
Strathprints Institutional Repository

Whitfield, R.I. and Duffy, A.H.B. (2008) Collaborative support for distributed design. In: Realising
Network Enabled Capability (RNEC’08), 2008-10-13 - 2008-10-14, Leeds, UK.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Whitfield, R.I. and Duffy, A.H.B. (2008) Collaborative support for distributed design. In: Realising
Network Enabled Capability (RNEC'08), 13-14 Oct 2008, Leeds, UK.

http://strathprints.strath.ac.uk/13506/

Strathprints is designed to allow users to access the research output of the University
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained
by the individual authors and/or other copyright owners. You may not engage in
further distribution of the material for any profitmaking activities or any commercial
gain. You may freely distribute both the url (http://strathprints.strath.ac.uk) and the
content of this paper for research or study, educational, or not-for-profit purposes
without prior permission or charge. You may freely distribute the url
(http://strathprints.strath.ac.uk) of the Strathprints website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://strathprints.strath.ac.uk/13506/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk

Collaborative support for distributed design

1

Collaborative support for distributed design

R.I. Whitfield, A.H.B. Duffy
Department of Design Manufacture and Engineering Management

University of Strathclyde
 Glasgow, G1 1XJ, UK

*Corresponding author: ian.whitfield@strath.ac.uk

Abstract

A number of large integrated projects have been
funded by the European Commission within both FP5
and FP6 that have aimed to develop distributed design
solutions within the shipbuilding industry. VRShips-
ROPAX was funded within FP5 and aimed to develop a
platform to support distributed through-life design of a
ROPAX (roll-on passenger) ferry. VIRTUE is an FP6
funded project that aims to integrate distributed virtual
basins within a platform that allows a holistic
Computational Fluid Dynamics (CFD) analysis of a ship
to be undertaken. Finally, SAFEDOR is also an FP6
funded project that allows designers to perform
distributed Risk-Based Design (RBD) and simulation of
different types of vessels. The projects have a number of
commonalities: the designers are either organisationally
or geographically distributed; a large amount of the
design and analysis work requires the use of computers,
and the designers are expected to collaborate – sharing
design tasks and data. In each case a Virtual Integration
Platform (VIP) has been developed, building on and
sharing ideas between the projects with the aim of
providing collaborative support for distributed design.
In each of these projects the University of Strathclyde
has been primarily responsible for the development of
the associated VIP. This paper describes each project in
terms of their differing collaborative support
requirements, and discusses the associated VIP in terms
of the manner that collaborative support has been
provided.

1 Introduction

For organisationally or geographically distributed
design to be successful, there is a need to co-ordinate the
activities of those involved. This co-ordination is there
to ensure that the right thing is done for the right reason
at the right time [1], and without it, unnecessary effort
may be expended reworking activities that have been
undertaken using information that is either immature or
unreliable. Worse still, a lack of co-ordination between
those involved can result with chaotic behaviour [2].
One aspect of co-ordination to make distributed
designers aware that they have to collaborate or co-
operate towards a common goal. This paper aims to
illustrate the different approaches to providing
collaborative support to distributed design teams that
have been implemented within three different European
Commission funded projects. The three projects have all
focussed on shipbuilding. Historically Europe has a great

deal of expertise within this domain distributed across
shipyards, consultancies, regulatory bodies as well as
academia. These projects have aimed at providing a
means of consolidating this expertise through the use of
a VIP, which allows designers to share design tasks,
tools, knowledge and data. This consolidated expertise
should provide a competitive advantage in allowing the
partners involved to design more advanced vessels than
was possible without the use of the VIP. Whilst the focus
of the VIP development has been towards supporting the
distributed design of ships, the underlying VIP
implementations have to a large extent been generic in
nature, and are therefore equally applicable to other
industries such as aerospace, off-shore or defence.

The Decision Support (DS) topic of the NECTISE
project aims to define and implement a VIP for DS
(VIP-DS) – an architecture for which is proposed within
[3]. Whilst the focus and requirements for this platform
differ from that within the above projects there are a
number of platform management elements that have the
potential for reuse: project and processes; resources, and
dependencies. The aim when developing the VIP-DS is
to consider the best-practice across these platforms for
these management elements and re-use where
appropriate. One aspect that the Decision Support topic
explicitly shares with these projects is the need for
collaboration within a distributed organisation or even
across organisations. The lessons learned for
collaboration management and visualisation within a
VIP for project, process, resource and dependency
management will therefore be directly applicable to the
provision of decision making collaboration within the
VIP-DS of NECTISE.

The platforms developed within the VRS, VIRTUE
and SAFEDOR projects are discussed within Sections 2,
3 and 4 respectively. Section 5 concludes.

