
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computational Modeling and Simulation
Engineering Theses & Dissertations

Computational Modeling and Simulation
Engineering

Fall 2019

Communication Capability for a Simulation-Based Test and Communication Capability for a Simulation-Based Test and

Evaluation Framework for Autonomous Systems Evaluation Framework for Autonomous Systems

Ntiana Sakioti
Old Dominion University, nsaki001@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

 Part of the Computer Sciences Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Sakioti, Ntiana. "Communication Capability for a Simulation-Based Test and Evaluation Framework for
Autonomous Systems" (2019). Master of Science (MS), Thesis, Modeling Simul & Visual Engineering, Old
Dominion University, DOI: 10.25777/j7zt-nc49
https://digitalcommons.odu.edu/msve_etds/54

This Thesis is brought to you for free and open access by the Computational Modeling and Simulation Engineering
at ODU Digital Commons. It has been accepted for inclusion in Computational Modeling and Simulation
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/289247987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/54?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

COMMUNICATION CAPABILITY FOR A SIMULATION-BASED TEST AND

EVALUATION FRAMEWORK FOR AUTONOMOUS SYSTEMS

by

Ntiana Sakioti

B.S. December 2017, Old Dominion University

A Thesis Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

MODELING AND SIMULATION

OLD DOMINION UNIVERSITY

December 2019

 Approved by:

 James F. Leathrum Jr. (Director)

 Yuzhong Shen (Member)

 John Sokolowski (Member)

ABSTRACT

COMMUNICATION CAPABILITY FOR A SIMULATION-BASED TEST AND

EVALUATION FRAMEWORK FOR AUTONOMOUS SYSTEMS

Ntiana Sakioti

Old Dominion University, 2019

Director: Dr. James F. Leathrum Jr.

 The design and testing process for collaborative autonomous systems can be extremely

complex and time-consuming, so it is advantageous to begin testing early in the design. A Test &

Evaluation (T&E) Framework was previously developed to enable the testing of autonomous

software at various levels of mixed reality. The Framework assumes a modular approach to

autonomous software development, which introduces the possibility that components are not in

the same stage of development. The T&E Framework allows testing to begin early in a simulated

environment, with the autonomous software methodically migrating from virtual to augmented to

physical environments as component development advances.

 This thesis extends the previous work to include a communication layer allowing

collaborative autonomous systems to communicate with each other and with a virtual environment.

Traversing through the virtuality-reality spectrum results in different communication needs for

collaborative autonomous systems, namely the use of different communication protocols at each

level of the spectrum. For example, testing in a fully simulated environment might be on a single

processor or allow wired communication if distributed to different computing platforms.

Alternatively, testing in a fully physical environment imposes the need for wireless

communication. However, an augmented environment may require the concurrent use of multiple

protocols. This research extends the Test & Evaluation Framework by developing a heterogeneous

communication layer to facilitate the implementation and testing of collaborative autonomous

systems throughout various levels of the virtuality-reality spectrum. The communication layer

presented in this thesis allows developers of the core autonomous software to be shielded from the

configuration of communication needs, with changes to the communication environment not

resulting in changes to the autonomous software.

iv

Copyright, 2019, by Ntiana Sakioti, All Rights Reserved.

v

This thesis is dedicated to my family and friends, thank you for your unwavering support and

patience; and to my grandfather for inspiring me to always try to be a better version of myself.

vi

ACKNOWLEDGMENTS

First and foremost, I would like to thank my adviser Dr. Leathrum for his guidance and

patience. Without his contributions and help the design and implementation of the system

discussed would not have been possible. I would also like to thank the members of my committee,

Drs. Shen and Sokolowski, for their guidance and participation in the thesis evaluation process.

Additionally, I would like to thank Andrea Robey for her continuous help throughout this research

and Nathan Gonda, Thomas Laverghetta, and Cierra Hall for implementing the foundation this

research extends.

vii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... ix

LIST OF FIGURES ... ix

Chapter

1. INTRODUCTION ...1

1.1 Testing Throughout the Virtuality-Reality Spectrum ..2

1.2 Problem Statement ...2

1.3 Proposed Communication Layer ...3

1.4 Contents of the Thesis ..4

2. BACKGROUND ...5

2.1 Autonomous Systems ..5

2.2 Autonomous System Model ...7

2.3 Collaborative Autonomous Systems ..8

2.4 T&E Framework Extended by the Communication Layer ..16

3. COMMUNICATION LAYER MODEL ...19

3.1 Communication Layer Requirements ..19

3.2 Model Architecture ..22

3.3 Developer Roles ...25

3.4 Communication Interface ..26

3.5 Protocol Configuration ..27

3.6 Communication Layer Model ..31

3.7 Layer Benefits ..39

4. SOFTWARE DESIGN ..40

4.1 Extending the API [4] to Include the Communication API ...40

4.2 Class Implementation for Communication ..45

4.3 Example Protocol Implementations ...53

5. RESULTS ..59

5.1 Collaboration AS Example ..59

5.2 Communication Reliability ..75

5.3 Communication Layer Impact ...81

6. CONCLUSION ..82

6.1 Future Work ...83

viii

Page

REFERENCES ..85

APPENDICES ...89

APPENDIX A: DEMONSTRATION EXAMPLE GRAPHS...89

VITA ..92

file:///C:/Users/ntsak/Downloads/bcet-dissertation-template.doc%23_Toc284346165

ix

LIST OF TABLES

Table Page

1. Friendly name to id mapping file example ..28

2. Communication configuration file example ..28

3. Bluetooth address configuration file ..30

4. API functions ...41

5. Communication API functions ..42

6. Demonstration id configuration file ...61

7. Demonstration communication table ...61

8. Demonstration Bluetooth configuration file ..62

9. Demonstration Alpha command data...70

10. Demonstration Charlie command data ...71

11. Demonstration Tango command data ..71

12. Demonstration command timing..71

13. Demonstration Alpha location data ...72

14. Demonstration Charlie location data ...73

15. Demonstration Tango location data ...74

16. Reliability analysis configuration file ..76

17. Reliability analysis communication table file ..76

18. Reliability analysis Bluetooth address configuration file ..39

19. Reliability analysis message statistics ...77

20. Reliability analysis secondary attempts ...80

x

LIST OF FIGURES

Figure Page

1. Sense, Plan, Act Paradigm Visual..7

2. ROS Network ...12

3. High-Level T&E Framework Architecture ..17

4. Module Inheritance from Node Example ..18

5. Extended High-Level Architecture ..24

6. Example Communication Depiction ..29

7. Map of AS Application and T&E Framework to the OSI Model ..32

8. High-Level Class Diagram ..33

9. User-Defined Message Structure ...35

10. Send High-Level Sequence Diagram ...36

11. Receive High-Level Sequence Diagram ..38

12. Extended API Architecture ..44

13. Comm Class Diagram ..45

14. Message Queue Representation ...48

15. BaseComm Class Diagram ..49

16. Message Class Diagram ...51

17. Bluetooth Class Diagram ...55

18. Bluetooth Listening Sequence Diagram ..55

19. Bluetooth Transmitting Sequence Diagram ...56

20. ROS Class Diagram ...57

21. ROS Receiving Sequence ..58

xi

Figure Page

22. ROS Transmitting Sequence ..58

23. Command Message Class Diagram ...63

24. Wheels Message Class Diagram ..64

25. Leader AS Algorithm ...66

26. Follower AS Plan Algorithm ...68

27. Message1 Class Diagram ...78

28. Message2 Class Diagram ...79

29. Reliability Analysis Algorithm ..79

1

CHAPTER 1

INTRODUCTION

Autonomous systems are increasingly utilized in a variety of industries such as agriculture,

space, military and transportation. Example applications include crop harvesting and weed control,

space exploration, reconnaissance and security, transportation and package delivery [1].

Introducing collaboration in autonomous agents can further improve system performance, as

multiple systems can potentially perform tasks more robustly and efficiently [2]. Furthermore, in

certain applications, collaboration can be an integral part of system success. For example, road

safety could increase if autonomous cars collaborated [3], while search and rescue and fire-fighting

operations could be faster and more efficient with the introduction of collaboration. Depending

on system application and degree of autonomy, collaborative capabilities can lead to increased

reliability, performance, efficiency, as well as safety.

While developing an autonomous system is an intricate process, incorporating collaboration

capabilities leads to more complex behavior and system requirements. This research develops a

communication layer for a Test and Evaluation (T&E) framework meant to be utilized for the

development and testing of autonomous systems [4]. By integrating a communication layer, the

development of collaborative autonomous systems can be facilitated by the extended framework1.

1 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references.

2

1.1 Testing Throughout the Virtuality-Reality Spectrum [5]

 The T&E Framework extended by this research facilitates the testing of autonomous

systems throughout their development cycle. At the beginning of the development cycle, testing is

conducted using a fully simulated system operating in a virtual world. As autonomous entities

traverse the virtuality-reality spectrum, a physical system may first operate in a virtual world,

moving to operation in a physical world when the required hardware has been integrated.

Migrating from interacting with a fully virtual world to an augmented world to a physical world is

done through configuration files defining sources of information such as sensor data. In this

manner, the framework shields the autonomous software from knowledge of its test environment.

 The communication needs of autonomous systems change depending on their stage of

development and operating environment. In a fully simulated environment, testing may be

conducted on a single processor or using wired communication if distributed. In a fully physical

environment, wireless communication is required, while a combination might be necessary in an

augmented virtuality or augmented reality environment.

1.2 Problem Statement

 The development of collaborative autonomous systems is a rigorous process that requires

extensive testing and time. Autonomous System (AS) developers not only have to implement the

desired autonomous behavior but also depend on reliable communication among entities. While

AS applications may vary across industries, they share the same basic communication

requirements for collaboration, i.e. they need to be able to send and receive messages of various

types. A communication layer that provides the ability to collaborate through various protocols

would enable AS developers to simply utilize the functionalities provided without having to delve

3

into specific protocol intricacies or reconfigure the autonomous software each time the protocol

utilized is changed.

1.3 Proposed Communication Layer

 A communication layer is presented for the purpose of facilitating the development of

collaborative autonomous systems throughout the virtuality-reality spectrum. The model provides

the capability for the exchange of user-defined messages between autonomous systems as well as

with the virtual environments they may operate in. Additional communication protocol

functionality may be easily implemented into the layer, affording the autonomous system

developer with flexibility in their hardware and robotic middleware choices.

 The motivation for this research stems from the need to expand the T&E framework in [4]

to provide more flexibility in autonomous system development, testing, and communication.

Previous work, although very efficient, provides ad-hoc solutions tailored to specific applications.

Their rigid structures and communication restrictions require the user to strip most of these

architectures of their functionality or meticulously insert or modify their implementation and

ensure they have hardware to support alternative communication mediums.

 This communication layer, in conjunction with the framework it extends, is meant to

mitigate these drawbacks. By providing the ability to use a multitude of communication protocols,

and, if necessary, implement additional ones using the structure provided, autonomous developers

are not limited to a particular communication medium. By isolating the layer components and

providing clear interfaces, the autonomous developers do not need to be concerned with the

protocol specific implementation details, nor does the software need to be modified for the use of

4

different communication protocols. Autonomous software developer focus can instead directly

shift to developing the desired autonomous behavior.

1.4 Contents of the Thesis

 Chapter 2 provides a background of topics important to understanding the contents of the

thesis. The T&E framework that is extended by the thesis is introduced, followed by an

examination of past approaches to autonomous collaboration. The requirements that should be

imposed on the communication layer can thereby be identified, while the distinction between

previous work and the proposed communication layer for the T&E framework presented will be

highlighted. A model of the communication layer is detailed in Chapter 3, with the design features

associated with communication and integration requirements being introduced. Chapter 4

discusses the software design for the model detailed in Chapter 3, highlighting algorithms and

concepts key to achieving desired functionality. The capabilities afforded by the communication

layer are demonstrated in Chapter 5 by studying an example application and the ability to address

reliability of the success rate of message transmission.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter will establish the context for the thesis by providing definitions and

requirements for relevant systems and examining previous approaches. First, the different types of

autonomous systems and their applications are discussed, followed by a definition of collaborative

systems. Software requirements and previous approaches to conducting collaboration are then

presented, followed by a discussion of communication frameworks already implemented and

utilized. The framework for the development and testing of autonomous systems that this research

extends is then presented.

2.1 Autonomous Systems

 Autonomous systems are utilized in a multitude of industries in order to improve task

efficiency and safety. Usually comprised of both hardware and software that collaborate on solving

a problem or performing an action, they can operate under varying degrees of autonomy. An AS

is considered truly autonomous when it can gather and analyze information, find an appropriate

course of action and execute that action [6]. While autonomous systems can range from smart

thermostats, home service robots, and smart houses, a crucial area of research and development

centers around autonomous vehicles due to the complexity, safety concerns, and ethical

ramifications associated with their development and operation. Autonomous vehicles (AVs) can

be further subcategorized into distinct types. These are briefly detailed in the following sections.

