
A Coalgebraic Perspective on Linear Weighted Automata

Filippo Bonchia,∗, Marcello Bonsangueb,c, Michele Borealed, Jan Ruttenc,e, Alexandra Silvac

aCNRS - Laboratoire de l’Informatique du Parallélisme (ENS), 46 Allé d’Italie, 69364 Lyon, France
bLeiden Institute Advanced Computer Science, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

cCentrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, The Netherlands
dDipartimento di Sistemi e Informatica, Universitá di Firenze, Viale Morgagni 65, I-50134 Firenze, Italy

eRadboud Universiteit Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

Abstract

Weighted automata are a generalization of non-deterministic automata where each transition, in addition to an input
letter, has also a quantity expressing the weight (e.g. cost or probability) of its execution. As for non-deterministic
automata, their behaviours can be expressed in terms of either (weighted) bisimilarity or (weighted) language equiva-
lence.

Coalgebras provide a categorical framework for the uniform study of state-based systems and their behaviours.
In this work, we show that coalgebras can suitably model weighted automata in two different ways: coalgebras on
Set (the category of sets and functions) characterize weighted bisimilarity, while coalgebras on V ect (the category of
vector spaces and linear maps) characterize weighted language equivalence.

Relying on the second characterization, we show three different procedures for computing weighted language
equivalence. The first one consists in a generalizion of the usual partition refinement algorithm for ordinary automata.
The second one is the backward version of the first one. The third procedure relies on a syntactic representation of
rational weighted languages.

1. Introduction

Weighted automata were introduced in Schützenberger’s classical paper [33]. They are of great importance in
computer science [9], arising in different areas of application, such as speech recognition [23], image compression [2],
control theory [16] and quantitative modelling [21, 3]. They can be seen as a generalization of non-deterministic
automata, where each transition has a weight associated to it. This weight is an element of a semiring, representing,
for example, the cost or probability of taking the transition.

The behaviour of weighted automata is usually given in terms of weighted languages (also called formal power
series [32, 5]), that are functions assigning a weight to each finite string w ∈ A∗ over an input alphabet A. For
computing the weight given to a certain word, the semiring structure plays a key role: the multiplication of the
semiring is used to accumulate the weight of a path by multiplying the weights of each transition in the path, while the
addition of the semiring computes the weight of a stringw by summing up the weights of the paths labeled withw [20].
Alternatively, the behaviour of weighted automata can be expressed in terms of weighted bisimilarity [7], that is an
extension of bisimilarity (for non-deterministic automata) subsuming several kinds of quantitative equivalences such
as, for example, probabilistic bisimilarity [17]. As in the case of non-deterministic automata, (weighted) bisimilarity
implies strictly (weighted) language equivalence.

Weighted automata still retain non-deterministic behavior, as two different transitions outgoing from the same
state may be labelled by the same input action, possibly with different weights. Deterministic weighted automata
are of interest because their construction is tightly connected with the existence of minimal automata recognizing
the same weighted language. The classical powerset construction for obtaining a language-equivalent deterministic

∗Corresponding author

Preprint submitted to Elsevier March 15, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301659317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

automaton from a non-deterministic one can be generalized to weighted automata, as long as the semiring respects
certain restrictions [24, 19]. The states of the determinized automaton are finite “subsets of weighted states” of
the original non-deterministic automaton, or, more formally, functions from the set of states to the semiring that are
almost everywhere zero. Differently from the classical case, though, the weighted automaton obtained by the powerset
construction might be infinite. Usually, one restricts the attention to semirings for which determinization is guaranteed
to terminate and produce a finite result, such as locally finite and tropical semirings, and extensions thereof [24, 19].

In this paper, we study linear weighted automata, which are deterministic weighted automata where the set of
states forms a vector space. A linear weighted automaton can be viewed as the result of determinizing an ordinary
weighted automaton with weights in a generic field, using a weighted powerset construction. As such, linear weighted
automata are typically infinite-state. The key point is that the linear structure of the state-space allows for finite
representations of these automata and effective algorithms operating on them.

To be more specific, the goal of the present paper is to undertake a systematic study of the behavioural equivalences
and minimization algorithms for (linear) weighted automata. To achieve this goal, we will benefit from a coalgebraic
perspective on linear weighted automata. The theory of coalgebras offers a unifying mathematical framework for
the study of many different types of state-based systems and infinite data structures. Given a functor G : C → C
on a category C, a G-coalgebra is a pair consisting of an object X in C (representing the state space of the system)
and a morphism f :X → GX (determining the dynamics of the system). Under mild conditions, functors G have
a final coalgebra (unique up to isomorphism) into which every G-coalgebra can be mapped via a unique so-called
G-homomorphism. The final coalgebra can be viewed as the universe of all possible G-behaviours: the unique homo-
morphism into the final coalgebra maps every state of a coalgebra to a canonical representative of its behaviour. This
provides a general notion of behavioural equivalence (≈G): two states are equivalent if and only if they are mapped to
the same element of the final coalgebra.

Our first contribution in this paper is to recast both weighted bisimilarity and weighted language equivalence
in the theory of coalgebras. We see weighted automata for a field K and alphabet A, as coalgebras of the functor
W = K × K−A on Set (the category of sets and functions). Concretely, aW-coalgebra consists of a set of states X
and a function 〈o, t〉 : X → K × KXA where, for each state x ∈ X , o : X → K assigns an output weight in K and
t : X → KXA

assigns a function in KXA

. For each symbol a ∈ A and state x′ ∈ X , t(x)(a)(x′) is a weight k ∈ K

representing the weight of a transition from x to x′ with label a, in symbols x a,k
→ x′. If t(x)(a)(x′) = 0, then there

is no a-labeled transition from x to x′. Note that there could exist several weighted transitions with the same label
outgoing from the same state: x a,k1→ x1, x

a,k2→ x2, . . . , x
a,kn→ xn.

Adapting the above reasoning, we model linear weighted automata as coalgebras of the functor L = K × (−)A

on V ect (the category of vector spaces and linear maps). A linear weighted automaton consists of a vector space V
and a linear map 〈o, t〉 : V → K× V A where, as before, o : V → K defines the output and t : V → V A the transition
structure. More precisely, for each v ∈ V and a ∈ A, t(v)(a) = v′ means that there is a transition from v to v′ with
label a, in symbols v a

→ v′. Note that the transition structure is now “deterministic”, since for each v and a there is
only one v′ ∈ V . When V = KX , each vector v ∈ V can be seen as a linear combination of states x1, . . . , xn ∈ X ,
i.e., v = k1x1 + · · · + knxn for some k1, . . . , kn ∈ K. Therefore, the transitions x a,k1→ x1, . . . , x

a,kn→ xn of a
weighted automaton correspond to a single transition x a

→ (k1x1 + · · ·+ knxn) of a linear weighted automaton.
We show that ≈W (i.e., the behavioural equivalence induced byW) coincides with weighted bisimulation while

≈L coincides with weighted language equivalence. Determinization is the construction for moving from ordinary
weighted automata and weighted bisimilarity to linear weighted automata and weighted language equivalence.

Once we have fixed the mathematical framework, we investigate three different types of algorithms for computing
≈L. These algorithms work under the assumption that the underlying vector space has finite dimension. The first
is a forward algorithm that generalizes the usual partition-refinement algorithm for ordinary automata: one starts by
decreeing as equivalent states with the same output values, then refines the obtained relation by separating states for
which outgoing transitions go to states that are not already equivalent. Linearity of the automata plays a crucial role
to ensure termination of the algorithm. Indeed, the equivalences computed at each iteration can be represented as
finite-dimensional sub-spaces in the given vector space. The resulting descending chain of sub-spaces must therefore
converge in a finite number of steps, despite the fact that the state-space itself is infinite. We also show that each
iteration of the algorithm coincides with the equivalence generated by each step of the (standard) construction of the

2

final coalgebra via the final sequence. The minimal linear representations of weighted automata over a field was first
considered by Schutzenberger [33]. This algorithm was reformulated in a more algebraic and somewhat simplified
fashion in Berstel and Reutenauer book [5]. Their algorithm is different from our method, as it is related to the
construction of a basis for a subgroup of a free group. Further, no evident connections can be traced between their
treatment and the notions of bisimulation and coalgebras.

The second algorithm proceeds in a similar way, but uses a backward procedure. It has been introduced by the
third authors together with linear weighted automata [6]. In this case, the algorithm starts from the complement – in a
precise geometrical sense – of the relation identifying vectors with equal weights. Then it incrementally computes the
space of all states that are backward reachable from this relation. The largest bisimulation is obtained by taking the
complement of this space. The advantage of this algorithm over the previous one is that the size of the intermediate
relations is typically much smaller. The presentation of this algorithm in [6] is somewhat more concrete, as there is no
attempt at a coalgebraic treatment and the underlying field is fixed to R (for example, this leads to using orthogonal
complements rather than dual spaces and annihilators, which we consider in Section 4). No connection is made with
rational series.

Finally, the third algorithm is new and uses the fact that equivalent states are mapped by the unique homomorphism
into the same element of the final coalgebra. We characterize the final morphism in terms of so-called rational
weighted languages (which are also known as rational formal power series). This characterization is useful for the
computation of the kernel of the final homomorphism,which consists of weighted language equivalence. Taking again
advantage of the linear structure of our automata, calculating the kernel of the above homomorphism will correspond
to solving a linear system of equations.

Structure of the paper. In Section 2 we introduce weighted automata and coalgebras. We also show thatW-coalgebras
characterize weighted automata and weighted bisimilarity. In Section 3.2, after recalling some preliminary notions
of linear algebras, we show that each weighted automaton can be seen as a linear weighted automaton, i.e., an L-
coalgebra. This change of perspective allows us to coalgebraically capture weighted language equivalence. In Section
4, we show the forward and the backward algorithm while, in Section 5, we first introduce a syntactic characterization
of rational weighted languages and then we shows how to employ it in order to compute ≈L. In Section 6, after
summarizing the main results of the paper, we discuss how to extend them to the case of automata with weights in a
semiring.

Section 2.2 and Section 4.3 show some interesting minor results that could be safely skipped by the not interested
reader. The presentation is self-contained and does not require any prior knowledge on the theory of coalgebras.

2. Weighted Automata as Coalgebras

We introduce weighted automata, weighted bisimilarity and their characterization as coalgebras over Set, the
category of sets and functions.

First we fix some notation. We will denote sets by capital letterX,Y, Z . . . and functions by lower case f, g, h
Given a set X , idX is the identity function and, given two functions f : X → Y and g : Y → Z , g ◦ f is their
composition. The product of two setsX,Y isX×Y with the projection functionsπ1:X×Y → X and π2:X×Y → Y .
The product of two functions f1 : X1 → Y1 and f2 : X2 → Y2 is f1 × f2 defined for all 〈x1, x2〉 ∈ X1 × X2

by (f1 × f2)〈x1, x2〉 = 〈f(x1), f(x2)〉. The disjoint union of X,Y is X + Y with injections κ1:X → X + Y
and κ2:Y → X + Y . The union of f1 : X1 → Y1 and f2 : X2 → Y2 is f1 + f2 defined for all z ∈ X + Y
by (f1 + f2)(κi(z)) = ki((fi(z))) (for i ∈ {1, 2}). The set of functions ϕ : Y → X is denoted by XY . For
f : X1 → X2, the function fY : XY

1 → XY
2 is defined for all ϕ ∈ XY

1 by fY (ϕ) = λy ∈ Y.f(ϕ(y)). The collection
of finite subsets of X is denoted by Pω(X) and the emptyset by ∅. For a set of letters A, A∗ denotes the set of all
words over A; ε the empty word; and w1w2 the concatenation of words w1, w2 ∈ A∗.

We fix a field K. We use k1, k2, . . . to range over elements of K. The sum ofK is denoted by +, the product by ·,
the additive identity by 0 and the multiplicative identity by 1. The support of a function ϕ from a setX to a field K is
the set {x ∈ X | ϕ(x) *= 0}.

Weighted automata [33, 9] are a generalization of ordinary automata where transitions in addition to an input letter
have also a weight in a field K and each state is not just accepting or rejecting but has an associated output weight in
K.

3

x1

x2

x3

y1

1

1

1
1

b, 3

b, 3

a, 1

a, 1

a, 1/b, 3

a, 3

a, 3

a, 3/b, 3

Figure 1: The weighted automata (X, 〈oX , tX〉) and (Y, 〈oY , tY 〉) (from left to right). The dashed arrow denotes the
W-homomorphism h : X → Y . This induces the equivalence relationRh = X ×X that equates all the states inX .