2 VRShips Platform

The VRShips platform was developed within the
VRS project and aimed to integrate Information
Technology (IT) into the through-life design of a novel
ROPAX vessel. Design and simulation of complex
products such as ships is increasingly reliant upon
mathematical models of many physical phenomena
providing a more complete understanding of the design
problem. However these analysis techniques generally
provide point solutions to particular design issues and
only go a little way towards leveraging the full potential
of IT advances. For example IT may be developed for
design management issues: promote collaboration both

Collaborative support for distributed design

2

within and between organisations through the integration
of these point solutions; ensure that the design problem
being investigated is consistent across all of the analyses
being considered; and ensure that changes are correctly
propagated and that design activity is undertaken for the
correct reasons.

A solution to the multi-partner collaborative design
problem was realised within the VRShips platform by
allowing the designers to continue using the design
tools, techniques, rules and knowledge that they are
familiar with, and to provide an over-arching platform
that integrates the tools’ and the designers’ capabilities,
and monitors, manages and co-ordinates their actions.
This management is a pre-requisite for establishing an
efficient and effective integrated environment between
designers and systems. Whilst it does not necessarily
dictate how designers perform their activities, it provides
a mechanism for designers to co-ordinate their actions,
provides information and guidance to aid the decision-
making process, and takes action in response to others.

The VRShips platform aims to provide support to the
users of the platform in order to allow them to combine
the tools, knowledge and expertise of the partners
involved within an environment that enables the design
and evaluation of novel vessels through the combination
of these through-life point solutions.

2.1 VRShips requirements

Requirements were defined at the start of the VRS
project to provide a basis for developing the VRShips
architecture and platform implementation. These
requirements are summarised below into themes
associated with the management of the VRShips project.

Integration: deliver a flexible protocol and
communication mechanism to enable disparate platform
elements to integrate and co-ordinate their functionality.

Common model: provide a consistent representation
of the data defining the ship systems and consider the
functional requirements of the life-phase process models
as well as the requirements of the integrated tools.

Virtual interaction: provide functionality to enable:
multi-user access; configuration and use of design and
simulation tools; access to the common model;
visualisation of common model contents; querying of
data consistency status; enactment of processes, and use
of the performance modelling tool.

Inference engine: maintain the consistency between
the common and local models through the management
of change propagation and conflict resolution between
multiple users.

Process modelling and control: should co-ordinate
distributed activities within a virtual platform, manage
the resources that are capable of performing the
activities, as well as co-ordinating when and why they
should be undertaken.

Simulation engine: represents the design and
simulation tools “wrapped” within the platform and
should allow a through life assessment, ranging from
concept development to performance trials and
operational scenarios.

2.2 VRShips architecture

One of the focal points of facilitating collaboration
within the VRShips platform was through the exchange
of product data via the common model. Previous
attempts had been made to use the Standard for the
Exchange of Product model Data (STEP) and its
underlying Language, EXPRESS for the exchange of
ship product model data, however the number of design
and simulation tools supporting STEP within VRShips
were limited hence an alternative had to be found. A
review of product modelling technologies can be found
in [4]. A neutral data representation was sought that
would meet the requirements of VRShips which was
developed by considering both the different life-phase
data requirements as well as the individual data
requirements of the tools to be integrated. This top-down
and bottom-up approach led to the development of an
extensive product model schema, developed in XML
that could easily be extended if required. The schema
was used to develop a product data model contained
within an XML database (the centralised common
model). This product data model represented the
minimum amount of data required (what was common)
in order exchange the data that was needed between
tools whilst maintaining data consistency. Additional
data (that which was not common) was maintained
within the individual tools distributed data models.

Design and simulation tools were integrated into the
platform through the use of a “generic wrapper” that was
part of the client-side user interface. One of the
intentions of the generic wrapper was to minimise the
development required in order to integrate a tool into the
VRShips platform. Unlike the use of STEP for example
where considerable effort is required to import STEP
data or the use of CORBA where access to the tool’s
source code is required, the generic wrapper only
required the development or relatively simple input and
output data converters to translate from the tools’ native
format to the common model’s generic format. Once
these converters had been developed, integrating any
tool into the platform was a straightforward process that
did not require any software development experience.

Three server applications exist within the VRShips
platform – the process control tool, the inference engine,
and the performance analysis server - Figure 1. The
process control tool provides the management of design
processes, user accounts and requirements, the inference
engine is used to manage the propagation of design
changes and maintain consistency of the data contained
within the common model, and the performance analysis
server collects parametric data in order to be able to
generate response surface models representing the
design activity that is being undertaken. These three
servers and the common model database were generally
located on a server system; however they could be
individually distributed on a network.

