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ABSTRACT 

 

COMMUNICATION CAPABILITY FOR A SIMULATION-BASED TEST AND 

EVALUATION FRAMEWORK FOR AUTONOMOUS SYSTEMS 

 

Ntiana Sakioti 

Old Dominion University, 2019 

Director: Dr. James F. Leathrum Jr. 

  

 The design and testing process for collaborative autonomous systems can be extremely 

complex and time-consuming, so it is advantageous to begin testing early in the design. A Test & 

Evaluation (T&E) Framework was previously developed to enable the testing of autonomous 

software at various levels of mixed reality. The Framework assumes a modular approach to 

autonomous software development, which introduces the possibility that components are not in 

the same stage of development. The T&E Framework allows testing to begin early in a simulated 

environment, with the autonomous software methodically migrating from virtual to augmented to 

physical environments as component development advances.  

 This thesis extends the previous work to include a communication layer allowing 

collaborative autonomous systems to communicate with each other and with a virtual environment. 

Traversing through the virtuality-reality spectrum results in different communication needs for 

collaborative autonomous systems, namely the use of different communication protocols at each 

level of the spectrum. For example, testing in a fully simulated environment might be on a single 

processor or allow wired communication if distributed to different computing platforms. 

Alternatively, testing in a fully physical environment imposes the need for wireless 

communication. However, an augmented environment may require the concurrent use of multiple 

protocols. This research extends the Test & Evaluation Framework by developing a heterogeneous 

communication layer to facilitate the implementation and testing of collaborative autonomous 



 

 

 

systems throughout various levels of the virtuality-reality spectrum. The communication layer 

presented in this thesis allows developers of the core autonomous software to be shielded from the 

configuration of communication needs, with changes to the communication environment not 

resulting in changes to the autonomous software.  
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CHAPTER 1 

INTRODUCTION 

 

Autonomous systems are increasingly utilized in a variety of industries such as agriculture, 

space, military and transportation. Example applications include crop harvesting and weed control, 

space exploration, reconnaissance and security, transportation and package delivery [1].  

Introducing collaboration in autonomous agents can further improve system performance, as 

multiple systems can potentially perform tasks more robustly and efficiently [2]. Furthermore, in 

certain applications, collaboration can be an integral part of system success.  For example, road 

safety could increase if autonomous cars collaborated [3], while search and rescue and fire-fighting 

operations could be faster and more efficient with the introduction of collaboration.  Depending 

on system application and degree of autonomy, collaborative capabilities can lead to increased 

reliability, performance, efficiency, as well as safety. 

While developing an autonomous system is an intricate process, incorporating collaboration 

capabilities leads to more complex behavior and system requirements. This research develops a 

communication layer for a Test and Evaluation (T&E) framework meant to be utilized for the 

development and testing of autonomous systems [4]. By integrating a communication layer, the 

development of collaborative autonomous systems can be facilitated by the extended framework1.  

 

 

 

 

 
1 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references. 
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1.1 Testing Throughout the Virtuality-Reality Spectrum [5] 

 The T&E Framework extended by this research facilitates the testing of autonomous 

systems throughout their development cycle. At the beginning of the development cycle, testing is 

conducted using a fully simulated system operating in a virtual world. As autonomous entities 

traverse the virtuality-reality spectrum, a physical system may first operate in a virtual world, 

moving to operation in a physical world when the required hardware has been integrated. 

Migrating from interacting with a fully virtual world to an augmented world to a physical world is 

done through configuration files defining sources of information such as sensor data. In this 

manner, the framework shields the autonomous software from knowledge of its test environment.   

 The communication needs of autonomous systems change depending on their stage of 

development and operating environment. In a fully simulated environment, testing may be 

conducted on a single processor or using wired communication if distributed. In a fully physical 

environment, wireless communication is required, while a combination might be necessary in an 

augmented virtuality or augmented reality environment.  

 

1.2 Problem Statement 

 The development of collaborative autonomous systems is a rigorous process that requires 

extensive testing and time. Autonomous System (AS) developers not only have to implement the 

desired autonomous behavior but also depend on reliable communication among entities. While 

AS applications may vary across industries, they share the same basic communication 

requirements for collaboration, i.e. they need to be able to send and receive messages of various 

types. A communication layer that provides the ability to collaborate through various protocols 

would enable AS developers to simply utilize the functionalities provided without having to delve 
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into specific protocol intricacies or reconfigure the autonomous software each time the protocol 

utilized is changed.  

 

1.3 Proposed Communication Layer 

 A communication layer is presented for the purpose of facilitating the development of 

collaborative autonomous systems throughout the virtuality-reality spectrum. The model provides 

the capability for the exchange of user-defined messages between autonomous systems as well as 

with the virtual environments they may operate in. Additional communication protocol 

functionality may be easily implemented into the layer, affording the autonomous system 

developer with flexibility in their hardware and robotic middleware choices.  

 The motivation for this research stems from the need to expand the T&E framework in [4] 

to provide more flexibility in autonomous system development, testing, and communication. 

Previous work, although very efficient, provides ad-hoc solutions tailored to specific applications. 

Their rigid structures and communication restrictions require the user to strip most of these 

architectures of their functionality or meticulously insert or modify their implementation and 

ensure they have hardware to support alternative communication mediums. 

 This communication layer, in conjunction with the framework it extends, is meant to 

mitigate these drawbacks. By providing the ability to use a multitude of communication protocols, 

and, if necessary, implement additional ones using the structure provided, autonomous developers 

are not limited to a particular communication medium. By isolating the layer components and 

providing clear interfaces, the autonomous developers do not need to be concerned with the 

protocol specific implementation details, nor does the software need to be modified for the use of 
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different communication protocols. Autonomous software developer focus can instead directly 

shift to developing the desired autonomous behavior.  

 

1.4 Contents of the Thesis 

 Chapter 2 provides a background of topics important to understanding the contents of the 

thesis. The T&E framework that is extended by the thesis is introduced, followed by an 

examination of past approaches to autonomous collaboration. The requirements that should be 

imposed on the communication layer can thereby be identified, while the distinction between 

previous work and the proposed communication layer for the T&E framework presented will be 

highlighted. A model of the communication layer is detailed in Chapter 3, with the design features 

associated with communication and integration requirements being introduced. Chapter 4 

discusses the software design for the model detailed in Chapter 3, highlighting algorithms and 

concepts key to achieving desired functionality. The capabilities afforded by the communication 

layer are demonstrated in Chapter 5 by studying an example application and the ability to address 

reliability of the success rate of message transmission.  
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

This chapter will establish the context for the thesis by providing definitions and 

requirements for relevant systems and examining previous approaches. First, the different types of 

autonomous systems and their applications are discussed, followed by a definition of collaborative 

systems. Software requirements and previous approaches to conducting collaboration are then 

presented, followed by a discussion of communication frameworks already implemented and 

utilized. The framework for the development and testing of autonomous systems that this research 

extends is then presented. 

 

2.1 Autonomous Systems 

 Autonomous systems are utilized in a multitude of industries in order to improve task 

efficiency and safety. Usually comprised of both hardware and software that collaborate on solving 

a problem or performing an action, they can operate under varying degrees of autonomy. An AS 

is considered truly autonomous when it can gather and analyze information, find an appropriate 

course of action and execute that action [6]. While autonomous systems can range from smart 

thermostats, home service robots, and smart houses, a crucial area of research and development 

centers around autonomous vehicles due to the complexity, safety concerns, and ethical 

ramifications associated with their development and operation. Autonomous vehicles (AVs) can 

be further subcategorized into distinct types. These are briefly detailed in the following sections.  
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2.1.1 Autonomous Ground Vehicles 

 An autonomous ground vehicle (AGV) is an autonomous vehicle that operates on the 

ground [7]. AGVs can be utilized for many applications where operator presence may be 

dangerous, inconvenient, or impossible. They are extensively used by the military in 

reconnaissance as well as bomb diffusion operations where the safety of field officers is 

paramount. Additionally, their use in the civil sector is studied for a variety of applications such 

as driverless delivery and transportation. 

 

2.1.2 Autonomous Surface Vehicles 

 An autonomous surface vehicle (ASV) is an autonomous vehicle that operates on the water 

surface without a crew or operator. Current applications can range from surveillance, naval 

operations, as well as environmental and climate monitoring [8]. AGVs are especially valuable in 

oceanography, as they are more capable than weather buoys and far cheaper than manned research 

vessels [9].  

 

2.1.3 Autonomous Underwater Vehicles 

 An autonomous underwater vehicle (AUV), is an autonomous vehicle that operates below 

the water surface. AUVs can be small or large, the largest weighing thousands of pounds, requiring 

their own support vessels. They can glide, stop, or hover, and are attractive options for ocean-

based research, especially since they can avoid inclement weather by going below the sea-surface 

[10]. They have been continuously deployed in deep sea exploration as well as search operations 

for missing ships and airplanes, such as the U.S. Navy cruiser Indiana, and Air France Flight 447 

[11].  
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2.1.3 Autonomous Aerial Vehicles 

 An autonomous aerial vehicle (AAV), commonly referred to as a drone, is an autonomous 

aircraft that operates without a pilot or operator [12]. While mostly utilized by the military in the 

past for surveillance and warfare applications, their use is rapidly expanding. Currently, AAV 

adoption for delivery services is in the testing stage for companies such as Dominos and Amazon 

[13], while AAV use in agriculture is already aiding in crop monitoring and soil assessment [14].  

 

2.2 Autonomous System Model 

 Autonomous software is usually categorized into different functional modules. A popular 

modularized approach to autonomous software development is the Sense, Plan, and Act paradigm, 

the modules of which are interconnected using inputs and outputs [15]. Software under the Sense 

module receive input from all peripheral sensors and generate and output a perception of the 

environment. The Plan module in turn receives this information as input and generates a plan of 

actions based on the environment perception, desired functionality, and past actions. The Act 

module executes the plan of actions generated by the Plan module by converting them to control 

signals that are sent to the system’s actuators. This paradigm can be seen in Figure 1. Alternative 

models exist, such as including a perception stage between sense and plan [16]. 

 

 

Fig. 1. Sense, Plan, and Act Paradigm Visual. 
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2.3 Collaborative Autonomous Systems 

 Autonomous collaborative systems, also referred to as autonomous collaborative agents, 

are autonomous systems that collaborate to achieve tasks. They can be part of a team comprised 

of a small number of systems or part of an autonomous swarm. Collaborative modes of operation, 

communication, and frameworks are discussed. 

 

2.3.1 Modes of Operation 

Depending on the desired functionality, collaborative autonomous systems can operate in 

a leader-follower mode or parallel mode [17]. In a leader-follower mode, autonomous decisions 

are made by the leader AS, while follower vehicles carry out commands sent to them by the leader.  