Formally, a weighted automaton (WA, for short) with input alphabet A is a triple (X, 〈o, t〉), where X is a set
of states, o : X → K is an output function associating to each state its output weight and t : X → (KX)A is the
transition relation that associates a weight to each transition. We shall use the following notation: x a,k

→ y means that
t(x)(a)(y) = k. Weight 0 means no transition.

If the set of states is finite, a WA can be conveniently represented in form of matrices. First of all, we have to fix an
ordering (x1, . . . , xn) of the set of states X . Then the transition relation t can be represented by a family of matrices
{Ta}a∈A where each Ta ∈ Kn×n is an K-valued square matrix, with Ta(i, j) specifying the value of the a-transition
from xj to xi, i.e., t(xj)(a)(xi). The output weight function o can be represented as anK-valued row vector inK1×n

that we will denote by the capital letter O.
For a concrete example, letK = R (the field of real numbers) andA = {a, b} and consider the weighted automata

(X, 〈oX , tX〉) and (Y, 〈oY , tY 〉) in Fig. 1. Their representation as matrix is the following.

OX =
(

1 1 1
)

TXa =





1 0 0
1 3 0
1 0 3



 TXb =





3 3 3
0 0 0
0 0 0



 OY =
(

1
)

TYa =
(

3
)

TYb =
(

3
)

Weighted bisimilarity generalizes the abstract semantics of several kind of probabilistic and stochastic systems.
This has been introduced by Buchholz in [7] for weighted automata with a finite state space. Here we extend that
definition to (possibly infinite-states) automata with finite branching, i.e., those (X, 〈o, t〉) such that for all x ∈
X, a ∈ A, t(x)(a)(x′) *= 0 for finitely many x′. This is needed in the following to ensure that

∑

x′∈X t(x)(a)(x′) is
always defined.

Hereafter we will always implicitly refer to weighted automata with finite branching. Moreover, given an x ∈ X
and an equivalence relation R ⊆ X ×X we will write [x]R to denote the equivalence class of x with respect to R.

Definition 1. Let (X, 〈o, t〉) be a weighted automaton. An equivalence relationR ⊆ X×X is aweighted bisimulation
if for all (x1, x2) ∈ R, it holds that:

1. o(x1) = o(x2),
2. ∀a ∈ A, x′ ∈ X ,

∑

x′′∈[x′]R
t(x1)(a)(x′′) =

∑

x′′∈[x′]R
t(x2)(a)(x′′).

Weighted bisimilarity (in symbols∼w) is defined as the largest weighted bisimulation.

For instance, the relationRh in Fig.1 is a weighted bisimulation.

Now, we will show that weighted automata and weighted bisimilarity can be suitably characterized through coal-
gebras [27].

We first recall some basic definitions about coalgebras. Given a functor G : C → C on a category C, a G-
coalgebra is an object X in C together with an arrow f : X → GX . For many categories and functors, such pair
(X, f) represents a transition system, the type of which is determined by the functor G. Viceversa, many types of
transition systems (e.g., deterministic automata, labeled transition systems and probabilistic transition systems) can
be captured by a functor.

4

A G-homomorphism from a G-coalgebra (X, f) to a G-coalgebra (Y, g) is an arrow h : X → Y preserving the
transition structure, i.e., such that the following diagram commutes.

X

f

!!

h "" Y

g

!!
GX

Gh
"" GY

A G-coalgebra (Ω,ω) is said to be final if for any G-coalgebra (X, f) there exists a unique G-homomorphism
[[−]]GX : X → Ω. Final coalgebra can be viewed as the universe of all possible G-behaviours: the unique homomor-
phism [[−]]GX : X → Ω maps every state of a coalgebraX to a canonical representative of its behaviour. This provides
a general notion of behavioural equivalence: two states x1, x2 ∈ X are G-behaviourally equivalent (x1 ≈G x2) iff
[[x1]]

G
X = [[x2]]

G
X

1.
The functors corresponding to many well known types of systems are shown in [27]. In this section we will show

a functorW : Set → Set such that≈W coincides with weighted bisimilarity. In order to do that, we need to introduce
the field valuation functor.

Definition 2 (Field valuation Functor). Let K be a field. The field valuation functor K−
ω : Set → Set is defined as

follows. For each set X , KX
ω is the set of functions from X to K with finite support. For each function h : X → Y ,

Kh
ω : K

X
ω → KY

ω is the function mapping each ϕ ∈ KX
ω into ϕh ∈ KY

ω defined, for all y ∈ Y , by

ϕh(y) =
∑

x′∈h−1(y)

ϕ(x′)

Note that the above definition employs only the additive monoid of K, i.e., the element 0 and the + operator. For this
reason, such functor is often defined in literature (e.g., in [13]) for commutative monoids instead of fields.

We need two further ingredients. Given a set B, the functor B × − : Set → Set maps every set X into B ×X
and every function f : X → Y into idB × f : B ×X → B × Y . Given a finite set A, the functor −A : Set → Set
mapsX intoXA and f : X → Y into fA : XA → Y A.

Now, the functor corresponding to weighted automata with input alphabet A over the field K is W = K ×
(K−

ω)
A : Set → Set. Note that every function f : X → W(X) consists of a pair of functions 〈o, t〉 with o : X → K

and t : X → (KX
ω)A. Therefore anyW-coalgebra (X, f) is a weighted automata (X, 〈o, t〉) (and viceversa).

Proposition 1 ([34]) The functorW has a final coalgebra.

In order to show that the equivalence induced by the finalW-coalgebra (≈W) coincides with weighted bisimilarity
(∼w), it is instructive to spell out the notion ofW-homomorphism. A function h : X → Y is aW-homomorphism
between weighted automata (X, 〈oX , tX〉) and (Y, 〈oY , tY 〉) if the following diagram commutes.

X

〈oX ,tX〉
!!

h "" Y

〈oY ,tY 〉
!!

K× (KX
ω)A

id×(Kh
ω)A

"" K× (KY
ω)

A

This means that for all x ∈ X, y ∈ Y, a ∈ A,

oX(x) = oY (h(x)) and
∑

x′∈h−1(y) tX(x)(a)(x′) = tY (h(x))(a)(y).

1Here we are implicitly assuming that C is a concrete category [1], i.e., there exists a faithfull functor U : C → Set. By writing x1, x2 ∈ X ,
we formally mean that x1, x2 ∈ UX and by [[xi]]

G
X , we mean U([[−]]GX)xi.

5

For every W-homomorphism h : (X, 〈oX , tX〉) → (Y, 〈oY , tY 〉), the equivalence relation Rh =
{(x1, x2) | h(x1) = h(x2)} is a weighted bisimulation. Indeed, by the properties of W-homomorphisms and by
definition of Rh, for all (x1, x2) ∈ Rh

oX(x1) = oY (h(x1)) = oY (h(x2)) = oX(x2)

and for all a ∈ A, for all y ∈ Y
∑

x′′∈h−1(y)

tX(x1)(a)(x
′′) = tY (h(x1))(a)(y) = tY (h(x2))(a)(y) =

∑

x′′∈h−1(y)

tX(x2)(a)(x
′′).

Trivially, the latter implies that for all x′ ∈ X
∑

x′′∈[x′]Rh

tX(x1)(a)(x
′′) =

∑

x′′∈[x′]Rh

tX(x2)(a)(x
′′).

For an example look at the function h depicted by the dotted arrows in Fig. 1: h is aW-homomorphism and Rh

is a weighted bisimulation.
Conversely, every bisimulation R on (X, 〈oX , tX〉) induces the coalgebra (X/R, 〈oX/R, tX/R〉) where X/R is

the set of all equivalence classes of X w.r.t. R and oX/R : X/R → K and tX/R : X/R → (KX/R
ω)A are defined for

all x1, x2 ∈ X , a ∈ A by

oX/R([x1]R) = oX(x1) tX/R([x1]R)(a)([x2]R) =
∑

x′∈[x2]R

tX(x1)(a)(x
′).

Note that both oX/R and tX/R are well defined (i.e., independent from the choice of the representative) since R is a
weighted bisimulation. Most importantly, the function εR : X → X/R mapping x into [x]R is aW-homomorphism.

X

〈oX ,tX〉

!!

[[−]]WX

##εR "" X/R

〈oX/R,tX/R〉

!!

[[−]]WX/R "" Ω

ω

!!
W(X)

W([[−]]WX)

$$W(εR)
"" W(X/R)

W([[−]]WX/R)

"" W(Ω)

Theorem 1 Let (X, 〈o, t〉) be a weighted automaton and let x1, x2 be two states inX . Then, x1 ∼w x2 iff x1 ≈W x2,
i.e., [[x1]]WX = [[x2]]WX .

PROOF. The proof follows almost trivially from the above observations.
If x1 ≈W x2, i.e., [[x1]]WX = [[x2]]WX , then (x1, x2) ∈ R[[−]]WX

andR[[−]]WX
is a weighted bisimulation because [[−]]WX

is aW-homomorphism. Thus x1 ∼w x2

If x1 ∼w x2, then there exists a weighted bisimulation R such that (x1, x2) ∈ R. Let (X/R, 〈oX/R, tX/R〉)
and εR : X → X/R be the W-coalgebra and the W-homomorphism described above. Since there exists a unique
W-homomorphism from (X, 〈oX , tX〉) to the final coalgebra, then [[−]]WX = [[−]]WX/R ◦ εR. Since εR(x1) = εR(x2),
then [[x1]]WX = [[x2]]WX , i.e., x1 ≈W x2.

2.1. Weighted language equivalence
The semantics of weighted automata can also be defined in terms of weighted languages. A weighted language

over A and K is a function σ : A∗ → K assigning to each word in A∗ a weight in K. For each WA (X, 〈o, t〉), the
function lX : X → KA∗

assigns to each state x ∈ X its recognized weighted language. For all words a1 . . . an ∈ A∗,
it is defined by

lX(x)(a1 . . . an) =
∑

{k1· . . . · kn · k | x = x1
a1,k1→ . . .

an,kn→ xn and o(xn) = k}.

6

x1

x2 x3

x4 x50

0 2

0 0

a, 1
a, 1

a, 1
a, 1

x1 x2

x3

x50 0

2

0

a, 1
a, 1

a, 1

x1 x2 x3

0 0 2

a, 1 a, 1
x1 x2 x3

0 0 1

a, 1 a, 2

Figure 2: The states x1 in the above automata recognize the language mapping aa into 2 and the other words into 0.
Although they are all language equivalent, they are not bisimilar.

We will often use the following characterization: for all w ∈ A#,

lX(x)(w) =

{

o(x), if w = ε;
∑

x′∈X(t(x)(a)(x′) · lX(x′)(w′)), if w = aw′.

Two states x1, x2 ∈ X are said to be weighted language equivalent (denoted by x1 ∼l x2) if lX(x1) = lX(x2).
In [7], it is shown that if two states are weighted bisimilar then they are also weighted language equivalent. For
completeness, we recall here the proof.

Proposition 2 ∼w⊆∼l

PROOF. We prove that ifR is a weighted bisimulation, then for all (x1, x2) ∈ R, lX(x1) = lX(x2). We use induction
on words w ∈ A∗.

Ifw = ε, then lX(x1)(w) = o(x1) and lX(x2)(w) = o(x2) and o(x1) = o(x2) sinceR is a weighted bisimulation.
If w = aw′, then

lX(x1)(w) =
∑

x′∈X

(t(x1)(a)(x
′) · lX(x′)(w′)).

By induction hypothesis for all x′′ ∈ [x′]R, lX(x′′)(w′) = lX(x′)(w′). Thus in the above summation we can group
all the states x′′ ∈ [x′]R as follows.

lX(x1)(w) =
∑

[x′]R∈X/R



lX(x′)(w′) ·





∑

x′′∈[x′]R

t(x1)(a)(x
′′)









Since (x1, x2) ∈ R and R is a weighted bisimulation, the above summation is equivalent to

∑

[x′]R∈X/R



lX(x′)(w′) ·





∑

x′′∈[x′]R

t(x2)(a)(x
′′)









that, by the previous arguments, is equal to lX(x2)(w).

The inverse inclusion does not hold: all the states x1 in Fig.2 are language equivalent but they are not equivalent
according to weighted bisimilarity.

2.2. On the difference betweenW-bisimilarity andW-behavioural equivalence
We conclude this section with an example showing the difference between W-behavioral equivalence (and

hence weighted bisimulation) and another canonical equivalence notion from the theory of coalgebra, namely W-
bisimulation. This result is not needed for understanding the next sections, and therefore this sub-section can be
safely skipped.

