods decompose a task into 
sub-tasks, and they have an operational description that 
is composed of a sequence of program elements which 
specify the control flow required to solve the general 
task. Moreover, both tasks and methods have effects, 
which are associated with changes in the environment 
that are not related with input/output data. These effects 
should be modeled as concepts of an effect ontology to 
favor the interoperability among services. 

• A minimal set of programming primitives to describe the 
operational description of a composite method have been 
proposed. These primitives will operate with concept in-
stances (parameters) and tasks (usedTasks), and they can 

Figure 2: Ontology of Problem-Solving Method based on the
UPML specification and a programming ontology that describes
the different elements that compose the operational description of
a method. 



Figure 3: Semantic Web Service ontology that is based on 
both the OWL-S specification and the PSM description 
ontology. 

express instance assignments; conditions applied to in-
stances and tasks; and loops (both conditional and itera-
tive) and parallel execution of other program elements or 
tasks. Although those primitives are selected from pro-
gramming languages, a combination of them allow us to 
derive several basic workflow-like patterns such as se-
quence or exclusive and multiple choice (Schlenoff et al. 
2000; van der Aalst et al. 2003). 

• A set of axioms that describe interactions among in-
stances of the PSM ontology that should be avoided: 
there are instantiations of both method and task concepts 
that are inconsistent with the PSM theory. For example, 
a method cannot decompose any of the sub-tasks of 
which it is composed of (subsumption problems); inputs 
of a (general) task shall be included in the collection of 
inputs of its sub-tasks, since the composite method that 
describes the interactions among those sub-tasks must 
have the same inputs as the general task; and so on. 
Therefore, these axioms can be used to decide whether a 
task is correctly decomposed by a composite method or 
not. 

The PSM ontology does not incorporate details related to 
how a method can be network-accessible, since we assume 
that communication protocol description is directly associ-
ated with the SWS itself. 

Semantic Web Service Ontology 
As Figure 3 shows, SWS ontology replicates the upper-
level nodes (or concepts) of the OWL-S ontology, where a 
service is described in terms of its descriptive and func-
tional features (profile); its access protocol (grounding); 
and its internal structure (model). The SWS ontology in-
corporates all the OWL-S concepts and attributes of the 
service grounding and profile (except its functional fea-
tures, which are replaced by task descriptions); whereas the 
concepts associated with the service model, which is proc-
ess-based, are completely substituted by method descrip-
tions. Considering this, the SWS ontology defines the fol-
lowing relationships with the PSM ontology (Figure 3): 
• Profile concept establishes a relationship (hasTask) with 

the concept task of the PSM ontology. That is consistent 
with the notion of both tasks and functional features: 
they specify an interface to describe the capabilities of a 
service in terms of its input/output data and the pre/post-
conditions of execution of the task (or service). There-
fore, a service profile will have only a task that defines 
the functional features of the service. 

• Model concept defines a relationship (hasMethod) with 
the concept method of the PSM ontology. This means 
that a service will be executed by a method, which, fur-
thermore, solves or decomposes the task associated with 
the profile of the service itself. Moreover, consistencies 
in the relationships between tasks, methods, and services 
are guaranteed: if a service is functionally described by a 
task, and that task is solved by a method, then the service 
should be associated to such method. Although a task 
can be solved by several methods, a service must be as-

sociated with only one of those methods. For example, a 
theatre booking service could have a method in which 
the sub-task user register is mandatory or a different 
method without such task. 

• Grounding concept establishes relationships with an 
ontology based on the WSDL/SOAP specification (like 
in OWL-S). This ontology defines relationships with the 
inputs and outputs of the task related to the service pro-
file. 

