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Abstract. We study weighted automata from both an algebraic and a
coalgebraic perspective. In particular, we consider equations and coequa-
tions for weighted automata. We prove a duality result that relates sets
of equations (congruences) with (certain) subsets of coequations. As a
consequence, we obtain two equivalent but complementary ways to de-
fine classes of weighted automata. We show that this duality cannot be
generalized to linear congruences in general but we obtain partial results
when weights are from a field.

1 Introduction

Weighted automata are a generalization of non-deterministic automata intro-
duced by Schützenberger [14]. Every transition is associated with an input letter
from an alphabet A and a weight expressing the cost (or probability, time, re-
sources needed) of its execution. This weight is typically an element of a semiring.
The multiplication of the semiring is used to accumulate the weight of a path
by multiplying the weights of each transition in the path, while the addition of
the semiring computes the weight of a string w by summing up the weights of
the paths labeled with w [11]. In this way, the behaviour of weighted automata
is given in terms of formal power series, i.e. functions assigning a weight to each
finite string w over A.

Weighted automata may have a non-deterministic behaviour because differ-
ent transitions from the same state may be labeled by the same input letter,
with possibly different weights. However, they can be determinized by assigning
a linear structure to the state-space using a generalization of the powerset con-
struction for non-deterministic automata [5]. As such, determinized weighted
automata are typically infinite-state, but determinization allows us to study
weighted automata both from an algebraic perspective and a coalgebraic one.
From the algebraic perspective, a (determinized) weighted automaton is just an
algebra with a unary operation for each input symbol, whereas coalgebraically,
a weighted automaton is a deterministic transition system with output weights
associated to each state.
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In this context, and building on the work by [3] on ordinary determinis-
tic automata and on the duality between reachability and observability [2, 6, 4],
we study equations and coequations for weighted automata. In general, equa-
tions characterize classes of algebras called varieties [7], whereas coequations
characterize classes of coalgebras, so-called covarieties [13]. Using the algebraic
perspective, an equation for a weighted automaton is just a pair of words (u, v).
Satisfaction becomes reachability: a weighted automaton satisfies an equation
(u, v) if from any state, the linear combination of states reached after reading u
is the same as the one reached after reading v [3].

Dually, the coalgebraic perspective allows us to define coequations for weighted
automata as subsets (or predicates) of power series. A weighted automaton M
satisfies a coequation S if for any function associating an output weight to each
state, the behaviour of M from any initial state is a power series in S.

Our main result is a duality between sets of equations called congruences
and sets of coequations called closed subsystems. More precisely, we prove that
the classes of weighted automata defined by congruences are in a one-to-one
correspondence with classes of weighted automata defined by closed subsystems.
This allows, for example, to give equational characterizations to some specific
subsets of power series and, vice versa, to define the least subset of power series
specified by a set of equations.

In the second part of the paper, we retain the linear structure of the transi-
tions of the determinized weighted automata, allowing for a more general kind
of equations, called linear. In general, a full duality result does not hold any-
more, but when the weights come from a field, we still have one direction of it:
a variety defined by a linear congruence can be recovered from a corresponding
covariety. As an example, we show that linear congruences (under certain condi-
tions) are finitely generated by a set of equations, using the fact that by Hilbert
basis theorem [10, VIII, Theorem 4.9], linear congruences correspond to ideals
of polynomials.

We will proceed as follows. After some mathematical preliminaries, in Sec-
tion 3 we show how to construct the set of equations and coequations for a given
weighted automaton. In Section 4, we give the duality result between congru-
ences and closed subsystems. In Section 5, we move from Set to vector spaces
and linear equations. We conclude, in Section 6, with a discussion of related
work.

2 Preliminaries

In this section, we will define the main concepts and notation used in this paper.
Given two sets X and Y we define Y X = {f | f : X → Y }. For a function
f ∈ Y X , we define the kernel and the image of f by

ker(f) = {(x1, x2) ∈ X ×X | f(x1) = f(x2)} Im(f) = {f(x) | x ∈ X}.

For any set A we denote by A∗ the free monoid on A, its identity element will
be denoted by ε. Given an element f ∈ XA∗ and w ∈ A∗, we define the right
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derivative fw of f with respect to w and the left derivative wf of f with respect
to w as the elements wf, fw ∈ XA∗ such that for every u ∈ A∗,

fw(u) = f(wu), and wf(u) = f(uw).

Let A be an alphabet (not necessarily finite), a deterministic automaton on
A is a pair (X,α) where α : X×A→ X is a function. We can add an initial state
x0 ∈ X or an output function c : X → O to get a pointed automaton (X,x0, α)
or a Moore automaton (X, c, α) with outputs in O, respectively. For any x ∈ X
and u ∈ A∗ we define u(x) inductively as ε(x) = x and wa(x) = α(w(x), a).

We have that pointed automata are F -algebras for the endofunctor F on Set
given by F (X) = 1 + (A×X). By using the correspondence α : X ×A→ X ⇔
α′ : X → XA, given by α(x, a) = α′(x)(a), Moore automata with outputs in O
are G-coalgebras for the endofunctor G on Set given by G(X) = O ×XA. The
initial F–algebra is (A∗, ε, τ), where the transition function τ is concatenation,
that is τ(w, a) = wa, for all w ∈ A∗ and a ∈ A, and for any pointed automaton
(X,x0, α) the unique F–algebra morphism rx0 : (A∗, ε, τ) → (X,x0, α) is given
by rx0(w) = w(x0). Dually, the final G–coalgebra is (OA

∗
, ε̂, τ̂), where ε̂(f) =

f(ε) and τ̂(f)(a) = fa, and for any Moore automaton (X, c, α) with outputs
in O, the unique G–coalgebra morphism oc : (X, c, α) → (OA

∗
, ε̂, τ̂) is given by

oc(x) = λw.c(w(x)) ∈ OA∗ .
A semiring S is an algebra S = (S,+, ·, 0, 1), where + and · are binary oper-

ations and 0 and 1 are nullary operations, such that (S,+, 0) is a commutative
monoid, (S, ·, 1) is a monoid, · distributes over + on the left and on the right,
and 0 · s = s · 0 = 0 for every s ∈ S. Given a semiring S, a semimodule over
S, or S–semimodule, is a commutative monoid R = (R,+, 0) together with an
S-left-action · : S ×R→ R such that

(s+ s′) · r = s · r + s′ · r 0 · r = 0 1 · r = r
s · (r + r′) = s · r + s · r′ s · 0 = 0 s · (s′ · r) = (s · s′) · r

for any s, s′ ∈ S and r, r′ ∈ R. We will often write sr instead of s · r. For an
alphabet A and a semiring S, elements in SA∗ are called power series. Given
a set X, the free S–semimodule on the generators X, denoted by V (X), is the
S–semimodule whose underlying set is V (X) = {φ ∈ SX | supp(φ) is finite},
where supp(φ), the support of φ, is defined as supp(φ) = {x ∈ X | φ(x) 6= 0}.
Addition in V (X) is component-wise, 0 ∈ V (X) is the constant function with 0
as its value, and the action of S over V (X) is multiplication of a constant by a
function. For φ ∈ V (X) we have the correspondence φ ⇔ s1 · x1 + · · ·+ sn · xn,
where supp(φ) = {x1, . . . , xn} and φ(xi) = si, i = 1, . . . , n. Notice that we are
using formal sums here. According to this correspondence there is a copy of X
in V (X), namely x 7→ 1 · x; in this case, 1 · x will be simply denoted as x.