In a parallel mode, however, autonomous systems collectively collaborate to perform desired tasks. 

While a system can have more than one leader, communication in a leader-follower mode is only 

needed between leaders and followers. However, in a parallel or decentralized approach, each 

system must have the same communication capabilities and protocols to be able to communicate 

with all other agents [18].   

 

2.3.2 Collaborative System Communication 

 Communication between autonomous agents can be achieved through a variety of mediums 

depending on on-board hardware. In [19], AAV to AGV Collaboration was conducted through a 

Secure Shell (SSH) wireless network connection. A different approach was presented by the 

authors of [20], who utilized a Radio-Frequency (RF) system along with an infrared transceiver 

and a Hertzian wave transmitter to achieve Paralyzed and Non-Paralyzed Ground Robot 

Communication.  For future research, they expressed a need to incorporate Bluetooth as a 
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communication medium in their application. Both Bluetooth and TCP/IP protocols are utilized in 

[21], for a multi-agent robotic system called SMART to establish communication among robot and 

control software and between client and server respectively. 

 

2.3.3 Collaborative Autonomous Frameworks 

 Collaborative autonomous architectures are designed to facilitate the development and 

testing of collaborative autonomous systems. In [22], the following guidelines and respective 

advantages of using these frameworks were highlighted: 

● Offer tools and functions to simplify development of collaborative applications 

● Offer high-level abstractions and interfaces to facilitate application integration, reuse, and 

development 

● Hide heterogeneity of devices, platforms, and operating environments 

● Hide distribution and communication details in the environment 

● Facilitate communication among the different components of the systems 

● Provide common services for general purpose functions in order to reduce development 

efforts and avoid duplication 

● Provide a common architecture to add new services and features without changing system 

applications 

● Offer properties such as security, reliability, and quality of services 

● Supply the necessary tools to enhance the performance, stability, safety, and scalability of 

the collaborative autonomous application 

Following these guidelines ensures that collaborative solutions are not tailored to a specific 

implementation but are instead compatible with a variety of applications.  
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2.3.3.1 Ad-Hoc Approaches to Collaborative Development 

 Many developers design autonomous software and communication tailored to a specific 

implementation in order to best fit their application needs. This approach, although sufficient and 

optimal for the current design, hinders modularity and reusability in future scenarios. The authors 

of [23] built a model of ASV and AAV Synergetic Cruise following the leader-follower mode. In 

this system, one ASV acts as the control station for three AAVs accomplishing several tasks. 

Collaboration is conducted using a wireless connection, with the control station (ASV) receiving 

sensor information from the three AAVs and sending back further instructions for the AAVs.  

Although the system exhibits robustness and efficiency, different applications and operating 

environments would require continuous improvement for the synergetic model. Additional 

information is required on the protocols used for communication between systems.  

 In [2], Reactive and Deliberative Ground Vehicle Collaboration is achieved, defining a 

model approach for heterogeneous robots. A paralyzed robot whose goal is to reach a destination 

emits a signal to request assistance by being pushed towards a particular destination.  Non-

paralyzed robots in turn roam about the environment until perceiving a signal emitted by the 

paralyzed robot. Once a signal is received, non-paralyzed robots work together to push the 

paralyzed robot in the desired direction. Communication is one-directional -- from a paralyzed to 

a non-paralyzed robot -- and achieved via an RF system, with the authors mentioning the desire to 

switch to Bluetooth communication in the future. Along with direct cooperation shown when a 

non-paralyzed robot attempts to push a paralyzed one, indirect cooperation occurred when mobile 

robots had to add their forces in order to make the robot move. Although the architecture presented 

resulted in a scalable robust system that is adaptable to changes due to environment disturbances, 

their approach restricts architecture use to very similar applications. Additionally, the potential 
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efficiency and reliability benefits of two-way communication both between the helper robots and 

the paralyzed robot were not studied.  

 A Cooperative Architecture for a Robotic Swarm based on dynamic fuzzy cognitive maps 

is presented in [18]. A swarm is a multi-agent system (MAS) that can be comprised of both 

heterogenous and homogeneous robots, thus allowing for both centralized and non-centralized 

control. In this application, a homogeneous swarm is assumed, exhibiting non-hierarchical control. 

The architecture was composed of three layers (reactive, deliberative, and cooperative), in order 

to support navigation system development, but according to the authors can be standardized and 

is applicable to other systems based on DFCM. Since testing and analysis was all simulated, 

communication protocols were neither used nor discussed in this paper. 

 

2.3.3.2 Non-Application Specific Approaches to Collaborative Frameworks  

Numerous architectures have been developed to meet the guidelines and provide the 

advantages highlighted at the beginning of this section in order to facilitate the development and 

testing of autonomous systems. One of the most widely used robotics frameworks in research is 

the Robot Operating System (ROS), a robotics middleware for robot software development [24]. 

ROS is used to conduct inter-process communication by the T&E framework this research 

enhances and is also integrated as one of the communication protocols for AS to AS 

communication provided by the collaboration layer detailed in this thesis. ROS provides services 

for hardware abstraction, low-level device control, inter-process and peer-to-peer message parsing, 

package management, as well as implementations for common functionalities. ROS implements a 

Publish/Subscribe scheme that is topic-based, where software nodes publish or subscribe to a topic. 

Messages can be user-defined with the source and destination of a message remaining anonymous. 
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Several distributions for ROS exist for different types and versions of operating systems, 

maintaining the same basic architecture.   

Software developed using ROS is organized in packages, which can contain source code, 

any necessary configuration files or third-party libraries, and  build files. Four primary functions 

are used to conduct communication with ROS: advertise, publish, subscribe, and callback. 

Advertise and subscribe are utilized to establish a topic, while publish sends a message to the 

chosen topic, and callback handles messages that have been received from a topic. The ROS 

Master is essentially a control station for ROS [25]. Nodes, topics, and callbacks are registered on 

the Master, which keeps track of these processes, and allows nodes and callbacks to locate their 

topics of interest. The ROS network can be further studied in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. ROS Network. 
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It is important to note that although ROS is very reliable and robust, hiding communication details 

from the developer and modularizing components for easy re-use, it restricts communication to 

the TCP/IP protocol.  

 In [26], a communication and control architecture was proposed to improve the capability 

and flexibility of autonomous systems. Using an object-oriented paradigm, the Little-Object-

Oriented Ground User Environment (LOGUE) allows the sharing of both task and behavioral 

information among autonomous systems as well as behavior servers using Java RMI. Java RMI is 

a Java API that supports direct transfer of serialized Java classes among other capabilities [27]. 

The autonomous robots are comprised of a three-layer architecture consisting of modules for 

communication, action management, and device. The communication module handles system-to-

system communication while the action management module translates messages into priority 

tasks, with the device interfacing directly with system sensors and actuators. LOGUE 

implementation is identical for autonomous robots, with a GUI interface and behavior database 

added to the behavior server. For successful object transmission, both systems are required to have 

the object class; transferring a class from one virtual machine to another is not possible, so the 

class file precedes the transmission of the object. Due to the use of Java RMI, this approach is 

highly scalable, overcoming basic technological difficulties that are handled by the API.  

 The author of [28] introduces a purely simulation-based layered framework for the 

development of collaborative autonomous systems (CAS), thus denoted as the CAS framework. 

Closely following the guidelines setup in the beginning of this subsection, the framework proposed 

retains the isolated development advantage of layered architectures, providing flexibility and tools 

to conduct collaboration while shielding the developer from protocol-specific intricacies. The 

architecture is designed to be compatible with many robotic platforms, supporting both internal 
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layer to layer communication, and limiting external communication to same layer levels, also 

requiring autonomous systems to contain identical layer architectures. The number of layers in the 

architecture is not limited and can be specified by the developer while a rigid structure to user-

defined messages is embedded in order to ensure reliable communication. In order to increase 

reliability, the author mentions the need for integration to physical systems, leading to increased 

applications of this framework.  

 A different approach for a Multi-Layer Architecture based on ROS and JADE Integration 

for autonomous transport vehicles (ATVs) is detailed in [29]. The research was focused on 

providing social abilities to ATVs, utilizing a four-layer architecture. The upper (social) level was 

responsible for the interaction with other ATVs, while the lower (functional) level interfaced with 

all vehicle sensors and actuators to provide ATV control. The two intermediate layers were tasked 

with abstracting social behavior from functional behavior, pre-processing and storing information 

for fast response. The architecture was built on top of ROS, with the social layer consisting of a 

Multi-Agent System (MAS) JADE agent that offered transportation services and communicated 

with other ATVs. The upper intermediate layer in turn integrates ROS, used for ATV control, and 

JADE, used for social capabilities, communicating the agent at the social layer with the lower 

intermediate layer. Efficient layer division allows for modularity, while social abilities are 

abstracted from control functionalities, allowing isolated development.  

 The authors of [30] detail a more general non-vehicle-based approach, the Knowledge 

Query and Manipulation Language (KQML), a language protocol for exchanging information. 

Using KQML provides agents the ability to transmit messages composed in their own 

representation language, wrapped in a KQML message. KQML can be viewed as a three-layer 

language. The content layer is the actual message content, while the communication layer encodes 
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message features describing parameters such as sender and recipient identity. Finally, the message 

layer’s primary function is to identify the protocol required to deliver the message. Two specialized 

programs are needed to facilitate communication: a router and a facilitator, and a library of 

interface routines. Routers are content independent message routers, each agent associated with its 

own router. Routers are identical and are only concerned with the KQML arguments such as an 

Internet address for the message destination. Facilitators are in turn used to deliver incompletely 

addressed messages. Routers rely on facilitators to help them find message destinations. Typically, 

there exists one facilitator for each local group of agents. The KQML Router Interface Library 

(KRIL) lays between the application and the router, with the purpose of making access to the router 

as simple as possible for the programmer. It is embedded in the application and has access to tools 

that analyze the content field of the message. There can be various KRILs, i.e. one for each 

application type and one for each application language. KQML offers a standard protocol for 

autonomous agent communication, along with providing abstraction of an information source or 

destination and permitting the use of whatever language the programmer prefers.  

 Another general approach is the Advanced Message Queueing Protocol (AMQP) [31]. 

AMQP is an open standard application layer that features message orientation, queuing, routing, 

as well as reliability and security [32]. AMQP, like ROS, deals with publishers that produce 

messages, and consumers that obtain and process them. AMQP is a wire-level protocol, meaning 

that the data transmitted is a stream of bytes. This allows any tool available to conform to this data 

to create and interpret messages, increasing interoperability [31]. AMQP assumes a reliable 

transport layer protocol such as the Transmission Control Protocol (TCP).  Publishers and 

consumers discover each other via exchanges created by the consumer with a given name that is 

public. Publishers send messages to an exchange, and consumers pull messages from a queue. 
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AMQP allows for application data to be of any form and in any encoding the application requires. 