According to the SWS ontology, a composite method de-
scribes the internal structure of a service (so-called com-
posite service), and decomposes a task into sub-tasks. Each 
one of these sub-tasks specifies the functional features of 
the profile of a service (so-called sub-service), which has 
an internal structure described by a method that solves or 
decomposes such sub-task. Therefore, unlike process-based 
approaches (like OWL-S), the description of sub-services 
in the SWS ontology follows the same structure as for 
composite services. It means that sub-services are services 
per se: they are described independently of any service. 
 This approach facilitates the SWS design and composi-
tion, since analysis of the service features does not depend 
on the services in which they are integrated. For example, if 
check credit card is a sub-service of theatre booking, then 
to decide whether it is included in a car booking service, it 
is not necessary to analyze the features of theatre booking. 
Moreover, in this approach, service (or PSM) adapters are 
specified based on description of the features of each ser-
vice. 



Knowledge Representation (KR) Ontology 
This ontology describes the primitives of the knowledge 
representation (KR) model in which the domain ontology, 
that contains descriptions about the knowledge and data 
used by the SWS, is represented. This explicit representa-
tion of the domain ontology is necessary to perform infer-
ences about the input and output data used by the SWS in 
its operations. For example, in service composition we 
need to determine the primitive type of its inputs (e.g., a 
concept) to look for services that use inputs with such 
primitive. 
 Taking this into account, we have selected the WebODE 
knowledge model (Arpírez et al. 2001) as the KR ontology. 
WebODE is frame-based and it incorporates formulae 
(first-order logic) to represent ontology axioms. Moreover, 
WebODE is a workbench for ontological engineering that 
offers reasoning capabilities (using ontology axioms) and 
facilities to export/import ontologies into/from semantic 
Web-oriented languages. 
Data Types (DT) Ontology. As Figure 1 shows, the KR 
ontology is constructed on the top of an ontology that de-
scribes the types of the concepts and attributes. This ontol-
ogy will be based on the XML Schema Datatypes (XSD) 
(Biron and Malhotra 2001), that is a standard specification 
formally incorporated to the SWS (and WS) oriented lan-
guages such as OWL-S (and WSDL). Using this ontology 
we will facilitate the translation from the SWS conceptual 
model into the SWS languages used to service specifica-
tion. 

Framework for SWS Design and Composition 
The proposed framework for SWS design and composition 
is directly based on the stack of ontologies that describe all 
the features of a SWS. The framework details how to create 
a SWS with the capabilities required by an external agent 
or a user (Figure 4): 
• Instance model. Design and composition of SWS means 

to instantiate all the ontologies that describe what a ser-
vice is: the domain ontology used by the service is in-
stantiated in both DT and KR ontology, whereas the ser-
vice features are instances of both PSM and SWS on-
tologies. The whole instances constitute a model that 
specifies the SWS at the knowledge level. This specifica-
tion can be carried out through a graphic interface that 
facilitates a user to introduce easily the service features, 
and generates the instances through wrappers from the 
graphic representations. 

• Checking model. Once the instance model has been 
created, it is necessary to guarantee that the ontology in-
stances do not present inconsistencies among them. For 
example, inputs/outputs of a composite method must be 
included in the collection of all the inputs/outputs of the 
sub-tasks of that method; sub-services should have the 
same commerce classification; and so on. Therefore, we 

will need design rules to check that there are not incon-
sistencies or errors when ontology instances are auto-
matically created. These rules are codified as axioms of 
each one of the ontologies that constraint how the in-
stances are related among them. As Figure 4 shows, if an 
axiom is violated by an instance or set of instances, they 
shall be replaced with correct instances. 

In this framework we will suppose that the domain on-
tology has been previously and correctly created through 
a platform for ontology development (like WebODE), 
and, thus, instances of both DT and KR ontology do not 
need to be checked. 

• Translate model. Although a service is modeled at the 
knowledge level, it must be specified in a SWS-oriented 
language to enable programs and external agents to ac-
cess to its capabilities. SWS ontology instances must be 
translated to languages such as OWL-S combined with 
WSDL/SOAP. These translations are usually carried out 
through wrappers and we can assume that the translation 
process will be correct. 