The theory of coalgebras provides an alternative definition of equivalence, namely G-bisimilarity (.G), that coin-
cides with G-behavioural equivalence whenever the functor G preserves weak pullbacks [27]. In the case of weighted
automata, the functor W does not preserve weak pullbacks and .W is strictly included into ≈W. Since weighted
automata are one of the few interesting cases where this phenomenon arises, we now show an example of two states
that are in ≈W, but not in .W (the paper [12] was of great inspiration in the construction of this example).

7

x1

x2

x3

z1 z2 y1

0

1

1

0 1 0

a, 1

a,−1

Figure 3: From left to right, three weighted automata over R: (X, 〈oX , tX〉), (Z, 〈oZ , tZ〉) and (Y, 〈oY , tY 〉). The dashed
arrows denotes theW-homomorphisms h1 : X → Z and h2 : Y → Z. The states x1 and y1 are behaviourally equivalent,
but they are notW-bisimilar.

First, let us instantiate the general coalgebraic definition of bisimulation and bisimilarity to the functor W. A
W-bisimulation between two W-coalgebras (X, 〈oX , tX〉) and (Y, 〈oY , tY 〉) is a relation R ⊆ X × Y such that
there exists 〈oR, tR〉 : R → W(R) making the following diagram commute. The biggestW-bisimulation is called
W-bisimilarity (.W).

X

〈oX ,tX〉

!!

R
π1%%

〈oR,tR〉

!!

π2 "" Y

〈oY ,tY 〉

!!
W(X) W(R)

W(π1)
%%

W(π2)
"" W(Y)

Note that the actual definition of≈W relates the states of a single automaton. We can extend it in order to relate states
of possibly distinct automata: given (X, 〈oX , tX〉) and (Y, 〈oY , tY 〉), the states x ∈ X and y ∈ Y are equivalent w.r.t.
≈W iff [[x]]WX = [[y]]WY .

Consider now the coalgebras in Fig.3: x1 ≈W y1, but x1 *.W y1. For the former, it is enough to observe that
the function h1 and h2 (represented by the dashed arrows) are W-homomorphisms, and by uniqueness of [[−]]W:
[[x1]]WX = [[h1(x1)]]WZ = [[z1]]WZ = [[h2(y1)]]WZ = [[y1]]WY . For x1 *.W y1, note that there exists no R ⊆ X × Y
that is aW-bisimulation and such that (x1, y1) ∈ R. Since x2 and x3 are both different from y1 (their output values
are different), then neither (x2, y1) nor (x3, y1) can belong to a bisimulation. Thus the only remaining relation on
X × Y is the one equating just x1 and y1, i.e., R = {(x1, y1)}. But this is not a W-bisimulation since there exists
no 〈oR, tR〉 making the leftmost square of the above diagram commute. In order to understand this fact, note that
π−1
1 (x2) = ∅ and π−1

1 (x3) = ∅. Thus for all possible choices of 〈oR, tR〉, the function W(π1) ◦ 〈oR, tR〉 maps
(x1, y1) into a pair 〈k,ϕ〉 where ϕ(a)(x2) = 0 and ϕ(a)(x3) = 0. On the other side of the square, we have that
〈oX , tX〉 ◦ π1(x1, y1) = 〈oX(x1), tX(x1)〉 and tX(x1)(a)(x2) = 1 and tX(x1)(a)(x3) = −1.

3. Linear Weighted Automata as Linear Coalgebras

In this section we will introduce linear weighted automata as coalgebras for an endofunctor L : V ect → V ect,
where V ect is the category of vector spaces and linear maps over a fieldK. The goal of this change is to characterize
weighted language equivalence as the behavioural equivalence induced by the final L-coalgebra.

3.1. Preliminaries
First we fix some notations and recall some basic facts on vector spaces and linear maps. We use v1, v2, . . . to

range over vectors and V,W . . . to range over vector spaces on a fieldK. Given a vector space V , a vector v ∈ V and
a k ∈ K, the scalar product is denoted by k · v (or kv for short). The space spanned by an I-indexed family of vectors
B = {vi}i∈I is the space span(B) of all v such that

v = k1vi1 + k2vi2 + · · ·+ knvin

where for all j, vij ∈ B. In this case, we say that v is a linear combination of the vectors in B. A set of vectors
is linearly independent if none of its elements can be expressed as the linear combination of the remaining ones. A
basis for the space V is a linearly independent set of vectors that spans the whole V . All the basis of V have the same
cardinality which is called the dimension of V (denoted by dim(V)). If (v1, . . . vn) is a basis for V , then each vector

8

v ∈ V is equal to k1v1 + · · ·+ knvn for some k1, . . . , kn ∈ K. For this reason, each vector v can be represented as a
n× 1-column vector

v =







k1
...
kn







We use f, g, . . . to range over linear maps. Identity and composition of maps are denoted as usual. If BV =
(v1, . . . vn) and BW = (w1 . . . wm) are, respectively, the basis for the vector spaces V and W , then every linear
map f : V → W can be represented as m × n-matrix. Indeed, for each v ∈ V , v = k1v1 + · · · + knvn and
f(v) = k1f(v1) + · · · + knf(vn), by linearity of f . For each vi, f(vi) can be represented as m × 1 column vector
by taking as basis BW . Thus the matrix corresponding to f (w.r.t. BV and BW) is the one having as i-th column the
vector corresponding to f(vi). In this paper we will use capital letters F,G . . . to denote the matrices corresponding
to linear maps f, g . . . in lower case. By multiplying the matrixF for the vector v (in symbols, F×v) we can compute
f(v). More generally, matrix multiplication corresponds to composition of linear maps, in symbols:

g ◦ f = G× F

The product of two vector spaces V,W is written as V × W , and the product of two linear maps f1, f2 is f1 × f2,
defined as for functions. It will be clear from the context whether × refer to multipliaction of matrix or product of
spaces (or maps). Given a set X , and a vector space V , the set V X (i.e., the set of functions ϕ : X → V) carries a
vector space structure where sum and scalar product are defined point-wise. Hereafter we will use V X to denote both
the vector space and the underlying carrier set. Given a linear map f : V1 → V2, the linear map fX : V X

1 → V X
2 is

defined as for functions. If A is a finite set we can conveniently think V A as the product of V with itself for |A|-times
(|A| is the cardinality of A). A linear map f : U → V A can be decomposed in a family of maps indexed by A,
f = {fa : U → V }a∈A, such that for all u ∈ U , fa(u) = f(u)(a).

For a set X , the set KX
ω (i.e., the set of all finite support functions ϕ : X → K) carries a vector space where sum

and scalar product are defined in the obvious way. This is called the free vector space generated by X and can be
thought of as the space spanned by the elements of X : each vector k1xi1 + k2xi2 + · · · + knxin corresponds to a
function ϕ : X → K such that ϕ(xij) = kj and for all x /∈ {xij}, ϕ(x) = 0; conversely, each finite support function
ϕ corresponds to a vector ϕ(xi1)xi + ϕ(xi2)xi2 + · · ·+ ϕ(xin)xin .

A fundamental property holds in the free vector space generated byX : for all functions f fromX to the carrier-set
of a vector space V , there exists a linear map f % : KX

ω → V that is called the linearization of f . For all v ∈ KX
ω ,

v = k1xi1 + k2xi2 + · · ·+ knxin and f %(v) = k1f(xi1) + k2f(xi2) + · · ·+ knf(xin).

KX
ω

f"

##!

!

!

!

!

!

!

!

!

!

!

!

!

X
f

""

ηX

&&

V

Note that f % is the only linear map such that f = f % ◦ ηX , where ηX(x) is the function assigning 1 to x and 0 to all
the other elements ofX .

The kernel ker(f) of a linear map f : V → W is the subspace of V containing all the vectors v ∈ V such that
f(v) = 0. The image im(f) of f is the subspace ofW containing all thew ∈ W such thatw = f(v) for some v ∈ V .
If V has finite dimension, the kernel and the image of f are related by the following equation:

dim(V) = dim(ker(f)) + dim(im(f)) . (1)

Given two vector spaces V1 and V2, their intersection V1 ∩ V2 is still a vector space, while their union V1 ∪ V2 is not.
Instead of union we consider the coproduct of vector spaces: we write V1 + V2 to denote the space span(V1 ∪ V2)
(note that in the category of vector spaces, product and coproduct coincide).

9

3.2. From Weighted Automata to Linear Weighted Automata
We have now all the ingredients to introduce linear weighted automata and a coalgebraic characterization of

weighted language equivalence.

Definition 3 (LWA). A linear weighted automaton (LWA, for short) with input alphabet A over the field K is a coal-
gebra for the functor L = K×−A : V ect → V ect.

More concretely [6], a LWA is a triple (V, 〈o, t〉), where V is a vector space (representing the states space), o : V →
K is a linear map associating to each state its output weight and t : V → V A is a linear map that for each input a ∈ A
associates a next state (i.e., a vector) in V . We will write v1

a
→ v2 for t(v1)(a) = v2.

The behaviour of linear weighted automata is expressed in terms of weighted languages. The language recognized
by a vector v ∈ V of a LWA (V, 〈o, t〉) is defined for all words a1 . . . an ∈ A∗ as [[v]]LV (a1 . . . an) = o(vn) where vn
is the vector reached from v through a1 . . . an, i.e., v

a1→ . . .
an→ vn. We will often use the following (more compact)

definition: for all w ∈ A#,

[[v]]LV (w) =

{

o(v), if w = ε;
[[t(v)(a)]]LV (w

′), if w = aw′.

Here we use the notation [[−]]LV because this is the uniqueL-homomorphism into the finalL-coalgebra. In Section 3.3,
we will provide a proof for this fact and we will also discuss the exact correspondencewith the function lX introduced
in Section 2.

Given a weighted automaton (X, 〈o, t〉), we can build a linear weighted automaton (KX
ω , 〈o%, t%〉), where KX

ω is
the free vector space generated by X and o% and t% are the linearizations of o and t. If X is finite, we can represent
t% and o% by the same matrices that we have introduced in the previous section for t and o. By fixing an ordering
x1, . . . , xn of the states in X , we have a basis for KX

ω , i.e., every vector v ∈ KX
ω is equal to k1x1 + · · · + knxn

and it can be represented as an n × 1-column vector. The values t%(v)(a) and o%(v) can be computed via matrix
multiplication as Ta × v and O × v.

For a concrete example, look at the weighted automaton (X, 〈oX , tX〉) in Fig. 1. The corresponding linear
weighted automaton (RX

ω , 〈o%X , t%X〉) has as state space the space of all the linear combinations of the states inX (i.e.,
{k1x1 + k2x2 + k3x3 | ki ∈ R}). The function o%X maps v = k1x1 + k2x2 + k3x3 into k1oX(x1) + k2oX(x2) +
k3oX(x3), i.e., k1 + k2 + k3. By exploiting the correspondence between functions and vectors in KX

ω (discussed
in Section 3.1), we can write t%X(v)(a) = k1tX(x1)(a) + k2tX(x2)(a) + k3tX(x3)(a) that is k1(x1 + x2 + x3) +

k23x2 + k33x3 and t%X(v)(b) = k13x1 + k23x1 + k33x1. This can be conveniently expressed in terms of matrix
multiplication.

o%X(v) =
(

1 1 1
)





k1
k2
k3



 t%X(v)(a) =





1 0 0
1 3 0
1 0 3









k1
k2
k3



 t%X(v)(b) =





3 3 3
0 0 0
0 0 0









k1
k2
k3





A linear map h : V → W is an L-homomorphism between LWA (V, 〈oV , tV 〉) and (W, 〈oW , tW 〉) if the following
diagram commutes.

V

〈oV ,tV 〉

!!

h "" W

〈oW ,tW 〉

!!
K× V A

id×hA
"" K×WA

This means that for all v ∈ V, a ∈ A, oV (v) = oW (h(v)) and h(tV (v)(a)) = tW (h(v))(a). If V andW have finite
dimension, then we can represent all the morphisms of the above diagram as matrices. In this case, the above diagram
commutes if and only if for all a ∈ A,

OV = OW ×H H × TVa = TWa ×H

where TVa and TWa are the matrix representation of tV and tW for any a ∈ A.