Collaborative support for distributed design

3

User Interface

Common Model

Generic Wrapper

Simulation Tool

AVPro

Local
ModelIn

pu
t C

on
ve

rte
r

O
ut

pu
t C

on
ve

rte
r

SSL Com

Generic Wrapper

Design Tool

Tribon

Local
Model In

pu
t C

on
ve

rte
r

O
ut

pu
t C

on
ve

rte
r

SSL Com

Generic Wrapper

Design Tool

AVPro

Local
Model In

pu
t C

on
ve

rte
r

O
ut

pu
t C

on
ve

rte
r

SSL Com

Process Control Tool

Resources

Requirements

Processes

SS
L

C
om

SSL Com

Inference Engine

Dependency Maps

SS
L

C
om

Performance Analysis

Performance Models

SS
L

C
om

Common Model
Communication

Virtual Platform
Communication

Figure 1. VRShips architecture

The VRShips platform was developed to allow
distributed through-life design and simulation of ships
across Europe. A user interface to the platform was
developed as the final component of the architecture that
would represent the “window to the platform” and would
allow the user to co-ordinate their activities with those of
others. It was intended that the user interface would
allow the visualisation of the data contained within the
process control tool, the inference engine, the
performance analysis server and the common model.

2.3 VRShips implementation

It was established that the VRShips platform should
not place any restrictions on who could use it, hence
wherever possible the platform was developed in a
neutral way. This was achieved through the use of Java
allowing the platform to be run on any operating system.

One of the main objectives of the VRShips platform
was to co-ordinate the activities of users such that the
design process progresses in an efficient and effective
manner. The process control tool was developed in order
to facilitate this co-ordination - Figure 2.

Figure 2. VRShips – process control tool – process
view.

As a server side application, the process control tool
defined processes as a series of inter-dependent tasks,
containing iteration wherever relevant and being

representative of a statically defined workflow. At this
stage the tasks are defined without resource
consideration – this information is determined later by
the users via the user interface and also defines the way
that users collaborate in terms of enacting the process.

The process control tool does however provide
validation of user login, since it is also responsible for
managing user accounts - Figure 3. For each user, the
process control tool tracks the login status, the tasks that
a user has configured as being capable of undertaking,
and what tasks a user is currently committed to
undertaking. A more detailed description of how the
process control tool manages task allocation can be
found in [5].

Figure 3. VRShips – process control tool – resource
view.

Once a user has correctly logged on, the user interface is
displayed which represents the various ways in which
the user can interact with the platform – for most users,
this is the only part of the platform that they would
generally use - Figure 4. The elements to the left of the
user interface are related to the configured and allocated
activities within the process control tool, as well as to
other users of the platform that are either online or
offline. The elements to the right of the user interface
represent the different views of the data within the
common model, the data dependency network and
consistency status within the inference engine, the
processes within the process control tool, and the generic
wrapper to allow tools to be integrated into the platform.

When a user logs onto the VRShips platform for the
first time, both the allocated and configured activity lists
are empty. Integrating a tool firstly requires
identification of the task within a process against which
the tool would be configured against such as the
“Develop Erection Plan” activity within Figure 2 for
example. Once a task has been selected, the generic
wrapper is started which allows the user to identify the
input and output data, the input and output converts and
the tool(s) that will be used. The generic wrapper links
these different elements and illustrates how the tool will
be used to transform the input data to the output data.
Once wrapping is complete, the user receives
notification on their interface that a new activity has
been configured. In addition, the user interface
communicates with the process control tool informing it

Collaborative support for distributed design

4

that the user is now capable of performing this activity.
Using this approach, the individual users of the platform
are responsible for proactively identifying the tasks
within the processes that they are capable of undertaking
and hence how they would collaborate, with the process
control tool tracking the users’ capability.

Figure 4. VRShips – user interface.

Any of the processes within the process control may
be enacted via interaction with the user interface. The
process control tool uses a range of mechanisms [5] to
determine the most appropriate user to allocate the task,
and once allocated is displayed within the “Allocated
Activities” section of the user interface. When the
activity is started, the enactment component of the
generic wrapper downloads the input data from the
common model, converts it into the native format, starts
the tool(s), before converting the output data into the
generic format, and uploading the output data to the
common model. The interaction between the user
interface and the process control tool provides an
implicit collaboration between the users of the platform
that is co-ordinated through the enactment of the
process.

The VRShips platform users can further collaborate
through viewing: the state of the data within the
common model; the consistency status of the data within
the inference engine (which mirrors the data within the
common model), and a list of the processes that are
currently being managed by the process control tool.

2.4 VRShips discussion

The VRShips platform was used manage a collaborative
design process across Europe for the design a novel
ROPAX vessel from very early conceptual stage,
through to being able to simulate a number of production
and operational life-phase aspects and was subsequently
successful in many of its objectives. Much of the server-
side visualisation was not represented within the user
interface such as the rich source of information within
the process control tool - Figure 2. The result was that
the collaboration for process control was achieved using
textual rather than graphical information.