A linear map between S–semimodules S1 and S2 is a function h : S1 → S2

such that for any x, y ∈ S1 and c, d ∈ S, h(cx + dy) = ch(x) + dh(y). Let S
be an S–semimodule, X a set, and f : X → S a function. We define the linear
extension of f as the linear map f̄ : V (X)→ S given by

f̄(c1 · x1 + · · ·+ cn · xn) = c1f(x1) + · · ·+ cnf(xn).
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A weighted automaton with input alphabet A and weights over a semiring S
is a pair (X,α), where X is a set (not necessarily finite) and α : X → V (X)A

is a function. We can add an initial state i : 1 → V (X) and/or a final state
function, or colouring, f : X → S, yielding the following situation:

S

V (X)A

V (X)

ᾱ

f̄1
i

Notice that if we remove f̄ we have a pointed automaton, and if we remove i
we have a Moore automaton with outputs in S. In particular, every weighted
automaton (X,α) gives rise to a deterministic automaton (V (X), ᾱ).

An equation is a pair (u, v) ∈ A∗ × A∗, sometimes also denoted by u = v.
Given a weighted automaton (X,α) and an equation (u, v) ∈ A∗×A∗, we define
(X,α) |= (u, v); and say (X,α) satisfies the equation (u, v), as follows:

(X,α) |= (u, v) ⇔ ∀φ ∈ V (X) u(φ) = v(φ),

recall the definition of u(x) at the beginning of this section. For any set of
equations E ⊆ A∗ × A∗ we write (X,α) |= E if (X,α) |= (u, v) for every
(u, v) ∈ E. Observe that since ᾱ is the linear extension of α, the condition
∀φ ∈ V (X) u(φ) = v(φ) is equivalent to ∀x ∈ X u(x) = v(x). In other words,
u = v is satisfied if the linear combination of states in V (X) reached after u
from every x ∈ X is equal to that reached after v.

A set of coequations is a subset D ⊆ SA∗ . We define (X,α) |= D; and say
(X,α) satisfies the set of coequations D, as follows:

(X,α) |= D ⇔ ∀f ∈ SX , φ ∈ V (X) of̄ (φ) ∈ D

The power series of̄ (φ) is the behaviour of the state φ in (X,α) with respect to
the colouring f . According to this, (X,α) |= D means that D includes all the
possible behaviours for the automaton (X,α).

An equivalence relation C on A∗ is a congruence on A∗ if for any t, u, v, w ∈
A∗, (t, v) ∈ C and (u,w) ∈ C imply (tu, vw) ∈ C. If C is a congruence on
A∗, the congruence quotient A∗/C has a pointed automaton structure A∗/C =
(A∗/C, [ε], [τ ]) with transition function given by [τ ]([w], a) = [τ(w, a)] = [wa],
which is well defined since C is a congruence.

3 Free and cofree construction for weighted automata

In this section we will show how to construct the maximum set of equations
and the minimum set of coequations satisfied by a weighted automaton (X,α)
(thereby generalizing the approach of [3, Section 5]). We use the notation freew
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and cofreew to distinguish between the free and cofree construction for weighted
automata from the construction free and cofree for deterministic automata
defined in [3], respectively.

To get the maximum set of equations of (X,α) we are going to construct the
pointed deterministic automaton freew(X,α) by taking the following steps:

1. Define the pointed deterministic automaton
∏

(X,α) = (
∏
x∈X V (X), ∆, α̂)

where α̂ is the product of ᾱ |X| times, that is α̂(θ)(a)(x) = ᾱ(θ(x))(a), and
∆ ∈

∏
x∈X V (X) is given by ∆(x) = x. Then, by initiality of A∗ = (A∗, ε, τ),

we get a unique F -algebra morphism r∆ : A∗ →
∏

(X,α).
2. Define freew(X,α) and Eqw(X,α) as

freew(X,α) := A∗/ ker(r∆) and Eqw(X,α) := ker(r∆)

By construction, we have the following theorem.

Theorem 1. Eqw(X,α) is the maximum set of equations satisfied by (X,α).

Example 2. Consider the weighted automaton with input alphabet A = {a, b}
and weights on the semiring (field) Z3 given by the following diagram:

x y

a, 1; b, 2
b, 1

a, 1; b, 1

b, 2

According to the definition freew(X,α) = A∗/ ker(r∆) ∼= Im(r∆), so in order to
construct freew(X,α) we only need to construct the reachable part of

∏
(X,α)

from the state ∆ = (x, y). By doing that we get the automaton:

(x, y) (2x+ y, 2x+ y) (0, 0)

a a a, b

b b

Thus Eqw(X,α) is the congruence generated by {a = ε, bb = bbb} and freew(X,α)
is the automaton with states [ε] = a∗, [b] = a∗ba∗, and [bb] = a∗ba∗b(a+ b)∗. �

Now we will show how to get the minimum set of coequations satisfied by
(X,α). First some notation: for any family of sets {Xi}i∈I we denote by

∐
i∈I Xi

the disjoint union (coproduct in Set) of the family which is given by
∐
i∈I Xi =⋃

i∈I{i}×Xi. We will construct the Moore automaton cofreew(X,α) by taking
the following steps:

1. Define the Moore automaton
∐

(X,α) = (
∐
f∈SX V (X), Φ, α̃) where α̃ and

Φ are given by α̃(f, φ)(a) = (f, a(φ)) and Φ(f, φ) = f̄(φ). Then, by finality
of SA∗ =

(
SA∗ , ε̂, τ̂

)
, we get a unique G-coalgebra morphism oΦ :

∐
(X,α)→

SA∗ .
2. Define cofreew(X,α) and coEqw(X,α) as

cofreew(X,α) = coEqw(X,α) := Im(oΦ).