10

x1

x2 x3

1

1 1

a, 1 a,−1

a, 1 a, 1

x1 + x2

x2 + x3 x1 + x3

2

2 2

a, 3
2

a, 1
2 a,− 3

2

a, 1
a, 1

2

a, 1
2

a,− 1
2

Figure 4: The weighted automata (X, 〈oX , tX〉) (left) and (Y, 〈oY , tY 〉) (right). The corresponding linear weighted au-
tomata (RX

ω , 〈o"X , t"X〉) and (RY
ω , 〈o"Y , t"Y 〉) are isomorphic.

For a function h : X → Y , the function Kh : KX → KY (formally introduced in Definition 2) is a linear
map. Note that if h is a W-homomorphism between the WA (X, 〈oX , tX〉) and (Y, 〈oY , tY 〉), then Kh is an L-
homomorphismbetween the LWA (KX , 〈o%X , t%X〉) and (KY , 〈o%Y , t

%
Y 〉). For an example, look at theW-homomorphism

h : (X, 〈oX , tX〉) → (Y, 〈oY , tY 〉) represented by the dotted arrows in Fig. 1. The linear map Rh : RX → RY is
represented by the matrix H = (1 1 1) and it is an L-homomorphism between (RX , 〈o%X , t%X〉) and (RY , 〈o%Y , t

%
Y 〉).

This can be easily checked by showing that OX = OY ×H ,H × TXa = TYa ×H andH × TXb = TYb ×H .

Note that two different weighted automata can represent the same (up to isomorphism) linear weighted automaton.
As an example, look at the weighted automata (X, 〈oX , tX〉) and (Y, 〈oY , tY 〉) in Fig. 4. They represent, respectively,
the linear weighted automata (RX

ω , 〈o%X , t%X〉) and (RY
ω , 〈o

%
Y , t

%
Y 〉) that are isomorphic. The transitions and the output

functions for the two automata are described by the following matrices.

TXa =





0 0 0
1 1 0
−1 0 1



 OX =
(

1 1 1
)

TYa =





3
2 0 1

2
1
2 1 1

2
− 3

2 0 − 1
2



 OY =
(

2 2 2
)

Note that TXa and TYa are similar, i.e., they represent the same linear map. This can be immediately checked by
showing that TYa = j−1 ◦ tXa ◦ j, where j : RY → RX is the isomorphic map representing the change of bases form
Y = (x1 + x2, x2 + x3, x3 + x1) to X = (x1, x2, x3) and j−1 : RX → RY is its inverse. The matrix representation
of j and j−1 is the following.

J =





1 0 1
1 1 0
0 1 1



 J−1 =





1
2

1
2 − 1

2
− 1

2
1
2

1
2

1
2 − 1

2
1
2





Also OX and OY represents the same map in different bases. Indeed,OY = OX × J .
At this point, it is easy to see that the linear isomorphism j−1 : RX → RY is an L-homomorphism, because

OX = OX × J × J−1 = OY × J−1 and J−1 × TXa = J−1 × TXa × J × J−1 = TYa × J−1. Analogously for
j : RY → RX .

3.3. Language equivalence and final L-coalgebra
We introduce the final L-coalgebra and we show that the behavioural equivalence≈L, induced by the functor L,

coincides with weighted language equivalence.
The set of all weighted languages KA∗ carries a vector space structure: the sum of two languages σ1,σ2 ∈ KA∗

is the language σ1 + σ2 defined for each word w ∈ A∗ as σ1 + σ2(w) = σ1(w) + σ2(w); the product of a language σ
for a scalar k ∈ K is kσ defined as kσ(w) = k · σ(w); the element 0 of KA∗ is the language mapping each word into
the 0 of K.

The empty function ε : KA∗

→ K and the derivative function d : KA∗

→ (KA∗

)A are defined for all σ ∈ KA∗

,
a ∈ A as

ε(σ) = σ(ε) d(σ)(a) = σa

11

where σa:A∗ → K denotes the a-derivative of σ that is defined for all w ∈ A∗ as

σa(w) = σ(aw).

Proposition 3 The maps ε : KA∗

→ K and d : KA∗

→ (KA∗

)A are linear.

PROOF. We show the proof for d. The one for ε is analogous.
Let σ1,σ2 be two weighted languages in KA∗ . Now for all a ∈ A,w ∈ A∗, d(σ1 + σ2)(a)(w) = σ1 + σ2(aw) =

σ1(aw) + σ2(aw) = d(σ1)(a)(w) + d(σ2)(a)(w).
Let k be a scalar in K and σ be a weighted language in KA∗

. Now for all a ∈ A,w ∈ A∗, k · d(σ)(a)(w) =
k · σ(aw) = d(kσ)(a)(w).

Since KA∗ is a vector space and since ε and d are linear maps, (KA∗

, 〈ε, d〉) is an L-coalgebra. The following
theorem shows that it is final.

Theorem 2 (finality) From every L-coalgebra (V, 〈o, t〉) there exists a uniqueL-homomorphism into (KA∗

, 〈ε, d〉).

V

〈o,t〉

!!

[[−]]LV ""
KA∗

〈ε,d〉

!!
L(V)

L([[−]]LV)

"" L(KA)

PROOF. The only function making the above diagram commutes is [[−]]LV , i.e., the function mapping each vector
v ∈ V into the weighted language that it recognizes. Hereafter we show that [[−]]LV is a linear map.

By induction on w, we prove that for all v1, v2 ∈ V , for all w ∈ A∗, [[v1 + v2]]LV (w) = [[v1]]LV (w) + [[v2]]LV (w).
Suppose that w = ε. Then [[v1 + v2]]LV (ε) = o(v1 + v2). Since o is a linear map, this is equal to o(v1) + o(v2) =

[[v1]]LV (ε) + [[v2]]LV (ε).
Now suppose that w = aw′. Then [[v1 + v2]]LV (aw

′) = [[t(v1 + v2)(a)]]LV (w
′). Since t is a linear map, this is

equal to [[t(v1)(a) + t(v2)(a)]]LV (w
′) that (by induction hypothesis) is equal to [[t(v1)(a)]]LV (w′) + [[t(v2)(a)]]LV (w

′) =
[[v1]]LV (aw

′) + [[v2]]LV (aw
′).

We can proceed analogously for the scalar product.

Thus, two vectors v1, v2 ∈ V are L-behaviourally equivalent (v1 ≈L v2) iff they recognize the same weighted
language (as defined in Section 3.2). Proposition 4 below shows that [[−]]L

KX
ω
: KX

ω → KA∗ is the linearization of the
function lX : X → KA∗ (defined in Section 2) or, in other words, is the only linear map making the following diagram
commute.

KX
ω

[[−]]L
KX

''!

!

!

!

!

!

!

!

!

!

!

!

!

X
lX

""

ηX

&&

KA∗

Lemma 1 Let (X, 〈o, t〉) be a WA and (KX
ω , 〈o%, t%〉) be the corresponding linear weighted automaton. Then for all

x ∈ X , lX(x) = [[x]]L
KX

ω
.

PROOF. We prove it by induction on w ∈ A∗.
If w = ε, then lX(x)(w) = oX(x) = o%X(x) = [[x]]L

KX
ω
(w).

If w = aw′, then [[x]]L
KX

ω
(w) = [[t%(x)(a)]]L

KX
ω
(w′). Note that by definition, t%(x)(a) =

∑

x′∈X t(x)(a)(x′)x′, thus
the latter is equal to

[[

∑

x′∈X

t(x)(a)(x′) · x′
]]L

KX
ω

(w′)

12

which, by linearity of [[−]]L
KX

ω
, coincides with

∑

x′∈X

t(x)(a)(x′) · [[x′]]L
KX

ω
(w′).

By induction hypothesis [[x′]]L
KX

ω
(w′) = lX(x′)(w′) and thus the above coincides with

∑

x′∈X

t(x)(a)(x′) · lX(x′)(w′)

that is lX(x)(w).

Proposition 4 Let (X, 〈o, t〉) be a WA and (KX
ω , 〈o%, t%〉) be the corresponding linear weighted automaton. Then, for

all v = k1xi1 + · · ·+ knxin , [[v]]LKX
ω
= k1lX(xi1) + · · ·+ knlX(xin).

PROOF. By induction on w ∈ A∗.
If w = ε, then [[v]]L

KX
ω
(w) = o%(v). Since o% is a linear map and X is a base for KX

ω , o%(v) = k1o(xi1) + · · · +

kno(xin). For all j, lX(xij)(ε) = o(xij), thus k1o(xi1) + · · ·+ kno(xin) = k1lX(xi1)(w) + · · ·+ knlX(xin)(w).
If w = aw′, then [[v]]L

KX
ω
(w) = [[t%(v)(a)]]L

KX
ω
(w′). Since t% is linear and X is a base for KX

ω , then t%(v)(a) =

k1t(xi1)(a) + · · ·+ knt(xin)(a). For all j,

t(xij)(a) =
∑

x′∈X

(

t(xij)(a)(x
′) · x′

)

,

thus [[t%(v)(a)]]L
KX

ω
(w′) is equal to

[[

k1
∑

x′∈X

(

t(xij)(a)(x
′) · x′

)

+ · · ·+ kn
∑

x′∈X

(

t(xij)(a)(x
′) · x′

)

]]L

KX
ω

(w′)

which, by linearity of [[−]]L
KX

ω
, is equal to

k1
∑

x′∈X

(

t(xij)(a)(x
′) · [[x′]]L

KX
ω
(w′)

)

+ · · ·+ kn
∑

x′∈X

(

t(xij)(a)(x
′) · [[x′]]L

KX
ω
(w′)

)

.

By induction hypothesis [[x′]]L
KX

ω
(w′) = lX(x′)(w′) and thus the latter coincides with

k1
∑

x′∈X

(

t(xij)(a)(x
′) · lX(x′)(w′)

)

+ · · ·+ kn
∑

x′∈X

(

tX(xij)(a)(x
′) · lX(x′)(w′)

)

.

By definition, lX(xij)(w) =
∑

x′∈X

(

t(xij)(a)(x
′) · lX(x′)(w′)

)

and thus we can concisely express the above
formula as

k1lX(x1)(w) + · · ·+ knlX(xn)(w).

3.4. Linear Bisimulations and Subspaces
We now introduce a convenient characterization of language equivalence by means of linear weighted bisimula-

tions. Differently form ordinary (weighted) bisimulations, these can be seen both as relations and as subspaces. The
latter characterization will be exploited in the next section for defining an algorithm for checking language equiva-
lence.

First, we show how to represent relations over a vector space V as sub-spaces of V , following [35, 6].

Definition 4 (linear relations). Let U be a sub-space of V . The binary relation RU over V is defined by

v1 RU v2 if and only if v1 − v2 ∈ U .

A relation R is linear if there is a subspace U such that R = RU .

13

Note that a linear relation is a total equivalence relation on V . Let now R be any binary relation over V .
There is a canonical way of turning R into a linear relation, which we describe in the following. The kernel
of R (in symbols ker(R)) is the set {v1 − v2 | v1 Rv2}. The linear extension of R, denoted R(, is defined by:
v1 R(v2 if and only if (v1 − v2) ∈ span(ker(R)).

Lemma 2 Let U be a sub-space of V , then ker(RU) = U .

According to the above lemma, a linear relationR is completely described by its kernel, which is a sub-space, that
is

v1 Rv2 if and only if (v1 − v2) ∈ ker(R) . (2)

Conversely, for any sub-space U ⊆ V there is a corresponding linear relation RU whose kernel is U . Hence, without
loss of generality,we can identify linear relations on V with sub-spaces of V . For example, by slight abuse of notation,
we can write v1 U v2 instead of v1 RU v2; and conversely, we will sometimes denote by R the sub-space ker(R). The
context will be sufficient to tell whether we are actually referring to a linear relation or to the corresponding sub-space
(kernel). Note that the sub-space {0} corresponds to the identity relation on V , that isR{0} = IdV . In fact: v1 IdV v2
iff v1 = v2 iff v1 − v2 = 0. Similarly, the space V itself corresponds to RV = V × V .

We are now ready to define linear weighted bisimulation. This definition relies on the familiar step-by-step game
played on transitions, plus an initial condition requiring that two related states have the same output weight. We call
this form of bisimulation linear to stress the difference with the one introduced in Definition 1.

Definition 5 (linear weighted bisimulation). Let (V, 〈o, t〉) be a linear weighted automaton. A linear relation R ⊆
V × V is a linear weighted bisimulation if for all (v1, v2) ∈ R, it holds that:

(1) o(v1) = o(v2),
(2) ∀a ∈ A, t(v1)(a) R t(v2)(a).