A bare message is defined that allows an optional list of standard properties (id, user id, creation 

time etc.), followed by an optional list of application-specific properties and the message data [32]. 

 

2.4 The T&E Framework Extended by this Work 

 The communication layer presented in this thesis was designed as an extension to a Test 

and Evaluation Framework for autonomous systems [4]. The purpose of this framework was to 

facilitate testing of autonomous vehicles throughout the development cycle, by enabling testing 

capabilities throughout the virtuality-reality spectrum. A modular design approach for the 

autonomous software is assumed, which allows isolated testing of components even at the early 

stages of development. The architecture was designed with the Sense, Plan, Act module paradigm 

in mind for demonstration purposes, although it is not limited to that module configuration.  

 The focus of the framework was to decouple software components from their respective 

input and output sources in order to allow for additional components to control data augmentation 

[4]. Thus, communication between modules is handled by the framework, while the autonomous 

software is isolated from its operating system. Sensor data can therefore be replaced with simulated 

data based on the virtual environment to perform testing using virtual data. The source of 

information provided to modules is controlled by configuration files. The isolation of the software 

modules also allows for the framework to directly supply information to a particular module (i.e. 

the Sense module can be bypassed completely in order to supply the Plan module with a set world 

representation). A high-level view of the architecture is shown in Figure 3.  
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 The Physical Vehicle represents the physical autonomous system and is comprised of 

Sensors that provide information about the system and its environment, and Actuators that control 

system operation depending on control signals. The Physical Environment in turn represents all 

external factors that can influence and be influenced by the autonomous vehicle’s operation. On 

the virtual side, the Simulated Vehicle contains Virtual Sensor and Actuator Models that mimic 

their physical counterparts. The Virtual Environment similarly represents a simulated version of 

the environment a vehicle operates in [4].   

 The Test Harness is placed between the autonomous system components and the rest of 

the framework, so that information is decoupled from its source so that data can be manipulated to 

Fig. 3. High-Level T&E Framework Architecture [4]. 
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test throughout the virtuality-reality spectrum. Data can be injected before and after each 

autonomous system component, in order to manipulate Sensor, Plan, Actuator and World 

Information Data Models. ROS is in turn utilized to achieve communication between the separate 

framework and autonomous software components.  

 The T&E Framework API is a class denoted as Node, which provides the functionalities 

afforded by the framework. Each autonomous software module (i.e. Sense, Plan, Act etc.) inherits 

from Node to gain access to the framework capabilities. This relationship can be studied in Figure 

4. 

 

 

  

 

Fig. 4. Module Inheritance from Node Example. 
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CHAPTER 3 

COMMUNICATION LAYER MODEL 

 

 The communication layer is intended to facilitate collaboration between autonomous 

systems developed using the framework described in [4]. Specifically, the communication layer is 

designed for autonomous module-to-module communication, with ease of use being one of the 

primary goals. It is also utilized behind the scenes to support communication with a remotely 

located virtual world to replace sensor or object presence data with simulated sensor data.  This 

chapter introduces the communication layer design, a layered architecture intended to distance 

developers of varying expertise from the intricacies of establishing different communication 

protocols. A set of requirements is first presented to highlight capability expectations and design 

constraints. The layered structure proposed to satisfy these requirements is then discussed, 

including the object-oriented aspects of this layer and their interaction. Finally, the benefits of 

utilizing this layer in conjunction with the T&E framework it extends will be discussed.  

 

3.1 Communication Layer Requirements 

 The requirements of the communication layer presented in this thesis were primarily 

derived from typical collaborative framework guidelines such as those listed in Section 2.3.3 [16]. 

With modularity, scalability, and reusability in mind, most of the requirements stemmed from the 

need to shield the autonomous developer from the implementation of protocol-specific 

communication. This supports testing throughout the virtuality-reality spectrum by allowing the 

components and communication to be reconfigured as needed, without any modification to the 

autonomous software. As the layer is intended to be an extension of the T&E framework described 
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in [4], the assumption of a modular autonomous software architecture was inherited. The 

requirements imposed on the communication layer for a T&E framework are:  

• A communication interface to provide the user with clearly defined methods to 

perform communication, with the abstraction of protocol implementation allowing 

the developer to not worry about protocol-specific intricacies  

• A flexible architecture to enable the use of various communication mediums, while 

not imposing restrictions on same level module-to-module communication 

provides system and hardware flexibility 

• Support for direct external module-to-module communication 

• Support for user-defined messages allows for a wide variety of content to be 

delivered  

These four requirements are not only intended to facilitate the collaboration of autonomous 

systems but also enable the developer to focus on autonomous behavior implementation, expecting 

that communication is reliable and successful.  This section elaborates on these requirements. 

 

3.1.1 Communication Application Programming Interface 

 In order to ensure ease of use and application integration, a communication Application 

Programming Interface (API) is considered a necessity for the implementation of this layer. The 

API should be comprised of a variety of methods which the user can directly interface with to 

achieve desired communication. This allows for the abstraction and modularization of protocol 

specific communication and error-handling, thus reducing developer efforts. Use of general-

purpose functions can also help avoid duplication of services. The API should extend the API 

presented in [4], which supports autonomous software interfacing with the T&E framework 
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3.1.2 Flexible Architecture 

 The communication layer is intended to provide communication capabilities required by 

the autonomous developer. As the communication mediums used (i.e. Bluetooth, IR, TCP/IP, 

ROS, etc.) depend on the specific application, the architecture should be extendable to allow use 

of additional protocols as needed. Adding new features and services should not require a 

modification of system applications. Therefore, providing a common structure for new features 

and services to follow is another requirement imposed on the system.  

 

3.1.3 Direct External Module-to-Module Communication  

 As a modular autonomous software architecture is assumed, module-to-module 

communication is another requirement for the communication layer. Since the T&E framework 

this layer extends handles internal module-to-module communication, the layer only needs to 

establish external module-to-module communication between AS systems and the virtual 

environment (VE). Messages not only need to be directed to the designated AS and VE but also to 

the appropriate module of that AS and VE. The routing of information to the proper module should 

be hidden from the AS developer.  

 Unlike the autonomous system framework presented in [22], communication is not 

restricted to same level modules. For example, in a leader-follower mode with the autonomous 

systems following the Sense-Plan-Act module architecture, the Plan stage of the leader AS might 

want to send a “STOP” command to the ACT module of one of the follower autonomous systems. 

Thus, communication with unlike modules should not be precluded to allow for such scenarios 

and not restrict functionality.  
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3.1.4 User-Defined Messages 

 The information transferred using this communication layer is represented in the form of 

messages. Each message can have a distinct structure and contents depending on the application 

needs. Different types of messages can be classified under two categories, command and control, 

and information. Decision-making might require the exchange of high-level decision or 

requirement messages. Sensing modules in turn might need to transmit and receive messages with 

information about environment objects – i.e. location, dimensions, object type. For example, in 

the case of mapping a room, command and control messages would be used to coordinate 

partitioning the room to avoid overlap, while information messages would share the results. The 

variety of messages that the system handles should therefore be defined by the user to allow 

flexibility in message definition. 

 

3.2 Model Architecture  

 The communication layer presented in this thesis was designed to extend the T&E 

Autonomous System (AS) Framework implemented in [4], the high-level architecture of which is 

shown in Figure 2. The Autonomous Software is comprised of the Sense, Plan – including the 

World Representation, and Act modules, which represent the main stages of an autonomous system 

model. The specific behaviors of each module might vary depending on the autonomous system 

application, with the general behavior of the modules following the pattern of Sense sensing the 

environment and providing a World Representation, Plan assessing the World Representation 

information and deciding on a course of action, and Act carrying out the actions selected by Plan.  

 The Test Harness is placed between the autonomous software components and the 

remainder of the T&E Framework with the purpose of decoupling the autonomous modules’ 
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knowledge of the source and utilization of data outside of each component. The Test Harness 

therefore routes the information from module to module, allowing for the injection and 

manipulation of data in cases of virtual and augmented testing. The Virtual Environment represents 

a generated version of the environment the vehicle operates in, which could be a simulation of the 

environment or a testing module that supplies an approximation of data obtained from the 

environment [4].  

 The additional capability provided with the layer extension is communication between 

autonomous systems as well as the Virtual Environment – i.e. the Communication Layer. 

Specifically, the layer provides functionality for AS module to AS module (or AS to Virtual 

Environment) communication using implemented communication protocols. The expanded high-

level architecture is shown in Figure 5. The sections pertaining to the physical and virtual vehicle 

and environment were removed so that the communication layer extension can be clearly identified 

and studied. The Communication Layer API is therefore integrated into the framework API to 

provide communication capabilities to all modules.  User-defined messages are routed from AS 

module to AS (or AS to VE) module using the appropriate protocol and accessed by the software 

when desired.  
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Fig. 5. Extended High-Level Architecture. 
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3.3 Developer Roles 

 In order to highlight the benefits and functionalities provided by the communication layer 

and T&E Framework it is important to discuss the different software developer roles involved 

when developing an autonomous system using this T&E Framework and communication layer 

extension. Different system components may have distinct lifecycles for design, development, and 

testing. Detailing these roles can aid in identifying their responsibilities as well as the division of 

component management among roles. The development roles identified are: 

• Autonomy Developer – responsible for designing and implementing the system’s 

autonomous software, e.g. the Sense, Plan, and Act modules 

• Virtual Environment Developer – responsible for the development of the Virtual 

Environment in which the autonomous systems may operate 

• Hardware Driver Developer – responsible for interfacing with the autonomous system -i.e. 

sensors, actuators etc. 