3 VIRTUE Platform – VIP-V

The VIRTUE project consists of five work-packages,
four of which represent “virtual basins”, and the fifth
aims to develop an integration platform that will
combine the virtual basins into a holistic design
environment. The virtual basins use design and state-of-
the-art CFD code to allow the analysis of ships with
respect to towing, sea-keeping, manoeuvring and
cavitation to be undertaken. Like the VRShips project,
the expertise associated with these four basins is
distributed across Europe, hence one of the aims of the
VIRTUE Virtual Integration Platform (VIP-V) was to
provide an architecture that would allow designers from
across both Europe and the basins to collaborate in their
design activity.

3.1 VIP-V requirements

The VIP-V is required to provide management and
support for all of the CFD and design tools required
within an integrated CFD ship design environment. The
requirements defined within the VIRTUE project reflect
the different scenarios for which the platform would be
used, with the main users being the basins in the project
partnership and requirements influencing collaboration
are summarised in the themes below:

Communication technology: should be able to
provide a reliable and secure access for internal and
external users, depending on different identified user
roles.

Process control: should be able to construct, modify
and run particular processes depending on different user
roles. It should be possible to back-step in the process
chain and repeat consecutive steps with modified data.

Project management: should provide a means to
monitor the work progress and the project manager must
be able to obtain an overview at any time, and be able to
inform customers on work progress upon request.

Visualisation: should allow “mock ups” of the 3D
geometry and CFD to be visualised as well as allowing
collaborative visualisation for experts sitting at different
computers.

Data Management: should support the
communication between the integrated tools via a
storage medium (common model). A version control
system should be implemented to allow the tagging of
data states and the platform should supply an estimation
of storage (and CPU) requirements and issue a warning
if unreasonable resources are required. The platform
should take care of minimizing the data transfer and
should provide mechanisms for data import and export,
especially for legacy data.

User Interface: should assist the user with the
navigation and progress of a project with different views
depending on user roles so that viewing, reading and
writing authorization should be handled according to
those roles.

3.2 VIP-V architecture

Like the VRShips platform, the VIP-V was developed
using the Java programming language due in this case to

Collaborative support for distributed design

5

the mix in operating systems that would require support:
Linux, Windows, Unix and Mac (in that order of usage).
However the VIP-V had a number of conceptual
differences with the VRShips platform, and chiefly
amongst these was in the development of the common
model. It was identified early on within the VIRTUE
project that some of the results from a single CFD
analysis would be of the order 100MB, which would
pose problems for an XML database. With multiple
analyses being undertaken, an alternative solution was
sought. The concept of having a centralised database
holding common data with local models holding all
other data was modified to an architecture where the
centralised database contains Uniform Resource
Locators (URLs) to the data stored within distributed
FTP servers. A generic wrapper was still used to
integrate the design and CFD tools into the platform.
However when the generic wrapper attempted to
download data, it would firstly communicate with the
common model to establish where on the network the
required data was. Once this had been established, the
generic wrapper would communicate with the FTP
server located at that URL and request the file which
would be downloaded. A similar sequence of operations
would be performed to upload output data with the
common model being updated to indicate that a new
version had been created. The architecture therefore
allowed for a centralised database to store only the
references to the required data, and a number of FTP
servers to control access to the data for the distributed
users as seen in Figure 5.

Figure 5. VIP-V Architecture.

Multiple projects containing multiple processes can
be managed within the Project Server of the VIP-V. The
management of user accounts was however separated
from the project server with the development of a
separate Admin Server. This allowed projects and user
accounts to be created in isolation to each other rather
than within each other as implemented with the VRShips
platform. The VIP-V may be either distributed across a
network as shown within Figure 5, or all operated from
one machine.

3.3 VIRTUE implementation

Login to the VIP-V platform is validated by the
Admin Server, and once approved the user interface as

seen within Figure 6 is displayed. Despite the Project
and Admin servers having their own user interfaces, the
entire management of the platform may be achieved via
the VIP-V user interface. When a user is created they’re
given a role which may be defined as either manager
and/or specialist. The different roles are provided with
different functionality within the platform with managers
having rights to create and modify processes for
example, and specialists having rights to enact
processes. The VIP-V user interface has components to
display: a list of projects that the user has been registered
with; buttons to control the use of the platform, and
details of the selected project details.

When a user creates a project they are expected to
provide the general project information that can be seen
within Figure 6, as well as information relating to the
processes that will be associated with the project. The
process definition component of the platform is similar
to the process client component seen within Figure 7, but
with the provision of tools to allow processes to be
constructed. Part of project definition involves allocating
expertise to the tasks within the process using the user
information that is contained within the Admin Server.
Since more than one user is generally involved, and
these users are distributed, the project definition involves
detailing the collaboration that will be undertaken.

Figure 6. VIP-V user interface.

Once a project has been defined, all those users that have
been allocated to the tasks within any of the processes
will have the associated project automatically displayed
within the user interface. Once the project is selected and
the process client started the user gets a visual
representation of all of the processes within the project –
Figure 7, which differs from the VRShips platform
where the users only had textual information relating to
the activities and processes. The task state within the
process client is consistent with both the Process Server
and all other users working on the same project.