For a concrete example, consider the automaton (RX
ω , 〈o%X , t%X〉) in Fig 4. The relation R = {(x2, x3)} is not

linear, because U = {x2 − x3} is not a subspace of RX
ω . However, we can turn R into a linear relation by employing

its kernel ker(R) = {x2−x3}. The linear extension ofR isR(= {(k1x1+k2x2+k3x3, k′1x1+k′2x2+k′3x3) | k1 =
k′1 and k2 + k3 = k′2 + k′3}. It is easy to see that R(is a linear weighted bisimulation.

The following lemma provides a characterization of linear weighted bisimulation as a subspace. Let us say that a
sub-space U is f -invariant if f(U) ⊆ U . Bisimulations are transition-invariant relations that refine the kernel of the
output map o.

Lemma 3 Let (V, 〈o, t〉) be a LWA andR be linear relation over V . R is a linear weighted bisimulation if and only if

(1) R ⊆ ker(o),
(2) R is ta-invariant for each a ∈ A.

This lemma will be fundamental in the next section for defining an algorithm computing the greatest linear
weighted bisimulation. In the remainder of this section, we show that the greatest linear weighted bisimulation
coincides with the kernel of the final map [[−]]LV . More generally, the kernel of each L-homomorphism is a linear
weighted bisimulation R and, viceversa, for each linear weighted bisimulation R there exists an L-homomorphism
whose kernel is R.

Proposition 5 Let (V, 〈oV , tV 〉) be a LWA. If f : V → W is an L-homomorphism (for some LWA (W, 〈oW , tW 〉))
then ker(f) is a linear weighted bisimulation. Conversely, if R is a linear weighted bisimulation for (V, 〈o, t〉), then
there exists a LWA (W, 〈oW , tW 〉) and an L-homomorphism f : V → W such that ker(f) = R.

PROOF. First, we suppose that f : V → W is an L-homomorphism and we prove that ker(f) satisfies (1) and (2)
of Lemma 3. Take a vector v ∈ ker(f). Thus, f(v) = 0 and, since oW and tW are linear maps, oW (f(v)) = 0
and tW (f(v))(a) = 0 for all a ∈ A. Since f is an L-homomorphism, we have that (1) oV (v) = oW (f(v)) = 0,
i.e., ker(f) ⊆ ker(oV) and (2) f(tV (v)(a)) = tW (f(v))(a) = 0 meaning that tV (v)(a) ∈ ker(f), i.e., ker(f) is
tVa-invariant.

14

In order to prove the second part, we need to recall quotient spaces and quotient maps from [14]. Given a subspace
U of V , the equivalence class of v w.r.t. U is [v]U = {v + u | u ∈ U}. Note that v1 ∈ [v2]U if and only if v1RUv2.
The quotient space V/U is the space of all equivalence classes [v]U where scalar product k[v]U is defined as [kv]U
and the sum [v1]U + [v2]U as [v1 + v2]U . It is easy to check that these operations are well-defined (i.e., independent
from the choice of the representative) and turn V/U into a vector space where the element 0 is U . Most importantly,
the quotient function εU : V → V/U mapping each vector v into [v]U is a linear map such that ker(εU) = U .

Now, let U be the subspace corresponding to the linear weighted bisimulation R. We can takeW = V/U and we
define oW as oW ([v]U) = oV (v) and tW as tW ([v]U)(a) = [t(v)(a)]U . Note that both oW and tW are well defined:
for all v′ ∈ [v]U = {v+u | u ∈ U}, oW (v′) = oW (v) (since oV (u) = 0 for all u ∈ U) and tW (v′)(a) ∈ [tW (v)(a)]U
(since tV (u)(a) ∈ U for all u ∈ U). It is also easy to check that they are linear.

Finally, we take f : V → W as εU and with the previous definition of oW and tW is trivial to check that εU is an
L-homomorphism. As said above, its kernel is U .

Theorem 3 Let (V, 〈o, t〉) be a LWA and let [[−]]LV : V → KA∗

be the unique L-morphism into the final coalgebra.
Then ker([[−]]LV) is the largest linear weighted bisimulation on V .

PROOF. First of all, note that by the first part of Proposition 5, ker([[−]]LV) is a linear weighted bisimulation.
Then suppose that R is a linear weighted bisimulation. By the second part of Proposition 5, there exists a LWA

(W, 〈oW , tW 〉) and an L-homomorphism f : V → W such that R = ker(f). Now note that, since (W, 〈oW , tW 〉) is
an L-coalgebra there exists an L-homomorphism [[−]]LW : W → KA∗

to the final coalgebra. Since the composition of
two L-homomorphisms is still an L-homomorphism, also [[−]]LW ◦f : V → KA∗ is an L-homomorphism. Since [[−]]LV
is the unique L-homomorphism from V to KA∗ , then [[−]]LW ◦ f = [[−]]LV . Finally, R = ker(f) ⊆ ker([[−]]LW ◦ f) =
ker([[−]]LV).

The characterization of bisimulations as subspaces seems to be possible in V ect and not in Set because the former
category is abelian [10]: every map has a kernel that is a subspace and every subspace is the kernel of some map. We
leave as future work to study (at a more general level) the categorical machinery allowing to characterize bisimulations
as subspaces.

4. Linear Partition Refinement

In the previous section, we have shown that weighted language equivalence (∼l) can be seen as the largest linear
weighted bisimulation. In this section, we exploit this characterization in order to provide a “partition refinement”
algorithm that allows to compute∼l. We will examine below two versions of the algorithm, a forward version (Section
4.1) and a backward one (Section 4.2). The former is straightforward but computationally not very convenient; the
latter is more convenient, although it requires the introduction of some extra machinery. In both cases, we must restrict
to LWA’s where the state space is finite dimension.

4.1. A forward algorithm
Lemma 3 suggests that, in order to compute the largest linear weighed bisimulation for a LWA (V, 〈o, t〉), one

might start from ker(o) and refine it until the condition (2) given in the lemma is satisfied. This is indeed the case.

Proposition 6 (partition refinement, forward version) Let (V, 〈o, t〉) be a LWA. Consider the sequence (Ri)i≥0 of
sub-spaces of V defined inductively by

R0 = ker(o) Ri+1 = Ri ∩
⋂

a∈A

t(Ri)(a)
−1

where t(Ri)(a)−1 is the space {v ∈ V | t(v)(a) ∈ Ri}. Then there is j ≤ dim(V) such thatRj+1 = Rj . The largest
linear weighted bisimulation is ≈L= Rj .

15

x1

x2 x3

2

1 1

a, 1
3 a, 1

b, 1
3

b, 3

a, 1/b, 1

x1

x2 x3

2

1 1

a, 1
3 a, 1

b, 1
3

b, 3

a, 1/b, 1

O =
(

2 1 1
)

Ta =





1 1
3 1

0 0 0
0 0 0



 Tb =





1 0 0
0 0 3
0 1

3 0





tTa =





1 0 0
1
3 0 0
1 0 0





tTb =





1 0 0
0 0 1

3
0 3 0





Figure 5: A weighted automata (V, 〈o, t〉) (left) and its reversed (V, 〈o, tt〉) (right).

PROOF. The Ri’s form a descending chain of sub-spaces of V . The corresponding dimensions form a non-
increasing sequence, hence the existence of j as required is obvious. That Rj is a bisimulation follows by apply-
ing Lemma 3: indeed, it is obvious that (1) ker(o) ⊇ Rj , while as to (2) we have that, since Rj+1 = Rj , then
Rj ∩

⋂

a∈A t(Rj)(a)−1 = Rj , i.e., for all a ∈ A, t(Rj)(a) ⊆ Rj .
We finally show that any linear weighted bisimulation R is included in Rj . We do so by proving that for each

i, R ⊆ Ri, thus, in particular R ⊆ Rj . We proceed by induction on i. Again by Lemma 3, we know that R0 =
ker(o) ⊇ R. Assume now R ⊆ Ri. For each action a, by Lemma 3 we have that t(R)(a) ⊆ R, which implies
R ⊆ {v ∈ Ri | ∀a ∈ A, t(v)(a) ∈ Ri} = Ri+1.

Concretely, the algorithm iteratively computes a basisBi for each space Ri. This can be done by solving systems
of linear equations expressing the constraints in the definition of Ri. Since the backward algorithm presented in the
next section is computationally more efficient, we avoid to give further details about its implementation and we show,
as an example, the algorithm at work with the linear automata (V, 〈o, t〉) in Fig.5.

At the beginning, we compute a basis for R0 = ker(o). This is

B0 =











− 1
2
1
0



 ,





− 1
2
0
1











.

In the first iteration, we compute one basis for the space t(R0)(a)−1 and one for the space t(R0)(b)−1. These are
respectively

Ba
1 =











− 1
3
1
0



 ,





−1
0
1











and Bb
1 =











− 1
6
1
0



 ,





− 3
2
0
1











.

Then, R1 is given by the intersectionR0 ∩ t(R0)(a)−1 ∩ t(R0)(b)−1. A basis for R1 is

B1 =











−2
3
1











.

In the second iteration, we compute one basis for the space t(R1)(a)−1 and one for the space t(R1)(b)−1. These are
respectively

Ba
2 =











− 1
3
1
0



 ,





−1
0
1











and Bb
2 =











−2
3
1











.

16

Then, R2 is the intersectionR1 ∩ t(R1)(a)−1 ∩ t(R0)(b)−1. A basis for R2 is

B2 =











−2
3
1











that is equal to B1. Since R1 = R2 the algorithm terminates and returns R1. Now, in order to check if two vectors
v1, v2 ∈ V accept the same weighted language (i.e., v1 ≈L v2), we have to look if v1 − v2 belongs to R1. For
instance, x1 ≈L

3
2x2 + 1

2x3 because x1 − 3
2x2 − 1

2x3 ∈ R1.

We note that ker(o) is in general a large sub-space: since o : V → K with dim(K) = 1, by virtue of equation (1)
we have that dim(ker(o)) ≥ dim(V) − 1. This might be problematic in the actual computation of the basis of ≈L.
We present an alternative version in the next subsection which will avoid this problem.

4.2. A backward algorithm
Two well-known concepts from linear algebra will be relied upon to describe the basic operations of the backward

algorithm. More precisely, annihilators will be used to describe the complement of a relation, while transpose maps
will be used to describe the operation of “reversing arrows” in an automaton. These operations are carried out within
the dual space of V . So we start by reviewing the concept of dual space; an in-depth treatment can be found in e.g.
[14].

Let K be any field and V a vector space over K. The dual space of V , denoted V #, is the set of all linear maps
V → K, with K seen as a 1-dimensional vector space. The elements of V # are often called functionals and we use
ψ1,ψ2, . . . to range over them. The sum of two functionals ψ1 + ψ2 and the scalar multiplication k · ψ (for k ∈ K)
are defined point-wise as expected, and turn V # into a vector space over K. We will denote functional application
ψ(v) as [v,ψ], the bracket notation intending to emphasize certain analogies with inner products. Fix an ordered basis
B = (v1, ..., vn) of V and consider B# = (v#1 , ..., v

#
n), where the functionals v#i are specified by [vj , v#i] = δij for

each i and j. Here, δij denotes the Kronecker symbol, which equals 1 if i = j and 0 otherwise. It is easy to check that
B# forms a basis of V #, referred to as the dual basis of B. Hence dim(V #) = dim(V). In particular, the morphism
(−)# : V → V # that sends each vi into v#i is an isomorphism between V and V #. A crucial definition is that of
transpose morphism.

Definition 6 (transpose linear map). Let f : V → V be a linear map. We let the transpose of f be the endomor-
phism tf : V # → V # defined for all ψ ∈ V # as tf(ψ) = ψ ◦ f .

It is easy to check that that ifF is the matrix representing f in V w.r.t. toB, then the transposematrix tF represents
tf in V # w.r.t. B#, whence the terminology and the notation. It is quite expected that, by taking the transpose twice
one gets back the original morphism. This is in fact the case, although one has to take care of identifying things up
to isomorphism. Denote by V ## the space (V #)#, called double dual of V . There is a natural isomorphism i between
V and V ##, given by i : v 4→ [v, −] (note that this isomorphism does not depend on the choice of a basis). In the
sequel, we shall freely identify V and V ## up to this isomorphism, i.e. identify v and [v,−] for each v ∈ V . With this
identification, one has that t(tf) = f .

We need another concept from duality theory. Given a subspace U of V , we denote by Uo the annihilator of U ,
the subset of functionals that vanish on U .