6

2.1.1 Autonomous Ground Vehicles

 An autonomous ground vehicle (AGV) is an autonomous vehicle that operates on the

ground [7]. AGVs can be utilized for many applications where operator presence may be

dangerous, inconvenient, or impossible. They are extensively used by the military in

reconnaissance as well as bomb diffusion operations where the safety of field officers is

paramount. Additionally, their use in the civil sector is studied for a variety of applications such

as driverless delivery and transportation.

2.1.2 Autonomous Surface Vehicles

 An autonomous surface vehicle (ASV) is an autonomous vehicle that operates on the water

surface without a crew or operator. Current applications can range from surveillance, naval

operations, as well as environmental and climate monitoring [8]. AGVs are especially valuable in

oceanography, as they are more capable than weather buoys and far cheaper than manned research

vessels [9].

2.1.3 Autonomous Underwater Vehicles

 An autonomous underwater vehicle (AUV), is an autonomous vehicle that operates below

the water surface. AUVs can be small or large, the largest weighing thousands of pounds, requiring

their own support vessels. They can glide, stop, or hover, and are attractive options for ocean-

based research, especially since they can avoid inclement weather by going below the sea-surface

[10]. They have been continuously deployed in deep sea exploration as well as search operations

for missing ships and airplanes, such as the U.S. Navy cruiser Indiana, and Air France Flight 447

[11].

7

2.1.3 Autonomous Aerial Vehicles

 An autonomous aerial vehicle (AAV), commonly referred to as a drone, is an autonomous

aircraft that operates without a pilot or operator [12]. While mostly utilized by the military in the

past for surveillance and warfare applications, their use is rapidly expanding. Currently, AAV

adoption for delivery services is in the testing stage for companies such as Dominos and Amazon

[13], while AAV use in agriculture is already aiding in crop monitoring and soil assessment [14].

2.2 Autonomous System Model

 Autonomous software is usually categorized into different functional modules. A popular

modularized approach to autonomous software development is the Sense, Plan, and Act paradigm,

the modules of which are interconnected using inputs and outputs [15]. Software under the Sense

module receive input from all peripheral sensors and generate and output a perception of the

environment. The Plan module in turn receives this information as input and generates a plan of

actions based on the environment perception, desired functionality, and past actions. The Act

module executes the plan of actions generated by the Plan module by converting them to control

signals that are sent to the system’s actuators. This paradigm can be seen in Figure 1. Alternative

models exist, such as including a perception stage between sense and plan [16].

Fig. 1. Sense, Plan, and Act Paradigm Visual.

8

2.3 Collaborative Autonomous Systems

 Autonomous collaborative systems, also referred to as autonomous collaborative agents,

are autonomous systems that collaborate to achieve tasks. They can be part of a team comprised

of a small number of systems or part of an autonomous swarm. Collaborative modes of operation,

communication, and frameworks are discussed.

2.3.1 Modes of Operation

Depending on the desired functionality, collaborative autonomous systems can operate in

a leader-follower mode or parallel mode [17]. In a leader-follower mode, autonomous decisions

are made by the leader AS, while follower vehicles carry out commands sent to them by the leader.

In a parallel mode, however, autonomous systems collectively collaborate to perform desired tasks.

While a system can have more than one leader, communication in a leader-follower mode is only

needed between leaders and followers. However, in a parallel or decentralized approach, each

system must have the same communication capabilities and protocols to be able to communicate

with all other agents [18].

2.3.2 Collaborative System Communication

 Communication between autonomous agents can be achieved through a variety of mediums

depending on on-board hardware. In [19], AAV to AGV Collaboration was conducted through a

Secure Shell (SSH) wireless network connection. A different approach was presented by the

authors of [20], who utilized a Radio-Frequency (RF) system along with an infrared transceiver

and a Hertzian wave transmitter to achieve Paralyzed and Non-Paralyzed Ground Robot

Communication. For future research, they expressed a need to incorporate Bluetooth as a

9

communication medium in their application. Both Bluetooth and TCP/IP protocols are utilized in

[21], for a multi-agent robotic system called SMART to establish communication among robot and

control software and between client and server respectively.

2.3.3 Collaborative Autonomous Frameworks

 Collaborative autonomous architectures are designed to facilitate the development and

testing of collaborative autonomous systems. In [22], the following guidelines and respective

advantages of using these frameworks were highlighted:

● Offer tools and functions to simplify development of collaborative applications

● Offer high-level abstractions and interfaces to facilitate application integration, reuse, and

development

● Hide heterogeneity of devices, platforms, and operating environments

● Hide distribution and communication details in the environment

● Facilitate communication among the different components of the systems

● Provide common services for general purpose functions in order to reduce development

efforts and avoid duplication

● Provide a common architecture to add new services and features without changing system

applications

● Offer properties such as security, reliability, and quality of services

● Supply the necessary tools to enhance the performance, stability, safety, and scalability of

the collaborative autonomous application

Following these guidelines ensures that collaborative solutions are not tailored to a specific

implementation but are instead compatible with a variety of applications.

10

2.3.3.1 Ad-Hoc Approaches to Collaborative Development

 Many developers design autonomous software and communication tailored to a specific

implementation in order to best fit their application needs. This approach, although sufficient and

optimal for the current design, hinders modularity and reusability in future scenarios. The authors

of [23] built a model of ASV and AAV Synergetic Cruise following the leader-follower mode. In

this system, one ASV acts as the control station for three AAVs accomplishing several tasks.

Collaboration is conducted using a wireless connection, with the control station (ASV) receiving

sensor information from the three AAVs and sending back further instructions for the AAVs.

Although the system exhibits robustness and efficiency, different applications and operating

environments would require continuous improvement for the synergetic model. Additional

information is required on the protocols used for communication between systems.

 In [2], Reactive and Deliberative Ground Vehicle Collaboration is achieved, defining a

model approach for heterogeneous robots. A paralyzed robot whose goal is to reach a destination

emits a signal to request assistance by being pushed towards a particular destination. Non-

paralyzed robots in turn roam about the environment until perceiving a signal emitted by the

paralyzed robot. Once a signal is received, non-paralyzed robots work together to push the

paralyzed robot in the desired direction. Communication is one-directional -- from a paralyzed to

a non-paralyzed robot -- and achieved via an RF system, with the authors mentioning the desire to

switch to Bluetooth communication in the future. Along with direct cooperation shown when a

non-paralyzed robot attempts to push a paralyzed one, indirect cooperation occurred when mobile

robots had to add their forces in order to make the robot move. Although the architecture presented

resulted in a scalable robust system that is adaptable to changes due to environment disturbances,

their approach restricts architecture use to very similar applications. Additionally, the potential

11

efficiency and reliability benefits of two-way communication both between the helper robots and

the paralyzed robot were not studied.

 A Cooperative Architecture for a Robotic Swarm based on dynamic fuzzy cognitive maps

is presented in [18]. A swarm is a multi-agent system (MAS) that can be comprised of both

heterogenous and homogeneous robots, thus allowing for both centralized and non-centralized

control. In this application, a homogeneous swarm is assumed, exhibiting non-hierarchical control.

The architecture was composed of three layers (reactive, deliberative, and cooperative), in order

to support navigation system development, but according to the authors can be standardized and

is applicable to other systems based on DFCM. Since testing and analysis was all simulated,

communication protocols were neither used nor discussed in this paper.

2.3.3.2 Non-Application Specific Approaches to Collaborative Frameworks

Numerous architectures have been developed to meet the guidelines and provide the

advantages highlighted at the beginning of this section in order to facilitate the development and

testing of autonomous systems. One of the most widely used robotics frameworks in research is

the Robot Operating System (ROS), a robotics middleware for robot software development [24].

ROS is used to conduct inter-process communication by the T&E framework this research

enhances and is also integrated as one of the communication protocols for AS to AS

communication provided by the collaboration layer detailed in this thesis. ROS provides services

for hardware abstraction, low-level device control, inter-process and peer-to-peer message parsing,

package management, as well as implementations for common functionalities. ROS implements a

Publish/Subscribe scheme that is topic-based, where software nodes publish or subscribe to a topic.

Messages can be user-defined with the source and destination of a message remaining anonymous.

12

Several distributions for ROS exist for different types and versions of operating systems,

maintaining the same basic architecture.

Software developed using ROS is organized in packages, which can contain source code,

any necessary configuration files or third-party libraries, and build files. Four primary functions

are used to conduct communication with ROS: advertise, publish, subscribe, and callback.

Advertise and subscribe are utilized to establish a topic, while publish sends a message to the

chosen topic, and callback handles messages that have been received from a topic. The ROS

Master is essentially a control station for ROS [25]. Nodes, topics, and callbacks are registered on

the Master, which keeps track of these processes, and allows nodes and callbacks to locate their

topics of interest. The ROS network can be further studied in Figure 2.

Fig. 2. ROS Network.

13

It is important to note that although ROS is very reliable and robust, hiding communication details

from the developer and modularizing components for easy re-use, it restricts communication to

the TCP/IP protocol.

 In [26], a communication and control architecture was proposed to improve the capability

and flexibility of autonomous systems. Using an object-oriented paradigm, the Little-Object-

Oriented Ground User Environment (LOGUE) allows the sharing of both task and behavioral

information among autonomous systems as well as behavior servers using Java RMI. Java RMI is

a Java API that supports direct transfer of serialized Java classes among other capabilities [27].

The autonomous robots are comprised of a three-layer architecture consisting of modules for

communication, action management, and device. The communication module handles system-to-

system communication while the action management module translates messages into priority

tasks, with the device interfacing directly with system sensors and actuators. LOGUE

implementation is identical for autonomous robots, with a GUI interface and behavior database

added to the behavior server. For successful object transmission, both systems are required to have

the object class; transferring a class from one virtual machine to another is not possible, so the

class file precedes the transmission of the object. Due to the use of Java RMI, this approach is

highly scalable, overcoming basic technological difficulties that are handled by the API.

 The author of [28] introduces a purely simulation-based layered framework for the

development of collaborative autonomous systems (CAS), thus denoted as the CAS framework.

Closely following the guidelines setup in the beginning of this subsection, the framework proposed

retains the isolated development advantage of layered architectures, providing flexibility and tools

to conduct collaboration while shielding the developer from protocol-specific intricacies. The

architecture is designed to be compatible with many robotic platforms, supporting both internal

14

layer to layer communication, and limiting external communication to same layer levels, also

requiring autonomous systems to contain identical layer architectures. The number of layers in the

architecture is not limited and can be specified by the developer while a rigid structure to user-

defined messages is embedded in order to ensure reliable communication. In order to increase

reliability, the author mentions the need for integration to physical systems, leading to increased

applications of this framework.

 A different approach for a Multi-Layer Architecture based on ROS and JADE Integration

for autonomous transport vehicles (ATVs) is detailed in [29]. The research was focused on

providing social abilities to ATVs, utilizing a four-layer architecture. The upper (social) level was

responsible for the interaction with other ATVs, while the lower (functional) level interfaced with

all vehicle sensors and actuators to provide ATV control. The two intermediate layers were tasked

with abstracting social behavior from functional behavior, pre-processing and storing information

for fast response. The architecture was built on top of ROS, with the social layer consisting of a

Multi-Agent System (MAS) JADE agent that offered transportation services and communicated

with other ATVs. The upper intermediate layer in turn integrates ROS, used for ATV control, and

JADE, used for social capabilities, communicating the agent at the social layer with the lower

intermediate layer. Efficient layer division allows for modularity, while social abilities are

abstracted from control functionalities, allowing isolated development.

 The authors of [30] detail a more general non-vehicle-based approach, the Knowledge

Query and Manipulation Language (KQML), a language protocol for exchanging information.

Using KQML provides agents the ability to transmit messages composed in their own

representation language, wrapped in a KQML message. KQML can be viewed as a three-layer

language. The content layer is the actual message content, while the communication layer encodes

15

message features describing parameters such as sender and recipient identity. Finally, the message

layer’s primary function is to identify the protocol required to deliver the message. Two specialized

programs are needed to facilitate communication: a router and a facilitator, and a library of

interface routines. Routers are content independent message routers, each agent associated with its

own router. Routers are identical and are only concerned with the KQML arguments such as an

Internet address for the message destination. Facilitators are in turn used to deliver incompletely

addressed messages. Routers rely on facilitators to help them find message destinations. Typically,

there exists one facilitator for each local group of agents. The KQML Router Interface Library

(KRIL) lays between the application and the router, with the purpose of making access to the router

as simple as possible for the programmer. It is embedded in the application and has access to tools

that analyze the content field of the message. There can be various KRILs, i.e. one for each

application type and one for each application language. KQML offers a standard protocol for

autonomous agent communication, along with providing abstraction of an information source or

destination and permitting the use of whatever language the programmer prefers.