Similarly as in the case of equations we have the following theorem.

Theorem 3. coEqw(X,α) is the minimum set of coequations satisfied by (X,α).
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4 Duality between equations and coequations

In this section, we will use the free and cofree construction given in [3, Section
5], to show a duality result between equations and coequations (here the we are
going to use the semiring S as a set of colours on the coalgebraic side). In the
sequel S will be a fixed semiring.

Proposition 4. For every congruence quotient A∗/C,

cofree(A∗/C) = {f ∈ SA
∗
| C ⊆ ker(f)}.

Observe that the previous proposition is a generalization of [3, Proposition
14]. As a consequence, we have:

Theorem 5. For any congruence quotient A∗/C, free◦cofree(A∗/C) = A∗/C.

Now we will define one of the main concepts that will lead us to the duality.
A subset S ⊆ SA∗ is called a closed subsystem if

i) S is closed under left and right derivatives.

ii) B(S)
def
= ({supp(f)|f ∈ S},∩, ( )′, A∗) is a complete atomic Boolean algebra.

iii) Let At(B(S)) be the set of atoms of B(S), then

S =
{
f ∈ SA

∗
| ∀P ∈ At(B(S)) f�P is constant

}
.

Notice that condition i) implies that in fact S is a subsystem of SA∗ , i.e. a
subcoalgebra. For the case of the Boolean semiring, that is S = B, the notion of
closed subsystem coincides with that of preformation of languages defined in [3],
which was one of the reasons and motivations to state the previous definition in
its final form. We can think of closed subsystems as S-colourings of the atoms of
B(S), according to condition iii), which in the case of preformations of languages
are only 2-colourings, but we also need those colourings to be well-behaved in
the sense of being closed under left and right derivatives to get a subsystem of
the final coalgebra SA∗ , and also to induce a congruence defining the system in
the following sense.

Theorem 6. Let S be a subset of SA∗ . S is a closed subsystem if and only if
S = cofree(A∗/C) for some congruence quotient A∗/C.

Observe that by Theorem 5, the congruence C of the previous theorem is
unique.

Example 7. Let S ⊆ SA∗ be the set S =
{
f ∈ SA∗

∣∣ ∀w ∈ A∗f(w) = f
(
b|w|b

)}
,

where |w|b is the number of b’s in the word w. Then one can verify that S is
a closed subsystem in which At(B(S)) = {a∗, a∗ba∗, a∗(ba∗)2, a∗(ba∗)3, . . .} and
S = cofree(A∗/C), if we take for C the congruence generated by {a = ε}. �

Corollary 8. For any closed subsystem S of SA∗ , cofree ◦ free(S) = S.
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Example 9. Consider the congruence quotient A∗/C = {[ε], [b], [bb]} from Exam-
ple 2, that is A = {a, b} and C is the congruence generated by {a = ε, bb = bbb}.
If S = Z3, then by Proposition 4 we know that

cofree(A∗/C) =
{
f ∈ (Z3)A

∗
| ∀[w] ∈ A∗/C, f�[w] is constant

}
,

that is cofree(A∗/C) has 27 elements. For any partition A = {[wi] | 1 ≤ i ≤
n} of A∗ and ci ∈ S we define the function c1χ[w1] + · · · + cnχ[wn] ∈ SA∗ as
(c1χ[w1] + · · · + cnχ[wn])(w) = ci if and only if w ∈ [wi], which is well-defined
since A is a partition of A∗. Using the previous notation, we have that every
element in cofree(A∗/C) is of the form c1χ[ε] + c2χ[b] + c3χ[bb], ci ∈ Z3. Here
are some examples:

i) Consider the colouring c : A∗/C → Z3 given by c([ε]) = 0, c([b]) = 1, and
c([bb]) = 2, then we get that oc([b]) ∈ (Z3)A

∗
is given by

oc([b])(w) =

{
1 if w ∈ a∗,
2 otherwise.

That is, oc([b]) = χ[ε] + 2χ[b] + 2χ[bb].
ii) For any ci ∈ Z3, the reader can easily verify the following identities for left

derivatives

a

(
c1χ[ε] + c2χ[b] + c3χ[bb]

)
= c1χ[ε] + c2χ[b] + c3χ[bb]

b

(
c1χ[ε] + c2χ[b] + c3χ[bb]

)
= c2χ[ε] + c3χ[b] + c3χ[bb].

�

Next we define the category C of congruence quotients and the category K of
closed subsystems, for a fixed semiring S, as follows:

objects(C) = {(A∗/C, [τ ]) | A∗/C is a congruence quotient}
arrows(C) = {e : A∗/C → A∗/D | e is an epimorphism}

objects(K) = {(K,α) | K is a closed subsystem of SA
∗
}

arrows(K) = {m : K → K ′ | m is a monomorphism}

By Theorem 5 and Corollary 8, we have the following.

Theorem 10. cofree : C ∼= Kop : free

Example 11. Let C1 be the congruence generated by {a = ε, bb = bbb} and let C2

be the congruence generated by {a = ε, b = bb}. Clearly we have that C1 ⊆ C2,
A∗/C1 = {[ε]1, [b]1, [bb]1}, and A∗/C2 = {[ε]2, [b]2} where

[ε]1 = [ε]2 = a∗ [b]1 = a∗ba∗

[bb]1 = a∗ba∗b(a+ b)∗ [b]2 = a∗b(a+ b)∗ = [b]1 ∪ [bb]1.

By the duality, we have the following situation:
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[ε]1 [b]1 [bb]1

a a a, b

b b

[ε]2 [b]2

a a, b

b

e

{c1χ[ε]1 + c2χ[b]1 + c3χ[bb]1 | ci ∈ S}

{c1χ[ε]2 + c2χ[b]2 | ci ∈ S}

m

cofree

free

where the epimorphism e : A∗/C1 → A∗/C2 is given by e([w]1) = [w]2, and the
monomorphism m : cofree(A∗/C2) → cofree(A∗/C1) is given by m(c1χ[ε]2 +
c2χ[b]2) = c1χ[ε]1 + c2χ[b]1 + c2χ[bb]1 . �

There is also the following consequence of the duality, which basically tells us
that we can either work with congruences or closed subsystems in weighted
automata.

Theorem 12. Let S ⊆ SA∗ be a closed subsystem, C a congruence on A∗, and
(X,α) a weighted automata. Then

i) (X,α) |= C if and only if (X,α) |= coEq(A∗/C).
ii) (X,α) |= S if and only if (X,α) |= Eq(S).