Definition 7 (annihilator). For any U ⊆ V , we let Uo = {ψ ∈ V # | [u,ψ] = 0 for each u ∈ U}.

Once again, the notation makes the analogy with inner products explicit. We use the following properties of
annihilators, where U,W are a sub-spaces of V : (i) Uo is a sub-space of V #; (ii) (−)o reverses inclusions, i.e. if
U ⊆ W thenW o ⊆ Uo; (iii) (−)o is an involution, that is (Uo)o = U up to the natural isomorphism between V and
its double dual. These three properties suggest that Uo can be regarded as a complement, or negation, of U seen as a
relation. Another useful property is: (iv) dim(Uo) + dim(U) = dim(V). Transpose morphisms and annihilators are
connected via the following property, which is crucial to the development of the algorithm. It basically asserts that
f -invariance of R corresponds to tf -invariance of the complementary relation represented by Ro.

17

Lemma 4 Let U be a sub-space of V and f be an endomorphism on V . If U is f -invariant then Uo is tf -invariant.

We are now ready to give the backward version of the partition refinement algorithm. An informal preview of
the algorithm is as follows. Rather than computing directly the sub-space representing ≈L, the algorithm computes
the sub-space representing the complementary relation. To this end, the algorithm starts from a relation R0 that is
the complement of the relation identifying vectors with equal weights, then incrementally computes the space of all
states that are backward reachable from R0. The largest bisimulation is obtained by taking the complement of this
space. Geometrically, “going backward” means working with the transpose transition functions tta rather than with
ta. Taking the complement of a relation actually means taking its annihilator. This essentially leads one to work
within V # rather than V . Recall that U +W denotes span(U ∪W).

Theorem 4 (partition refinement, backward version) Let (V, 〈o, t〉) be a LWA. Consider the sequence (Ri)i≥0 of
sub-spaces of V # inductively defined by:

R0 = ker(o)o Ri+1 = Ri +
∑

a∈A
tta(Ri) . (3)

Then there is j ≤ dim(L) such that Rj+1 = Rj . The largest L-bisimulation ≈L is Ro
j , modulo the natural isomor-

phism between V and V ##.

PROOF. Since R0 ⊆ R1 ⊆ R2 ⊆ · · · ⊆ V #, the sequence of the dimensions of these spaces is non-decreasing. As
a consequence, for some j ≤ dim(V #) = dim(L), we get dim(Rj) = dim(Rj+1). Since Rj ⊆ Rj+1, this implies
Rj = Rj+1.

We next show that Ro
j is an L-bisimulation. Indeed, by the properties of annihilators and up to the natu-

ral isomorphism: (1) ker(o)o ⊆ Rj implies (ker(o)o)o = ker(o) ⊇ Ro
j . Moreover: (2) for any a ∈ A,

tta(Rj) ⊆ tta(Rj) + Rj ⊆ Rj+1 = Rj implies, by Lemma 4, that t(tta(Ro
j)) = ta(Ro

j) ⊆ Ro
j ; by (a), (b) and

Lemma 3, we conclude that Ro
j is an L-bisimulation.

We finally show that any L-bisimulation R is included in Ro
j . We do so by proving that for each i, S ⊆ Ro

i ,
thus, in particular S ⊆ Ro

j . We proceed by induction on i. Again by Lemma 3, we know that Ro
0 = ker(o) ⊇ R.

Assume now R ⊆ Ro
i , that is, Ro ⊇ Ri. For each action a, by Lemma 3 we have that ta(R) ⊆ R, which implies

tta(Ro) ⊆ Ro by Lemma 4. Hence Ro ⊇ tta(Ro) ⊇ tta(Ri), where the last inclusion stems from Ro ⊇ Ri. Since
this holds for each a, we have that Ro ⊇

∑

a
tta(Ri) +Ri = Ri+1. Taking the annihilator of both sides reverses the

inclusion and yields the wanted result.

We note that what is being “refined” in the algorithm above are not, of course, the sub-spaces Ri, but their
complements: Ro

0 ⊇ Ro
1 ⊇ · · · ⊇ Ro

j =≈L. In particular, we start with a “small” space Ro
0 of dimension ≤ 1: this

may represent an advantage in a practical implementation of the algorithm.
To conclude the section, we briefly discuss some practical aspects involved in the implementation of the algorithm.

By virtue of (2), checking u ≈L v, for any pair of vectors v1 and v2, is equivalent to checking v1 − v2 ∈ ker(≈L).
This can be done by first computing a basis of ≈L and then checking for linear (in)dependence of v1 − v2 from
this basis. Alternatively, and more efficiently, one can check whether v1 − v2 is in Ro

j , or, more explicitly, whether
[v1 − v2,ψ] = 0 for each ψ ∈ Rj . This reduces to showing whether [v1 − v2,ψ] = 0 for each ψ ∈ Bj , where Bj is
a basis for Rj . Thus, our task reduces to computing such a basis. To do so, fix any basis B of V and let O and Ta

(a ∈ A) be the row-vector and matrices representing the weight and transition functions of the LWA in this basis. The
concrete computations are carried out representing vectors and functionals in this basis.

1. Compute a basis B0 of R0. As already discussed, dim(ker(o)) ≥ dim(V) − 1, hence dim(ker(o)o) ≤ 1. It
is readily checked that o ∈ ker(o)o, thus ker(o)o is spanned by o. We thus set B0 = {o}. With respect to the
chosen basis B, B0 is represented by {O}.

2. For each i ≥ 0, compute a basis Bi+1 of Ri+1. This can be obtained by incrementally joining to Bi the
functionals tta(ψ), for a ∈ A and ψ ∈ Bi, that are linearly independent from previously joined functionals.
With respect to the basisB, tta(ψ) is represented byΨ×Ta, whereΨ is the row-vector representingψ; checking
linear independence of tta(ψ) means hence checking linear independence of Ψ × Ta from previously joined
row-vectors.

18

After j ≤ n iterations, one finds a set Bj such that Bj+1 = Bj : this is the basis of Rj . We illustrate this algorithm in
the example below.

Consider the LWA (V, 〈o, t〉) on the left of Figure 5. At the beginning we can set B0 = {O}. Next, we apply the
algorithm to build the Bi’s. Manually, the computation of the vectorsΨTa = t(tTa

tΨ) can be carried out by looking
at the transitions of the WA with arrows reversed (in the right of Figure 5). Doing so, we first get OTa = (2 2

3 2) and
OTb = (2 1

3 3). Note thatOTb is not linearly independent from the other vectors: OTb = −(2 1 1) + 2(2 2
3 2). Thus

B1 = {(2 1 1), (2 2
3 2)}. In the second iteration, we compute (2 2

3 2)Ta = (2 2
3 2) and (2 2

3 2)Tb = (2 2
3 2) and

thus B2 = {(2 1 1), (2 2
3 2)} that is equal to B1.

The functionals represented by vectors in B1 are a basis of (≈L)o. As an example, let us check that x1 ≈L
3
2x2 + 1

2x3. To this purpose, note that the difference vector x1 − 3
2x2 − 1

2x3 annihilatesB1, that is

[





1
− 3

2
− 1

2



 , u] = 0

for each u ∈ B1, which is equivalent to 2x1 ≈L
3
2x2 + 1

2x3.
It is quite easy to give an upper bound on the cost of the backward algorithm, in terms of the number of sum and

product operations in the underlying field. Let n be the dimension of V . Each time we join a new vector v = Ψ× Ta

to the basis B, we have a cost of O(n2) for vector-matrix multiplication, plus a cost of O(n3) for checking linear
independence of v from B, for a predominant cost of O(n3). Since the operation of joining a vector to the basis
cannot be done more than n times, we have a global cost of O(n4). In the case |A| = 1, one can adapt the Arnoldi’s
iteration algorithm [31] to compute B, which takes O(n3) operations. It is not clear whether this algorithm can be
adapted also to the case |A|〉1. In practical cases, the transition matrices tend to be sparse, and the number of iterations
after which the algorithms stops may be much less than n. By adopting suitable representations for sparse matrices,
these circumstances can be used to lower considerably the practical complexity of the algorithm.

4.3. The final sequence and the forward algorithm
The theory of coalgebras also provides a way of constructing final coalgebras by means of final sequences (often

referred in literature as terminal sequences) [4]. Many important algorithms for computing behavioural equivalences
(such as [18]) can be abstractly described in terms of final sequences.

In this section, we describe the relationship between the forward algorithm (in Proposition 6) and the final se-
quence of the functor L. The latter is the cochain

1
!

←− L1
L!
←− L21

L2!
←− . . .

where Ln+11 is L ◦ (Ln1), L01 = 1 is the final vector space {0}, and ! is the unique morphism from L1 to 1.
Let A∗

n be the set of all words w ∈ A∗ with length smaller than n. For each n, Ln1 is isomorphic to KA∗

n , i.e.,
the space of functions from A∗

n to K. Indeed, for n = 1, L1 is by definition K × 1A = K that is isomorphic to the
space of functions from A∗

1 = {ε} to K; and for n+ 1, each 〈k,σ〉 ∈ K× Ln(1)A = Ln+11 can be seen as function
A∗

n+1 → K mapping ε into k and aw (for a ∈ A and w ∈ A∗
n) into σ(a)(w).

For σ : A∗
m → K and n ≤ m, the n-restriction of σ is σ ! n : A∗

n → K defined as σ, but in a restricted domain.
The morphism Ln! : Ln+11 → Ln1 maps each σ into σ ! n.

The limit of this cochain is KA∗ together with the maps ζn : KA∗

→ Ln1 that assign to each weighted language
σ its n-restriction σ ! n.

KA∗

ζ2
((

ζ1
))

ζ0
**
1 L1

!%% L21
L!%% . . .L2!%%

Every L-coalgebra (V, 〈o, t〉) determines a cone !n : V → Ln1 as follows:

• !0 : V → 1 is the unique morphism to the final vector space 1,

19

• !n+1 : V → Ln+11 = L(!n) ◦ 〈o, t〉.

The latter can be more concretely defined for all v ∈ V and w ∈ KA∗

n+1 as

!n+1(v)(w) =

{

o(v), if w = ε;
!n(t(v)(a))(w′), if w = aw′.

Note that the final morphism [[−]]LV : V → KA∗ (mapping each v ∈ V in the language that it recognizes) is the
unique function such that for all n, ζn ◦ [[−]]LV =!n.

KA∗

ζ2
((

ζ1
))

ζ0
**
1 L1

!%% L21
L!%% . . .L2!%%

V

[[−]]LV

&&

!2

++
!1

,,
!0

--

Recall that the L-behavioural equivalence on (V, 〈o, t〉) is the kernel of [[−]]LV . The forward algorithm computes
it, by iteratively computing the kernel of the morphisms !n.

Proposition 7 Let (V, 〈o, t〉) be a LWA. Let Rn be the relation computed by the forward algorithm (Proposition 6).
Let !n : V → Ln1 be the morphisms described above. Then for all natural numbers n, Rn = ker(!n+1).

PROOF. First of all, note that the kernel of !0 : V → 1 is the whole V . The kernel of !n+1 is the space of v ∈ V such
that !n+1(v)(w) = 0 for all the words w ∈ A∗

n+1, i.e.,

ker(!n+1) = {v ∈ V | o(v) = 0 and ∀a ∈ A, t(v)(a) ∈ ker(!n)}.

By induction on n, we prove that ker(!n+1) = Rn.
For n = 0, note that ker(!1) = {v ∈ V | o(v) = 0 and ∀a ∈ A, t(v)(a) ∈ ker(!0)}. Since ker(!0) = V ,

ker(!1) = {v ∈ V | o(v) = 0} = R0.
As induction hypothesis suppose that ker(!n) = Rn−1. Then ker(!n+1) = {v ∈ V | o(v) = 0 and ∀a ∈

A, t(v)(a) ∈ Rn−1} = Rn.

This result can be seen as an alternative proof of the soundness of the forward algorithm. Indeed, ifRj is the result
of the algorithm, for all k ≥ j, Rk = Rj , i.e., ker(!k) = ker(!j). Thus Rj =

⋂

n ker(!
n) and, by definition of !n,

⋂

n ker(!
n) = ker([[−]]LV).

5. Weighted languages and rationality

We recall from Section 3 that a linear weighted automaton (LWA) is a coalgebra for the functorL = K×−A, i.e., it
consists of a vector space V and a linear map 〈o, t〉:V → K×V A. We saw in Theorem 2 that the final homomorphism

[[−]]LV :V → K
A∗

maps every vector v ∈ V to the weighted language [[v]]LV that is accepted by v. Moreover, the kernel of this morphism
is weighted language equivalence (≈L) that, when V is finite dimension, can be computed via the linear partition
refinement algorithm (shown in Section 4).