 Another general approach is the Advanced Message Queueing Protocol (AMQP) [31].

AMQP is an open standard application layer that features message orientation, queuing, routing,

as well as reliability and security [32]. AMQP, like ROS, deals with publishers that produce

messages, and consumers that obtain and process them. AMQP is a wire-level protocol, meaning

that the data transmitted is a stream of bytes. This allows any tool available to conform to this data

to create and interpret messages, increasing interoperability [31]. AMQP assumes a reliable

transport layer protocol such as the Transmission Control Protocol (TCP). Publishers and

consumers discover each other via exchanges created by the consumer with a given name that is

public. Publishers send messages to an exchange, and consumers pull messages from a queue.

16

AMQP allows for application data to be of any form and in any encoding the application requires.

A bare message is defined that allows an optional list of standard properties (id, user id, creation

time etc.), followed by an optional list of application-specific properties and the message data [32].

2.4 The T&E Framework Extended by this Work

 The communication layer presented in this thesis was designed as an extension to a Test

and Evaluation Framework for autonomous systems [4]. The purpose of this framework was to

facilitate testing of autonomous vehicles throughout the development cycle, by enabling testing

capabilities throughout the virtuality-reality spectrum. A modular design approach for the

autonomous software is assumed, which allows isolated testing of components even at the early

stages of development. The architecture was designed with the Sense, Plan, Act module paradigm

in mind for demonstration purposes, although it is not limited to that module configuration.

 The focus of the framework was to decouple software components from their respective

input and output sources in order to allow for additional components to control data augmentation

[4]. Thus, communication between modules is handled by the framework, while the autonomous

software is isolated from its operating system. Sensor data can therefore be replaced with simulated

data based on the virtual environment to perform testing using virtual data. The source of

information provided to modules is controlled by configuration files. The isolation of the software

modules also allows for the framework to directly supply information to a particular module (i.e.

the Sense module can be bypassed completely in order to supply the Plan module with a set world

representation). A high-level view of the architecture is shown in Figure 3.

17

 The Physical Vehicle represents the physical autonomous system and is comprised of

Sensors that provide information about the system and its environment, and Actuators that control

system operation depending on control signals. The Physical Environment in turn represents all

external factors that can influence and be influenced by the autonomous vehicle’s operation. On

the virtual side, the Simulated Vehicle contains Virtual Sensor and Actuator Models that mimic

their physical counterparts. The Virtual Environment similarly represents a simulated version of

the environment a vehicle operates in [4].

 The Test Harness is placed between the autonomous system components and the rest of

the framework, so that information is decoupled from its source so that data can be manipulated to

Fig. 3. High-Level T&E Framework Architecture [4].

18

test throughout the virtuality-reality spectrum. Data can be injected before and after each

autonomous system component, in order to manipulate Sensor, Plan, Actuator and World

Information Data Models. ROS is in turn utilized to achieve communication between the separate

framework and autonomous software components.

 The T&E Framework API is a class denoted as Node, which provides the functionalities

afforded by the framework. Each autonomous software module (i.e. Sense, Plan, Act etc.) inherits

from Node to gain access to the framework capabilities. This relationship can be studied in Figure

4.

Fig. 4. Module Inheritance from Node Example.

19

CHAPTER 3

COMMUNICATION LAYER MODEL

 The communication layer is intended to facilitate collaboration between autonomous

systems developed using the framework described in [4]. Specifically, the communication layer is

designed for autonomous module-to-module communication, with ease of use being one of the

primary goals. It is also utilized behind the scenes to support communication with a remotely

located virtual world to replace sensor or object presence data with simulated sensor data. This

chapter introduces the communication layer design, a layered architecture intended to distance

developers of varying expertise from the intricacies of establishing different communication

protocols. A set of requirements is first presented to highlight capability expectations and design

constraints. The layered structure proposed to satisfy these requirements is then discussed,

including the object-oriented aspects of this layer and their interaction. Finally, the benefits of

utilizing this layer in conjunction with the T&E framework it extends will be discussed.

3.1 Communication Layer Requirements

 The requirements of the communication layer presented in this thesis were primarily

derived from typical collaborative framework guidelines such as those listed in Section 2.3.3 [16].

With modularity, scalability, and reusability in mind, most of the requirements stemmed from the

need to shield the autonomous developer from the implementation of protocol-specific

communication. This supports testing throughout the virtuality-reality spectrum by allowing the

components and communication to be reconfigured as needed, without any modification to the

autonomous software. As the layer is intended to be an extension of the T&E framework described

20

in [4], the assumption of a modular autonomous software architecture was inherited. The

requirements imposed on the communication layer for a T&E framework are:

• A communication interface to provide the user with clearly defined methods to

perform communication, with the abstraction of protocol implementation allowing

the developer to not worry about protocol-specific intricacies

• A flexible architecture to enable the use of various communication mediums, while

not imposing restrictions on same level module-to-module communication

provides system and hardware flexibility

• Support for direct external module-to-module communication

• Support for user-defined messages allows for a wide variety of content to be

delivered

These four requirements are not only intended to facilitate the collaboration of autonomous

systems but also enable the developer to focus on autonomous behavior implementation, expecting

that communication is reliable and successful. This section elaborates on these requirements.

3.1.1 Communication Application Programming Interface

 In order to ensure ease of use and application integration, a communication Application

Programming Interface (API) is considered a necessity for the implementation of this layer. The

API should be comprised of a variety of methods which the user can directly interface with to

achieve desired communication. This allows for the abstraction and modularization of protocol

specific communication and error-handling, thus reducing developer efforts. Use of general-

purpose functions can also help avoid duplication of services. The API should extend the API

presented in [4], which supports autonomous software interfacing with the T&E framework

21

3.1.2 Flexible Architecture

 The communication layer is intended to provide communication capabilities required by

the autonomous developer. As the communication mediums used (i.e. Bluetooth, IR, TCP/IP,

ROS, etc.) depend on the specific application, the architecture should be extendable to allow use

of additional protocols as needed. Adding new features and services should not require a

modification of system applications. Therefore, providing a common structure for new features

and services to follow is another requirement imposed on the system.

3.1.3 Direct External Module-to-Module Communication

 As a modular autonomous software architecture is assumed, module-to-module

communication is another requirement for the communication layer. Since the T&E framework

this layer extends handles internal module-to-module communication, the layer only needs to

establish external module-to-module communication between AS systems and the virtual

environment (VE). Messages not only need to be directed to the designated AS and VE but also to

the appropriate module of that AS and VE. The routing of information to the proper module should

be hidden from the AS developer.

 Unlike the autonomous system framework presented in [22], communication is not

restricted to same level modules. For example, in a leader-follower mode with the autonomous

systems following the Sense-Plan-Act module architecture, the Plan stage of the leader AS might

want to send a “STOP” command to the ACT module of one of the follower autonomous systems.

Thus, communication with unlike modules should not be precluded to allow for such scenarios

and not restrict functionality.

22

3.1.4 User-Defined Messages

 The information transferred using this communication layer is represented in the form of

messages. Each message can have a distinct structure and contents depending on the application

needs. Different types of messages can be classified under two categories, command and control,

and information. Decision-making might require the exchange of high-level decision or

requirement messages. Sensing modules in turn might need to transmit and receive messages with

information about environment objects – i.e. location, dimensions, object type. For example, in

the case of mapping a room, command and control messages would be used to coordinate

partitioning the room to avoid overlap, while information messages would share the results. The

variety of messages that the system handles should therefore be defined by the user to allow

flexibility in message definition.

3.2 Model Architecture

 The communication layer presented in this thesis was designed to extend the T&E

Autonomous System (AS) Framework implemented in [4], the high-level architecture of which is

shown in Figure 2. The Autonomous Software is comprised of the Sense, Plan – including the

World Representation, and Act modules, which represent the main stages of an autonomous system

model. The specific behaviors of each module might vary depending on the autonomous system

application, with the general behavior of the modules following the pattern of Sense sensing the

environment and providing a World Representation, Plan assessing the World Representation

information and deciding on a course of action, and Act carrying out the actions selected by Plan.

 The Test Harness is placed between the autonomous software components and the

remainder of the T&E Framework with the purpose of decoupling the autonomous modules’

23

knowledge of the source and utilization of data outside of each component. The Test Harness

therefore routes the information from module to module, allowing for the injection and

manipulation of data in cases of virtual and augmented testing. The Virtual Environment represents

a generated version of the environment the vehicle operates in, which could be a simulation of the

environment or a testing module that supplies an approximation of data obtained from the

environment [4].

 The additional capability provided with the layer extension is communication between

autonomous systems as well as the Virtual Environment – i.e. the Communication Layer.

Specifically, the layer provides functionality for AS module to AS module (or AS to Virtual

Environment) communication using implemented communication protocols. The expanded high-

level architecture is shown in Figure 5. The sections pertaining to the physical and virtual vehicle

and environment were removed so that the communication layer extension can be clearly identified

and studied. The Communication Layer API is therefore integrated into the framework API to

provide communication capabilities to all modules. User-defined messages are routed from AS

module to AS (or AS to VE) module using the appropriate protocol and accessed by the software

when desired.

24

Fig. 5. Extended High-Level Architecture.

25

3.3 Developer Roles

 In order to highlight the benefits and functionalities provided by the communication layer

and T&E Framework it is important to discuss the different software developer roles involved

when developing an autonomous system using this T&E Framework and communication layer

extension. Different system components may have distinct lifecycles for design, development, and

testing. Detailing these roles can aid in identifying their responsibilities as well as the division of

component management among roles. The development roles identified are:

• Autonomy Developer – responsible for designing and implementing the system’s

autonomous software, e.g. the Sense, Plan, and Act modules

• Virtual Environment Developer – responsible for the development of the Virtual

Environment in which the autonomous systems may operate

• Hardware Driver Developer – responsible for interfacing with the autonomous system -i.e.

sensors, actuators etc.

• Communication Driver Developer – responsible for implementing the different

communication protocol capabilities

• Framework Manager – responsible for integrating all developed components (i.e. Virtual

Environment, Communication Protocols, Autonomous Software Modules) into the

framework

It is important to note that the Framework Manager role allows the Virtual Environment Developer

and Autonomy Developer to not know the particulars of the framework or communication protocol

implementations.

26

3.4 Communication Interface

 The API provides the Autonomy Developer access to the external communication

capabilities developed in this layer. As collaboration is conducted through the transmission and

receipt of messages, the operations provided are centered around sending a message and accessing

received messages. The communication layer currently supports a polling approach for message

retrieval by the autonomous software. As incoming messages are received, they are placed in a

queue to be retrieved when the autonomous software is ready to perform message handling. Future

work could implement an interrupt-based approach using callback functions for the

communication layer to pass messages to the autonomous software. The methods provided via the

interface therefore are:

• SendMessage

• CheckForMessage

• GetNextMessageType

• GetMessage

For the autonomous software to transmit a message the Autonomy Developer only needs to

provide a destination and the message. The CheckForMessage function permits the user to check

if there is a received message that has not yet been handled. If there is a message to be handled the

developer can use the GetNextMessageType function to identify the message type, while the

GetMessage method will return the oldest received message for handling. In future work, it would

be beneficial to explore the integration of priorities to messages, enabling them to bypass any

queue of incoming messages.

27

3.5 Protocol Configuration

 For the communication layer to correctly handle the routing of messages configuration

properties must be determined and set by the Framework Manager. This is currently done using

configuration files. The layer classifies autonomous systems using integer ids, so one of the

configuration files the Framework Manager must edit is file mapping an AS to a specific id. While

the Framework Manager specifies the destination AS of a message using a “friendly” name (a

string representation), the layer utilizes the aforementioned configuration file to map those

“friendly” names to integer ids. Similarly, AS software modules are also classified using integer

ids to ensure that a message is delivered to the correct module. This id is also set via a configuration

file, specifically the module’s configuration file, with the Framework Manager being tasked with

ensuring that same level modules have the matching ids for all autonomous systems. Thus, AS ids

are used to route messages between AS’s, and module ids are used to route messages to the

appropriate AS module.

 The communication layer supports the use of multiple protocols in the same application.

The Framework Manager can specify the desired protocol for each AS-AS or AS-VE

communication. This is achieved through a configuration file in the form of a communication table

shown in Table 2, which presents the expected format of the configuration file for 4 autonomous

systems and one Virtual Environment. Table 1 presents the “friendly” name to id mapping utilized

in Table 2.

