15 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Communication Capability for a Simulation-Based Test and Evaluation Framework for Autonomous Systems

    Get PDF
    The design and testing process for collaborative autonomous systems can be extremely complex and time-consuming, so it is advantageous to begin testing early in the design. A Test & Evaluation (T&E) Framework was previously developed to enable the testing of autonomous software at various levels of mixed reality. The Framework assumes a modular approach to autonomous software development, which introduces the possibility that components are not in the same stage of development. The T&E Framework allows testing to begin early in a simulated environment, with the autonomous software methodically migrating from virtual to augmented to physical environments as component development advances. This thesis extends the previous work to include a communication layer allowing collaborative autonomous systems to communicate with each other and with a virtual environment. Traversing through the virtuality-reality spectrum results in different communication needs for collaborative autonomous systems, namely the use of different communication protocols at each level of the spectrum. For example, testing in a fully simulated environment might be on a single processor or allow wired communication if distributed to different computing platforms. Alternatively, testing in a fully physical environment imposes the need for wireless communication. However, an augmented environment may require the concurrent use of multiple protocols. This research extends the Test & Evaluation Framework by developing a heterogeneous communication layer to facilitate the implementation and testing of collaborative autonomous systems throughout various levels of the virtuality-reality spectrum. The communication layer presented in this thesis allows developers of the core autonomous software to be shielded from the configuration of communication needs, with changes to the communication environment not resulting in changes to the autonomous software

    Real-time simulator of collaborative and autonomous vehicles

    Get PDF
    Durant ces dernières décennies, l’apparition des systèmes d’aide à la conduite a essentiellement été favorisée par le développement des différentes technologies ainsi que par celui des outils mathématiques associés. Cela a profondément affecté les systèmes de transport et a donné naissance au domaine des systèmes de transport intelligents (STI). Nous assistons de nos jours au développement du marché des véhicules intelligents dotés de systèmes d’aide à la conduite et de moyens de communication inter-véhiculaire. Les véhicules et les infrastructures intelligents changeront le mode de conduite sur les routes. Ils pourront résoudre une grande partie des problèmes engendrés par le trafic routier comme les accidents, les embouteillages, la pollution, etc. Cependant, le bon fonctionnement et la fiabilité des nouvelles générations des systèmes de transport nécessitent une parfaite maitrise des différents processus de leur conception, en particulier en ce qui concerne les systèmes embarqués. Il est clair que l’identification et la correction des défauts des systèmes embarqués sont deux tâches primordiales à la fois pour la sauvegarde de la vie humaine, à la fois pour la préservation de l’intégrité des véhicules et des infrastructures urbaines. Pour ce faire, la simulation numérique en temps réel est la démarche la plus adéquate pour tester et valider les systèmes de conduite et les véhicules intelligents. Elle présente de nombreux avantages qui la rendent incontournable pour la conception des systèmes embarqués. Par conséquent, dans ce projet, nous présentons une nouvelle plateforme de simulation temps-réel des véhicules intelligents et autonomes en conduite collaborative. Le projet se base sur deux principaux composants. Le premier étant les produits d’OPAL-RT Technologies notamment le logiciel RT-LAB « en : Real Time LABoratory », l’application Orchestra et les machines de simulation dédiées à la simulation en temps réel et aux calculs parallèles, le second composant est Pro-SiVIC pour la simulation de la dynamique des véhicules, du comportement des capteurs embarqués et de l’infrastructure. Cette nouvelle plateforme (Pro-SiVIC/RT-LAB) permettra notamment de tester les systèmes embarqués (capteurs, actionneurs, algorithmes), ainsi que les moyens de communication inter-véhiculaire. Elle permettra aussi d’identifier et de corriger les problèmes et les erreurs logicielles, et enfin de valider les systèmes embarqués avant même le prototypage

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    A collaborative control framework with multi-leaders for AUVs based on unscented particle filter

    No full text
    Available online 23 December 2015In view of problems of low independent self-positioning accuracy of autonomous underwater vehicle (AUV) with low precision sensors, and the strong nonlinear characteristics of motion control model and non-Gaussian noise when filtering using the distances between leaders and followers, a collaborative localization framework with multi-leaders for AUVs is presented, which is based on the unscented particle filter. This approach lets unscented Kalman filter act on each particle of particle filter algorithm, which makes particle mix the latest posterior information of measurement when updating. It solves the depletion problem of particles to some extent and improves the effectiveness of filtering method. Collaborative location simulating experiments are carried out in two leaders model with different noises conditions. The implementation results show that this method effectively enhances the estimation accuracy of followers position.Yunxin Zhao, Wen Xing, Huarun Yuan, Peng Sh

    Optimization of Operation Sequencing in CAPP Using Hybrid Genetic Algorithm and Simulated Annealing Approach

    Get PDF
    In any CAPP system, one of the most important process planning functions is selection of the operations and corresponding machines in order to generate the optimal operation sequence. In this paper, the hybrid GA-SA algorithm is used to solve this combinatorial optimization NP (Non-deterministic Polynomial) problem. The network representation is adopted to describe operation and sequencing flexibility in process planning and the mathematical model for process planning is described with the objective of minimizing the production time. Experimental results show effectiveness of the hybrid algorithm that, in comparison with the GA and SA standalone algorithms, gives optimal operation sequence with lesser computational time and lesser number of iterations

    Optimization of Operation Sequencing in CAPP Using Hybrid Genetic Algorithm and Simulated Annealing Approach

    Get PDF
    In any CAPP system, one of the most important process planning functions is selection of the operations and corresponding machines in order to generate the optimal operation sequence. In this paper, the hybrid GA-SA algorithm is used to solve this combinatorial optimization NP (Non-deterministic Polynomial) problem. The network representation is adopted to describe operation and sequencing flexibility in process planning and the mathematical model for process planning is described with the objective of minimizing the production time. Experimental results show effectiveness of the hybrid algorithm that, in comparison with the GA and SA standalone algorithms, gives optimal operation sequence with lesser computational time and lesser number of iterations
    corecore