Example 13. (Example 7 continued) Let A = {a, b}. We showed the correspon-
dence between the congruence C on A∗ generated by {a = ε} and the closed
subsystem S ⊆ SA∗ given by S =

{
f ∈ SA∗

∣∣ ∀w ∈ A∗f(w) = f
(
b|w|b

)}
, that is

cofree(A∗/C) = S or, equivalently, free(S) = A∗/C. In this case, we have, for
a weighted automaton (X,α) on A

(X,α) |= C ⇔ (X,α) |= S ⇔ ∀x ∈ X α(x, a) = x. �

5 Linear equations and coequations

In this section, we work with a more general kind of equations and a more
general kind of automata. In the previous sections we defined equations to be
pairs (u, v) ∈ A∗ × A∗ and we said that an automaton (X,α) with weights in
S satisfies (u, v) if for any x ∈ X, u(x) = v(x). Since u(x) ∈ V (X) (the free S-
semimodule generated by X) for any u ∈ A∗, it makes sense to define expressions
like

(s1w1 + · · ·+ snwn)(x) := s1w1(x) + · · ·+ snwn(x)

for elements si ∈ S and wi ∈ A∗, that is, for any ϕ =
∑n
i=1 siwi ∈ V (A∗)

and x ∈ X we get an element ϕ(x) ∈ V (X). In this case we can ask whether
ϕ(x) = ψ(x) holds or not for some given ϕ,ψ ∈ V (A∗) and x ∈ X. A pair
(ϕ,ψ) ∈ V (A∗) will be called a linear equation, and note that this is now a more
general kind of equation since A∗ ⊆ V (A∗). We write (X,α) |= (ϕ,ψ); (X,α)
satisfies the equation (ϕ,ψ), if for every x ∈ X, ϕ(x) = ψ(x).
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Example 14. Let (X,α) be the weighted automata on A = {a, b, c} with weights
on Z3 given by the following diagram:

x y
a, 1; b, 2; c, 1

a, 1; b, 1 a, 1; b, 1

Then one easily verifies the following linear equations are satisfied by (X,α):
ac = c, a+ c = b, and 2c+ b = b2.

We have that freew(X,α) is the following automaton:

[c] [cc][b]

[ε]

[a]

c

a, b

a

b

c
a

b
c

ab

c

a, b, c

Hence, Eqw(X,α) is the congruence generated by

{c2 = c3, b3 = ε, a3 = ε, ab = ε, ba = ε, ac = c, bc = c, ca = c, cb = c}.

Observe that none of the linear equations a + c = b nor 2c + b = b2 can be
deduced from Eqw(X,α), even though (X,α) satisfies both of them. �

As the previous example shows, equations of the form (ϕ,ψ) ∈ V (A∗)×V (A∗)
that are satisfied by (X,α) are interesting. We now turn to define the notion of
linear automata.

For a field K, let VecK denote the category of vector spaces over K with linear
maps as morphisms. A K–linear automaton, or VecK automaton, on an alphabet
A is a pair (S, α), where S is an vector space and α : S → SA is a linear map.
As in weighted automata, we can have an initial state s0 ∈ VecK(K, S) and/or a
colouring c ∈ VecK(S,K). Notice that s0 is completely determined by its value
at 1, so we can identify s0 with the element s0 := s0(1) ∈ S. Observe that every
weighted automaton over a field K yields a VecK automaton and conversely. A
pointed VecK automaton (S, s0, α) is a H-algebra for the endofunctor H : VecK →
VecK given by H(S) = K + A × S (formally, H(S) is the sum of the space K
and A copies of the space S), and a coloured VecK automaton (S, c, α) is an
I-coalgebra for the endofunctor I : VecK → VecK given by I(S) = K× SA.

The initial H-algebra is (V (A∗), ε, τ) where τ is given by τ (
∑
siwi) (a) =∑

si(wia), and for any pointed VecK automaton (S, s0, α) the unique H-algebra
morphism rs0 : V (A∗) → S is given by rs0 (

∑
siwi) =

∑
siwi(s0). Dually,

the final I-coalgebra is
(
KA∗ , ε̂, τ̂

)
, where ε̂(f) = f(ε) and τ̂(f)(a) = fa, and

for any coloured VecK automaton (S, c, α) the unique I-coalgebra morphism
oc : S → KA∗ is given by oc(s)(w) = c(w(s)).

A VecK automaton (S, α) satisfies the linear equation (φ, ψ) ∈ V (A∗)×V (A∗),
denoted by (S, α) |= (φ, ψ), if for any s ∈ S we have that φ(s) = ψ(s).

An equivalence relation C on V (A∗) is a linear congruence on V (A∗) if:
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i) (ϕ1, ψ1), (ϕ2, ψ2) ∈ C imply (ϕ1 + ϕ1, ψ1 + ψ2) ∈ C.
ii) (ϕ,ψ) ∈ C, k ∈ K, and w ∈ A∗ imply (kϕ, kψ), (wϕ,wψ), (ϕw,ψw) ∈ C.

Where, for φ =
∑n
i=1 kiwi ∈ V (A∗), kφ, wφ, and φw are defined as

kφ :=

n∑
i=1

kkiwi, wφ =

n∑
i=1

kiwwi, φw =

n∑
i=1

kiwiw.

Observe that if C is a linear congruence on V (A∗) then the set V (A∗)/C has
the structure of a VecK pointed automaton.

Similarly to the case of weighted automata, we will define freel(S, α) and
Eql(S, α) by taking the following steps:

1. Define the pointed VecK automaton
∏

(S, α) = (
∏
s∈S S,∆, α̂) where α̂ is the

product of α, |S| times, that is α̂(x)(a)(s) = α(x(s))(a), and ∆ ∈
∏
s∈S S

is given by ∆(s) = s. Then, by initiality of (V (A∗), ε, τ), we get a unique
H-algebra morphism r∆ : V (A∗)→

∏
(S, α).

2. Define freel(S, α) and Eql(S, α) as

freel(S, α) := V (A∗)/ ker(r∆), and Eql(S, α) := ker(r∆).

Notice that Eql(S, α) is a linear congruence on V (A∗).

Theorem 15. Eql(S, α) is the maximum set of equations satisfied by (S, α).

A set of coequations is a subspace D ⊆ KA∗ . We define (S, α) |= D, and say
(S, α) satisfies the set of coequations D, as follows:

(S, α) |= D ⇔ ∀c ∈ VecK(S,K), s ∈ S oc(s) ∈ D.