28

TABLE 1

FRIENDLY NAME TO ID MAPPING FILE EXAMPLE

0 Vehicle1

1 Vehicle2

2 Vehicle3

3 Vehicle4

4 Virtual Environment

TABLE 2

COMMUNICATION CONFIGURATION FILE EXAMPLE

 0 1 2 3 4

0 X R R R R

1 R X B B R

2 R B X B R

3 R B B X R

4 R R R R X

Each table element is a character corresponding to a protocol type. Currently, two protocols

have been implemented, Bluetooth (‘B’ in the table) and TCP/IP through ROS (‘R’ in the table).

‘X’ in the table signifies that communication should not be occurring between a system and itself.

In this example, id 0 corresponds to the Virtual Environment, with ids 1 ,2, and 3 corresponding

29

to physical systems and 4 corresponding to a virtual AS. Communication between any AS and the

Virtual Environment as well as between physical and virtual systems is thus conducted using ROS,

while physical to physical system communication is achieved through Bluetooth. Figure 6 depicts

the scenario described.

Fig. 6. Example Communication Depiction.

30

 Bluetooth establishes communication using distinct Bluetooth addresses that are in the

format “XX:XX:XX:XX:XX:XX”, where ‘X’ can be a capitalized character or a number. As

Bluetooth addresses are specific to the devices used, the user must provide the Bluetooth addresses

mapped to their corresponding autonomous systems in a configuration file. That configuration file

follows the format shown in Table 3, with an application of 4 autonomous systems utilized as an

example.

TABLE 3

BLUETOOTH ADDRESS CONFIGURATION FILE

0 08:ED:B9:B2:12:7A

1 68:A3:C4:4A:B3:BA

2 3C:95:09:8E:5B:6C

3 4C:ED:DE:9E:39:10

 ROS in turn performs communication using distinct topic names, as mentioned in Section

2.3.3.2. To reduce complexity and the need for another configuration file, each AS was mapped

and subscribed to a topic designated by its “friendly name”. A “friendly” name is a string chosen

by the autonomous developer to denote each of the autonomous systems (i.e. Red, Charlie, Bravo

etc.). Thus, when using ROS, an AS sends a message to another AS or the VE by publishing to the

topic that bears the destination’s “friendly name”.

31

 It is important to note that it is assumed that the framework manager is aware of the format

configuration files should follow. The system will not attempt to identify erroneous configuration

files; a fault in configuration files could thereby potentially lead to a crash and shutdown of the

system or unexpected and undesired behavior. Framework managers are consequently expected to

correctly perform their edits, maintaining the expected file format.

3.6 Communication Layer Model

 The communication layer was designed as a layered architecture following an object-

oriented approach. The layer architecture, closely resembling that of the Open Systems

Interconnection (OSI) model, ensures compatibility with a plethora of applications. The object-

oriented approach achieves modularity while affording flexibility in hardware and communication

components.

3.6.1 Layered Approach

 The autonomous software and framework architecture extended by the communication

layer can split under four categories: Application, API, Communication, and Protocol. All

autonomous software components (i.e. Sense, Plan, and Act) are classified under Application. The

API in turn provides the autonomous software components with methodology to access the

capabilities afforded by the T&E Framework and communication layer. Under Communication,

outgoing and incoming messages are handled by managing the use of different protocols. Specific

protocol implementations are in turn categorized under Protocol. These encompassing categories

directly map to the OSI Model layers shown in Figure 7.

32

Fig. 7. Map of AS Application and T&E Framework to the OSI Model.

Application maps to OSI’s Application layer, while API maps to OSI’s Presentation layer.

Communication in turn maps to the Session layer which manages and synchronizes the direction

of data flow. Protocol similarly maps to the Transport layer of the OSI model, as both ensure end-

to-end data transfer between applications [33].

33

3.6.2 Object-Oriented Design

 The architecture components are represented as objects, with methods providing the

required functionality. Using object-oriented concepts and data encapsulation, the desired

communication functionalities are provided while hiding the implementation details from the user.

This not only ensures that the user does not modify the architecture or data that should not be

modified but also provides a modular structure that can accommodate additional communication

protocols if needed. Figure 8 illustrates the layer class structure, basic class functionalities, along

with the relationships between the different classes.

Fig. 8. High-Level Class Diagram.

34

 The CommInt (Communication Interface) class is the communication layer API, which is

integrated into the T&E Framework API to provide the Autonomy Developer with direct access to

methods that transmit, check for, and get a message. The Comm class is tasked with configuring

and initializing the communication parameters such as the configuration files for the AS ids and

communication table. Along with initialization, the Comm class also provides access to

communication by containing instances of the BaseComm class. To avoid unnecessary

duplication, only one object instance of Comm can exist for each autonomous system. This led to

a multiplicity relationship of one-to-many with CommInt, and many-to-one with BaseComm.

 The BaseComm class acts as an interface to the different communication protocols,

providing access to protocol specific methods and a message log where incoming messages are

stored; this log is shared by all protocols and is a container of logs, containing one log for each AS

module. It is important to note that each AS module is associated with a specific module id, to aid

in the routing of messages. This is achieved by establishing an inheritance relationship between

BaseComm and the corresponding protocol implementation classes. Polymorphism enables easy

implementation of new communication protocols while having a common interface to the Comm

class.

 Although the message content and structure are user-defined, for the layer to correctly route

messages a layer header must be attached to each message. The variables chosen to compose the

header are:

• Message Id – an integer tuple; the first element is the id of the creating AS while the second

element is a message id unique to the creating AS

• Source Id – an integer tuple; the first element is the id of the AS while the second element

is the module id

35

• Destination Id – an integer tuple; the first element is the id of the AS while the second

element is the module id

• Communication Type – a character denoting the communication protocol used

• Message Size – integer size of message data

• Message Type – an integer denoting the message type

The structure of messages including the header is presented in Figure 9.

The Message class provides and sets the header information, while the user must in turn

define multiple User-Defined Message classes. To attach header information to user-defined

messages an inheritance relationship between Message and User-Defined Message classes is

realized. The Message class also maintains a multiplicity relationship of many-to-one with

BaseComm, where received messages are stored upon receipt.

3.6.3 Component Interaction

 Section 3.6.1 presented the layer components as well as the relationship between them.

This section will illustrate the order of component interaction for the different communication

Message Id
Comm.
Type

Message
Type

Message
Data Size

Source Id Destination Id
User Defined
Attributes

Fig. 9. User-Defined Message Structure.

36

operations supported. The two operations that will be outlined are: send, and receive, the latter

being comprised of check for message and get message operations.

 As is the case for all operations, the Autonomy Developer initiates the send message

operation using the send method provided by the CommInt class. The layer provides both a point-

to-point and broadcast send operation, so depending on the chosen destination Comm’s send point-

to-point or send-broadcast method will be invoked. Depending on the desired protocol for the

source-destination set, the corresponding protocol’s send method will be called. The send method

will then inform their caller whether transmission was successful, which will subsequently be

passed on to the Autonomy Developer via the interface. It is important to note that some protocols

provide functionality to determine success while others do not; if the application requires it, that

functionality can be provided in the communication layer rather than the autonomous software.

The sequence diagram for the send operation is shown in Figure 10. It is also important to note

that the second protocol component Protocol AS 2 represents a protocol implementation running

on a separate AS system and is added to the figure to showcase communication between different

autonomous systems.

37

 Similarly, depending on the message source, the receive operation will be initiated by

invoking the listening function of the specific protocol. Once an incoming message is detected, the

cross-protocols’ shared function updating the message log will be called, which inserts the

message into the appropriate message queue denoted using the module id (modId). Once the

Autonomy Developer is ready to receive a message, the interface’s function that checks for an

incoming message will be invoked, followed by Comm’s, and the appropriate protocol’s shared

and identically named functions; like the UpdateMessageLog method, the module id is utilized to

check the correct message queue. An EmptyFlag variable is then returned via the interface. The

Fig. 10. Send High-Level Sequence Diagram.

38

message type of the next message in the queue can be identified using CommInt’s

GetNextMessageType which will call Comm’s as well as cross-protocols’ shared and identically

named functions. The message type is returned to create a correct object instance with the first

message in the queue by calling CommInt’s message retrieval method which will call Comm’s as

well as cross-protocols’ shared and identically named functions. The message will then be retuned

via the interface. The sequence diagram for the receive operation is shown in Figure 11.

Fig. 11. Receive High-Level Sequence Diagram.

39

3.7 Layer Benefits

 The Communication Layer architecture presented was designed to facilitate the

collaboration of autonomous systems, particularly autonomous vehicles. To support reusability,

the layer provides the capability to use multiple types of communication protocols. To unburden

the user, the implementation of protocol specific communication and routing of messages were

encapsulated in underlaying architecture layers not accessible by the Autonomy developer. The

API designed to offer high-level abstractions for communication also allows for easy integration

to existing framework architectures. Prompting the user to develop and structure the messages to

be exchanged provides application flexibility. Autonomous system developers can therefore use

this layer to achieve reliable collaboration for a wide range of applications, using multiple

communication protocols depending on hardware capabilities.

40

CHAPTER 4

SOFTWARE DESIGN

 Chapter 3 presented the communication layer model. This chapter details a software design

to realize the model. The integration of the communication API with the T&E framework API is

first detailed, followed by a discussion of the classes that compose the communication layer. The

process of distinct protocol implementation is then detailed. Finally, two examples of

communication media implementation – ROS and Bluetooth, are presented. The design is object-

oriented and implemented using C++ in a Linux environment. The implementation is integrated

with the API and node structure developed in [4].

4.1 Extending the API [4] to Include the Communication API

 As mentioned in previous chapters, the communication layer and API are meant to be an

extension of a T&E autonomous system framework and API [4]. The communication API must

therefore be integrated into the framework API to provide communication capabilities to all AS

and framework modules. The modularized design of the communication API thus enables an

effortless integration to the framework.

4.1.1 Framework Application Programming Interface

 The T&E framework [4] API is defined by a class Node, which encapsulates the behaviors

for managing internal communication and processing. Its purpose is to automate AS internal

communication while providing access to connect objects and functions that define a Node’s state

and behavior. All developer classes (i.e. the autonomous modules such as Sense, Plan, Act)

41

requiring access to the API must inherit Node, thus inheriting the API functions. The core API

functions implemented by the Node class are listed in Table 4.

TABLE 4

API FUNCTIONS [4]

Function Behavior

Initialization Creates node and performs node initialization

Advertise Advertises a topic and connects data for sending to the topic

Subscribe Subscribes to a topic and connects data to receive

Notification Connects function to be notified upon receiving from a topic

Publish Sends data connected to topic for publishing

Callback Receives data connected to subscribed topic

 The Initialization function is used to create the Node, connect it to the framework, and set

any initialization parameters. All subsequent functions implement the autonomous system’s

internal communication – i.e. the communication between the autonomous system’s modules.

Internal communication follows a publish-subscribe scheme which is currently achieved through

ROS, though can be replaced by other protocols such as AMQP [31] without changes to the

interface. The Advertise function initializes a topic – a named bus used to exchange data between

modules, connecting the data that will be sent using that topic. Subscribe connects to a topic to

42

receive data, while Notification connects a function to be notified in the event that data is received.

Publish and Callback respectively send and receive data to and from the topic.

4.1.2 External Communication Application Programming Interface

 The external module-to-module communication API is implemented using the CommInt

class, discussed in Section 3.6.2. CommInt allows the user to send, check for, and get a message.

Currently the communication layer only allows for the autonomous software to retrieve messages

using a polling approach – i.e. the software periodically checks if there is a message to be handled.

Future work should also implement functionality to allow for the use of a callback approach, which

would allow messages to be handled as soon as they are received. The API’s main methods and

their functionalities are listed in Table 5.

TABLE 5

COMMUNICATION API FUNCTIONS

Function Behavior

Send Sends a user-defined message to the destination chosen

CheckForMessage Check if there is a message received that needs to be handled

GetNextMessageType Get the type of the next message in the queue

GetMessage Get a message to handle

setMsgFcnPtr Receives and sets a pointer to a function that creates a message object

given an id representing a message type

Serialize Serializes message object data into an integer data buffer

DeSerialize Deserializes an int data buffer into message object data

GetSize Returns the number of integers needed to represent message object

data

43

The Send function receives as parameters the user-defined message to be sent, as well as

the destination of the message. The layer supports both point-to-point and broadcast

communication, so the destination is either the “friendly” name of the AS the message will be

delivered to, or “All” to signify that the message should be broadcast to all autonomous systems.

A 0 will be returned if the send operation was unsuccessful, while 1 is returned if the message was

delivered. The CheckForMessage function checks if there is an incoming message for the AS

module to handle, true is returned if there is, false if there is not. The type of the next message in

the queue can be identified using the GetNextMessageType method. The GetMessage function can

in turn be called which returns the user-defined message to be handled. The setMsgFcnPtr function

receives as a parameter a function pointer pointing to an autonomous developer implemented

function, which given an integer corresponding to a message type, creates and returns an object of

that message type. This function only needs to be called once at the beginning of the autonomous

software implementation.