It can be seen within Figure 7 that the tasks that have
been associated with other users are transparent –
providing an indication to the user where collaboration
exists between their tasks and the tasks of others, for

Collaborative support for distributed design

6

example between “Required thrust estimation” and
“Compare thrust”.

Figure 7. VIP-V process client.

In addition to highlighting collaboration, the process
client also indicates whether a task has been completed
(red), is currently being completed (green), or will be
completed at some point in the future (blue). A task can
only be started when preceding tasks have been
completed; hence the status of the process is
automatically updated for each user of the VIP-V. The
process controller within the VRShips platform was
proactive in allocating tasks to users, with the users
reacting to the tasks that had been allocated. The
philosophy within the VIP-V differs in that it is the users
that are proactive in undertaking the tasks, whilst the
VIP-V reacts to what the users are undertaking.

3.4 VIRTUE discussion

The VIP-V has been used to undertake a number of
different design and CFD analyses by the various basins
within the VIRTUE project, and has been driven by a set
of requirements that have evolved as the platform has
been developed. Many of these requirements were
focussing towards collaborative aspects such as the
automated refreshing of the process client to indicate the
actions of other users. From a visualisation of
collaborative activities, the process client part of the
VIP-V represents a significant step forward compared to
the textual views of the VRShips user interface.

4 SAFEDOR Platform – VIP-S

The primary aim of the SAFEDOR Virtual
Integration Platform (VIP-S) is to provide support for
Risk-Based Design (RBD) with the secondary aim of
including performance, earnings and cost data within the
design process. The intention is to free designers from
the highly constrained design space imposed by safety
regulations, and allow them to design equally safe ships
through the simulation of an extensive range of different
hazard scenarios. These simulations should for example
allow the designer to modify egress routes to minimise

fatalities as a result of simulated fire propagation. As
mentioned earlier however, the VIP-S should
simultaneously allow Performance, Earnings, Risk and
Cost (PERC) simulations to be undertaken for any
particular design, presenting this information to the
designer in such a way as to facilitate the decision
making process. The VIP-S can be tailored to suit the
differing PERC requirements of different types of
vessels.

Expertise is required to operate both the design and
PERC simulation tools, and it is clearly unlikely that all
of this expertise would be possessed by one person. A
need therefore exists to be able to perform this design
and simulation work within a distributed sense (either
geographically, or more likely organisationally), which
will also allow the designers to operate in parallel. The
following high-level RBD tasks were identified as being
necessary for the VIP-S to provide:
• Probability analysis (frequency estimation): hazard

identification and ranking, top-event selection (risk
drivers) and design scenario (accident category)
identification.

• Consequence analysis through enactment and
evaluation of consequence analysis tools.

• Evaluation of risk together with cost, earnings and
performance considerations made on the basis of the
global PERC model.

• Identification and evaluation of suitable Risk Control
Options (RCOs).

• Additional design activity as required.

4.1 VIP-S requirements

The above RBD tasks were used to create an
extensive list of support requirements for the VIP-S,
with the main points with respect to collaboration are as
follows:
• RBD requires a common agreed interpretation on

the design and simulation process to reduce the risk
of not formally implementing safety regulations.

• A systematic and comprehensive way is required to
address the general cost issues that are “in-built” in
the design process. The key aspect is the real time
feedback to validate/update the budget or
simulations to support the evaluation.

• Tool-based design should include: a quick way to
build simulations out of the data contained in the ship
model; a generic mechanism to cope with commonly
used tools; and a means to easily create the
required scenarios that are useful to designers.

• A common standard for data exchange between
(distributed) tools is required to reduce the
problems in transferring data or minimising the
number of inputs when using different tools.

• The use of the VIP-S should enable the effective
sharing and exchange of knowledge between
several designers. The VIP-S needs to address the
problems that are concerned with the fragmentation
of available tools; repetition of input and layout
for each model and analysis; usage of different
CAD systems and product models (in case of
external collaboration); security and confidentiality

Collaborative support for distributed design

7

in managing design data; integration of ERP
systems associated to the design; and management
of external data (configuration control) including
subcontractors and suppliers.
Further consideration was given to the use of the VIP

in terms of implementation issues arising from the above
requirements. It was established that there would be
between five and ten designers collaborating together at
any point in time, and that the tools they would be using
should be able to be used on an ad-hoc basis. This
clearly contrasts with both VRShips and VIP-V, where
tool usage was tightly tied to tasks within a process
model. The outcome of allowing ad-hoc tool usage is a
change in the way co-ordination is achieved – in
principle, distributed designers could behave chaotically
if either a proactive or reactive process model is not
used. To achieve this need, a different collaboration
mechanism was therefore required than that
implemented within VRShips or VIP-V.