• Communication Driver Developer – responsible for implementing the different 

communication protocol capabilities 

• Framework Manager – responsible for integrating all developed components (i.e. Virtual 

Environment, Communication Protocols, Autonomous Software Modules) into the 

framework 

It is important to note that the Framework Manager role allows the Virtual Environment Developer 

and Autonomy Developer to not know the particulars of the framework or communication protocol 

implementations.  
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3.4 Communication Interface 

 The API provides the Autonomy Developer access to the external communication 

capabilities developed in this layer. As collaboration is conducted through the transmission and 

receipt of messages, the operations provided are centered around sending a message and accessing 

received messages. The communication layer currently supports a polling approach for message 

retrieval by the autonomous software. As incoming messages are received, they are placed in a 

queue to be retrieved when the autonomous software is ready to perform message handling. Future 

work could implement an interrupt-based approach using callback functions for the 

communication layer to pass messages to the autonomous software. The methods provided via the 

interface therefore are:  

• SendMessage 

•  CheckForMessage 

• GetNextMessageType 

• GetMessage 

For the autonomous software to transmit a message the Autonomy Developer only needs to 

provide a destination and the message. The CheckForMessage function permits the user to check 

if there is a received message that has not yet been handled. If there is a message to be handled the 

developer can use the GetNextMessageType function to identify the message type, while the 

GetMessage method will return the oldest received message for handling. In future work, it would 

be beneficial to explore the integration of priorities to messages, enabling them to bypass any 

queue of incoming messages.  
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3.5 Protocol Configuration 

 For the communication layer to correctly handle the routing of messages configuration 

properties must be determined and set by the Framework Manager. This is currently done using 

configuration files. The layer classifies autonomous systems using integer ids, so one of the 

configuration files the Framework Manager must edit is file mapping an AS to a specific id. While 

the Framework Manager specifies the destination AS of a message using a “friendly” name (a 

string representation), the layer utilizes the aforementioned configuration file to map those 

“friendly” names to integer ids. Similarly, AS software modules are also classified using integer 

ids to ensure that a message is delivered to the correct module. This id is also set via a configuration 

file, specifically the module’s configuration file, with the Framework Manager being tasked with 

ensuring that same level modules have the matching ids for all autonomous systems. Thus, AS ids 

are used to route messages between AS’s, and module ids are used to route messages to the 

appropriate AS module.  

 The communication layer supports the use of multiple protocols in the same application. 

The Framework Manager can specify the desired protocol for each AS-AS or AS-VE 

communication. This is achieved through a configuration file in the form of a communication table 

shown in Table 2, which presents the expected format of the configuration file for 4 autonomous 

systems and one Virtual Environment.  Table 1 presents the “friendly” name to id mapping utilized 

in Table 2. 
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TABLE 1 

FRIENDLY NAME TO ID MAPPING FILE EXAMPLE 

 

0 Vehicle1 

1 Vehicle2 

2 Vehicle3 

3 Vehicle4 

4 Virtual Environment 

 

TABLE 2 

COMMUNICATION CONFIGURATION FILE EXAMPLE 

 

 0 1 2 3 4 

0 X R R R R 

1 R X B B R 

2 R B X B R 

3 R B B X R 

4 R R R R X 

 

 

Each table element is a character corresponding to a protocol type. Currently, two protocols 

have been implemented, Bluetooth (‘B’ in the table) and TCP/IP through ROS (‘R’ in the table). 

‘X’ in the table signifies that communication should not be occurring between a system and itself. 

In this example, id 0 corresponds to the Virtual Environment, with ids 1 ,2, and 3 corresponding 
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to physical systems and 4 corresponding to a virtual AS. Communication between any AS and the 

Virtual Environment as well as between physical and virtual systems is thus conducted using ROS, 

while physical to physical system communication is achieved through Bluetooth. Figure 6 depicts 

the scenario described.  

 

 

 

 

 

  

Fig. 6. Example Communication Depiction. 
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 Bluetooth establishes communication using distinct Bluetooth addresses that are in the 

format “XX:XX:XX:XX:XX:XX”, where ‘X’ can be a capitalized character or a number. As 

Bluetooth addresses are specific to the devices used, the user must provide the Bluetooth addresses 

mapped to their corresponding autonomous systems in a configuration file. That configuration file 

follows the format shown in Table 3, with an application of 4 autonomous systems utilized as an 

example.  

 

 

TABLE 3 

BLUETOOTH ADDRESS CONFIGURATION FILE 

 

0 08:ED:B9:B2:12:7A 

1 68:A3:C4:4A:B3:BA 

2 3C:95:09:8E:5B:6C 

3 4C:ED:DE:9E:39:10 

 

 

 ROS in turn performs communication using distinct topic names, as mentioned in Section 

2.3.3.2. To reduce complexity and the need for another configuration file, each AS was mapped 

and subscribed to a topic designated by its “friendly name”. A “friendly” name is a string chosen 

by the autonomous developer to denote each of the autonomous systems (i.e. Red, Charlie, Bravo 

etc.). Thus, when using ROS, an AS sends a message to another AS or the VE by publishing to the 

topic that bears the destination’s “friendly name”.  
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 It is important to note that it is assumed that the framework manager is aware of the format 

configuration files should follow. The system will not attempt to identify erroneous configuration 

files; a fault in configuration files could thereby potentially lead to a crash and shutdown of the 

system or unexpected and undesired behavior. Framework managers are consequently expected to 

correctly perform their edits, maintaining the expected file format.  

 

3.6 Communication Layer Model 

 The communication layer was designed as a layered architecture following an object-

oriented approach. The layer architecture, closely resembling that of the Open Systems 

Interconnection (OSI) model, ensures compatibility with a plethora of applications. The object-

oriented approach achieves modularity while affording flexibility in hardware and communication 

components.  

 

3.6.1 Layered Approach 

 The autonomous software and framework architecture extended by the communication 

layer can split under four categories: Application, API, Communication, and Protocol. All 

autonomous software components (i.e. Sense, Plan, and Act) are classified under Application. The 

API in turn provides the autonomous software components with methodology to access the 

capabilities afforded by the T&E Framework and communication layer. Under Communication, 

outgoing and incoming messages are handled by managing the use of different protocols. Specific 

protocol implementations are in turn categorized under Protocol. These encompassing categories 

directly map to the OSI Model layers shown in Figure 7.  
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Fig. 7. Map of AS Application and T&E Framework to the OSI Model. 

 

 

Application maps to OSI’s Application layer, while API maps to OSI’s Presentation layer. 

Communication in turn maps to the Session layer which manages and synchronizes the direction 

of data flow. Protocol similarly maps to the Transport layer of the OSI model, as both ensure end-

to-end data transfer between applications [33].  
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3.6.2 Object-Oriented Design 

 The architecture components are represented as objects, with methods providing the 

required functionality. Using object-oriented concepts and data encapsulation, the desired 

communication functionalities are provided while hiding the implementation details from the user. 

This not only ensures that the user does not modify the architecture or data that should not be 

modified but also provides a modular structure that can accommodate additional communication 

protocols if needed. Figure 8 illustrates the layer class structure, basic class functionalities, along 

with the relationships between the different classes.   

 

 

 

Fig. 8. High-Level Class Diagram. 
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 The CommInt (Communication Interface) class is the communication layer API, which is 

integrated into the T&E Framework API to provide the Autonomy Developer with direct access to 

methods that transmit, check for, and get a message.  The Comm class is tasked with configuring 

and initializing the communication parameters such as the configuration files for the AS ids and 

communication table. Along with initialization, the Comm class also provides access to 

communication by containing instances of the BaseComm class.  To avoid unnecessary 

duplication, only one object instance of Comm can exist for each autonomous system. This led to 

a multiplicity relationship of one-to-many with CommInt, and many-to-one with BaseComm.   

 The BaseComm class acts as an interface to the different communication protocols, 

providing access to protocol specific methods and a message log where incoming messages are 

stored; this log is shared by all protocols and is a container of logs, containing one log for each AS 

module. It is important to note that each AS module is associated with a specific module id, to aid 

in the routing of messages. This is achieved by establishing an inheritance relationship between 

BaseComm and the corresponding protocol implementation classes. Polymorphism enables easy 

implementation of new communication protocols while having a common interface to the Comm 

class.  

 Although the message content and structure are user-defined, for the layer to correctly route 

messages a layer header must be attached to each message. The variables chosen to compose the 

header are:  

• Message Id – an integer tuple; the first element is the id of the creating AS while the second 

element is a message id unique to the creating AS 

• Source Id – an integer tuple; the first element is the id of the AS while the second element 

is the module id 
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• Destination Id –  an integer tuple; the first element is the id of the AS while the second 

element is the module id 

• Communication Type – a character denoting the communication protocol used 

• Message Size – integer size of message data 

• Message Type – an integer denoting the message type 

The structure of messages including the header is presented in Figure 9.  

 

 

 

 

 

 

The Message class provides and sets the header information, while the user must in turn 

define multiple User-Defined Message classes. To attach header information to user-defined 

messages an inheritance relationship between Message and User-Defined Message classes is 

realized. The Message class also maintains a multiplicity relationship of many-to-one with 

BaseComm, where received messages are stored upon receipt.  

 

3.6.3 Component Interaction  

 Section 3.6.1 presented the layer components as well as the relationship between them. 

This section will illustrate the order of component interaction for the different communication 

Message Id 
Comm. 
Type 

Message 
Type 

Message 
Data Size 

Source Id Destination Id 
User Defined 
Attributes 

Fig. 9. User-Defined Message Structure. 
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operations supported. The two operations that will be outlined are: send, and receive, the latter 

being comprised of check for message and get message operations. 

 As is the case for all operations, the Autonomy Developer initiates the send message 

operation using the send method provided by the CommInt class. The layer provides both a point-

to-point and broadcast send operation, so depending on the chosen destination Comm’s send point-

to-point or send-broadcast method will be invoked. Depending on the desired protocol for the 

source-destination set, the corresponding protocol’s send method will be called. The send method 

will then inform their caller whether transmission was successful, which will subsequently be 

passed on to the Autonomy Developer via the interface. It is important to note that some protocols 

provide functionality to determine success while others do not; if the application requires it, that 

functionality can be provided in the communication layer rather than the autonomous software. 

The sequence diagram for the send operation is shown in Figure 10.  It is also important to note 

that the second protocol component Protocol AS 2 represents a protocol implementation running 

on a separate AS system and is added to the figure to showcase communication between different 

autonomous systems.  
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 Similarly, depending on the message source, the receive operation will be initiated by 

invoking the listening function of the specific protocol. Once an incoming message is detected, the 

cross-protocols’ shared function updating the message log will be called, which inserts the 

message into the appropriate message queue denoted using the module id (modId). Once the 

Autonomy Developer is ready to receive a message, the interface’s function that checks for an 

incoming message will be invoked, followed by Comm’s, and the appropriate protocol’s shared 

and identically named functions; like the UpdateMessageLog method, the module id is utilized to 

check the correct message queue. An EmptyFlag variable is then returned via the interface. The 

Fig. 10. Send High-Level Sequence Diagram. 
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message type of the next message in the queue can be identified using CommInt’s  

GetNextMessageType which will call Comm’s as well as cross-protocols’ shared and identically 

named functions. The message type is returned to create a correct object instance with the first 

message in the queue by calling CommInt’s message retrieval method which will call Comm’s as 

well as cross-protocols’ shared and identically named functions. The message will then be retuned 

via the interface. The sequence diagram for the receive operation is shown in Figure 11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Receive High-Level Sequence Diagram. 
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3.7 Layer Benefits  

 The Communication Layer architecture presented was designed to facilitate the 

collaboration of autonomous systems, particularly autonomous vehicles. To support reusability, 

the layer provides the capability to use multiple types of communication protocols. To unburden 

the user, the implementation of protocol specific communication and routing of messages were 

encapsulated in underlaying architecture layers not accessible by the Autonomy developer. The 

API designed to offer high-level abstractions for communication also allows for easy integration 

to existing framework architectures. Prompting the user to develop and structure the messages to 

be exchanged provides application flexibility. Autonomous system developers can therefore use 

this layer to achieve reliable collaboration for a wide range of applications, using multiple 

communication protocols depending on hardware capabilities.  
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CHAPTER 4 

SOFTWARE DESIGN 

 

 Chapter 3 presented the communication layer model. This chapter details a software design 

to realize the model. The integration of the communication API with the T&E framework API is 

first detailed, followed by a discussion of the classes that compose the communication layer. The 

process of distinct protocol implementation is then detailed. Finally, two examples of 

communication media implementation – ROS and Bluetooth, are presented. The design is object-

oriented and implemented using C++ in a Linux environment. The implementation is integrated 

with the API and node structure developed in [4]. 