 All aforementioned functions are called by the Autonomy Developer as needed, without

being implemented or modified by the autonomous software developer. In order for the

communication layer to support the capability to transmit various messages, the autonomous

software developer must implement five functions that aid in translating message object data to

and from integer representations of that data; these functions are Serialize, DeSerialize, and

GetSize, and Clone and are all part of the API. Additionally, the autonomous software developer

must implement the function that given an integer type that indicates the user-defined message

44

type, returns a message object associated with that integer. The function pointer that is given as a

parameter to the setMsgFcnPtr function points to this function.

4.1.3 Extending the Framework Interface

 API to API integration is very simple due to their modular designs. The methods that

comprise the communication API described in Section 4.1.1 are merely transferred to become part

of the framework API, i.e. part of the Node class. Communication initialization is accessed by the

Initialization function of Node. The extended Node class can be seen in Figure 12. The additional

methods that give access to communication are under the dotted line, while the Communication

and Message classes represents the implementation to which those methods provide access to.

Fig. 12. Extended API Architecture.

45

4.2 Class Implementations for Communication

 While the API supplies the user with access to communication, the communication

functionality is implemented in the remaining layer classes shown in Figure 8. Inheritance is

utilized extensively in this design to perform encapsulation and ensure modularity. Each

communication process (i.e. Initialization, Transmitting, Receiving, etc.) is achieved using

methods from all layer classes.

4.2.1 Comm Class

 The Comm class’s purpose is to configure and initialize communication parameters, as well

as execute the processes supported by the layer. The class is implemented as a singleton [34],

ensuring that only one instance of Comm can be instantiated. This provides a single object to

manage all message traffic, to include routing of all incoming and outgoing messages. The class

diagram for Comm is shown in Figure 13.

Fig. 13. Comm Class Diagram.

46

The functionality of the attributes and methods defined in Comm is as follows:

• commTable – A two-dimensional table denoting the communication protocol that should

be used for all combinations of AS-to-AS or AS-to-Virtual Environment communication.

Rows denote the source AS id and columns denote the destination AS id

• nameIdMap – Container mapping AS “friendly” names to AS ids

• commPtrs – Container of protocol class instances that are utilized to perform

communication for a specific protocol

• GetInstance() – Returns a singleton instance of Comm class

• Init() – Initializes and populates attributes facilitating communication (i.e. commTable and

nameIdMap and container of protocol pointers commPtrs)

• SendPtoP(msg: Message *, dest: string) – Sends a user-defined message to the destination

denoted by the string dest and returns a flag denoting success or failure

• SendBd(msg: Message *) – Broadcasts a user-defined message to all autonomous systems

specified in the configuration files and returns a flag denoting success or failure

• CheckForMessage(modId: int) – Checks if there is a message for the module specified by

modId; returns true if there is and false if there is not

• GetNextMessageType(modId : int) – Returns the type of the next message of which the

destination module was specified by modId

• GetMessage(modId: int) – Returns message of which the destination module was specified

by modId

The Init function performs all necessary initializations by reading the configuration files to

populate the communication table commTable, and AS friendly names to ids map nameIdMap.

Depending on the number of communication protocols to be used, one instance for each protocol

47

class will be contained in Comm. The same protocol instance will be used to perform all

communication required for the respective communication medium. This is the reasoning for the

use of a singleton. Having one instance of Comm prohibits the redundant creation of multiple

protocol-specific instances that perform the same processes.

 The SendPtoP function is called when a point-to-point message needs to be sent. Using the

“friendly” name destination and the commTable, the function finds which communication protocol

should be utilized and continues the sending process by calling the protocol class’s respective

function. Similarly, the SendBd function iterates through a list of autonomous systems to send each

AS the desired message. The protocol specific send functions return a 1 for success and 0 for

failure to deliver the message. Due a small degree of unreliability associated with protocols such

as Bluetooth, three attempts at transmission will occur for both transmission modes if the send

operation continues to fail; after three attempts have been unsuccessfully conducted the respective

function will notify the user of this failure by returning a 0, or of the success by returning a 1. This

is a simple approach to try to mitigate transmission failure, if the Communication Driver Developer

desired to ensure an 100% reliable protocol implementation, a more sophisticated approach could

replace the simplistic one presented.

 As with Node’s (the API’s) CheckForMessage, Comm’s identically named

CheckForMessage method acts as a middleman between the API and BaseComm where incoming

messages are stored until retrieval. The function takes as a parameter a unique id representing an

AS or virtual environment module (modId) and will return true if there is a message in that

module’s queue, and false if there is not. GetNextMessageType type will return the type of the

next message in the queue specified by modId. GetMessage will in turn return a user-defined

message if one exists within the queue of the module represented by modId.

48

4.2.2 BaseComm Class

 The BaseComm class’s main purpose is to act as an interface to the protocol specific class

implementations. In addition, the class contains the backlog of messages that need to be handled

as a static attribute so that all implementations have access to it. The messages are split into

different queues, with one queue for each autonomous system’s modules. A representation of these

queues can be seen in Figure 14.

Fig. 14: Message Queue Representation.

49

 The BaseComm class diagram is presented in Figure 15. As the class is meant to be an

interface for subsequent communication protocol classes, two virtual methods are defined to be

implemented by the child classes: Setup and SendPtoP. Once implemented, Setup will perform all

the necessary initialization for the communication protocol, while SendPtoP will handle protocol-

specific message transmission.

The remainder of the class functions handle the insertion and removal of messages from

the appropriate queue of the message backlog - messageBackLog. Depending on the

communication protocols utilized, a multithreading approach might be necessary to ensure that the

layer can send and receive messages concurrently while also not interfering with the execution of

the autonomous software. As this could lead to errors if two threads are trying to modify the same

queue, the use of mutexes is required. In order to not handicap all queues when only one queue is

modified, each message queue is associated with a separate mutex. Mutexes are locked using the

Fig. 15. BaseComm Class Diagram.

50

MutexLock function and unlocked using the MutexUnlock function; both receive as a parameter

which module queue should be locked or unlocked. The UpdateMessageLog handles message

insertions to the appropriate queue. The function receives the serialized message - in the form of

an integer data buffer – and the module it is destined for, inserting it to the appropriate queue.

CheckForMessage receives as a parameter the module whose queue it should be checking, if the

respective queue is empty the function will return false, otherwise true will be returned – meaning

there is a message that can be extracted from the queue. If there is a message to be extracted the

GetNextMessageType that also receives the module id as a parameter will return the type of the

next message in that module’s queue. The GetMessage in turn removes and returns a message

from the appropriate queue, which is selected via the function parameter. All three aforementioned

functions utilize the MutexLock and MutexUnlock functions to ensure that only one thread has

access to the queue when it is being modified.

It is recognized that some messages might be of high importance and that waiting in the

log may be undesirable or detrimental to AS operation. Currently, all messages are handled in the

order they are received; in future work, it might be useful to implement message priorities,

allowing high-priority messages to bypass the message queues.

4.2.3 Message Class

 The Message class acts as an interface for user-defined messages. As mentioned in Section

3.6.2, to successfully route messages, a layer header is attached to each user-defined message. The

header structure and expected data can be seen in Figure 9. The message id is represented as a

tuple, with the first element being the AS id, and the second element being a message id unique

within the AS. Similarly, the source and destination are represented as tuples, with the AS id as

51

the first element and the module id as the second element. The communication type is a character

specific to a protocol, while the message type and size are represented as integers. The Message

class therefore contains methods to set and get the different header attributes. The class structure

for the Message class is provided in Figure 16.

To successfully transmit messages that can be reconstructed in the memory of another AS,

message object data must be serialized and deserialized to and from a buffer of integers. Thus,

additionally to the setter and getter functions for the layer header attributes, Message defines

virtual functions to be implemented by the class’s subclasses. These functions are Serialize,

Deserialize, GetSize, and Clone.

 Serialization is the process of translating an object’s attributes into an ordered container of

a single type, in this work’s case an integer. The GetSize function is utilized to calculate and return

the size of that container, which will be referred to as a data buffer. The Serialize method receives

the data buffer as a parameter and populates it with integer data representing the object’s attributes.

Fig. 16. Message Class Diagram.

52

Similarly, Deserialize also receives an already populated data buffer as a parameter, and “unpacks”

or deciphers the data in the buffer to the corresponding object’s attributes. The Clone method in

turn allows for the cloning of a message to another message of the same type.

 Implementing Message’s virtual functions in the subsequent subclasses is the most

involved piece from the AS developer’s perspective. Assigning data management to the AS

developer allows for “typeless” communication of data buffers and enables the Comm class to

remain independent of the application’s structure and data types. The Message class is sufficiently

abstract to allow the autonomous software developer to serialization/deserialization is deep or

shallow. Deep serialization/deserialization would involve including objects/variables that are

referenced or pointed to by the message in the data buffer.

4.2.4 Development of Protocol-Specific Classes

 Protocol-specific communication is implemented using classes that inherit from the

BaseComm class. Functionality is achieved by populating BaseComm’s virtual functions Setup

and SendPtoP along with any other necessary methods. Along with implementing these classes for

each supported protocol, the Communication Driver Developer also must modify the system and

communication configuration files in order to reflect these additional capabilities. The process to

implement a new protocol followed by the Communication Driver Developer is:

• Inherit from BaseComm – Create a protocol-specific class that inherits from BaseComm

• Edit Configuration Files – Edit the configuration file denoting which protocol should be

utilized to conduct specific AS-to-AS communication to include this newly created

protocol. This should be completed by the Framework Manager before full integration to

the layer

53

• Populate Setup – Implement the virtual method Setup to handle any initialization needs

pertaining to that protocol (i.e. map Bluetooth or TCP/IP addresses)

• Populate SendPtoP – Implement the virtual method SendPtoP to achieve the transmission

of a message utilizing the new protocol

4.2.5 User-Defined Message Classes

 The Autonomy Developer defines message types by implementing classes that inherit from

the Message class. Along with the user-defined attributes and methods that the AS developer wants

to implement, the virtual functions defined in Message – Serialize, DeSerialize, GetSize, and Clone

– must be populated. The process to define a new message is:

• Inherit from Message – Create a protocol-specific class that inherits from Message

• Implement GetSize – Populate the GetSize function to return the summed integer size of all

class attributes

• Implement Serialize – Populate the Serialize method to translate object attributes into

integers and insert them in the data buffer provided as a parameter

• Implement DeSerialize – Populate the DeSerialize method to translate the integer data

buffer provided as a parameter to object attributes

• Implement Clone – Populate the DeSerialize method to correctly “unpack” the integers

contained in the data buffer to their corresponding object attributes

4.3 Example Protocol Implementations

 The Communication Layer’s main purpose is to provide communication capabilities for

any number of communication protocols. As detailed in the previous section protocol-specific

54

functionality can be provided using a distinct class and modifying the configuration files to reflect

this extension. Two protocols (ROS and Bluetooth) were implemented to showcase this capability,

their implementation process is highlighted below.

4.3.1 Bluetooth

 As mentioned in Section 3.5, for the layer to support Bluetooth communication a

configuration file matching the AS ids to Bluetooth addresses is required. Using this file and the

Setup function Bluetooth initialization is conducted. The Bluetooth class handles initialization

using the Setup function, which sets the AS, reads the Bluetooth address configuration file and

populates a structure – btAddresses, that maps AS ids to Bluetooth addresses.

 Due to the nature of the protocol which halts execution while waiting for a message, a

separate thread is required for listening. The thread is an attribute of the class and is implemented

using the function ListeningThread, which is spawned from the initialization function. The

ListeningThread will continuously “listen” for a connection until program termination. It will

accept a data buffer from any address, and call BaseComm’s UpdateMessageLog to insert a

received message to the appropriate queue. The class diagram for the Bluetooth protocol

implementation is depicted in Figure 17, while the sequence diagram for BlueComm’s listening

process can be seen in Figure 18.

55

Fig. 18. Bluetooth Listening Sequence Diagram.

Fig. 17. Bluetooth Class Diagram.

56

The SendPtoP function is utilized to transmit messages. The function receives as

parameters the message data buffer and destination. The destination is represented by the

destination autonomous system’s “friendly” name. SendPtoP therefore identifies the Bluetooth

address matching that “friendly” name in order to send the message. This process can be further

studied in the sequence diagram shown in Figure 19.

4.3.2 ROS

 Communication through ROS does not require the creation of another configuration file to

determine the topics. Instead, each autonomous system is associated with a topic denoted by its

“friendly” name. In order to transmit a message to that AS, other autonomous systems publish

messages to that topic. A different publisher is created for each topic; these are contained in the

publishers map that maps each publisher to the id representing the topic it publishes to. Like

Fig. 19. Bluetooth Transmitting Sequence Diagram.