The languages in KA∗ that are accepted by LWA with finite dimension states spaces are called rational weighted
languages (which are also known as rational formal power series) and they can be syntactically represented by a
language of expressions [28].

In this section, we shall directly characterise [[−]]LV by showing the expression of [[v]]LV for each v ∈ V (Theorem
5). Then we shall employ this characterization for computing≈L.

We will first treat the special case of LWA’s over a one letter alphabet |A| = 1. Next we will show how to treat the
general case of an arbitrary (finite) alphabet.

20

We note that for the case of |A| = 1, the functor L is isomorphic to

L(V) = K× V A ∼= K× V

Moreover, the final L-coalgebra is isomorphic to the set of streams over the fieldK:

K
A∗ ∼= K

ω

Therefore we shall proceed by recalling from [30] the basics of stream calculus and linear stream differential equa-
tions, in Subsections 5.1 and 5.2. Next we shall characterise the final homomorphism, for the case |A| = 1, in
Subsection 5.3. Building on [28], we shall finally generalise these results for finite alphabets, in Subsection 5.4.

5.1. Recalling the basics of stream calculus
We define the set of streams over the field K by

K
ω = {σ | σ:N → K}

(where N is the set of natural numbers).
We often denote elements σ ∈ Kω by σ = (σ(0),σ(1),σ(2), . . .). We define the stream derivative of a stream σ

by σ′ = (σ(1),σ(2),σ(3), . . .), and the initial value of σ by σ(0).
For k ∈ K, we define the constant stream

[k] = (k, 0, 0, 0, . . .)

which we often denote again by k. Another constant stream is

X = (0, 1, 0, 0, 0, . . .)

For σ, τ ∈ Kω and n ∈ ω, the operations of sum and (convolution) product are given by

(σ + τ)(n) = σ(n) + τ(n) , (σ × τ)(n) =
n
∑

i=0

σ(i) · τ(n− i)

(where, as usual · denotes product of K).
We call a stream π ∈ Kω polynomial if there are n ≥ 0 and ai ∈ K such that

π = a0 + a1X+ a2X
2 + · · ·+ anX

n = (a0, a1, a2, . . . , an, 0, 0, 0, . . .)

where we write aiXi for [ai]× Xi with Xi the i-fold product of X with itself.
A stream σ with σ(0) *= 0 has a (unique) multiplicative inverse σ−1 in Kω, satisfying

σ−1 × σ = [1]

As usual, we shall often write 1/σ for σ−1 and σ/τ for σ × τ−1. Note that the initial value of the sum, product and
inverse of streams is given by the sum, product and inverse of their initial values.

We call a stream ρ ∈ Kω rational if it is the quotient ρ = σ/τ of two polynomial streams σ and τ with τ(0) *= 0.
One can compute a stream from its initial value and derivative by the so-called fundamental theorem of stream

calculus [29]: for all σ ∈ Kω,

σ = σ(0) + (X× σ′) (4)

(writing σ(0) for [σ(0)]).
The fundamental theorem of stream calculus allows us to solve stream differential equations such as

σ′ = 3× σ , σ(0) = 1

by computing σ = σ(0) + (X × σ′) = 1 + (X × 3× σ), which leads to the solution

σ = 1/(1− 3X) = (1, 3, 32, 33, . . .)

21

5.2. Solving linear systems of stream differential equations
Using some elementary linear algebra notation (matrices and vectors), we next show how to solve linear systems

of stream differential equations. For notational convenience, we shall deal with linear systems of dimension 2, which
can be straightforwardly generalised to systems of higher dimensions. They are given by the following data:

(

σ
τ

)′

= M ×

(

σ
τ

) (

σ
τ

)

(0) = N (5)

whereM is a 2× 2-matrix and N is a 1× 2-matrix overK:

M =

(

m11 m12

m21 m22

)

N =

(

n1

n2

)

for mij , ni ∈ K. The above notation is really just a short hand for the following system of two stream differential
equations:

σ′ = (m11 × σ) + (m12 × τ) σ(0) = n1

τ ′ = (m21 × σ) + (m22 × τ) τ(0) = n2

We can solve such a system of equations by using twice the fundamental theorem of stream calculus (equation (4)
above), once for σ and once for τ :

σ = σ(0) + (X× σ′)

τ = τ(0) + (X × τ ′)

In matrix notation, the fundamental theorem looks like
(

σ
τ

)

=

(

σ
τ

)

(0) + X×

(

σ
τ

)′

Next we can solve our linear system (5) above by happily calculating as follows:
(

σ
τ

)

=

(

σ
τ

)

(0) + X×

(

σ
τ

)′

= N + X×M ×

(

σ
τ

)

This leads to
(I − (X×M))

(

σ
τ

)

= N

where I and X×M are given by

I =

(

1 0
0 1

)

X×M =

(

m11 × X m12 × X

m21 × X m22 × X

)

Finally, we can express the unique solution of our linear system of stream differential equations as follows:
(

σ
τ

)

= (I − (X×M))−1 × N

The advantage of the matrix notations above now becomes clear: we can compute the inverse of the matrix

(I − (X ×M)) =

(

1− (m11 × X) −(m12 × X)
−(m21 × X) 1− (m22 × X)

)

whose values are simple polynomial streams, by standard linear algebra.

22

Let us look at an example. For

M =

(

0 1
−1 2

)

N =

(

1
2

)

our linear system of stream differential equations (5) has the following solution:
(

σ
τ

)

= (I − (X×M))−1 × N

=

(

1 −X

X 1− 2X

)−1

×

(

1
2

)

=

(

1−2X
(1−X)2

X
(1−X)2

−X
(1−X)2

1
(1−X)2

)

×

(

1
2

)

=

(

1
(1−X)2
2−X

(1−X)2

)

We note that the solutions of linear systems of stream differential equations always consist of rational streams.

5.3. Characterising the final morphism: |A| = 1

It is easy to see that when |A| = 1, the final coalgebra for the functor L is (Kω, 〈(−)(0), (−)′〉) where
(−)(0):Kω → K and (−)′:Kω → Kω map each stream σ in its initial value σ(0) and in its stream derivative σ′.
Let (K2, 〈o, t〉) be a LWA, with linear maps o:K2 → K and t:K2 → K2 that are represented by a 1× 2-matrixO and
by a 2× 2-matrix T . We will now show how the final homomorphism

K2

〈o,t〉

!!

[[−]]L
K2 "" Kω

〈(−)(0),(−)′〉

!!
K×K2

idK×[[−]]L
K2

"" K ×Kω

can be characterised in terms of rational streams. To this end, we define

σ = [[

(

1
0

)

]]L
K2 τ = [[

(

0
1

)

]]L
K2

It follows from the commutativity of the diagram above that

σ′ = [[(T

(

1
0

)

)]]L
K2 σ(0) = O

(

1
0

)

τ ′ = [[(T

(

0
1

)

)]]L
K2 τ(0) = O

(

0
1

)

and this can be concisely expressed by the following system:
(

σ
τ

)′

= tT ×

(

σ
τ

) (

σ
τ

)

(0) = tO

(where the superscript t indicates matrix transpose). These identities present σ and τ as the solution of a linear system
of stream differential equations. By the results from Subsection 5.2, it follows that

(

σ
τ

)

= (I − (X× tT))−1 × tO

23

which leads to the following general formula for [[−]]L
K2 :

[[

(

k1
k2

)

]]L
K2 =

(

k1 k2
)

× (I − (X× tT))−1 × tO

For instance, if

T =

(

0 −1
1 2

)

O =
(

1 2
)

we find, using the example withM and N from Subsection 5.2, that

[[

(

k1
k2

)

]]L
K2 =

(

k1 k2
)

× (I − (X× T t))−1 × Ot

=
(

k1 k2
)

× (I − (X×M))−1 × N

=
(

k1 k2
)

×

(

1
(1−X)2
2−X

(1−X)2

)

=
(k1 + 2k2)− k2X

(1− X)2

Note that the above expression fully characterizes [[−]]L
K2 , in the sense that it maps each v ∈ K2 in the corresponding

rational stream.

Computing ≈L. We can employ the above characterization in order to compute ≈L on (K2, 〈o, t〉). We use the fact
that the final homomorphism identifies precisely all equivalent states:

(

x1

x2

)

≈L

(

y1
y2

)

⇐⇒ [[

(

x1

x2

)

]]L
K2 = [[

(

y1
y2

)

]]L
K2

⇐⇒ [[

(

x1 − y1
x2 − y2

)

]]L
K2 = 0

where the 0 on the right is the stream [0] = (0, 0, 0, . . .). The kernel of the final homomorphism can now be computed
using our characterisation above: for all k1, k2 ∈ K,

[[

(

k1
k2

)

]]L
K2 = 0 ⇐⇒

(k1 + 2k2)− k2X

(1− X)2
= 0

⇐⇒ (k1 + 2k2)− k2X = 0

⇐⇒ k1 = 0 and k2 = 0

As a consequence, we find, for the present example:
(

x1

x2

)

≈L

(

y1
y2

)

⇐⇒

(

x1

x2

)

=

(

y1
y2

)

5.4. Rational weighted languages
All the results presented above allow to characterize the final homomorphism for weighted automata over an

alphabet with a single letter. These results can be generalized in order to deal with alphabets of size greater than one.
Let A be an arbitrary finite alphabet. Recall from Section 3.3 that the final L-coalgebra is (KA∗

, 〈ε, d〉) where for
all σ ∈ KA∗ and a ∈ A,

ε(σ) = σ(ε) d(σ)(a) = σa

and σa denotes the a-derivatives of the language σ.
The calculus presented in the previous section for one-variable power series (streams) can be generalized for

multiple variable series [28], which we will recall next.

24

There are unique operators on series satisfying the following equations. For all k ∈ K, a, b ∈ A and σ, τ ∈ KA∗ ,

Derivative Initial Value Name
ka = 0 k(ε) = k Constant
(Xa)a = 1, (Xa)b = 0 (b *= a) Xa(ε) = 0 Variable
(σ + τ)a = σa + τa (σ + τ)(ε) = σ(ε) + τ(ε) Sum
(σ × τ)a = (σa × τ) + (σ(ε) × τa) (σ × τ)(ε) = σ(ε) × τ(ε) Convolution product
(σ−1)a = −(σ(ε)−1 × σa)× σ−1 (σ−1)(ε) = σ(ε)−1, if σ(ε) *= 0 Inverse

A weighted language is rational if it can be constructed from finitely many constants k ∈ K and variables Xa, by
means of the operators of sum, product, and inverse. Rational languages constitute the class of languages that are
recognized by finite dimensional weighted automata.

As for streams, one can compute a series from its initial value and derivatives by the so-called fundamental
theorem [28]. That is, for all weighted languages σ ∈ KA∗ :

σ = σ(ε) +
∑

a∈A

Xa × σa (6)

The fundamental theorem allows us to solve equations, similar to what happened above for streams. As an exam-
ple, take A = {a, b} (weighted languages over two symbols coincide with infinite binary trees), and the following
equations

σa = 3× σ, σb = 3× σ, σ(ε) = 1

Applying the fundamental theorem we reason as follows:

σ = σ(ε) + (Xa × σa) + (Xb × σb)

⇔ σ = 1 + (3Xa × σ) + (3Xb × σ)

⇔ (1− 3Xa − 3Xb)σ = 1

which leads to the solution σ = (1− 3Xa − 3Xb)−1, the tree depicted in the following picture.

Note that the above language is exactly the one recognized by the automata in Figure 1. It is also interesting to
remark the strong similarity with streams: the formula for the stream (1, 3, 6, 9, . . .) is (1 − 3X)−1.

Now that we know how to compute the solution of a single equation, moving to systems of equations is precisely
as for streams. Again, for notational convenience, we shall exemplify with linear systems of dimension 2. The goal is
to solve

(

σ
τ

)

a

= Ma ×

(

σ
τ

) (

σ
τ

)

(ε) = N

where, for each a ∈ A,Ma is a 2× 2-matrix and N is a 1× 2-matrix overK.
We now solve this system by calculating as follows (similar to the stream case), now using the fundamental

theorem for weighted languages, given in equation (6):
(

σ
τ

)

=

(

σ
τ

)

(ε) +
∑

a∈A

Xa ×

(

σ
τ

)

a

= N +
∑

a∈A

Xa ×Ma ×

(

σ
τ

)

25

This leads to
(

I −
∑

a∈A

(Xa ×Ma)

)

(

σ
τ

)

= N

where I and Xa ×Ma are as before.
Finally, we can express the unique solution of our linear system as follows:

(

σ
τ

)

=

(

I −
∑

a∈A

(Xa ×Ma)

)−1

× N

Hence, the only difference with the stream case is that instead of computing the inverse of the matrix I − (X ×M)
one needs to compute the inverse of I −

∑

a∈A
(Xa ×M).