 

4.1 Extending the API [4] to Include the Communication API 

 As mentioned in previous chapters, the communication layer and API are meant to be an 

extension of a T&E autonomous system framework and API [4]. The communication API must 

therefore be integrated into the framework API to provide communication capabilities to all AS 

and framework modules. The modularized design of the communication API thus enables an 

effortless integration to the framework.   

 

4.1.1 Framework Application Programming Interface 

 The T&E framework [4] API is defined by a class Node, which encapsulates the behaviors 

for managing internal communication and processing. Its purpose is to automate AS internal 

communication while providing access to connect objects and functions that define a Node’s state 

and behavior. All developer classes (i.e. the autonomous modules such as Sense, Plan, Act) 
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requiring access to the API must inherit Node, thus inheriting the API functions. The core API 

functions implemented by the Node class are listed in Table 4. 

 

 

TABLE 4 

API FUNCTIONS [4] 

 

Function Behavior 

Initialization Creates node and performs node initialization 

Advertise Advertises a topic and connects data for sending to the topic 

Subscribe Subscribes to a topic and connects data to receive 

Notification Connects function to be notified upon receiving from a topic 

Publish Sends data connected to topic for publishing 

Callback Receives data connected to subscribed topic 

 

 

 The Initialization function is used to create the Node, connect it to the framework, and set 

any initialization parameters. All subsequent functions implement the autonomous system’s 

internal communication – i.e. the communication between the autonomous system’s modules. 

Internal communication follows a publish-subscribe scheme which is currently achieved through 

ROS, though can be replaced by other protocols such as AMQP [31] without changes to the 

interface. The Advertise function initializes a topic – a named bus used to exchange data between 

modules, connecting the data that will be sent using that topic. Subscribe connects to a topic to 
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receive data, while Notification connects a function to be notified in the event that data is received. 

Publish and Callback respectively send and receive data to and from the topic.  

4.1.2 External Communication Application Programming Interface 

 The external module-to-module communication API is implemented using the CommInt 

class, discussed in Section 3.6.2. CommInt allows the user to send, check for, and get a message. 

Currently the communication layer only allows for the autonomous software to retrieve messages 

using a polling approach – i.e. the software periodically checks if there is a message to be handled. 

Future work should also implement functionality to allow for the use of a callback approach, which 

would allow messages to be handled as soon as they are received. The API’s main methods and 

their functionalities are listed in Table 5.  

 

TABLE 5 

COMMUNICATION API FUNCTIONS 

 
Function Behavior 

Send Sends a user-defined message to the destination chosen 

CheckForMessage Check if there is a message received that needs to be handled 

GetNextMessageType Get the type of the next message in the queue 

GetMessage Get a message to handle 

setMsgFcnPtr Receives and sets a pointer to a function that creates a message object 

given an id representing a message type 

Serialize Serializes message object data into an integer data buffer 

DeSerialize Deserializes an int data buffer into message object data 

GetSize Returns the number of integers needed to represent message object 

data 
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The Send function receives as parameters the user-defined message to be sent, as well as 

the destination of the message. The layer supports both point-to-point and broadcast 

communication, so the destination is either the “friendly” name of the AS the message will be 

delivered to, or “All” to signify that the message should be broadcast to all autonomous systems. 

A 0 will be returned if the send operation was unsuccessful, while 1 is returned if the message was 

delivered. The CheckForMessage function checks if there is an incoming message for the AS 

module to handle, true is returned if there is, false if there is not. The type of the next message in 

the queue can be identified using the GetNextMessageType method. The GetMessage function can 

in turn be called which returns the user-defined message to be handled. The setMsgFcnPtr function 

receives as a parameter a function pointer pointing to an autonomous developer implemented 

function, which given an integer corresponding to a message type, creates and returns an object of 

that message type. This function only needs to be called once at the beginning of the autonomous 

software implementation.  

 All aforementioned functions are called by the Autonomy Developer as needed, without 

being implemented or modified by the autonomous software developer. In order for the 

communication layer to support the capability to transmit various messages, the autonomous 

software developer must implement five functions that aid in translating message object data to 

and from integer representations of that data; these functions are Serialize, DeSerialize, and 

GetSize, and Clone and are all part of the API. Additionally, the autonomous software developer 

must implement the function that given an integer type that indicates the user-defined message 
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type, returns a message object associated with that integer. The function pointer that is given as a 

parameter to the setMsgFcnPtr function points to this function.  

 

4.1.3 Extending the Framework Interface 

 API to API integration is very simple due to their modular designs. The methods that 

comprise the communication API described in Section 4.1.1 are merely transferred to become part 

of the framework API, i.e. part of the Node class. Communication initialization is accessed by the 

Initialization function of Node. The extended Node class can be seen in Figure 12. The additional 

methods that give access to communication are under the dotted line, while the Communication 

and Message classes represents the implementation to which those methods provide access to.  

 

 

 

 

 

 

Fig. 12. Extended API Architecture. 
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4.2 Class Implementations for Communication 

 While the API supplies the user with access to communication, the communication 

functionality is implemented in the remaining layer classes shown in Figure 8. Inheritance is 

utilized extensively in this design to perform encapsulation and ensure modularity. Each 

communication process (i.e. Initialization, Transmitting, Receiving, etc.) is achieved using 

methods from all layer classes. 

4.2.1 Comm Class 

 The Comm class’s purpose is to configure and initialize communication parameters, as well 

as execute the processes supported by the layer. The class is implemented as a singleton [34], 

ensuring that only one instance of Comm can be instantiated. This provides a single object to 

manage all message traffic, to include routing of all incoming and outgoing messages. The class 

diagram for Comm is shown in Figure 13.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Comm Class Diagram. 
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The functionality of the attributes and methods defined in Comm is as follows: 

• commTable – A two-dimensional table denoting the communication protocol that should 

be used for all combinations of AS-to-AS or AS-to-Virtual Environment communication. 

Rows denote the source AS id and columns denote the destination AS id 

• nameIdMap – Container mapping AS “friendly” names to AS ids 

• commPtrs – Container of protocol class instances that are utilized to perform 

communication for a specific protocol  

• GetInstance() – Returns a singleton instance of Comm class  

• Init() – Initializes and populates attributes facilitating communication (i.e. commTable and 

nameIdMap and container of protocol pointers commPtrs)   

• SendPtoP(msg: Message *, dest: string) – Sends a user-defined message to the destination 

denoted by the string dest and returns a flag denoting success or failure 

• SendBd(msg: Message *) – Broadcasts a user-defined message to all autonomous systems 

specified in the configuration files and returns a flag denoting success or failure 

• CheckForMessage(modId: int) – Checks if there is a message for the module specified by 

modId; returns true if there is and false if there is not 

• GetNextMessageType(modId : int) – Returns the type of the next message of which the 

destination module was specified by modId 

• GetMessage(modId: int) –  Returns message of which the destination module was specified 

by modId 

The Init function performs all necessary initializations by reading the configuration files to 

populate the communication table commTable, and AS friendly names to ids map nameIdMap. 

Depending on the number of communication protocols to be used, one instance for each protocol 
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class will be contained in Comm. The same protocol instance will be used to perform all 

communication required for the respective communication medium. This is the reasoning for the 

use of a singleton. Having one instance of Comm prohibits the redundant creation of multiple 

protocol-specific instances that perform the same processes.  

 The SendPtoP function is called when a point-to-point message needs to be sent. Using the 

“friendly” name destination and the commTable, the function finds which communication protocol 

should be utilized and continues the sending process by calling the protocol class’s respective 

function. Similarly, the SendBd function iterates through a list of autonomous systems to send each 

AS the desired message. The protocol specific send functions return a 1 for success and 0 for 

failure to deliver the message. Due a small degree of unreliability associated with protocols such 

as Bluetooth, three attempts at transmission will occur for both transmission modes if the send 

operation continues to fail; after three attempts have been unsuccessfully conducted the respective 

function will notify the user of this failure by returning a 0, or of the success by returning a 1. This 

is a simple approach to try to mitigate transmission failure, if the Communication Driver Developer 

desired to ensure an 100% reliable protocol implementation, a more sophisticated approach could 

replace the simplistic one presented.  

 As with Node’s (the API’s) CheckForMessage, Comm’s identically named 

CheckForMessage method acts as a middleman between the API and BaseComm where incoming 

messages are stored until retrieval. The function takes as a parameter a unique id representing an 

AS or virtual environment module (modId) and will return true if there is a message in that 

module’s queue, and false if there is not. GetNextMessageType type will return the type of the 

next message in the queue specified by modId. GetMessage will in turn return a user-defined 

message if one exists within the queue of the module represented by modId.  
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4.2.2 BaseComm Class 

 The BaseComm class’s main purpose is to act as an interface to the protocol specific class 

implementations. In addition, the class contains the backlog of messages that need to be handled 

as a static attribute so that all implementations have access to it. The messages are split into 

different queues, with one queue for each autonomous system’s modules. A representation of these 

queues can be seen in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Message Queue Representation. 
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 The BaseComm class diagram is presented in Figure 15.  As the class is meant to be an 

interface for subsequent communication protocol classes, two virtual methods are defined to be 

implemented by the child classes: Setup and SendPtoP. Once implemented, Setup will perform all 

the necessary initialization for the communication protocol, while SendPtoP will handle protocol-

specific message transmission.  

 

 

 

 

  

 

 

 

 

 

The remainder of the class functions handle the insertion and removal of messages from 

the appropriate queue of the message backlog - messageBackLog. Depending on the 

communication protocols utilized, a multithreading approach might be necessary to ensure that the 

layer can send and receive messages concurrently while also not interfering with the execution of 

the autonomous software. As this could lead to errors if two threads are trying to modify the same 

queue, the use of mutexes is required. In order to not handicap all queues when only one queue is 

modified, each message queue is associated with a separate mutex. Mutexes are locked using the 

Fig. 15. BaseComm Class Diagram. 
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MutexLock function and unlocked using the MutexUnlock function; both receive as a parameter 

which module queue should be locked or unlocked. The UpdateMessageLog handles message 

insertions to the appropriate queue. The function receives the serialized message - in the form of 

an integer data buffer – and the module it is destined for, inserting it to the appropriate queue. 