57

Bluetooth, the Setup function initializes ROS communication. Using a container of AS friendly

names, a subscriber to the AS listening topic denoted by its “friendly” name is created, followed

by the creation of Publishers for each AS.

 The MessageCallBack function handles message insertion to the appropriate message

queue, by calling BaseComm’s UpdateMessageLog function. The SendPtoP function in turn

receives as parameters the data buffer for the message to be sent, as well as the “friendly” name of

the AS destination. The publisher pertaining to the destination AS is then called to transmit the

message. The class diagram for the new class is shown in Figure 20, while the processes for

sending and receiving a message using ROS are shown in Figures 21 and 22 respectively.

Fig. 20. RosComm Class Diagram.

58

Fig. 22. ROS Transmitting Sequence Diagram.

Fig. 21. ROS Receiving Sequence Diagram.

59

CHAPTER 5

RESULTS

 This chapter examines the development of a simple collaborative autonomous system

utilizing the T&E Framework along with the communication layer extension for demonstration

purposes. The process of mapping the system to the T&E Framework is discussed first, throughout

which the capabilities and benefits of the layer extension are showcased. An analysis for

communication reliability afforded by the communication layer is also presented.

5.1 Collaborative AS Example

 To demonstrate the communication capabilities rendered by the framework extension, a

simple collaborative autonomous system demonstration was developed. The encompassing system

was comprised of three virtual autonomous ground vehicles denoted as rovers, and three virtual

environments wherein the vehicles operated. The virtual environments act as data loggers, and do

not impact the behavior of the rovers. The system followed a leader-follower approach, where one

AS was chosen as the leader, with the remaining two systems classified as followers operating in

a chain, only receiving messages from the previous rover in the chain. The AS behavior expected

was to collaboratively perform the same movements, with the follower rovers moving as

commanded by the leader AS. The leader AS determines which command the follower rovers must

follow, sending that command to the first follower system, which in turn sends it to the second

follower rover.

 The communication protocols employed in this demonstration were Bluetooth and ROS.

Bravo and Charlie operate as “simulated” rovers requiring wired communication – represented by

60

a ROS communication. Tango, however, operates as a “physical” rover requiring wireless

communication – represented by a Bluetooth communication. Communication with each rover’s

virtual environment requires “wired” communication – represented by communication through

ROS. The rovers change their motion as directed by a command received by another AS. The

command is represented by a single integer, with three possible values. A value of 0 indicates

forward motion while a value of 1 indicates a left turn, and a value of 2 indicates that the rover

should stop moving.

It is important to note that one virtual environment for each autonomous system was needed

due to the layer’s utilization of a polling approach for message handling by the Autonomy

Developer. This is because with the polling approach, only one message is handled at a time,

whereas a virtual environment must handle location change messages from all rovers operating

within it. An implementation of a callback approach for message handling would resolve this issue

and is thus proposed for future work, which would allow one single virtual environment for all

rovers.

5.1.1 Configuration Files

 Before the autonomous software can be implemented, the required configuration files must

be set by the Framework Manager to ensure communication functionality. First, the autonomous

systems’ and virtual environments’ “friendly” names must be mapped to distinct integer ids. This

configuration file is shown in Table 6, where the first row is the number of systems including the

virtual environments. The corresponding communication table was realized as seen in Table 7.

61

TABLE 6

DEMONSTRATION ID CONFIGURATION FILE

6

0 Alpha

1 Charlie

2 Tango

3 VirtualEnv

4 VirtualEnv2

5 VirtualEnv3

TABLE 7

DEMONSTRATION COMMUNICATION TABLE

 0 1 2 3 4 5

0 X R X R X X

1 R X B X R X

2 X B X X X R

3 R X X X X X

4 X R X X X X

5 X X R X X X

62

As previously mentioned, R denotes communication with ROS, while B denotes communication

with Bluetooth, with X indicating where communication should not occur. The corresponding file

mapping system ids to Bluetooth addresses is shown in Table 8. It is important to note that since

the virtual environments do not perform communication using Bluetooth, their Bluetooth

addresses are not required to be set in the configuration file.

TABLE 8

DEMONTRATION BLUETOOTH CONFIGURATION FILE

1
68:A3:C4:4A:B3:BA

2 E4:B3:18:09:09:06

5.1.2 User-Defined Messages

 Two user-defined messages were developed for this demonstration. The Command

message was realized to denote the action the leader is requesting the followers to perform. The

Wheels message in turn was implemented to denote a vehicle’s wheel actions, which were sent

from all vehicles to the virtual environment so that the vehicle position can be updated.

5.1.2.1 Command Message

 Following the process outlined in Section 4.2.5, the Command message class was defined

as shown in Figure 23. The class implements the serialization and deserialization process

63

functions, while also providing a GetCommand function, which returns the integer command that

a vehicle should perform. The possible command values are:

• 0 – specifies that the rover should commence full forward

• 1 – specifies that the rover should turn left

• 2 – specifies that the rover should halt all movement

Fig. 23. Command Message Class Diagram.

64

5.1.2.2 Wheels Message

 Similarly following the process outlined in Section 4.2.5, the Wheels message class was

defined as shown in Figure 24. Two additional functions were developed, a getRight and getLeft

function. They return the values of the of right and left wheels respectively. This message is meant

to be utilized by the virtual environment to update each AS position.

Fig. 24. Wheels Message Class Diagram.

65

As required by the Message creation process, a function was implemented that receives an

integer as a parameter and returns an object of the Command message if the integer is 0, or the

Wheels message if the integer is 1. A function pointer pointing to that function is then passed to

the communication layer via parameter to the SetFcnPtr function.

5.1.2.2 Leader AS

 The leader vehicle is responsible for continuously directing the movement of the follower

vehicles along with its own. The autonomous software is composed of two modules, Plan and Act,

where Plan performs the decision-making to select the action itself and the follower vehicles

should perform, and Act interfaces with the virtual actuators that will carry out vehicle movement.

No Sense module is required since the example does not require the rovers to observe their

environment. The algorithm for the Plan module is shown in Figure 25. It is important to note that

the variable timer is utilized to control when movement should be modified and is initially set to

0 in an initialization function, while the variable turn is utilized to keep track of whether a turn

message has already been sent and is initially set to false.

66

while terminationSignal is false
 if timer < 5000000
 set left and right wheel to 1
 send Wheels message to VirtualEnv
 timer++
 else if timer >= 5000000 && timer < 9000000
 if turn is false
 set turn to true
 set command to 1
 send Command message to Charlie
 set left wheel to -10 and right wheel to 10
 send Wheels message to VirtualEnv
 timer++
 else if timer >= 9000000 && timer < 12000000
 if turn is true
 set turn to false
 set command to 0
 send Command message to Charlie
 set left and right wheel to 1
 send Wheels message to VirtualEnv
 timer++
 else if timer >= 12000000 && timer < 15000000
 if turn is false
 set turn to true
 set command to 1
 send Command message to Charlie
 set left wheel to -10 and right wheel to 10
 send Wheels message to VirtualEnv
 timer++

 else if timer >= 15000000 && timer < 19000000
 if turn is true
 set turn to false
 set command to 0
 send Command message to Charlie
 set left and right wheel to 1
 send Wheels message to VirtualEnv
 timer++

Fig. 25. Leader AS Plan Algorithm.

 The values that timer is compared to where chosen arbitrarily. If the timer is less than

5000000, the rover should go straight, therefore both wheels are set to 1, and the Wheels message

67

is sent to the rover’s virtual environment denoted as VirtualEnv, followed by an incrementation of

timer. If timer is greater than or equal to 5000000 and less than 6000000, the program then checks

if turn is false. If turn is false, a turn command has not been sent to the follower rover, the

command is therefore set to 1, with the Command message being sent to Charlie. The Wheels

message’s left wheel value is then set to -10 while the right value is set to 10, with the message

then being sent to VirtualEnv. This will cause the vehicle to perform a left turn pivot. The next two

conditions directly follow the former two conditions with the only change being the values that

timer is compared to.

5.1.2.3 Follower AS

 The follower rover Charlie’s main purpose is to wait for movement commands from the

leader, forward those commands to Tango, and follow the commands once received. The

autonomous software is composed of two modules, Plan and Act, where Plan deciphers the

commands sent by the leader, forwards them to the next follower, and chooses the appropriate

movement, while Act interfaces with the virtual actuators that will carry out vehicle movement.

The algorithm for the Plan module is shown in Figure 26. It is important to note that two variables

prevL and prevR are utilized to keep track of the previous values of the left and right wheels and

are both initially set to 1. This allows the rover to keep its previous motion when a new command

has not been sent.

68

while terminationSignal is false
 check whether there is a message
 if the message type is 0
 if command = 0
 set left and right wheels to 1
 send Wheels message to VirtualEnv2
 send Command message to Tango
 set prevL and prevR to 1
 if command = 1
 set left wheel to -10 and right wheel to 10
 send Wheels message to VirtualEnv2
 send Command message to Tango
 set prevL to -10 and prevR to 10
 if command = 2
 set left and right wheels to 0
 send Wheels message to VirtualEnv2
 send Command message to Tango
 set prevL and prevR to 0
 else
 set left wheel to prevL and right wheel to prevR
 send Wheels message to VirtualEnv2

Fig. 26. Follower AS Plan Algorithm.

 While a termination signal has not been set, the software first checks if there is a message

to receive. If there is a message and the message type is 0, the message command value is then

checked. If the command received was 0, both the left and right wheels are set to 1 for forward

motion, the Wheels message is then sent to the rover’s virtual environment, followed by the

forwarding of the Command message to Tango. PrevL and prevR are both set to 1. Similarly, if

the command received was 1, the left wheel is set to -10 while the right wheel is set to 10 for a left

pivot turn motion. The Wheels message is then sent to VirtualEnv2 while the Command message

is forwarded to Tango, and prevL is set to -10 with prevR being set to 10. However, if the command

69

is 2, both the left and right wheels are set to 0 to stop all motion. The Wheels message is then sent

to the rover’s virtual environment, while the Command message is once again forwarded to Tango.

The variables prevL and prevR are also updated to 0. If there was no message received, the left

and right wheel values are respectively set to prevL and prevR, with the Wheels message being

sent to the virtual environment.

 Tango’s software algorithm is identical to Charlie’s shown in Figure 26, except it does not

forward the Command message to any AS, and it sends the Wheels messages to VirtualEnv3, i.e.

its respective virtual environment. It is important to note that all rovers start moving straight as

soon as the simulation begins; thus, an initial command to go straight is not needed.

5.1.2.4 Virtual Environment

 The virtual environments’ purpose was to monitor and display AS positions throughout the

experiment. This was achieved by receiving periodic Wheels messages from their respective

autonomous systems, which were utilized to calculate each vehicle’s new position knowing its

previous position.

5.1.3 Demonstration Conclusions

 The demonstration indicates promise in utilizing the framework to conduct AS-to-AS or

AS-to-VE communication. The successful transmission of the Command and Wheels message was

studied, as well as whether there was appropriate response from receiving systems. The time-

stamped location and orientation of each AS was recorded using data outputted by the virtual

environments. The timestamp of when a Command message was sent by the leader (Alpha) was

70

also recorded, along with the value of the command. Similarly, the timestamp and command values

were recorded each time a Command message was received by an AS. Tables 9, 10, and 11 show

the recorded Command data, with the left column being the time a command was received and the

right column denoting the command value. Table 12 depicts the timing that each different

command was received for each of the three autonomous systems. Tables 13, 14, and 15 show the

recorded location data, with columns containing the time, X, Y, and theta angle. The elements

that are bold and italicized showcase where a change in one or more values should occurr due to a

Command message. Orange highlighted blocks show where a change in angle should be observed,

while blue highlighted blocks show where a change in X & Y should be observed.

