225,680 research outputs found

    Data-driven through-life costing to support product lifecycle management solutions in innovative product development

    Get PDF
    Innovative product usually refers to product that comprises of creativity and new ideas. In the development of such a new product, there is often a lack of historical knowledge and data available to be used to perform cost estimation accurately. This is due to the fact that traditional cost estimation methods are used to predict costs only after a product model has been built, and not at an early design stage when there is little data and information available. In light of this, original equipment manufacturers are also facing critical challenges of becoming globally competitive and increasing demands from customer for continuous innovation. To alleviate these situations this research has identified a new approach to cost modelling with the inclusion of product lifecycle management solutions to address innovative product development.The aim of this paper, therefore, is to discuss methods of developing an extended-enterprise data-driven through-life cost estimating method for innovative product development

    Value Chain: From iDMU to Shopfloor Documentation of Aeronautical Assemblies

    Get PDF
    Competition in the aerospace manufacturing companies has led them to continuously improve the efficiency of their processes from the conceptual phase to the start of production and during operation phase, providing services to clients. PLM (Product Lifecycle Management) is an end-to-end business solution which aims to provide an environment of information about the product and related processes available to the whole enterprise throughout the product’s lifecycle. Airbus designs and industrializes aircrafts using Concurrent Engineering methods since decades. The introduction of new PLM methods, procedures and tools, and the need to improve processes efficiency and reduce time-to-market, led Airbus to pursue the Collaborative Engineering method. Processes efficiency is also impacted by the variety of systems existing within Airbus. Interoperability rises as a solution to eliminate inefficiencies due to information exchange and transformations and it also provides a way to discover and reuse existing information. The ARIADNE project (Value chain: from iDMU to shopfloor documentation of aeronautical assemblies) was launched to support the industrialization process of an aerostructure by implementing the industrial Digital Mock-Up (iDMU) concept in a Collaborative Engineering framework. Interoperability becomes an important research workpackage in ARIADNE to exploit and reuse the information contained in the iDMU and to create the shop floor documentation. This paper presents the context, the conceptual approach, the methodology adopted and preliminary results of the project

    Collaborative support for distributed design

    Get PDF
    A number of large integrated projects have been funded by the European Commission within both FP5 and FP6 that have aimed to develop distributed design solutions within the shipbuilding industry. VRShips-ROPAX was funded within FP5 and aimed to develop a platform to support distributed through-life design of a ROPAX (roll-on passenger) ferry. VIRTUE is an FP6 funded project that aims to integrate distributed virtual basins within a platform that allows a holistic Computational Fluid Dynamics (CFD) analysis of a ship to be undertaken. Finally, SAFEDOR is also an FP6 funded project that allows designers to perform distributed Risk-Based Design (RBD) and simulation of different types of vessels. The projects have a number of commonalities: the designers are either organisationally or geographically distributed; a large amount of the design and analysis work requires the use of computers, and the designers are expected to collaborate - sharing design tasks and data. In each case a Virtual Integration Platform (VIP) has been developed, building on and sharing ideas between the projects with the aim of providing collaborative support for distributed design. In each of these projects the University of Strathclyde has been primarily responsible for the development of the associated VIP. This paper describes each project in terms of their differing collaborative support requirements, and discusses the associated VIP in terms of the manner that collaborative support has been provided

    A collaborative platform for integrating and optimising Computational Fluid Dynamics analysis requests

    Get PDF
    A Virtual Integration Platform (VIP) is described which provides support for the integration of Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) analysis tools into an environment that supports the use of these tools in a distributed collaborative manner. The VIP has evolved through previous EU research conducted within the VRShips-ROPAX 2000 (VRShips) project and the current version discussed here was developed predominantly within the VIRTUE project but also within the SAFEDOR project. The VIP is described with respect to the support it provides to designers and analysts in coordinating and optimising CFD analysis requests. Two case studies are provided that illustrate the application of the VIP within HSVA: the use of a panel code for the evaluation of geometry variations in order to improve propeller efficiency; and, the use of a dedicated maritime RANS code (FreSCo) to improve the wake distribution for the VIRTUE tanker. A discussion is included detailing the background, application and results from the use of the VIP within these two case studies as well as how the platform was of benefit during the development and a consideration of how it can benefit HSVA in the future

    Specifications and Development of Interoperability Solution dedicated to Multiple Expertise Collaboration in a Design Framework

    Get PDF
    This paper describes the specifications of an interoperability platform based on the PPO (Product Process Organization) model developed by the French community IPPOP in the context of collaborative and innovative design. By using PPO model as a reference, this work aims to connect together heterogonous tools used by experts easing data and information exchanges. After underlining the growing needs of collaborative design process, this paper focuses on interoperability concept by describing current solutions and their limits. Then a solution based on the flexibility of the PPO model adapted to the philosophy of interoperability is proposed. To illustrate these concepts, several examples are more particularly described (robustness analysis, CAD and Product Lifecycle Management systems connections)

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan
    corecore