For a family {Si}i∈I of vector spaces, we denote the coproduct of that family by∐
i∈I Si. The minimum set of coequations satisfied by (S, α) is obtained by the

following construction:

1. Define the coloured VecK automaton
∐

(S, α) = (
∐
c∈VecK(S,K) S, c̃, α̃) where

α̃ is the coproduct of the morphism α, |VecK(S,K)| times in VecK, that is
α̃ (
∑

(ci, si)) (a) =
∑

(ci, a(si)), and c̃ is the coproduct of all c ∈ VecK(S,K)
which is given by c̃ (

∑
(ci, si)) =

∑
ci(si). Then, by finality of

(
KA∗ , ε̂, τ̂

)
,

we get a unique I-coalgebra morphism oc̃ :
∐

(S, α)→ KA∗ .
2. Define cofreel(S, α) and coEql(S, α) as

cofreel(S, α) = coEql(S, α) = Im(oc̃).

Theorem 16. cofreel(S, α) is the minimum set of coequations satisfied by (S, α).

From the previous constructions we get the following result.

Theorem 17. For a linear congruence C, freel◦cofreel(V (A∗)/C) = V (A∗)/C.
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The inclusion from right to left above does not hold in general when consider-
ing semimodules (over a semiring) instead of vector spaces. Let N be the semiring
of natural numbers with the usual sum and product, A = {a, b}, and let C be
the linear congruence on V (A∗) associated to the partition {{0}, V (A∗) r {0}}
of V (A∗). Then V (A∗)/C ∼= B, the Boolean semiring, where the action of N on
B is given by n ·x = 0 if and only if n = 0 or x = 0. However, one can verify that
cofreel(V (A∗)/C) has only one element and therefore it satisfies any identity.
It follows that V (A∗)/C cannot be a subset of freel ◦ cofreel(V (A∗)/C) = 1.

Similarly to the case of weighted automata we can show that for a VecK
automaton (S, α) and a linear congruence C we have that

(S, α) |= C if and only if (S, α) |= coEql(V (A∗)/C).

Example 18. Let A = {x, y}, and let C = 〈xy = yx〉 be the linear congruence
generated by the equation xy = yx. Then the VecK automaton V (A∗)/C is
isomorphic to K[x, y], the ring of polynomials on indeterminates x and y with
coefficients in K. Here the transition function on K[x, y] is (right) multiplication,
that is, for a polynomial p(x, y) ∈ K[x, y] we have that x(p(x, y)) = p(x, y)x, and
y(p(x, y)) = p(x, y)y. Then, cofreel (V (A∗)/C) is the set{

f ∈ KA
∗
∣∣∣∣ ∀w1, w2

(
|w1|x = |w2|x ∧ |w1|y = |w2|y ⇒ f(w1) = f(w2)

)}
,

where |w|x is the number of x’s in the word w ∈ A∗. We can go a little bit
further and notice that cofreel (V (A∗)/C) ∼= KM(K[x,y]) where M(K[x, y]) are
the monic monomials in K[x, y]. �

Example 19. Let A = {x, y}, and, for a fixed k ∈ K, let C = 〈xy = yx, y−k = 0〉
be the linear congruence generated by the equations xy = yx and y − k = 0.
Then the VecK automaton V (A∗)/C is isomorphic to K[x, y]/〈y − k〉 ∼= K[x],
where 〈y − k〉 is the ideal generated by y − k. A similar calculation as in the
previous example shows that cofreel (V (A∗)/C) ∼= K{x}∗ ∼= KN. �

Example 20. Let A be a finite alphabet, and C a linear congruence on V (A∗)
such that for any x, y ∈ A, (xy, yx) ∈ C. We claim that C = 〈C0〉 for some
finite C0 ⊆ C. In fact, if A = {x1, . . . , xn} then V (A∗)/C ∼= K[x1, . . . , xn]/I
for the ideal I of K[x1, . . . , xn] given by I = {φ − ψ | (φ, ψ) ∈ C}, which is an
ideal of K[x1, . . . , xn] since C is a linear congruence (here φ − ψ is calculated
as in K[x1, . . . , xn]). Then by Hilbert basis theorem we have that I is finitely
generated, say I = 〈ϕ1, . . . , ϕm〉. It follows that

C = 〈{xixj = xjxi | 1 ≤ i < j ≤ n} ∪ {ϕl = 0 | 1 ≤ l ≤ m}〉. �

Proposition 21. Let S ⊆ KA∗ be a set that is closed under left derivatives.
Then (S, α) ⊆ cofreel ◦ freel(S, α).

To complete a duality result in this case we still need to characterize systems
S of the form S = cofreel(V (A∗)/C) for some linear congruence C. The previous
proposition is a first step, but a full duality result is an open problem.
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6 Conclusion

All the results we proved concerning weighted automata can be easily adapted
to the case of probabilistic automata, that is, we can replace V (X) by D(X),
where D(X) = {f : X → [0, 1] | supp(f) is finite and

∑
x∈supp(f) f(x) = 1},

and replace the semiring S by the real interval [0, 1] to get similar results. In
fact, the linear extension ᾱ : V (X) → V (X)A of a function α : X → V (X)A is
well-defined if we replace V (X) by D(X) and the elements 0 and 1 in S are the
elements 0 and 1 in [0, 1], respectively. In the future we plan to study other types
of automata such as tree automata. Furthermore, we also want to understand
the duality for linear weighted automata.

The closest related work is [3] which can be considered as a special case of our
study here. While we allow automata with infinite sets of states, other dualities
have concentrated on the finitary case [8, 9, 1, 12]. Another difference with those
approaches is that we present a local duality, in which the alphabet is (possibly
infinite but) fixed, while [8, 9, 12] consider all finite alphabets at the same time.

References
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7 Appendix (proofs)

7.1 Proof of Theorem 1

Eqw(X,α) is the maximum set of equations satisfied by (X,α).

Proof. Eqw(X,α) = ker(r∆), where r∆ : A∗ →
∏

(X,α) is an F -algebra mor-
phism, that is, the following diagram commutes

(
∏

(X,α))
A(A∗)A

(r∆)A

∏
(X,α)

α̂

A∗
r∆

τ

1

∆
ε

Hence, we have that for any (u, v) ∈ A∗ ×A∗

(X,α) |= (u, v)⇔ ∀x ∈ X u(x) = v(x)

⇔ u(∆) = v(∆)

⇔ u(r∆ε) = v(r∆ε)

⇔ r∆(u(ε)) = r∆(v(ε))

⇔ r∆(u) = r∆(v)

⇔ (u, v) ∈ ker(r∆) = Eqw(X,α).

That is, Eqw(X,α) is the maximum set of equations satisfied by (X,α). �

7.2 Proof of Theorem 3

coEqw(X,α) is the minimum set of coequations satisfied by (X,α).