CheckForMessage receives as a parameter the module whose queue it should be checking, if the 

respective queue is empty the function will return false, otherwise true will be returned – meaning 

there is a message that can be extracted from the queue. If there is a message to be extracted the 

GetNextMessageType that also receives the module id as a parameter will return the type of the 

next message in that module’s queue. The GetMessage in turn removes and returns a message 

from the appropriate queue, which is selected via the function parameter. All three aforementioned 

functions utilize the MutexLock and MutexUnlock functions to ensure that only one thread has 

access to the queue when it is being modified. 

It is recognized that some messages might be of high importance and that waiting in the 

log may be undesirable or detrimental to AS operation. Currently, all messages are handled in the 

order they are received; in future work, it might be useful to implement message priorities, 

allowing high-priority messages to bypass the message queues.  

 

4.2.3 Message Class 

 The Message class acts as an interface for user-defined messages. As mentioned in Section 

3.6.2, to successfully route messages, a layer header is attached to each user-defined message. The 

header structure and expected data can be seen in Figure 9. The message id is represented as a 

tuple, with the first element being the AS id, and the second element being a message id unique 

within the AS. Similarly, the source and destination are represented as tuples, with the AS id as 
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the first element and the module id as the second element. The communication type is a character 

specific to a protocol, while the message type and size are represented as integers. The Message 

class therefore contains methods to set and get the different header attributes. The class structure 

for the Message class is provided in Figure 16. 

 

 

 

 

 

 

 

 

 

 

To successfully transmit messages that can be reconstructed in the memory of another AS, 

message object data must be serialized and deserialized to and from a buffer of integers.  Thus, 

additionally to the setter and getter functions for the layer header attributes, Message defines 

virtual functions to be implemented by the class’s subclasses. These functions are Serialize, 

Deserialize, GetSize, and Clone.   

 Serialization is the process of translating an object’s attributes into an ordered container of 

a single type, in this work’s case an integer. The GetSize function is utilized to calculate and return 

the size of that container, which will be referred to as a data buffer. The Serialize method receives 

the data buffer as a parameter and populates it with integer data representing the object’s attributes. 

Fig. 16. Message Class Diagram. 



52 

 

 

Similarly, Deserialize also receives an already populated data buffer as a parameter, and “unpacks” 

or deciphers the data in the buffer to the corresponding object’s attributes. The Clone method in 

turn allows for the cloning of a message to another message of the same type.  

 Implementing Message’s virtual functions in the subsequent subclasses is the most 

involved piece from the AS developer’s perspective. Assigning data management to the AS 

developer allows for “typeless” communication of data buffers and enables the Comm class to 

remain independent of the application’s structure and data types. The Message class is sufficiently 

abstract to allow the autonomous software developer to serialization/deserialization is deep or 

shallow. Deep serialization/deserialization would involve including objects/variables that are 

referenced or pointed to by the message in the data buffer.  

 

4.2.4 Development of Protocol-Specific Classes 

 Protocol-specific communication is implemented using classes that inherit from the 

BaseComm class. Functionality is achieved by populating BaseComm’s virtual functions Setup 

and SendPtoP along with any other necessary methods. Along with implementing these classes for 

each supported protocol, the Communication Driver Developer also must modify the system and 

communication configuration files in order to reflect these additional capabilities. The process to 

implement a new protocol followed by the Communication Driver Developer is: 

• Inherit from BaseComm – Create a protocol-specific class that inherits from BaseComm 

• Edit Configuration Files – Edit the configuration file denoting which protocol should be 

utilized to conduct specific AS-to-AS communication to include this newly created 

protocol. This should be completed by the Framework Manager before full integration to 

the layer 
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• Populate Setup – Implement the virtual method Setup to handle any initialization needs 

pertaining to that protocol (i.e. map Bluetooth or TCP/IP addresses) 

• Populate SendPtoP – Implement the virtual method SendPtoP to achieve the transmission 

of a message utilizing the new protocol 

 

4.2.5 User-Defined Message Classes 

 The Autonomy Developer defines message types by implementing classes that inherit from 

the Message class. Along with the user-defined attributes and methods that the AS developer wants 

to implement, the virtual functions defined in Message – Serialize, DeSerialize, GetSize, and Clone 

– must be populated. The process to define a new message is: 

• Inherit from Message – Create a protocol-specific class that inherits from Message 

• Implement GetSize – Populate the GetSize function to return the summed integer size of all 

class attributes 

• Implement Serialize – Populate the Serialize method to translate object attributes into 

integers and insert them in the data buffer provided as a parameter 

• Implement DeSerialize – Populate the DeSerialize method to translate the integer data 

buffer provided as a parameter to object attributes 

• Implement Clone – Populate the DeSerialize method to correctly “unpack” the integers 

contained in the data buffer to their corresponding object attributes 

 

4.3 Example Protocol Implementations 

 The Communication Layer’s main purpose is to provide communication capabilities for 

any number of communication protocols. As detailed in the previous section protocol-specific 
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functionality can be provided using a distinct class and modifying the configuration files to reflect 

this extension. Two protocols (ROS and Bluetooth) were implemented to showcase this capability, 

their implementation process is highlighted below.  

 

4.3.1 Bluetooth 

 As mentioned in Section 3.5, for the layer to support Bluetooth communication a 

configuration file matching the AS ids to Bluetooth addresses is required. Using this file and the 

Setup function Bluetooth initialization is conducted. The Bluetooth class handles initialization 

using the Setup function, which sets the AS, reads the Bluetooth address configuration file and 

populates a structure – btAddresses, that maps AS ids to Bluetooth addresses.  

 Due to the nature of the protocol which halts execution while waiting for a message, a 

separate thread is required for listening. The thread is an attribute of the class and is implemented 

using the function ListeningThread, which is spawned from the initialization function. The 

ListeningThread will continuously “listen” for a connection until program termination. It will 

accept a data buffer from any address, and call BaseComm’s UpdateMessageLog to insert a 

received message to the appropriate queue. The class diagram for the Bluetooth protocol 

implementation is depicted in Figure 17, while the sequence diagram for BlueComm’s listening 

process can be seen in Figure 18.  
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Fig. 18. Bluetooth Listening Sequence Diagram. 

Fig. 17. Bluetooth Class Diagram. 
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The SendPtoP function is utilized to transmit messages. The function receives as 

parameters the message data buffer and destination. The destination is represented by the 

destination autonomous system’s “friendly” name. SendPtoP therefore identifies the Bluetooth 

address matching that “friendly” name in order to send the message. This process can be further 

studied in the sequence diagram shown in Figure 19.  

 

 

 

4.3.2 ROS 

 Communication through ROS does not require the creation of another configuration file to 

determine the topics. Instead, each autonomous system is associated with a topic denoted by its 

“friendly” name. In order to transmit a message to that AS, other autonomous systems publish 

messages to that topic. A different publisher is created for each topic; these are contained in the 

publishers map that maps each publisher to the id representing the topic it publishes to.  Like 

Fig. 19. Bluetooth Transmitting Sequence Diagram. 
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Bluetooth, the Setup function initializes ROS communication. Using a container of AS friendly 

names, a subscriber to the AS listening topic denoted by its “friendly” name is created, followed 

by the creation of Publishers for each AS.  

 The MessageCallBack function handles message insertion to the appropriate message 

queue, by calling BaseComm’s UpdateMessageLog function. The SendPtoP function in turn 

receives as parameters the data buffer for the message to be sent, as well as the “friendly” name of 

the AS destination. The publisher pertaining to the destination AS is then called to transmit the 

message. The class diagram for the new class is shown in Figure 20, while the processes for 

sending and receiving a message using ROS are shown in Figures 21 and 22 respectively.  

 

 

 

 

 

 

 

 

 

Fig. 20. RosComm Class Diagram. 
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Fig. 22. ROS Transmitting Sequence Diagram. 

Fig. 21. ROS Receiving Sequence Diagram. 
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CHAPTER 5 

RESULTS 

 

 This chapter examines the development of a simple collaborative autonomous system 

utilizing the T&E Framework along with the communication layer extension for demonstration 

purposes. The process of mapping the system to the T&E Framework is discussed first, throughout 

which the capabilities and benefits of the layer extension are showcased. An analysis for 

communication reliability afforded by the communication layer is also presented. 

 

5.1 Collaborative AS Example 

 To demonstrate the communication capabilities rendered by the framework extension, a 

simple collaborative autonomous system demonstration was developed. The encompassing system 

was comprised of three virtual autonomous ground vehicles denoted as rovers, and three virtual 

environments wherein the vehicles operated. The virtual environments act as data loggers, and do 

not impact the behavior of the rovers. The system followed a leader-follower approach, where one 

AS was chosen as the leader, with the remaining two systems classified as followers operating in 

a chain, only receiving messages from the previous rover in the chain. The AS behavior expected 

was to collaboratively perform the same movements, with the follower rovers moving as 

commanded by the leader AS. The leader AS determines which command the follower rovers must 

follow, sending that command to the first follower system, which in turn sends it to the second 

follower rover.  

 The communication protocols employed in this demonstration were Bluetooth and ROS. 

Bravo and Charlie operate as “simulated” rovers requiring wired communication – represented by 
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a ROS communication. Tango, however, operates as a “physical” rover requiring wireless 

communication – represented by a Bluetooth communication. Communication with each rover’s 

virtual environment requires “wired” communication – represented by communication through 

ROS. The rovers change their motion as directed by a command received by another AS. The 

command is represented by a single integer, with three possible values. A value of 0 indicates 

forward motion while a value of 1 indicates a left turn, and a value of 2 indicates that the rover 

should stop moving. 

It is important to note that one virtual environment for each autonomous system was needed 

due to the layer’s utilization of a polling approach for message handling by the Autonomy 

Developer.  This is because with the polling approach, only one message is handled at a time, 

whereas a virtual environment must handle location change messages from all rovers operating 

within it. An implementation of a callback approach for message handling would resolve this issue 

and is thus proposed for future work, which would allow one single virtual environment for all 

rovers.  