TABLE 9

DEMONTRATION ALPHA COMMAND DATA

Time Command (Sent)

08:36:54 1 – Turn Left

08:36:57 0 – Go Straight

08:37:00 1 – Turn Left

08:37:02 0 – Go Straight

71

TABLE 10

DEMONTRATION CHARLIE COMMAND DATA

Time Command (Received)

08:36:54 1 – Turn Left

08:36:57 0 – Go Straight

08:37:00 1 – Turn Left

08:37:02 0 – Go Straight

TABLE 11

DEMONTRATION TANGO COMMAND DATA

Time Command (Received)

08:36:56 1 – Turn Left

08:36:57 0 – Go Straight

08:37:00 1 – Turn Left

08:37:04 0 – Go Straight

TABLE 12

DEMONTRATION COMMAND TIMING

 Left Turn
Command

Straight Command Left Turn
Command

Straight Command

Alpha 08:36:54 08:36:57 08:37:00 08:37:02

Charlie 08:36:54 08:36:57 08:37:00 08:37:02

Tango 08:36:56 08:36:57 08:37:00 08:37:04

72

TABLE 13

DEMONTRATION ALPHA LOCATION DATA

Time X Y Theta

08:36:52 -190.494 -200 0

08:36:53 -177.319 -200 0

08:36:54 -155.246 -200 0.005

08:36:55 -155.246 -200 12.4502

08:36:56 -155.246 -200 61.2503

08:36:57 -155.26 -199.991 148.145

08:36:58 -157.6 -198.548 148.145

08:36:59 -168.346 -186.49 148.145

08:37:00 -179.959 -184.765 148.225

08:37:01 -179.959 -184.765 192.221

08:37:02 -179.979 -184.865 259.261

08:37:03 -181.371 -192.174 259.261

08:37:04 -183.719 -204.504 259.261

08:37:05 -186.126 -217.14 259.261

73

TABLE 14

DEMONTRATION CHARLIE LOCATION DATA

Time X Y Theta

08:36:52 200 5.73321 90

08:36:53 200 15.7074 90

08:36:54 200 32.7212 90.005

08:36:55

08:36:56 200 32.7212 91.37

08:36:57 199.999 32.7223 127.23

08:36:58 199.252 33.7033 127.23

08:36:59 191.85 43.4176 127.23

08:37:00 185.704 51.4844 127.24

08:37:01 185.704 51.4844 161.29

08:37:02 185.703 51.4835 222.206

08:37:03

08:37:04 184.657 50.5424 222.206

08:37:05 176.74 43.3959 222.206

74

TABLE 15

DEMONTRATION TANGO LOCATION DATA

Time X Y Theta

08:36:52 191.495 60 180

08:36:53 186.906 60 180

08:36:54 179.16 60 180

08:36:55 174.36 60 180

08:36:56 173.141 60 180.005

08:36:57 168.589 59.9996 196.135

08:36:58 164.879 58.9251 196.135

08:36:59 159.99 57.5111 196.135

08:37:00 158.474 57.07 196.14

08:37:01 158.474 57.07 209.38

08:37:02 158.474 57.07 226.901

08:37:03 158.474 57.07 244.655

08:37:04 158.482 56.8882 272.683

08:37:05 158.736 51.449 272.683

As can be seen in Tables 9 through 15, all Command messages transmitted are successfully

received. It can also be inferred that the Wheels messages are being transmitted successfully due

to the continuous change in data even when not all the points are listed. The response and delivery

time afforded by the framework seem sufficient for this application. Bravo and Charlie show same

75

second delivery time, with equal response time. Delivery time from Charlie to Tango, however,

ranges from same second to a two second delay. This could be the result of various reasons. A

small delay could be attributed to the fact that Charlie sets and sends its wheel information before

sending the command to Tango. Additionally, the communication between Tango and Charlie is

conducted using Bluetooth, which can sometimes require more than one attempt at successful

transmission. Charlie is also missing two seconds of data; it is inferred that the time delay

associated with additional attempts at transmission resulted in no wheel information being sent to

the environment during those seconds. The graphs for each rover’s X,Y positions and orientation

angles can be studied in Appendix A.

5.2 Communication Reliability

 The communication layer’s reliability for the two protocols implemented is addressed in

this section. The purpose is to both demonstrate that the communication layer supports introducing

protocols to improve message reliability and the inherent reliability of the communications

implemented. Message transmission and delivery between three systems, all utilizing both

protocols, was recorded. Each system sent a broadcast message, and five point-to-point messages

(the destination of which was randomly selected). The experiment was conducted 20 times.

5.2.1 Configuration

Before the software for the reliability analysis could be implemented, the configuration

files were set. Three systems were utilized, their “friendly” names being Bravo, Charlie, and Delta;

the configuration file mapping the “friendly” names to distinct ids is shown in Table 16.

76

TABLE 16

RELIABILITY ANALYSIS ID CONFIGURATION FILE

3

0 Bravo

1 Charlie

2 Delta

 The chosen communication protocol for each system to system communication was

arbitrarily chosen, ensuring that all systems perform communication using both the ROS and

Bluetooth protocols. The communication table configuration file is shown in Table 17. The

corresponding file mapping AS ids to Bluetooth addresses is shown in Table 18.

TABLE 17

RELIABILITY ANALYSIS COMMUNICATION TABLE FILE

 0 1 2

0 X R B

1 B X R

2 R B X

77

TABLE 18

RELIABILITY ANALYSIS BLUETOOTH ADDRESS CONFIGURATION FILE

0 68:A3:C4:4A:B3:BA

1 E4:B3:18:09:09:06

2 4C:ED:DE:9E:39:10

 Two user-defined messages were developed to ensure successful transmission of differing

message types. Their class diagrams are shown in Figures 27 and 28. As required by the Message

creation process, a function was implemented that receives an integer as a parameter and returns

an object of the Message1 message if the integer is 0, or the Message2 message if the integer is 1.

A function pointer pointing to that function is then passed to the communication layer via

parameter to the SetFcnPtr function. The algorithm for all systems is identical, with the only

changes being the two destinations randomly selected. This can be studied in Figure 29.

78

Fig. 27. Message1 Class Diagram.

79

Fig. 29. Reliability Analysis Algorithm.

initialization
create and initialize Message1
send broadcast of Message1
delete Message1
set counter = 0
create and initialize Message2
while counter < 5
 randomly select destination
 send point-to-point of Message2 to destination
 counter = counter + 1
delete Message2

Fig. 28. Message2 Class Diagram.

80

5.2.2 Reliability Analysis Conclusions

 As mentioned previously, 20 trials were conducted to analyze the transmission of messages

utilizing the communication layer. For each trial, each of the three autonomous systems sent 7

messages, 5 point-to-point messages, and one message in broadcast form. The data collected is

summarized in Tables 19 and 20. The total of each system’s attempts, successful transmissions,

and receival of messages for each of the two protocols are shown in Table 18, while the secondary

transmission attempts are shown in 20.

TABLE 19

RELIABILITY ANALYSIS MESSAGE STATISTICS

 ROS

Transmit
Attempts

Bluetooth
Transmit
Attempts

ROS
Transmit
Successes

Bluetooth
Transmit
Successes

ROS
Receivals

Bluetooth
Receivals

Bravo 65 75 65 74 60 69

Charlie 69 71 69 69 60 82

Delta 54 86 54 82 68 74

TABLE 20

RELIABILITY ANALYSIS SECONDARY ATTEMPTS

 ROS Additional Attempts Bluetooth Additional Attempts

Bravo 0 5

Charlie 0 7

Delta 0 13

81

A total of 420 messages were sent, but 413 were received, showing a 98.33% transmission success.

All unsuccessful transmissions occurred when using the Bluetooth protocol, which shows that

setting the number of attempts to three if a transmission was unsuccessful does not necessarily

result in 100% successful communication. It does, however, lead to improved reliability. This is

because the total additional attempts is not divisible by three, meaning that a first or second attempt

led to the message being delivered. More extensive testing in different scenarios must be conducted

in order to fully gauge the communication layer’s reliability.

5.3 Communication Layer Impact

 Both experiments only required the Autonomous Software Developer to implement the four

functions pertaining to serialization/deserialization (Serialize, DeSerialize, GetSize, and Clone),

as well as a function that given an integer id returns an object of the type that corresponds to this

id, which is then populated by the incoming message. The Autonomous Software Developer was

also required to set a function pointer to point to that function and pass it to the framework through

a call to setMsgFcnPtr. The Autonomous Software Developer was then free to use the

communication functionality as needed, while being shielded from the communication

implementation. The Communication Driver Developer was in turn only responsible for

developing protocol specific implementations, while the Framework Manager was responsible for

modifying the configuration files as needed. The reconfiguration of configuration files or the

addition of another protocol implementation are events the autonomous software and Autonomy

Developer are oblivious to.

82

CHAPTER 6

CONCLUSIONS

 The communication layer detailed in this thesis was designed to meet the communication

needs of collaborative autonomous systems throughout their development cycle. By utilizing this

layer in conjunction with the T&E Framework presented in [4], the development and testing of

collaborative systems can be enhanced. The ability to concurrently utilize multiple communication

protocols enables the communication between systems operating at any part of the virtuality-

reality spectrum, thereby providing the ability to begin testing at the early stages of development.

With the architecture closely following the layers of the OSI model [26], compatibility with many

robotic applications can be expected. Communication capabilities are provided to all autonomous

software modules, with the implementation of clear interfaces isolating the autonomous developer

from the intricacies of specific protocol implementations. By requiring the definition of user-

defined messages the transmission of various message types by the layer is ensured; this grants the

autonomous developers a great degree of flexibility in the data that can be communicated. The

support of different communication protocols, along with a well-defined process for additional

implementations enables flexibility in hardware selection. Additionally, the communication layer

provides the ability to easily reconfigure communication for testing to meet the changing

communication needs as the operating environment moves through the levels of the virtuality-

reality spectrum; this is achieved without any change to the autonomous software between

reconfigurations.

 In order to demonstrate the communication capabilities afforded by this layer a leader-

follower navigation application was developed. The application not only illustrated the capability

83

to concurrently collaborate utilizing different communication protocols but also the ease of use of

the functionalities provided. The autonomy developer only needs to provide the ability to serialize

and deserialize message. At that point, the underlying communication configuration can be

modified to meet the current state of testing in the virtuality-reality section. A reliability analysis

of message transmission between three systems using two distinct protocols demonstrated the

message transmission reliability that can be guaranteed by the communication layer when the

development process is followed.

6.1 Future Work

While the layer developed demonstrates a valid proof of concept there are several

improvements that could enhance communication capabilities. Communication speed can be

improved by introducing another execution thread for sending messages. This would also allow

the autonomous software to continue its execution and not be impeded by message transmission.

A notable addition to the communication layer would be the implementation of a callback

approach to message handling. This would grant autonomous developers the ability to immediately

process messages if necessary. A priority could also be added to messages to allow them to bypass

the message queues. Additionally, these extensions would allow the developer a choice in selecting

which message processing approach would be most beneficial to their application (polling or

callback). A time-stamp parameter may also be incorporated in the message header, which can in

turn be utilized to ensure that messages are stored in the order they were intended to be received.

An analysis of the delay associated with message delivery would also be beneficial in determining

whether the communication layer can be utilized in applications where time is critical. Finally,

84

conducting additional testing with more sophisticated and intensive applications could examine

the robustness of the encapsulating T&E framework expanded by this research.

85

REFERENCES

[1] A. Owen-Hill, "Ten Emerging Applications in Autonomous Logistics",

Blog.robotiq.com, 2018. [Online]. Available: https://blog.robotiq.com/10-emerging-

applications-in-autonomous-logistics. [Accessed: 05- Nov- 2019]

[2] R. Fierro et al., "A Framework and Architecture for Multi-Robot Coordination", The

International Journal of Robotics Research, vol. 21, no. 10-11, pp. 977-995, 2002.

Available: https://journals.sagepub.com/doi/abs/10.1177/0278364902021010981.

[Accessed 5 November 2019].

[3] Y. Xie, H. Zhang, "Collaborative Merging Behaviors And Their Impacts On Freeway 1

Ramp Operations Under Connected Vehicle Environment 2 3 4 5 6", Symposium

Celebrating 50 Years of Traffic Flow Theory, 2014. Available:

https://www.semanticscholar.org/paper/COLLABORATIVE-MERGING-

BEHAVIORS-AND-THEIR-IMPACTS-1-Xie-

Zhang/7b828e91ca3b0b4661f0f52f12f2d7024dbab50d. [Accessed 6 July 2019]

[4] N. Gonda, “A Framework for Test & Evaluation of Autonomous Systems Along the

Virtuality-Reality Spectrum.”, Master of Science (MS), thesis, Modeling Simul & Visual

Engineering, Old Dominion University, 2019. [Online]. Available:

https://digitalcommons.odu.edu/msve_etds/47. [Accessed: 05- Jun- 2019]

[5] Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented Reality: A

Class of Displays on the Reality-Virtuality Continuum. SPIE Telemanipulator and

Telepresence Technologies, Vol. 2351, p. 282-292.

[6] M. Salem, "What is an “Autonomous System?", Udacity, 2018. [Online]. Available:

https://blog.udacity.com/2018/09/what-is-an-autonomous-system.html. [Accessed: 05-

Jun- 2019].

[7] "Unmanned Ground Vehicle", En.wikipedia.org, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Unmanned_ground_vehicle. [Accessed: 08- Jul- 2019].

[8] "Unmanned Surface Vehicles USV | Unmanned Marine Systems | L3 ASV", Unmanned

Systems Technology, 2019. [Online]. Available:

https://www.unmannedsystemstechnology.com/company/ autonomous-surface-vehicles-

ltd/. [Accessed: 05- Nov- 2019].

[9] "Unmanned Surface Vehicle", En.wikipedia.org, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Unmanned_surface_vehicle. [Accessed: 08- Jul- 2019].