This framework enables the (semi) automatic composition 
of SWSs using (1) PSM refiners and bridges to adapt the 
PSM ontology instances to the required capabilities of the 
new service; and (2) design rules to reject both PSM and 
SWS ontology instances that present errors or inconsisten-
cies among them. Design rules are used to reduce the ser-
vice candidates combined to obtain the new service. For 
example, to check whether the required inputs of the ser-
vice to be composed are included in the collection of the 
inputs of the candidate sub-services, it is necessary to 
adapt, when possible, those sub-service inputs to the ontol-
ogy used by the composite service. Then, axiom checking 

Figure 4: Framework for design and composition of SWSs based 
on the ontologies that describe the service features. 



could be performed once this adaptation has been carried 
out (probably establishing ontology mappings). 
 Finally, following this framework we have implemented 
a prototype of an environment for development of SWSs, 
called ODE SWS (Corcho et al. 2003a, 2003b) that has 
been integrated in WebODE. 

Framework Operation Example 
Let us suppose that, through a graphic interface of an envi-
ronment for development of SWSs at a conceptual level (as 
ODE SWS), a user designs a service, called theatre book-
ing, with the aim of booking a theatre ticket for a particular 
film (filmF) in a given city (cityC). Figure 5 shows the de-
sign of this service using the ODE SWS development envi-
ronment: the user specifies graphically the input/output 
interactions among the sub-services that compose the thea-
tre booking service (left side). As we can see, this service is 
composed of three sub-services: select theatre, select time-
table, and buy ticket. Information about credit card is com-
piled in the user data (used dataU) and its validation is 
performed by the service buy service. 
 Once the service has been graphically designed, in-
stances of the all framework ontologies are created. Figure  
6 shows the instantiation of the main concepts of both PSM 
and SWS ontologies for the service theatre booking. The 
method theatreBookingMethod decomposes the tasks asso-

ciated with this service (theatreBookingTask) into sub-tasks 
related to the sub-services. 
 Following the framework, once the ontology instantia-
tion has been carried out, it is necessary to check whether 
the service is correctly designed or not. From the input and 
output data of the services, shown in Figure 6, the violation 
of an axiom is detected: input cityC of the service theatre-
Booking does not appear as an input of any sub-service. 
This means that cityC is not used in the execution of the 
service, and the method that decomposes the service into 
sub-services (theatreBookingMethod) does not provide the 
capabilities required by the task associated with the service 
theatreBooking. Thus, design of this service shall be re-
vised to include a method that solves correctly the task 
related to such service. 
 Finally, once the design has been checked, wrappers 
perform the translations from the instances of the frame-
work ontologies into the OWL-S specification. 

Conclusions and Related Work 
There exists some proposals to support (semi) automatic 
composition of both SWSs and WSs. Sirin, Hendler, and 
Parsia (2003) describe a service in OWL-S, and they use 
directly the reasoning capabilities of DAML+OIL to de-
termine whether the features of the services to be composed 
match the functionality required for the new service or not. 

Figure 5: Design of the service theatre booking using ODE SWS, where services are denoted as ellipses whereas data (concepts and attrib-
utes) are identified as rectangles. 



 Narayanan and McIlraith (2002) translate the semantic 
behind the OWL-S specification to a first-order logic lan-
guage, obtaining a set of axioms that describes the service 
features. Based on these axioms, they use the Petri Nets 
formalism to represent the process-based service model for 
reasoning about the interaction among the processes that 
compose the structure of a service. This approach seems 
similar to our framework, since it uses an ontology that 
describe what a service is (OWL-S), and, then, it translates 
this ontology to a formalism for reasoning about the struc-
ture and features of the service. 
 However, the main difference between both proposals 
and our framework is related to the modeling of the service. 
We have consider a PSM-based approach where the tasks 
specify the functional features of a service, the methods 
describe the interactions among the components of a ser-
vice, and the adapters describe in a declarative manner how 
reuse is achieved among services to be composed. 
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