Despite having no conceptualisation of a process
model, the VIP-S was expected to co-ordinate the design
activity with respect to different projects. A VIP-S
project contains information related to: project
description; name of customer; project start and end
dates, as well as time and resource information,
shipbuilding location and a list of main suppliers.
Collaboration should be supported both within and
across projects. Flexibility should be also provided
within a project to allow designers to operate on
different versions of the design and PERC data.

Since the use of the tools within the VIP-S could be
undertaken on an ad-hoc basis by designers working on
the same project, but within different offices, buildings
or locations, the use of a data dependency map was
considered to be crucial. This map should the
consistency status of design and PERC data, which
should be automatically updated for all users once the
status changes. This mechanism should allow distributed
designers to get a consistent and up-to-date visual
representation of what RBD activity has been
undertaken, and also what is left to be completed. The
dependency network may also be used to indicate how
designers may collaborate at the data and information
exchange level.

The RCOs represent a possible course of action
(option) that may be taken to control the risk (as well as
other PERC metrics) through the modification of the
design. A RCO may be defined as a series of steps and
rationale for reducing the risk, due to loss of life for
example, as a result of unacceptable performance within
a particular hazard scenario. The steps within the RCO
are synonymous with specific design activities that may
be undertaken collaboratively. An RCO may be applied
to a project to attempt to control a risk; however it is the
designers’ responsibility to ensure that it is enacted.
Since the steps within the RCO require design or
simulation tools in order for the RCO to be applied, this
implies that the application of an RCO may be a
collaborative endeavour.

It is expected that parametric data may be used as a
basis to form the PERC metrics, and this parametric data
should also be integrated within the data dependency
network. In addition to using parametric data as a

consistency measure, it should be further exploited
within a graphical form to indicate the trade-off between
the PERC metrics for example. Since a project may
contain a number of different versions of the design and
PERC data (and associated parametric data), these
versions may themselves represent points or lines on a
graph. In a similar way that the dependency network is
updated to provide a collaborative view of data
consistency, the graphs should be updated so that all
designers may graphically visualise the changes that
others are making.

4.2 VIP-S architecture

The architecture for file exchange within the VIP-S is
identical to that of VIP-V, with a centralised database
storing meta-data relating to the URLs of file-based
design and PERC data, which is subsequently stored on
FTP servers. This file exchange architecture was chosen
on the grounds of its flexibility and success within the
VIP-V. The fundamental difference in architecture
between VIP-S and VIP-V is in the way projects and
user accounts are managed and stored. Within VIP-V,
two separate server applications were created to manage
these two functions. However within VIP-S, all data
other than file-based data is stored within the centralised
database - Figure 8. From an IT standpoint, the database
within VIP-S becomes the focal point for collaboration –
any type of change that a designer makes within a
project is automatically updated within the database.
Through the VIP-S, other designers automatically
receive updates for the project they are working on via
updates with the database.

Figure 8. VIP-S Architecture

User login to the VIP-S is enabled by initially
attempting to connect to the Database Server. If an
account for a user has been created, the database allows
the connection and subsequently retrieves the user’s
preference file that is used to configure their user
interface. This method of storing all of the preference
data within the database allows flexibility in terms of
presenting the same interface configuration irrespective
of whether they were logging onto the platform via a
machine within their organisation, or from a personal
machine at home for example. The Database Server
contains all information relating to user accounts,
projects, version management, dependency network

Collaborative support for distributed design

8

consistency status, Risk Control Options, and graphs.
One of the aims when defining the architecture for the
VIP-S was to simplify any setup and platform
administration tasks, and the use of the Database Server
as an information storage area was seen as one way of
achieving this.

In addition to the Database Server, the VIP-S can
manage any number of FTP Servers in the same way that
the VIP-V is organised. The remaining component of the
VIP-S is the user interface that represents the window to
the platform.

4.3 VIP-S implementation

Since the platform is intended to provide
collaborative support for distributed design, it provides a
login function to track those users that could potentially
collaborate – illustrated by the designers distributed
across a network within Figure 8. The logging in process
is validated against user account details required to
access the database. The user will not be allowed access
to the VIP-S if the database does not contain an account
with the specified login details. Once login has been
validated, the user’s profile is downloaded from the
database and used to configure the user interface. A
number of different views are currently implemented
within the user interface that relate to the management of
projects, RCOs, graphs and users. The intention is to
provide a modular approach to allow additional
functionality to be implemented within the VIP-S.

The user interface contains information relating to the
current status of the users configured to use the platform
– Figure 9. This view illustrates all the users that have
been configured within one instantiation of the platform.
It could for example represent the users configured to
work within a particular project, or across projects, or for
users within an organisation or across organisations.

Figure 9. User model.