[10] "Unmanned Aerial Vehicle", En.wikipedia.org, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle. [Accessed: 08- Jul- 2019].

https://blog.robotiq.com/10-emerging-applications-in-autonomous-logistics
https://blog.robotiq.com/10-emerging-applications-in-autonomous-logistics
https://journals.sagepub.com/doi/abs/10.1177/0278364902021010981
file:///C:/Users/ntsak/AppData/Roaming/Microsoft/Word/%20https/www.semanticscholar.org/paper/COLLABORATIVE-MERGING-%20BEHAVIORS-AND-THEIR-IMPACTS-1-Xie-Zhang/7b828e91ca3b0b4661f0f52f12f2d7024dbab50d
file:///C:/Users/ntsak/AppData/Roaming/Microsoft/Word/%20https/www.semanticscholar.org/paper/COLLABORATIVE-MERGING-%20BEHAVIORS-AND-THEIR-IMPACTS-1-Xie-Zhang/7b828e91ca3b0b4661f0f52f12f2d7024dbab50d
file:///C:/Users/ntsak/AppData/Roaming/Microsoft/Word/%20https/www.semanticscholar.org/paper/COLLABORATIVE-MERGING-%20BEHAVIORS-AND-THEIR-IMPACTS-1-Xie-Zhang/7b828e91ca3b0b4661f0f52f12f2d7024dbab50d
file:///C:/Users/ntsak/AppData/Roaming/Microsoft/Word/%20https/www.semanticscholar.org/paper/COLLABORATIVE-MERGING-%20BEHAVIORS-AND-THEIR-IMPACTS-1-Xie-Zhang/7b828e91ca3b0b4661f0f52f12f2d7024dbab50d
https://digitalcommons.odu.edu/msve_etds/47
https://blog.udacity.com/2018/09/what-is-an-autonomous-system.html
https://en.wikipedia.org/wiki/Unmanned_ground_vehicle.
file:///C:/Users/ntsak/AppData/Roaming/Microsoft/Word/%20https/www.unmannedsystemstechnology.com/company/%20autonomous-surface-vehicles-ltd/
file:///C:/Users/ntsak/AppData/Roaming/Microsoft/Word/%20https/www.unmannedsystemstechnology.com/company/%20autonomous-surface-vehicles-ltd/
file:///C:/Users/ntsak/AppData/Roaming/Microsoft/Word/%20https/www.unmannedsystemstechnology.com/company/%20autonomous-surface-vehicles-ltd/
https://en.wikipedia.org/wiki/Unmanned_surface_vehicle
https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle

86

[11] Hini, E. (2018). Unmanned Maritime Systems for Search and Rescue. [online] Medium.

Available at: https://medium.com/@EliHini/unmanned-maritime-systems-for-search-and-

rescue-6610a99c91a0 [Accessed 1 Nov. 2019].

[12] "What is an AUV?", Oceanexplorer.noaa.gov, 2019. [Online]. Available:

https://oceanexplorer.noaa.gov/facts/auv.html. [Accessed: 06- Jun- 2019].

[13] D'Estries, M. (2016). 5 companies on the cutting edge of drone delivery. [online] From

the Grapevine. Available at: https://www.fromthegrapevine.com/innovation/companies-

cutting-edge-drone-delivery [Accessed 18 Oct. 2019].

[14] Vroegindeweij, B., Wijk, S. and Henten, E. (2014). Autonomous unmanned vehicles fro

agricultural applications. Available at: https://library.wur.nl/WebQuery/wurpubs/482638

[Accessed 7 Nov. 2019].

[15] "Robotic paradigm", Revolvy.com, 2019. [Online]. Available:

https://www.revolvy.com/page/Robotic-paradigm. [Accessed: 05- Nov- 2019].

[16] Pendleton, S., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng, Y., Rus, D. and Ang,

M. (2017). Perception, Planning, Control, and Coordination for Autonomous Vehicles.

[online] Available at:

https://www.researchgate.net/publication/313834721_Perception_Planning_Control_and

_Coordination_for_Autonomous_Vehicles [Accessed 7 Nov. 2019].

[17] Y. Zhao, W. Xing, H. Yuan and P. Shi, "A Collaborative Control Framework with Multi-

Leaders for AUVs Based on Unscented Particle Filter", Journal of the Franklin Institute,

2015. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0016003215004512?via%3Dihub.

[Accessed 6 July 2019].

[18] M. Mendonça, I. Chrun, F. Neves and L. Arruda, "A Cooperative Architecture for Swarm

Robotic Based on Dynamic Fuzzy Cognitive Maps", Engineering Applications of

Artificial Intelligence, vol. 59, pp. 122-132, 2017. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0952197616302524.

[19] H. Qin et al., "Autonomous Exploration and Mapping System Using Heterogeneous

UAVs and UGVs in GPS-Denied Environments", IEEE Transactions on Vehicular

Technology, vol. 68, no. 2, pp. 1339-1350, 2019. Available:

https://ieeexplore.ieee.org/document/8598942.

[20] O. Simonin and O. Grunder, "A Cooperative Multi-Robot Architecture for Moving a

Paralyzed Robot", Mechatronics, vol. 19, no. 4, pp. 463-470, 2009. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0957415808001827.

[21] C. García, P. Cárdenas, L. Puglisi and R. Saltaren, "Design and Modeling of the Multi-

Agent Robotic System: SMART", Robotics and Autonomous Systems, vol. 60, no. 2, pp.

143-153, 2012. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0921889011001862.

https://medium.com/@EliHini/unmanned-maritime-systems-for-search-and-rescue-6610a99c91a0
https://medium.com/@EliHini/unmanned-maritime-systems-for-search-and-rescue-6610a99c91a0
https://oceanexplorer.noaa.gov/facts/auv.html
https://www.fromthegrapevine.com/innovation/companies-cutting-edge-drone-delivery
https://www.fromthegrapevine.com/innovation/companies-cutting-edge-drone-delivery
https://library.wur.nl/WebQuery/wurpubs/482638
https://www.revolvy.com/page/Robotic-paradigm
https://www.researchgate.net/publication/313834721_Perception_Planning_Control_and_Coordination_for_Autonomous_Vehicles
https://www.researchgate.net/publication/313834721_Perception_Planning_Control_and_Coordination_for_Autonomous_Vehicles
https://www.sciencedirect.com/science/article/abs/pii/S0016003215004512?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0952197616302524
https://ieeexplore.ieee.org/document/8598942
https://www.sciencedirect.com/science/article/abs/pii/S0957415808001827
https://www.sciencedirect.com/science/article/abs/pii/S0921889011001862

87

[22] N. Mohamed, J. Al-Jaroodi, I. Jawhar and S. Lazarova-Molnar, "Middleware

Requirements for Collaborative Unmanned Aerial Vehicles",

https://ieeexplore.ieee.org/document/6564794, 2013. [Online]. Available:

https://www.researchgate.net/publication/261429743_Middleware_requirements_for_coll

aborative_unmanned_aerial_vehicles. [Accessed: 06- Nov- 2019].

[23] M. Zhu and Y. Wen, "Design and Analysis of Collaborative Unmanned Surface-Aerial

Vehicle Cruise Systems", Journal of Advanced Transportation, vol. 2019, pp. 1-10, 2019.

Available: https://www.hindawi.com/journals/jat/2019/1323105/.

[24] "Documentation - ROS Wiki", Wiki.ros.org, 2019. [Online]. Available:

http://wiki.ros.org. [Accessed: 06- Nov- 2019].

[25] "Master - ROS Wiki", Wiki.ros.org, 2019. [Online]. Available: http://wiki.ros.org/Master.

[Accessed: 06- Nov- 2019].

[26] Z. Wang, T. Takahashi, T. Nitsuma, T. Ninjouji and E. Nakano, "LOGUE: an

architecture for task and behavior object transmission among multiple autonomous

robots", Robotics and Autonomous Systems, vol. 44, no. 3-4, pp. 261-271, 2003.

Available: https://www.sciencedirect.com/science/article/abs/pii/S0921889003000769.

[27] "Java Remote Method Invocation", En.wikipedia.org, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Java_remote_method_invocation. [Accessed: 04- Nov-

2019].

[28] I. Sakiotis, "A Simulation-Based Layered Framework Framework for the Development of

Collaborative Autonomous Systems", Master of Science (MS), thesis, Modeling Simul &

Visual Engineering, Old Dominion University, 2016. Available:

https://digitalcommons.odu.edu/msve_etds/4. [Accessed 6 November 2019].

[29] J. Martin, O. Casquero, B. Fortes and M. Marcos, "A Generic Multi-Layer Architecture

Based on ROS-JADE Integration for Autonomous Transport Vehicles", Sensors, vol. 19,

no. 1, p. 69, 2018. Available:

https://www.researchgate.net/publication/329907421_A_Generic_Multi-

Layer_Architecture_Based_on_ROS-

JADE_Integration_for_Autonomous_Transport_Vehicles.

[30] T. Finin, R. Fritzson, D. McKay and R. McEntire, "KQML- A Language and Protocol for

Knowledge and Information Exchange", Pdfs.semanticscholar.org, 1994. [Online].

Available:

https://pdfs.semanticscholar.org/c0da/82b917832ecb3dffc4dd16b0e1e1dbdf153b.pdf.

[Accessed: 06- Nov- 2019].

[31] Amqp.org. (2019). Home | AMQP. [online] Available at: https://www.amqp.org/

[Accessed 7 Nov. 2019].

https://ieeexplore.ieee.org/document/6564794
https://www.researchgate.net/publication/261429743_Middleware_requirements_for_collaborative_unmanned_aerial_vehicles
https://www.researchgate.net/publication/261429743_Middleware_requirements_for_collaborative_unmanned_aerial_vehicles
https://www.hindawi.com/journals/jat/2019/1323105/
http://wiki.ros.org/
http://wiki.ros.org/Master
https://www.sciencedirect.com/science/article/abs/pii/S0921889003000769
https://en.wikipedia.org/wiki/Java_remote_method_invocation
https://digitalcommons.odu.edu/msve_etds/4
https://www.researchgate.net/publication/329907421_A_Generic_Multi-Layer_Architecture_Based_on_ROS-JADE_Integration_for_Autonomous_Transport_Vehicles
https://www.researchgate.net/publication/329907421_A_Generic_Multi-Layer_Architecture_Based_on_ROS-JADE_Integration_for_Autonomous_Transport_Vehicles
https://www.researchgate.net/publication/329907421_A_Generic_Multi-Layer_Architecture_Based_on_ROS-JADE_Integration_for_Autonomous_Transport_Vehicles
https://pdfs.semanticscholar.org/c0da/82b917832ecb3dffc4dd16b0e1e1dbdf153b.pdf
https://www.amqp.org/

88

[32] En.wikipedia.org. (2019). Advanced Message Queuing Protocol. [online] Available at:

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol [Accessed 8 Nov.

2019].

[33] "ISO Reference Model for Open Systems Interconnection (OSI)", Bitsavers.org, 1991.

[Online]. Available:

http://www.bitsavers.org/pdf/datapro/communications_standards/2783_ISO_OSI.pdf.

[Accessed: 05- Nov- 2019].

[34] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994). Design patterns. 1st ed.

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://www.bitsavers.org/pdf/datapro/communications_standards/2783_ISO_OSI.pdf

89

APPENDICES

APPENDIX A: DEMONSTRATION EXAMPLE GRAPHS

Fig. A-1 X-Positions of Rovers.

90

Fig. A-2 Y-Positions of Rovers.

91

Fig. A-3 Orientation of Rovers.

92

VITA

NTIANA SAKIOTI

PERSONAL INFORMATION

Born: 09/22/1996

Citizenship: Greek

Email address: nsaki001@odu.edu

EDUCATION

Old Dominion University, Norfolk, VA

Frank Batten College of Engineering and Technology, Electrical and Computer

Engineering Department

Bachelor of Science in Computer Engineering, 2017

Bachelor of Science in Electrical Engineering, 2017

AWARDS AND HONORS

VMASC Industry Association Undergraduate BS/MS Scholarship

AHEPA District Scholarship

AHEPA Academic Scholarship

Undergraduate Research Grant

Dean’s List

Kovner Scholarship

PUBLICATIONS

• “Evaluating Kinect V1 and V2 For Chest Wall WALL Surface Scanning and

Assessment” IWISH, 2019.

• “Applying a Test and Evaluation Framework to an Unmanned Maritime System”, MSVE

Capstone Conference, 2019

• “Experimental Validation of a ground robot simulation model during line following

task”, MODSIM WORLD 2017, 2017

mailto:nsaki001@odu.edu

	Communication Capability for a Simulation-Based Test and Evaluation Framework for Autonomous Systems
	Recommended Citation

	tmp.1580912648.pdf.oOd8I