Proof. This follows from the definition of coEqw(X,α) as

coEqw(X,α) = Im(oΦ) =
{
of̄ (φ) | f ∈ SX , φ ∈ V (X)

}
.

�

7.3 Proof of Proposition 4

For every congruence quotient A∗/C

cofree(A∗/C) = {f ∈ SA
∗
| C ⊆ ker(f)}.

We will use the following
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Lemma 1. Let C be an equivalence relation on A∗. C is a congruence on A∗ if
and only if it satisfies the following two conditions

i) For every w ∈ A∗, (u, v) ∈ C implies (uw, vw) ∈ C.
ii) For every w ∈ A∗, (u, v) ∈ C implies (wu,wv) ∈ C.

Proof. (⇒) i) and ii) follow immediately from the fact that C is a congruence
using the fact that (w,w) ∈ C for any w ∈ A∗.

(⇐) Assume (t, v), (u,w) ∈ C. Then by i) we have that (tu, vu) ∈ C since
(t, v) ∈ C. Similarly, by ii) we have that (vu, vw) ∈ C since (u,w) ∈ C. Finally,
from (tu, vu) ∈ C and (vu, vw) ∈ C we get (tu, vw) ∈ C by transitivity. �

Now the proof of the Proposition

Proof. (⊆) Assume f ∈ cofree(A∗/C), then there exists a colouring c : A∗/C →
S and w ∈ A∗ such that f = oc([w]). Now take (u, v) ∈ C, then we have to show
that (u, v) ∈ ker(f). In fact,

(u, v) ∈ ker(f)⇔ f(u) = f(v)⇔ oc([w])(u) = oc([w])(v)⇔ c([wu]) = c([wv])

which is true since C is a congruence (see Lemma 1).
(⊇) Let f ∈ SA∗ such that C ⊆ ker(f). Define c : A∗/C → S as c([w]) = f(w),

w ∈ A∗. Note that c is well-defined since C ⊆ ker(f). Then we have that for
any u ∈ A∗, oc([ε])(u) = c([u]) = f(u), i.e. oc([ε]) = f which is an element in
cofree(A∗/C). �

7.4 Proof of Theorem 5

For any congruence quotient A∗/C, free ◦ cofree(A∗/C) = A∗/C.

Proof. We have to prove that Eq (cofree(A∗/C)) = C.
(⊆) Let (u, v) ∈ A∗×A∗ such that cofree(A∗/C) |= (u, v). Define χ[u] ∈ SA∗

as

χ[u](w) =

{
0, if w /∈ [u];

1, if w ∈ [u].

One easily verifies using Proposition 4 that χ[u] ∈ cofree(A∗/C). Hence u(χ[u]) =
v(χ[u]), which in particular implies that u(χ[u])(ε) = v(χ[u])(ε), i.e.

u(χ[u])(ε) = v(χ[u])(ε)⇔ χ[u](u) = χ[u](v)⇔ 1 = χ[u](v)⇔ v ∈ [u]

which means that (u, v) ∈ C.
(⊇) Assume (u, v) ∈ C, we have to show that cofree(A∗/C) |= (u, v). In

fact, let f ∈ cofree(A∗/C) then

u(f) = v(f)⇔ fu = fv ⇔ ∀w ∈ A∗ fu(w) = fv(w)⇔ ∀w ∈ A∗ f(uw) = f(vw)

as C is a congruence, (u, v) ∈ C implies (uw, vw) ∈ C, w ∈ A∗, which by Propo-
sition 4 means that ∀w ∈ A∗ f(uw) = f(vw) holds since f ∈ cofree(A∗/C).
�
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7.5 Proof of Theorem 6

Let S ⊆ SA∗ . S is a closed subsystem if and only if S = cofree(A∗/C) for some
congruence quotient A∗/C.

Proof. (⇒) We first have the following

Claim: C(S) :=
⋃
P∈At(B(S)) P × P is a congruence.

Clearly, C(S) is an equivalence relation since At(B(S)) is a partition of A∗.
To finish the proof of the claim we have to show, by Lemma 1, that for any
u, v, w ∈ A∗

a) If u, v ∈ P for some P ∈ At(B(S)), then wu,wv ∈ Q for some Q ∈ At(B(S)).

b) If u, v ∈ P for some P ∈ At(B(S)), then uw, vw ∈ Q for some Q ∈ At(B(S)).

We will prove a) by contrapositive, the proof of b) will be similar. Assume there
exists P ∈ At(B(S)) such that wu ∈ P 63 wv. Define χP ∈ SA∗ as

χP (t) =

{
0, if t /∈ P ;

1, if t ∈ P .

then χP ∈ S by property iii) of S being a closed subsystem. Then the right
derivative (χP )w ∈ S, but then

(χP )w(u) = χP (wu) = 1 6= 0 = χP (wv) = (χP )w(v)

that is u and v cannot be in the same atom of B(S) (otherwise, this would
contradict property iii) of S being a closed subsystem since (χP )w ∈ S).

Now, by property iii) of being a closed subsystem and Proposition 4 one eas-
ily shows that S = cofree(A∗/C(S)).

(⇐) Properties ii) and iii) for being a closed subsystem follow from Proposi-
tion 4 (observe that At(B(S)) = A∗/C). That S is closed under right derivatives
follows from the fact that cofree(A∗/C) is a subsystem of SA∗ . To prove that S
is closed under left derivatives fix f ∈ S and w ∈ A∗, then f = oc([t]) for some
colouring c : A∗/C → S and some t ∈ A∗. Define the colouring d : A∗/C → S as

d([u]) = c([uw]),

note that d is well-defined since C is a congruence. We have that for any u ∈ A∗

wf(u) = f(uw) = oc([t])(uw) = c([tuw]) = d([tu]) = od([t])(u)

i.e. wf = od([t]) which is an element in S = cofree(A∗/C). �
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7.6 Proof of Corollary 8

For any closed subsystem S of SA∗ , cofree ◦ free(S) = S.

Proof. By Theorem 6 there is a congruence C such that S = cofree(A∗/C),
then

cofree ◦ free(S) = cofree ◦ free(cofree(A∗/C)) = cofree(A∗/C) = S

since by Theorem 5 free ◦ cofree(A∗/C) = A∗/C. �

7.7 Proof of Theorem 10

cofree : C ∼= Kop : free.