Since the users could be distributed across an
organisation where no physical contact between users is
available, the VIP-S provides an indication of the online

status with online users rendered in solid gray (A.
Shearer and J. Hancock) in Figure 9. A user may be
online but working on a different project, hence an
indication is given in the use of colour to illustrate that a
user is both online and currently working on the same
project (J. Nail) within Figure 9. Since the online and
project status of users can change dynamically, the status
within the user interface is also automatically updated.
The user is subsequently provided with a consistent view
of other users that could potentially be collaborating
within a project.

The main view that a user interacts with is the project
view, shown within Figure 10. Within the VIP-S, a
project consists of elements relating to: general project
details; versioning information; applied RCOs, and a
dependency network. These elements may individually
used as a basis for collaboration.

The dependency network represents the relationships
between the data that is used to define the design
problem (such as hullform, and general arrangement of a
ship within Figure 10 for example), and the tools or
other transformations that may be used to modify the
data. Two types of data can be represented within the
network – physical data files located on FTP servers
associated with each of the file nodes, as well as
parametric information stored within the database. The
data within the dependency network contains meta-data
to represent its state. When a design tool for example is
used to modify the hullform, there is a potential for all
data that is dependent on the hullform to be inconsistent.
This consistency status is represented within the network
by the colour of the node – green indicating consistency,
and red indicating inconsistency. Figure 10 indicates that
NAPA has been used to modify a number of files, which
are all consistent with the changes made (which is
assumed to be significant); however all other data that is
dependent on these files has been made inconsistent. The
consistency checking is propagated automatically by the
VIP-S, and is done in this manner since no universal
system currently exists that could check for significance
of change to any type of data file. The status of the
consistency of the data within the network is also
automatically updated so that all users working within
the same project can see what work has been undertaken,
and what is outstanding.

Figure 10. Project model.

Collaborative support for distributed design

9

In addition to managing consistency status, the data
within the network also indicates a lock status. This is to
control multiple users attempting to modify or use the
same data within the network at the same time.

Once a user starts a tool, the VIP-S ensures the state
of all associated data is synchronised, before locking the
data and updating the network. Other platform users can
immediately see the data that is being operated on. A
user may however choose to use locked data, in which
case the VIP-S provides them with a copy and does not
allow any changes to be uploaded to the VIP-S.

The dependency network as opposed to a process
model was implemented within the VIP-S resulting from
the requirement to be able to perform design or
simulation work on an ad hoc basis and to not be
dictated by a statically defined process. The dependency
network represents a consistent view of the data and tool
usage that is shared across a number of distributed users.

Assuming that both the users and expertise are
distributed, the use of design and simulation tools must
also be distributed; hence the tool nodes within the
dependency network provide an indication of the tools
that each user has configured. The user always has
access to the tools that they have configured – seen
above the dependency network within Figure 10.
However the tools are mapped to the dependency
network on the basis of the function that they provide,
with mapped tools using the data that is represented
within the network and accessed from the common
model, whereas unmapped tools only use local data.

The dependency network represents the consistency
status of one version of the entire data set. Like the VIP-
V, the VIP-S manages multiple versions of the data –
with the different versions being represented within the
version tree of Figure 10. Whereas the VIP-V manages
individual versions for each piece of data, the VIP-S has
an entire dataset within each version, with the
consistency and lock status of the dataset potentially
being different across each of the versions. Different
versions and variants can be created, modified and
deleted within the VIP-S either copying datasets from
existing versions or using completely new datasets. Each
user also sees a consistent version tree in the same way
that data consistency status is automatically updated.
Although not currently implemented it is also intended
to illustrate within Figure 9 whether a user is working on
the same version as well as the same project.

Where the project management view is used to
facilitate collaboration within design and simulation
activities, the graph view facilitates collaboration in
terms of the management of results. As mentioned
earlier, the dependency network of the VIP-S is capable
of representing both file-based and parametric data.
Parametric data may be used either as input to a file, or
extracted from a file, and may therefore be used to
parametrically define a concept. Many tools within the
shipbuilding industry have the ability to take parametric
data as input to define a hullform for example. The
parametric data represented within the dependency
network may subsequently be used to construct various
different types of graphs such as that shown within
Figure 11 for example. The simple X-Y graph within
Figure 11 represents a trade-off between the risk and

cost parameters for the dependency network within
Figure 10, where each point on the graph represents a
version within the version tree.

Figure 11. Graph model.

Whenever a version is either: created; modified
(parametrically), or removed, the graphs associated with
the project are updated. The graphs can either be shared
or individual to a user with the graphs being
automatically created when a project is opened. If a
graph is shared amongst users any parametric
modifications that other users are making to any version
or variant are automatically updated on the graphs. The
graphs provide a focal point to facilitate collaboration in
terms of the strengths and weaknesses of the versions of
the design being developed within a project.