 

5.1.1 Configuration Files 

 Before the autonomous software can be implemented, the required configuration files must 

be set by the Framework Manager to ensure communication functionality. First, the autonomous 

systems’ and virtual environments’ “friendly” names must be mapped to distinct integer ids.  This 

configuration file is shown in Table 6, where the first row is the number of systems including the 

virtual environments. The corresponding communication table was realized as seen in Table 7.  
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TABLE 6 

DEMONSTRATION ID CONFIGURATION FILE 

 

6  

0 Alpha 

1 Charlie 

2 Tango 

3 VirtualEnv 

4 VirtualEnv2 

5 VirtualEnv3 

 

 

TABLE 7 

DEMONSTRATION COMMUNICATION TABLE 

 
 0 1 2 3 4 5 

0 X R X R X X 

1 R X B X R X 

2 X B X X X R 

3 R X X X X X 

4 X R X X X X 

5 X X R X X X 
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As previously mentioned, R denotes communication with ROS, while B denotes communication 

with Bluetooth, with X indicating where communication should not occur. The corresponding file 

mapping system ids to Bluetooth addresses is shown in Table 8. It is important to note that since 

the virtual environments do not perform communication using Bluetooth, their Bluetooth 

addresses are not required to be set in the configuration file. 

 

 

TABLE 8 

DEMONTRATION BLUETOOTH CONFIGURATION FILE 

 

1 
68:A3:C4:4A:B3:BA 

2 E4:B3:18:09:09:06 

 

 

5.1.2 User-Defined Messages 

 Two user-defined messages were developed for this demonstration. The Command 

message was realized to denote the action the leader is requesting the followers to perform. The 

Wheels message in turn was implemented to denote a vehicle’s wheel actions, which were sent 

from all vehicles to the virtual environment so that the vehicle position can be updated.  

 

5.1.2.1 Command Message 

 Following the process outlined in Section 4.2.5, the Command message class was defined 

as shown in Figure 23. The class implements the serialization and deserialization process 
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functions, while also providing a GetCommand function, which returns the integer command that 

a vehicle should perform. The possible command values are: 

• 0 – specifies that the rover should commence full forward 

• 1 – specifies that the rover should turn left 

• 2 – specifies that the rover should halt all movement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23. Command Message Class Diagram. 
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5.1.2.2 Wheels Message 

 Similarly following the process outlined in Section 4.2.5, the Wheels message class was 

defined as shown in Figure 24. Two additional functions were developed, a getRight and getLeft 

function. They return the values of the of right and left wheels respectively. This message is meant 

to be utilized by the virtual environment to update each AS position.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. Wheels Message Class Diagram. 
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As required by the Message creation process, a function was implemented that receives an 

integer as a parameter and returns an object of the Command message if the integer is 0, or the 

Wheels message if the integer is 1. A function pointer pointing to that function is then passed to 

the communication layer via parameter to the SetFcnPtr function.  

 

5.1.2.2 Leader AS 

 The leader vehicle is responsible for continuously directing the movement of the follower 

vehicles along with its own. The autonomous software is composed of two modules, Plan and Act, 

where Plan performs the decision-making to select the action itself and the follower vehicles 

should perform, and Act interfaces with the virtual actuators that will carry out vehicle movement. 

No Sense module is required since the example does not require the rovers to observe their 

environment. The algorithm for the Plan module is shown in Figure 25.  It is important to note that 

the variable timer is utilized to control when movement should be modified and is initially set to 

0 in an initialization function, while the variable turn is utilized to keep track of whether a turn 

message has already been sent and is initially set to false.  
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while terminationSignal is false 
    if timer < 5000000 
        set left and right wheel to 1 
        send Wheels message to VirtualEnv 
        timer++ 
    else if timer >= 5000000 && timer < 9000000 
        if turn is false 
            set turn to true 
            set command to 1 
            send Command message to Charlie 
        set left wheel to -10 and right wheel to 10 
        send Wheels message to VirtualEnv 
        timer++ 
   else if timer >= 9000000 && timer < 12000000 
        if turn is true 
           set turn to false 
           set command to 0 
           send Command message to Charlie 
        set left and right wheel to 1 
        send Wheels message to VirtualEnv 
        timer++ 
   else if timer >= 12000000 && timer < 15000000 
        if turn is false 
           set turn to true 
           set command to 1 
           send Command message to Charlie 
        set left wheel to -10 and right wheel to 10 
        send Wheels message to VirtualEnv 
        timer++ 

   else if timer >= 15000000 && timer < 19000000 
        if turn is true 
           set turn to false 
           set command to 0 
           send Command message to Charlie 
        set left and right wheel to 1 
        send Wheels message to VirtualEnv 
        timer++ 

 

Fig. 25. Leader AS Plan Algorithm. 

 

 The values that timer is compared to where chosen arbitrarily. If the timer is less than 

5000000, the rover should go straight, therefore both wheels are set to 1, and the Wheels message 
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is sent to the rover’s virtual environment denoted as VirtualEnv, followed by an incrementation of 

timer. If timer is greater than or equal to 5000000 and less than 6000000, the program then checks 

if turn is false. If turn is false, a turn command has not been sent to the follower rover, the 

command is therefore set to 1, with the Command message being sent to Charlie. The Wheels 

message’s left wheel value is then set to -10 while the right value is set to 10, with the message 

then being sent to VirtualEnv. This will cause the vehicle to perform a left turn pivot. The next two 

conditions directly follow the former two conditions with the only change being the values that 

timer is compared to.   

 

5.1.2.3 Follower AS 

 The follower rover Charlie’s main purpose is to wait for movement commands from the 

leader, forward those commands to Tango, and follow the commands once received. The 

autonomous software is composed of two modules, Plan and Act, where Plan deciphers the 

commands sent by the leader, forwards them to the next follower, and chooses the appropriate 

movement, while Act interfaces with the virtual actuators that will carry out vehicle movement. 

The algorithm for the Plan module is shown in Figure 26. It is important to note that two variables 

prevL and prevR are utilized to keep track of the previous values of the left and right wheels and 

are both initially set to 1.  This allows the rover to keep its previous motion when a new command 

has not been sent. 
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while terminationSignal is false 
    check whether there is a message 
        if the message type is 0 
            if command = 0 
               set left and right wheels to 1 
               send Wheels message to VirtualEnv2 
               send Command message to Tango 
               set prevL and prevR to 1  
            if command = 1  
               set left wheel to -10 and right wheel to 10 
               send Wheels message to VirtualEnv2 
               send Command message to Tango 
               set prevL to -10 and prevR to 10  
            if command = 2 
               set left and right wheels to 0 
               send Wheels message to VirtualEnv2 
               send Command message to Tango 
              set prevL and prevR to 0  
    else  
       set left wheel to prevL and right wheel to prevR 
       send Wheels message to VirtualEnv2 

Fig. 26. Follower AS Plan Algorithm. 

 

 

 While a termination signal has not been set, the software first checks if there is a message 

to receive. If there is a message and the message type is 0, the message command value is then 

checked. If the command received was 0, both the left and right wheels are set to 1 for forward 

motion, the Wheels message is then sent to the rover’s virtual environment, followed by the 

forwarding of the Command message to Tango. PrevL and prevR are both set to 1. Similarly, if 

the command received was 1, the left wheel is set to -10 while the right wheel is set to 10 for a left 

pivot turn motion. The Wheels message is then sent to VirtualEnv2 while the Command message 

is forwarded to Tango, and prevL is set to -10 with prevR being set to 10. However, if the command 
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is 2, both the left and right wheels are set to 0 to stop all motion. The Wheels message is then sent 

to the rover’s virtual environment, while the Command message is once again forwarded to Tango. 

The variables prevL and prevR are also updated to 0. If there was no message received, the left 

and right wheel values are respectively set to prevL and prevR, with the Wheels message being 

sent to the virtual environment.  

 Tango’s software algorithm is identical to Charlie’s shown in Figure 26, except it does not 

forward the Command message to any AS, and it sends the Wheels messages to VirtualEnv3, i.e. 

its respective virtual environment. It is important to note that all rovers start moving straight as 

soon as the simulation begins; thus, an initial command to go straight is not needed. 

 

5.1.2.4 Virtual Environment 

 The virtual environments’ purpose was to monitor and display AS positions throughout the 

experiment. This was achieved by receiving periodic Wheels messages from their respective 

autonomous systems, which were utilized to calculate each vehicle’s new position knowing its 

previous position.  

 

5.1.3 Demonstration Conclusions 

 The demonstration indicates promise in utilizing the framework to conduct AS-to-AS or 

AS-to-VE communication. The successful transmission of the Command and Wheels message was 

studied, as well as whether there was appropriate response from receiving systems. The time-

stamped location and orientation of each AS was recorded using data outputted by the virtual 

environments. The timestamp of when a Command message was sent by the leader (Alpha) was 
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also recorded, along with the value of the command. Similarly, the timestamp and command values 

were recorded each time a Command message was received by an AS. Tables 9, 10, and 11 show 

the recorded Command data, with the left column being the time a command was received and the 

right column denoting the command value. Table 12 depicts the timing that each different 

command was received for each of the three autonomous systems. Tables 13, 14, and 15 show the 

recorded location data, with columns containing the time, X, Y, and theta angle.  The elements 

that are bold and italicized showcase where a change in one or more values should occurr due to a 

Command message. Orange highlighted blocks show where a change in angle should be observed, 

while blue highlighted blocks show where a change in X & Y should be observed. 

 

 

TABLE 9 

DEMONTRATION ALPHA COMMAND DATA 

 
Time Command (Sent) 

08:36:54 1 – Turn Left 

08:36:57 0 – Go Straight 

08:37:00 1 – Turn Left 

08:37:02 0 – Go Straight 
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TABLE 10 

DEMONTRATION CHARLIE COMMAND DATA 

 
Time Command (Received) 

08:36:54 1 – Turn Left 

08:36:57 0 – Go Straight 

08:37:00 1 – Turn Left 

08:37:02 0 – Go Straight 

 

 

 

TABLE 11 

DEMONTRATION TANGO COMMAND DATA 

 
Time Command (Received) 

08:36:56 1 – Turn Left 

08:36:57 0 – Go Straight 

08:37:00 1 – Turn Left 

08:37:04 0 – Go Straight 

 

TABLE 12 

DEMONTRATION COMMAND TIMING 

 

 Left Turn 
Command 

Straight Command Left Turn 
Command 

Straight Command 

Alpha 08:36:54 08:36:57 08:37:00 08:37:02 

Charlie 08:36:54 08:36:57 08:37:00 08:37:02 

Tango 08:36:56 08:36:57 08:37:00 08:37:04 
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TABLE 13 

DEMONTRATION ALPHA LOCATION DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time X Y Theta 

08:36:52 -190.494 -200 0 

08:36:53 -177.319 -200 0 

08:36:54 -155.246 -200 0.005 

08:36:55 -155.246 -200 12.4502 

08:36:56 -155.246 -200 61.2503 

08:36:57 -155.26 -199.991 148.145 

08:36:58 -157.6 -198.548 148.145 

08:36:59 -168.346 -186.49 148.145 

08:37:00 -179.959 -184.765 148.225 

08:37:01 -179.959 -184.765 192.221 

08:37:02 -179.979 -184.865 259.261 

08:37:03 -181.371 -192.174 259.261 

08:37:04 -183.719 -204.504 259.261 

08:37:05 -186.126 -217.14 259.261 
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TABLE 14 