Proof. It’s clear that the property holds for objects. Now, for any epimorphism
e : A∗/C → A∗/D in C, cofree(e) : cofree(A∗/D) → cofree(A∗/C) is the in-
clusion map, and for any monomorphism m : K → K ′, free(m) : A∗/Eq(K ′)→
A∗/Eq(K) is the map given by free(m)([w]Eq(K′)) = [w]Eq(K), which is well-
defined since Eq(K ′) ⊆ Eq(K). �

7.8 Proof of Theorem 12

Let S ⊆ SA∗ be a closed subsystem, C a congruence on A∗, and (X,α) a weighted
automata. Then

i) (X,α) |= C if and only if (X,α) |= cofree(A∗/C).
ii) (X,α) |= S if and only if (X,α) |= Eq(S).

Proof. i) Assume that (X,α) |= C. We have to show that (X,α) |= cofree(A∗/C).
Fix a colouring c : X → S and φ ∈ V (X). From the colouring c define the colour-
ing c̃ : A∗/C → S such that c̃([w]) := c̄(w(φ)). Since (X,α) |= C, c̃ is well-defined.
One easily shows that oc̄(φ) = oc̃([ε]) which is an element of cofree(A∗/C).

Conversely, assume that (X,α) |= cofree(A∗/C). We have to show that
(X,α) |= C. Fix an equation (u, v) ∈ C and assume by contradiction that there
exists x ∈ X such that u(x) 6= v(x). Consider the colouring δu(x) : X → S
defined as

δu(x)(z) =

{
1, if z = u(x);

0, if z 6= u(x).

then oδ̄u(x)(x) ∈ cofree(A∗/C). Clearly we have that

(†) oδu(x)(x)(u) = 1 6= 0 = oδu(x)(x)(v).

As oδ̄u(x)(x) ∈ cofree(A∗/C) there is a colouring c : A∗/C → S and w ∈ A∗

such that oc([w]) = oδu(x)(x), and as [u] = [v] and C is a congruence we get that
oc([w])(u) = oc([w])(v), which contradicts (†).

ii) By Corollary 8 we have that

S = cofree ◦ free(S) = cofree(A∗/Eq(S)) = coEq(A∗/Eq(S))

hence the result follows from i). �
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7.9 Proof of Theorem 15

Eql(S, α) is the maximum set of equations satisfied by (S, α).
This proof is similar to the proof of Theorem 1 and therefore is omited.

7.10 Proof of Theorem 16

cofreel(S, α) is the minimum set of coequations satisfied by (S, α).
This proof is similar to Theorem 3 and therefore is omited.

7.11 Proof of Theorem 17

For any linear congruence C, freel ◦ cofreel(V (A∗)/C) = V (A∗)/C.

First we prove some facts that we need for its proof.

Lemma 2. Let C be a linear congruence on V (A∗). Then, for every element
L ∈ cofreel (V (A∗)/C) there exists a colouring d ∈ VecK(V (A∗)/C,K) such
that

L = od([ε]).

Proof. Let L ∈ cofreel (V (A∗)/C), i.e. L ∈ Im(oc̃). Then there exists a ∈∐
(V (A∗)/C, α) such that

L = oc̃(a)

Put a =
∑n
i=1(ci, [ϕi]), where ci ∈ VecK(V (A∗)/C,K) and ϕi ∈ V (A∗), and put

ϕi =
∑ni
j=1 s

(i)
j w

(i)
j , s

(i)
j ∈ K and w

(i)
j ∈ A∗. Then, for any w ∈ A∗ we have that

L(w) = oc̃(a)(w) = c̃(w(a)) = c̃

(
w

(
n∑
i=1

(ci, [ϕi])

))

= c̃

(
n∑
i=1

(ci, [ϕiw])

)
=

n∑
i=1

ci([ϕiw]) =

n∑
i=1

ci

 ni∑
j=1

s
(i)
j w

(i)
j w


=

n∑
i=1

ci

 ni∑
j=1

s
(i)
j

[
w

(i)
j w

] =

n∑
i=1

ni∑
j=1

s
(i)
j ci

([
w

(i)
j w

])
.

Let di,j : V (A∗)/C → K be the colouring defined as

di,j([ϕ]) = ci

([
w

(i)
j ϕ

])
.

Let di : V (A∗)/C → K be the colouring di =
∑ni
j=1 s

(i)
j di,j , i.e.

di([ϕ]) =

ni∑
j=1

s
(i)
j di,j([ϕ])
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and, similarly, let d : V (A∗)/C → K be the colouring d =
∑n
i=1 di. Observe that

the colourings just defined are maps in VecK, since every ci is a map in VecK,
and every di,j is well defined, since C is a linear congruence. From all of this, we
get

L(w) =

n∑
i=1

ni∑
j=1

s
(i)
j ci

([
w

(i)
j w

])
=

n∑
i=1

ni∑
j=1

s
(i)
j di,j ([w])

=

n∑
i=1

di ([w]) = d([w]) = od([ε])(w)

i.e. L = od([ε]) for the colouring d defined above as we wanted to prove. �

Lemma 3. For any linear congruence C on V (A∗) we have that

cofreel (V (A∗)/C) =

 ∑
[ϕ]∈V (A∗)/C

c([ϕ])χ[ϕ]

∣∣∣∣ c ∈ VecK (V (A∗)/C,K)

 ,

where
∑

[ϕ]∈V (A∗)/C c([ϕ])χ[ϕ] ∈ KA∗ is defined as ∑
[ϕ]∈V (A∗)/C

c([ϕ])χ[ϕ]

 (v) =
∑

[ϕ]∈V (A∗)/C

c([ϕ])χ[ϕ](v) = c([v]).

Proof. Let L ∈ cofreel(V (A∗)/C), by the previous lemma we have that L =
od([ε]) for some colouring d ∈ VecK(V (A∗)/C,K). From that we get that for any
w ∈ A∗

L(w) = od([ε])(w) = d([w]) =
∑

[ϕ]∈V (A∗)/C

d([ϕ])χ[ϕ](w).

Conversely, any element of the form
∑

[ϕ]∈V (A∗)/C c([ϕ])χ[ϕ], c ∈ VecK(V (A∗)/C,K),

is equal to oc̃ ((c, [ε])) which is an element in cofreel (V (A∗)/C). �

Lemma 4. Let x ∈ cofreel(V (A∗)/C), i.e.

x =
∑

[ϕ]∈V (A∗)/C

c([ϕ])χ[ϕ] =
∑
[ϕ]

c([ϕ])χ[ϕ]

for some c ∈ VecK (V (A∗)/C,K). Then for any φ ∈ V (A∗) and w ∈ A∗ we have
that

φ(x)(w) = c([φw]).