The final collaborative view developed within the
VIP-S provides guidance in the form of an RCO in terms
of how performance, earnings, risk and cost may be
improved for any version within a project. RCOs are
created as a series of steps to follow in order to control a
particular risk, and were extended to utilise the
performance, earnings and cost metrics. They may be
created to represent particular rationale to follow to
achieve a ship design that has improved individual risk
characteristics – evacuation for example, or as a general
guide for a more complex network to illustrate the steps
to take to get a consistent global measure of risk.

When an RCO is created, estimates are provided in
terms of its potential impact on the PERC metrics, which
may of course only be applicable for certain categories
of design. The RCO is stored in the database for later
use. If a situation later arose within either the same or
different project where a potential hazard had resulted
with an unacceptable risk, a database search could be
undertaken to identify potential RCOs that could
minimise the hazard impact. Since PERC metrics are
used to define RCOs, they may also be used to improve
performance, reduce costs or any combination of the
metrics.

Once an RCO has been identified, it may be applied
to a particular version within a project - Figure 12.
Application of an RCO does not result with automatic
execution of the RCO – it is left to the users of the
platform to follow the steps within the RCO in order to
minimise the impact of a hazard for example. Once a
step within the RCO has been completed, it is ticked off

Collaborative support for distributed design

10

from the list. Again since the design and simulation
activity is distributed, it is expected that the individual
steps within an RCO may be undertaken by a number of
different users.

Figure 12. RCO model.

The VIP-S does not constrain who can undertake
each individual step within an RCO, but does
automatically update the application of the RCO so that
each user that is operating on the same version will not
only see which RCOs that have been applied, but also
what the status of the RCO is. Once all of the steps
within the RCO have been undertaken, the RCO can be
completed and removed from the version. Part of the
completion process involves providing additional
information relating to its relative impact to the applied
version. This information is then stored with the RCO
within the database and used for further refinement of
the RCO’s applicability.

4.4 VIP-S discussion

The VIP-S provides many different elements
corresponding to set of requirements that were
developed specifically to support RBD. In each case
these elements were designed with a view to support
collaboration with any relevant changes being
automatically updated to all interested users. The VIP-S
was developed through the fusion of ideas from the
VRShips platform (the dependency network of both the
inference engine and the performance modelling tool),
and the VIP-V (the approach to managing data and
associated elements of the generic wrapper).

5 Conclusion

Three different Virtual Integration Platforms (VIPs) are
described from the viewpoint of supporting collaborative
design within the shipbuilding industry. The platforms
have a number of aspects in common: they each require
the use of design or simulation tools to progress with the
design activity; they each require some mechanism for

the exchange of data; and they each require some form
of co-ordination to ensure that the collaboration is
undertaken effectively. Different mechanisms were
implemented to facilitate co-ordination, with the user
becoming more proactive in ensuring both collaboration
and co-ordination. The differing requirements of the
projects also resulted with different types of information
being displayed (process-based or data consistency
based for example) to achieve collaboration.
An architecture is being developed within the Decision
Support topic of the NECTISE project for an Integrated
Decision Support Environment that will be implemented
as VIP-DS (Decision Support). The VIP-DS architecture
aims to reuse wherever appropriate the architecture,
reasoning and implementation from the three platforms
discussed here in order to provide DS. Since the VIP-DS
builds upon a number of concepts already implemented
within these platforms [3] the lessons learned for
collaborative provision across distributed users provide a
useful and important starting-point for future work.
Despite not specifically addressing NEC, each of the
projects reviewed have aspects that allow network
enabled organisational capability to be realised.

Acknowledgements

The authors would like to acknowledge the funding
received to enable this research to be undertaken. The
VRShips-ROPAX project was funded by the European
Commission (grant number G3RD-CT-2001-00506),
which is part of the Fifth Framework Programme for
Research, Technological Development and
Demonstration. Both the SAFEDOR and VIRTUE
projects were partially funded by the European
Commission (contract numbers FP6-516278 and FP6-
516201 respectively), within the Sixth Framework
Programme. The opinions expressed are those of the
authors and should not be construed to represent the
views of either the SAFEDOR or VIRTUE partnerships.

References

1. Duffy, A.H.B. Ensuring competitive advantage with
design co-ordination. in 2nd International Conference on
Design to Manufacture in Modern Industry. 1995. Bled,
Slovenia.

2. Hogg, T. and B.A. Huberman, Controlling chaos in
distributed systems. IEEE Transactions on Systems, Man,
and Cybernetics, 1991. 21(6): p. 1325-1332.

3. Whitfield, R.I., et al. An architecture for organisational
decision support. in System Engineering for Future
Capability. 2007. Loughborough UK.

4. Whitfield, R.I., et al., Ship product modelling. Journal of
Ship Production, 2003. 19(4): p. 230-245.

5. Whitfield, R.I., A.H.B. Duffy, and G. Coates. Real time
resource scheduling within a distributed collaborative
design environment. in International Conference of
Engineering Design. 2007. Paris, France: Design Society.