DEMONTRATION CHARLIE LOCATION DATA 

 
Time X Y Theta 

08:36:52 200 5.73321 90 

08:36:53 200 15.7074 90 

08:36:54 200 32.7212 90.005 

08:36:55    

08:36:56 200 32.7212 91.37 

08:36:57 199.999 32.7223 127.23 

08:36:58 199.252 33.7033 127.23 

08:36:59 191.85 43.4176 127.23 

08:37:00 185.704 51.4844 127.24 

08:37:01 185.704 51.4844 161.29 

08:37:02 185.703 51.4835 222.206 

08:37:03    

08:37:04 184.657 50.5424 222.206 

08:37:05 176.74 43.3959 222.206 
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TABLE 15 

DEMONTRATION TANGO LOCATION DATA 

 
Time X Y Theta 

08:36:52 191.495 60 180 

08:36:53 186.906 60 180 

08:36:54 179.16 60 180 

08:36:55 174.36 60 180 

08:36:56 173.141 60 180.005 

08:36:57 168.589 59.9996 196.135 

08:36:58 164.879 58.9251 196.135 

08:36:59 159.99 57.5111 196.135 

08:37:00 158.474 57.07 196.14 

08:37:01 158.474 57.07 209.38 

08:37:02 158.474 57.07 226.901 

08:37:03 158.474 57.07 244.655 

08:37:04 158.482 56.8882 272.683 

08:37:05 158.736 51.449 272.683 

 

 

As can be seen in Tables 9 through 15, all Command messages transmitted are successfully 

received. It can also be inferred that the Wheels messages are being transmitted successfully due 

to the continuous change in data even when not all the points are listed. The response and delivery 

time afforded by the framework seem sufficient for this application. Bravo and Charlie show same 
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second delivery time, with equal response time. Delivery time from Charlie to Tango, however, 

ranges from same second to a two second delay. This could be the result of various reasons. A 

small delay could be attributed to the fact that Charlie sets and sends its wheel information before 

sending the command to Tango. Additionally, the communication between Tango and Charlie is 

conducted using Bluetooth, which can sometimes require more than one attempt at successful 

transmission. Charlie is also missing two seconds of data; it is inferred that the time delay 

associated with additional attempts at transmission resulted in no wheel information being sent to 

the environment during those seconds. The graphs for each rover’s X,Y positions and orientation 

angles can be studied in Appendix A.  

 

5.2 Communication Reliability 

 The communication layer’s reliability for the two protocols implemented is addressed in 

this section. The purpose is to both demonstrate that the communication layer supports introducing 

protocols to improve message reliability and the inherent reliability of the communications 

implemented. Message transmission and delivery between three systems, all utilizing both 

protocols, was recorded. Each system sent a broadcast message, and five point-to-point messages 

(the destination of which was randomly selected).  The experiment was conducted 20 times. 

 

5.2.1 Configuration 

Before the software for the reliability analysis could be implemented, the configuration 

files were set. Three systems were utilized, their “friendly” names being Bravo, Charlie, and Delta; 

the configuration file mapping the “friendly” names to distinct ids is shown in Table 16.  
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TABLE 16 

RELIABILITY ANALYSIS ID CONFIGURATION FILE 

 

3  

0 Bravo 

1 Charlie 

2 Delta 

 

 

 

 The chosen communication protocol for each system to system communication was 

arbitrarily chosen, ensuring that all systems perform communication using both the ROS and 

Bluetooth protocols. The communication table configuration file is shown in Table 17. The 

corresponding file mapping AS ids to Bluetooth addresses is shown in Table 18. 

 

 

TABLE 17 

RELIABILITY ANALYSIS COMMUNICATION TABLE FILE 

 
 0 1 2 

0 X R B 

1 B X R 

2 R B X 
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TABLE 18 

RELIABILITY ANALYSIS BLUETOOTH ADDRESS CONFIGURATION FILE 

 

0 68:A3:C4:4A:B3:BA 

1 E4:B3:18:09:09:06 

2 4C:ED:DE:9E:39:10 

 

 

 

 Two user-defined messages were developed to ensure successful transmission of differing 

message types. Their class diagrams are shown in Figures 27 and 28. As required by the Message 

creation process, a function was implemented that receives an integer as a parameter and returns 

an object of the Message1 message if the integer is 0, or the Message2 message if the integer is 1. 

A function pointer pointing to that function is then passed to the communication layer via 

parameter to the SetFcnPtr function.  The algorithm for all systems is identical, with the only 

changes being the two destinations randomly selected. This can be studied in Figure 29.  
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Fig. 27. Message1 Class Diagram. 
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Fig. 29. Reliability Analysis Algorithm. 

 

initialization 
create and initialize Message1 
send broadcast of Message1 
delete Message1 
set counter = 0 
create and initialize Message2 
while counter < 5 
   randomly select destination 
   send point-to-point of Message2 to destination 
   counter = counter + 1 
delete Message2 
 

Fig. 28. Message2 Class Diagram. 
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5.2.2 Reliability Analysis Conclusions 

 As mentioned previously, 20 trials were conducted to analyze the transmission of messages 

utilizing the communication layer. For each trial, each of the three autonomous systems sent 7 

messages, 5 point-to-point messages, and one message in broadcast form. The data collected is 

summarized in Tables 19 and 20. The total of each system’s attempts, successful transmissions, 

and receival of messages for each of the two protocols are shown in Table 18, while the secondary 

transmission attempts are shown in 20.   

 

 

TABLE 19 

RELIABILITY ANALYSIS MESSAGE STATISTICS 

 
 ROS 

Transmit 
Attempts 

Bluetooth 
Transmit 
Attempts 

ROS 
Transmit 
Successes 

Bluetooth 
Transmit 
Successes 

ROS 
Receivals 

Bluetooth 
Receivals 

Bravo 65 75 65 74 60 69 

Charlie 69 71 69 69 60 82 

Delta 54 86 54 82 68 74 

 

 

TABLE 20 

RELIABILITY ANALYSIS SECONDARY ATTEMPTS 

 
 ROS Additional Attempts Bluetooth Additional Attempts 

Bravo 0 5 

Charlie 0 7 

Delta 0 13 
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A total of 420 messages were sent, but 413 were received, showing a 98.33% transmission success. 

All unsuccessful transmissions occurred when using the Bluetooth protocol, which shows that 

setting the number of attempts to three if a transmission was unsuccessful does not necessarily 

result in 100% successful communication. It does, however, lead to improved reliability. This is 

because the total additional attempts is not divisible by three, meaning that a first or second attempt 

led to the message being delivered. More extensive testing in different scenarios must be conducted 

in order to fully gauge the communication layer’s reliability.   

 

5.3 Communication Layer Impact  

 Both experiments only required the Autonomous Software Developer to implement the four 

functions pertaining to serialization/deserialization (Serialize, DeSerialize, GetSize, and Clone), 

as well as a function that given an integer id returns an object of the type that corresponds to this 

id, which is then populated by the incoming message. The Autonomous Software Developer was 

also required to set a function pointer to point to that function and pass it to the framework through 

a call to setMsgFcnPtr. The Autonomous Software Developer was then free to use the 

communication functionality as needed, while being shielded from the communication 

implementation. The Communication Driver Developer was in turn only responsible for 

developing protocol specific implementations, while the Framework Manager was responsible for 

modifying the configuration files as needed. The reconfiguration of configuration files or the 

addition of another protocol implementation are events the autonomous software and Autonomy 

Developer are oblivious to.  

 



82 

 

 

CHAPTER 6 

CONCLUSIONS 

  

 The communication layer detailed in this thesis was designed to meet the communication 

needs of collaborative autonomous systems throughout their development cycle. By utilizing this 

layer in conjunction with the T&E Framework presented in [4], the development and testing of 

collaborative systems can be enhanced. The ability to concurrently utilize multiple communication 

protocols enables the communication between systems operating at any part of the virtuality-

reality spectrum, thereby providing the ability to begin testing at the early stages of development. 

With the architecture closely following the layers of the OSI model [26], compatibility with many 

robotic applications can be expected. Communication capabilities are provided to all autonomous 

software modules, with the implementation of clear interfaces isolating the autonomous developer 

from the intricacies of specific protocol implementations. By requiring the definition of user-

defined messages the transmission of various message types by the layer is ensured; this grants the 

autonomous developers a great degree of flexibility in the data that can be communicated. The 

support of different communication protocols, along with a well-defined process for additional 

implementations enables flexibility in hardware selection. Additionally, the communication layer 

provides the ability to easily reconfigure communication for testing to meet the changing 

communication needs as the operating environment moves through the levels of the virtuality-

reality spectrum; this is achieved without any change to the autonomous software between 

reconfigurations.   

 In order to demonstrate the communication capabilities afforded by this layer a leader-

follower navigation application was developed. The application not only illustrated the capability 
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to concurrently collaborate utilizing different communication protocols but also the ease of use of 

the functionalities provided. The autonomy developer only needs to provide the ability to serialize 

and deserialize message. At that point, the underlying communication configuration can be 

modified to meet the current state of testing in the virtuality-reality section. A reliability analysis 

of message transmission between three systems using two distinct protocols demonstrated the 

message transmission reliability that can be guaranteed by the communication layer when the 

development process is followed. 

 

6.1 Future Work 

While the layer developed demonstrates a valid proof of concept there are several 

improvements that could enhance communication capabilities. Communication speed can be 

improved by introducing another execution thread for sending messages. This would also allow 

the autonomous software to continue its execution and not be impeded by message transmission. 

A notable addition to the communication layer would be the implementation of a callback 

approach to message handling. This would grant autonomous developers the ability to immediately 

process messages if necessary. A priority could also be added to messages to allow them to bypass 

the message queues. Additionally, these extensions would allow the developer a choice in selecting 

which message processing approach would be most beneficial to their application (polling or 

callback). A time-stamp parameter may also be incorporated in the message header, which can in 

turn be utilized to ensure that messages are stored in the order they were intended to be received. 

An analysis of the delay associated with message delivery would also be beneficial in determining 

whether the communication layer can be utilized in applications where time is critical. Finally, 
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conducting additional testing with more sophisticated and intensive applications could examine 

the robustness of the encapsulating T&E framework expanded by this research.  
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APPENDICES 

APPENDIX A: DEMONSTRATION EXAMPLE GRAPHS 

 

  

Fig. A-1 X-Positions of Rovers. 
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Fig. A-2 Y-Positions of Rovers. 
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Fig. A-3 Orientation of Rovers. 
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