Proof. Put φ =
∑n
i=1 siwi =

∑
i siwi, then we have that

φ(x)(w) =

(∑
i

siwi

)∑
[ϕ]

c([ϕ])χ[ϕ]

 (w) =
∑
i

siwi

∑
[ϕ]

c([ϕ])χ[ϕ]

 (w)

=
∑
i

si

∑
[ϕ]

c([ϕ])χ[ϕ](wiw)

 =
∑
i

sic([wiw]) = c

(∑
i

si[wiw]

)
= c([φw])
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as we needed to prove. �

Now let’s prove the Theorem

For any congruence quotient V (A∗)/C, freel◦cofreel(V (A∗)/C) = V (A∗)/C.

Proof. We have to show that C = Eql (cofreel(V (A∗)/C)).
(⊆) Let (φ, ψ) ∈ C and put

φ =

n∑
i=1

siwi =
∑
i

siwi and ψ =

m∑
j=1

tjuj =
∑
j

tjuj .

And let x be an element in cofreel(V (A∗)/C), by Lemma 3 we have that

x =
∑

[ϕ]∈V (A∗)/C

c([ϕ])χ[ϕ] =
∑
[ϕ]

c([ϕ])χ[ϕ]

for a colouring c ∈ VecK (V (A∗)/C,K). We need to prove that φ(x) = ψ(x) in
KA∗ . In fact, let w ∈ A∗, then we have by the previous lemma that

φ(x)(w) = ψ(x)(w)⇔ c([φw]) = c([ψw])

which is true since (φ, ψ) ∈ C implies (φw,ψw) ∈ C (because C is a linear
congruence).

(⊇)Consider any pair (φ, ψ) ∈ Eql (cofreel(V (A∗)/C)) and assume that
[φ] 6= [0] in V (A∗)/C. As V (A∗)/C is a vector space and [φ] 6= [0], there
exists a basis B of V (A∗)/C containing [φ], now define the linear map dφ ∈
VecK(V (A∗)/C,K) such that dφ([φ]) = 1 and dφ([ϕ]) = 0 for any [ϕ] ∈ Br{[φ]}.
Let xdφ ∈ cofreel(V (A∗)/C) be the element corresponding to the map dφ, i.e.

xdφ =
∑

[γ]∈V (A∗)/C

dφ([γ])χ[γ].

As (φ, ψ) ∈ Eql (cofreel(V (A∗)/C)) and xdφ ∈ cofreel(V (A∗)/C) then φ(xdφ) =
ψ(xdφ), in particular φ(xdφ)(ε) = ψ(xdφ)(ε), which by Lemma 4 implies that

dφ([φ]) = dφ([ψ])

From this equality and the definition of dφ we get that

[ψ] = [φ] +

m∑
j=1

sj [ϕj ] (†)

for some [ϕj ] ∈ B r {[φ]} and sj ∈ K.

Now, for every j = 1, . . . ,m, define the linear map dϕj ∈ VecK(V (A∗)/C,K)
such that dϕj ([ϕj ]) = 1 and dϕj ([ϕ]) = 0 for any [ϕ] ∈ B r {[ϕj ]}, and consider
the element xj ∈ cofreel(V (A∗)/C) that corresponds to the map dϕj , i.e.

xj =
∑

[γ]∈V (A∗)/C

dϕj ([γ])χ[γ].
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Then we get that φ(xj)(ε) = ψ(xj)(ε), which by Lemma 4 implies that dϕj ([φ]) =
dϕj ([ψ]), i.e. sj = 0 for every j = 1, . . . ,m. From this and equation (†) we get
that [ψ] = [φ], i.e. (ψ, φ) ∈ C. �

7.12 Proof of Proposition 21

Let S ⊆ KA∗ be a set that is closed under left derivatives. Then (S, α) ⊆ cofreel◦
freel(S, α).

We will show the following.

Lemma 5. Let S ⊆ KA∗ be a set that is closed under left derivatives. Then
Eql(S, α) =

⋂
f∈S ker

(
f̄
)
.

Proof. Let (φ, ψ) ∈ V (A∗)× V (A∗) such that

φ =

n∑
i=1

siwi =
∑

siwi and ψ =

m∑
j=1

tjuj =
∑

tjuj

Assume (φ, ψ) ∈ Eql(S, α) and let f ∈ S, then we have that φ(f) = ψ(f), and
in particular φ(f)(ε) = ψ(f)(ε), which means that

φ(f)(ε) = ψ(f)(ε)⇔
(∑

siwi

)
(f)(ε) =

(∑
tjuj

)
(f)(ε)

⇔
∑

siwi(f)(ε) =
∑

tjuj(f)(ε)

⇔
∑

si(f)(wi) =
∑

tj(f)(uj)

⇔ f̄
(∑

siwi

)
= f̄

(∑
tjuj

)
⇔ f̄ (φ) = f̄ (ψ)

⇔ (φ, ψ) ∈ ker
(
f̄
)

As f ∈ S was arbitrary, we have that (φ, ψ) ∈
⋂
f∈S ker

(
f̄
)
.

Conversely, assume that (φ, ψ) ∈
⋂
f∈S ker

(
f̄
)
, and let f ∈ S and w ∈ A∗,

we have to show that φ(f)(w) = ψ(f)(w). As (φ, ψ) ∈
⋂
f∈S ker

(
f̄
)

and wf ∈ S
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then we have that

(φ, ψ) ∈
⋂
f∈S

ker
(
f̄
)
⇒ (φ, ψ) ∈ ker

(
wf
)

⇔ wf(φ) = wf(ψ)

⇔ wf
(∑

siwi

)
= wf

(∑
tjuj

)
⇔
∑

si wf (wi) =
∑

tj wf (uj)

⇔
∑

si f (wiw) =
∑

tj f (ujw)

⇔
∑

siwi(f) (w) =
∑

tjuj(f) (w)

⇔
(∑

siwi

)
(f) (w) =

(∑
tjuj

)
(f) (w)

⇔ φ(f) (w) = ψ(f) (w)

as we wanted to prove. �

Now let’s prove the Theorem.

Proof. Let g ∈ S and let ḡ : V (A∗)→ K be its linear extension. By the previous
Lemma we have that Eql(S, α) =

⋂
f∈S ker

(
f̄
)
⊆ ker (ḡ), and hence the linear

map ˜̄g : V (A∗)/Eql(S, α)→ K defined by ˜̄g([φ]) = ḡ(φ) is well defined and also
˜̄g ∈ VecK (V (A∗)/Eql(S, α),K). We claim that

g =
∑

[ϕ]∈V (A∗)/C

˜̄g([ϕ])χ[ϕ]

which is an element in cofreel ◦ freel(S, α). In fact, for any w ∈ A∗ we have
that  ∑

[ϕ]∈V (A∗)/C

˜̄g([ϕ])χ[ϕ]

 (w) = ˜̄g([w]) = g(w)

�


