25 research outputs found

    A coalgebraic perspective on linear weighted automata

    Get PDF
    Weighted automata are a generalization of non-deterministic automata where each transition, in addition to an input letter, has also a quantity expressing the weight (e.g. cost or probability) of its execution. As for non-deterministic automata, their behaviours can be expressed in terms of either (weighted) bisimilarity or (weighted) language equivalence. Coalgebras provide a categorical framework for the uniform study of state-based systems and their behaviours. In this work, we show that coalgebras can suitably model weighted automata in two different ways: coalgebras on Set (the category of sets and functions) characterize weighted bisimilarity, while coalgebras on Vect (the category of vector spaces and linear maps) characterize weighted language equivalence. Relying on the second characterization, we show three different procedures for computing weighted language equivalence. The first one consists in a generalizion of the usual partition refinement algorithm for ordinary automata. The second one is the backward version of the first one. The third procedure relies on a syntactic representation of rational weighted languages

    Minimization via duality

    Get PDF
    We show how to use duality theory to construct minimized versions of a wide class of automata. We work out three cases in detail: (a variant of) ordinary automata, weighted automata and probabilistic automata. The basic idea is that instead of constructing a maximal quotient we go to the dual and look for a minimal subalgebra and then return to the original category. Duality ensures that the minimal subobject becomes the maximally quotiented object

    A Definition Scheme for Quantitative Bisimulation

    Get PDF
    FuTS, state-to-function transition systems are generalizations of labeled transition systems and of familiar notions of quantitative semantical models as continuous-time Markov chains, interactive Markov chains, and Markov automata. A general scheme for the definition of a notion of strong bisimulation associated with a FuTS is proposed. It is shown that this notion of bisimulation for a FuTS coincides with the coalgebraic notion of behavioral equivalence associated to the functor on Set given by the type of the FuTS. For a series of concrete quantitative semantical models the notion of bisimulation as reported in the literature is proven to coincide with the notion of quantitative bisimulation obtained from the scheme. The comparison includes models with orthogonal behaviour, like interactive Markov chains, and with multiple levels of behavior, like Markov automata. As a consequence of the general result relating FuTS bisimulation and behavioral equivalence we obtain, in a systematic way, a coalgebraic underpinning of all quantitative bisimulations discussed.Comment: In Proceedings QAPL 2015, arXiv:1509.0816

    Bisimulation of Labeled State-to-Function Transition Systems of Stochastic Process Languages

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, admit multiple transition schemes from states to functions of finite support over general semirings. As such they constitute a convenient modeling instrument to deal with stochastic process languages. In this paper, the notion of bisimulation induced by a FuTS is proposed and a correspondence result is proven stating that FuTS-bisimulation coincides with the behavioral equivalence of the associated functor. As generic examples, the concrete existing equivalences for the core of the process algebras ACP, PEPA and IMC are related to the bisimulation of specific FuTS, providing via the correspondence result coalgebraic justification of the equivalences of these calculi.Comment: In Proceedings ACCAT 2012, arXiv:1208.430

    Coinduction up to in a fibrational setting

    Get PDF
    Bisimulation up-to enhances the coinductive proof method for bisimilarity, providing efficient proof techniques for checking properties of different kinds of systems. We prove the soundness of such techniques in a fibrational setting, building on the seminal work of Hermida and Jacobs. This allows us to systematically obtain up-to techniques not only for bisimilarity but for a large class of coinductive predicates modelled as coalgebras. By tuning the parameters of our framework, we obtain novel techniques for unary predicates and nominal automata, a variant of the GSOS rule format for similarity, and a new categorical treatment of weak bisimilarity

    Algebra, coalgebra, and minimization in polynomial differential equations

    Full text link
    We consider reasoning and minimization in systems of polynomial ordinary differential equations (ode's). The ring of multivariate polynomials is employed as a syntax for denoting system behaviours. We endow this set with a transition system structure based on the concept of Lie-derivative, thus inducing a notion of L-bisimulation. We prove that two states (variables) are L-bisimilar if and only if they correspond to the same solution in the ode's system. We then characterize L-bisimilarity algebraically, in terms of certain ideals in the polynomial ring that are invariant under Lie-derivation. This characterization allows us to develop a complete algorithm, based on building an ascending chain of ideals, for computing the largest L-bisimulation containing all valid identities that are instances of a user-specified template. A specific largest L-bisimulation can be used to build a reduced system of ode's, equivalent to the original one, but minimal among all those obtainable by linear aggregation of the original equations. A computationally less demanding approximate reduction and linearization technique is also proposed.Comment: 27 pages, extended and revised version of FOSSACS 2017 pape

    Algebra and Coalgebra of Stream Products

    Get PDF
    We study connections among polynomials, differential equations and streams over a field ?, in terms of algebra and coalgebra. We first introduce the class of (F,G)-products on streams, those where the stream derivative of a product can be expressed as a polynomial of the streams themselves and their derivatives. Our first result is that, for every (F,G)-product, there is a canonical way to construct a transition function on polynomials such that the induced unique final coalgebra morphism from polynomials into streams is the (unique) ?-algebra homomorphism - and vice-versa. This implies one can reason algebraically on streams, via their polynomial representation. We apply this result to obtain an algebraic-geometric decision algorithm for polynomial stream equivalence, for an underlying generic (F,G)-product. As an example of reasoning on streams, we focus on specific products (convolution, shuffle, Hadamard) and show how to obtain closed forms of algebraic generating functions of combinatorial sequences, as well as solutions of nonlinear ordinary differential equations
    corecore