Some remarks on computing the inverse of I −
∑

a∈A
(Xa ×M) are now in order. Convolution product on power

series in not commutative as soon as A has more than one element (e.g., Xa × Xb *= Xb × Xa). Thus, the matrix
above is a matrix with entries stemming from a non-commutative ring. Traditional methods (Gaussian elimination,
Cramer’s rule, . . .) to compute the inverse of matrices are not applicable and thus one needs to resort to other (more
complicated) techniques such as quasi-determinants [11] or generalized LDU decomposition [8].

A function to compute the inverse of a matrix with non-commutative entries is provided in the Mathematica [22]
package NCAlgebra [25]. The algorithm implemented in the package is directly base in LDU decomposition [8].
The matrices we show below were all obtained using the aforementioned package.

For instance, for A = {a, b, c}, if

Ma = Mc =

(

2 0
0 0

)

Mb =

(

0 0.5
0 0.5

)

N =
(

1 1
)

then
I − Xa ×Ma − Xb ×Mb − Xc ×Mc =

(

1− 2Xa − 2Xc −0.5Xb

0 1− 0.5Xb

)

and
(I − Xa ×Ma − Xb ×Mb − Xc ×Mc)

−1 =

(1
1−2Xa−2Xc

0.5 1
1−2Xa−2Xc

Xb
1

1−0.5Xb

0 1− 0.5Xb

)

The final homomorphism [[−]]L
K2 is represented in the following diagram

K2

〈o,t〉

!!

[[−]]L
K2 ""

KA∗

〈ε,d〉

!!

K×K2A

idK×[[−]]L
K2A

""
K×KA∗

where, as usual, o and t = {ta:K2 → K2}a∈A are linear mappings represented by the 1 × 2-row vector O and the
2× 2-matrixes Ta, respectively.

We will show how the final homomorphism [[−]]L
K2 can be characterized in terms of rational weighted languages.

To this end, we again define

σ = [[

(

1
0

)

]]L
K2 τ = [[

(

0
1

)

]]L
K2

It follows from the commutativity of the diagram above that

σa = [[(Ta

(

1
0

)

)]]L
K2 σ(ε) = O

(

1
0

)

26

τa = [[(Ta

(

0
1

)

)]]L
K2 τ(ε) = O

(

0
1

)

and this can be concisely expressed by the following system:
(

σ
τ

)

a

= tTa ×

(

σ
τ

) (

σ
τ

)

(ε) = tO

It then follows that
(

σ
τ

)

= (I −

(

∑

a∈A

Xa ×
tTa

)

)−1 × tO

which leads to the following general formula for [[−]]L
K2 :

[[

(

k1
k2

)

]]L
K2 =

(

k1 k2
)

× (I −

(

∑

a∈A

Xa ×
tTa

)

)−1 × tO

For instance, for A = {a, b, c} and

Ta = Tc =

(

2 0
0 0

)

Tb =

(

0 0
0.5 0.5

)

O =
(

1 1
)

we find, using the example above, that

[[

(

k1
k2

)

]]L
K2 =

(

k1 k2
)

×

(

∑

a∈A

Xa × Ta
t

)−1

× Ot

=
(

k1 k2
)

×

(

∑

a∈A

Xa × Ta

)−1

× N

=
(

k1 k2
)

×

(1
1−2Xa−2Xc

+ 0.5 1
1−2Xa−2Xc

Xb
1

1−0.5Xb
1

(1−0.5Xb)

)

=
k1

1− 2Xa − 2Xc
+ 0.5k1

1

1− 2Xa − 2Xc
Xb

1

1− 0.5Xb
+

k2
(1 − 0.5Xb)

By generalizing the above arguments from K2 to any finite dimesion vector space, we obtain the following theo-
rem.

Theorem 5 Let (V, 〈o, t〉) be a linear weighted automata with V finite dimension. Then, for all v ∈ V

[[v]]LV = tv × (I −

(

∑

a∈A

Xa ×
tTa

)

)−1 × tO

For an example with a three dimensional state space, we consider the LWA corresponding to the automaton
(V, 〈o, t〉) in Fig. 5.

27

[[





k1
k2
k3



]]LV =
(

k1 k2 k3
)

× (I −

(

∑

a∈A

Xa ×
tTa

)

)−1 × tO

=
(

k1 k2 k3
)

× (I −







Xa + Xb 0 0

Xa
3 0 Xb

3

Xa 3Xb 0






)−1 ×





2
1
1





=
(

k1 k2 k3
)

×







1− Xa − Xb 0 0

−Xa
3 1 −Xb

3

−Xa −3Xb 1







−1

×





2
1
1





The inverse of the matrix in the middle is

M =









1
1−Xa−Xb

0 0

(13 + Xb
3

1
1−X2

b
(Xb + 1))Xa

1
1−Xa−Xb

1 + Xb
1

1−X2
b
Xb

Xb
3

1
1−X2

b

(1
1−X2

b
)(Xa + XbXa) 1

1−Xa−Xb
3 1
1−X2

b
Xb

1
1−X2

b









and

M ×





2
1
1



 =









2
1−Xa−Xb

(13 + Xb
3

1
1−X2

b
(Xb + 1))Xa

2
1−Xa−Xb

+ 1 + Xb
1

1−X2
b
Xb +

Xb
3

1
1−X2

b

(1
1−X2

b
)(Xa + XbXa)

2
1−Xa−Xb

+ 3 1
1−X2

b
Xb +

1
1−X2

b









=





ρ1
ρ2
ρ3





Summarizing

[[





k1
k2
k3



]]LV =
(

k1 k2 k3
)

×





ρ1
ρ2
ρ3



 (7)

Note that the above expression fully characterizes [[−]]LV , in the sense that it maps each v ∈ V in the rational weighted
lanuage that it accepts.

Computing≈L. Now, we have a rational expression σ = k1ρ1+k2ρ2+k3ρ3 characterizing the final homomorphism
and we would like to calculate for which values of k1, k2 and k3 this expression equals 0. As we have shown before,
when |A| = 1, this can be done by syntactically manipulating the rational expression in a standard way. In the general
case, because of the non commutativity of the convolution product, this is not trivial at all.

Here, we choose to adopt the following approach: first we compute “some” derivatives σa, σb, σaa, σab . . . and
then we check for wich k1, k2 and k3 the initial values σ(ε), σa(ε), σb(ε), σaa(ε), σab(ε) . . . are equal to 0. The
following lemma (proved in [5, 28]) ensures that we have to compute only finitely many derivatives.

Lemma 5 Rational weighted languages have finitely many linearly independent derivatives.

In our example, we start by taking the initial value of the expression σ itself obtaining σ(ε) = 2k1 + k2 + k3.
Then we take the a and b derivatives which give, respectively, the expressions

σa = k1(ρ1)a + k2(ρ2)a + k3(ρ3)a (8)




ρ1
ρ2
ρ3





a

=





2
1−Xa−Xb
1
3

2
1−Xa−Xb

2
1−Xa−Xb





28

and

σb = k1(ρ1)b + k2(ρ2)b + k3(ρ3)b










ρ1

ρ2

ρ3











b

=











2
1−Xa−Xb

(13
1

1−X2
b
(Xb + 1))Xa

2
1−Xa−Xb

+ 1
1−X2

b
Xb +

1
3

1
1−X2

b

Xb(
1

1−X2
b
)(Xa + XbXa)

2
1−Xa−Xb

+ Xa
1

1−Xa−Xb
+ 3Xb

1
1−X2

b
Xb + 3 + Xb

1
1−X2

b











which have initial values σa(ε) = 2k1 +
2
3k2 + 2k3 and σb(ε) = 2k1 +

1
3k2 + 3k3.

Now, note that the a derivative, that is the rational expression (8), will now always generate the same derivatives
for a and b (since the derivatives of 2

1−Xa−Xb
are the expression itself again; intuitively, this expression represents

an infinite binary tree with 2’s in every node and hence has left and right subtrees equal to the whole tree). For the b
derivative, we take another level of derivatives and obtain, respectively,

σba = k1(ρ1)ba + k2(ρ2)ba + k3(ρ3)ba




ρ1
ρ2
ρ3





ba

=





2
1−Xa−Xb
1
3

2
1−Xa−Xb

2
1−Xa−Xb



 =





ρ1
ρ2
ρ3





a

and

σbb = k1(ρ1)bb + k2(ρ2)bb + k3(ρ3)bb










ρ1

ρ2

ρ3











bb

=











2
1−Xa−Xb

(13Xb
1

1−X2
b
(Xb + 1) + 1

3)Xa
2

1−Xa−Xb
+ Xb

1
1−X2

b
Xb + 1 + 1

3Xb
1

1−X2
b

(1
1−X2

b
)(Xa + XbXa) 2

1−Xa−Xb
+ 3 1

1−X2
b
Xb + 1

1−X2
b











=











ρ1

ρ2

ρ3











The a-derivative coincides with (8) and the b derivative coincides with the original expression σ. Therefore, we have
found the the system of equations we need to solve:







σ(ε) = 0
σa(ε) = 0
σb(ε) = 0

⇔







2k1 + k2 + k3 = 0
2k1 + 2

3k2 + 2k3 = 0
2k1 + 1

3k2 + 3k3 = 0

Solving it yields k1 = −2k3 and k2 = 3k3. Hence, the kernel of the final homomorphism is the space spanned by the
vector





−2
3
1





which coincides with what was computed by the forward algorithm in Section 4.1.
This example also shows that this procedure is in general not more efficient then the forward algorithm. Indeed,

the three equations of the above system coincide with the spaces computed by the forward algorithm: the space (of
solutions) of σ(ε) = 0 is the space spanned by B0 (in Section 4.1), the space of σa(ε) = 0 is the one spanned by Ba

1 ,
and the space σa(ε) = 0 is the one spanned by Ba

2 .

6. Discussion

In this paper we proposed a novel coalgebraic perspective on weighted automata and their behavioural equiva-
lences. Weighted automata areW-coalgebras, for a functorW on Set, but they can be regarded also as linear weighted

29

automata, that are L-coalgebras for a functor L on V ect. The behavioural equivalence induced byW coincides with
weighted bisimilarity, while the equivalence induced by L (≈L) with weighted language equivalence.

Weighted languages (i.e. formal power series) form the vectors spaces KA∗ that carries the final L-coalgebra: for
each linear weighted automata (V, 〈o, t〉), the unique L-morphism [[−]]LV into the final coalgebra maps each vector
v ∈ V into the weighted language in KA∗ that v accepts. The unique morphism [[−]]LV is a linear map and its kernel
coincides with≈L that, when V is finite dimension, can be computed in three different ways. It is important to remark
here that the linearity of [[−]]LV is key ingredient (in all the three approaches) to finitely compute the equivalence on an
infinite state space.

Theorem 5 provides an explicit characterization of [[−]]LV by assigning a syntactic expression denoting a rational
weighted language to each vector v ∈ V . This characterization can be employed for computing ≈L but, in general
terms, it seems to be inconvenient to be implemented in an automatic prover. The backward algorithm, instead, is very
efficient but its presentation is a bit complex since it requires dual spaces and transpose maps. The forward algorithm
is easier to explain and we have shown it is closely related to the construction of the final coalgebra.

As a future work, we would like to extend these results to automata with weights on a semiring S (instead of field
K). The coalgebraic characterization of weighted bisimilarity can be easily obtained by employing a semiring evalu-
ation functor instead of the field evaluation functor (Definition 2). For weighted language equivalence on semirings,
we should define the functor L on the category of semimodules, instead of V ect. The forward algorithm could be
extended (by exploiting its relationship with the construction of final coalgebras) in a rather straightforward way, but
the convergence in a finite numbers of iterations might be not guaranteed. The other two approaches strongly rely
on the properties of fields and vector spaces (such as the existence of the inverse multiplicative or the dual space).
Therefore, it seems challenging to extend them to the case of a generic semiring S. If S is a semifield however, then all
elements have a multiplicative inverse. An important example of semifield in this context is the tropical semiring [15].
Further, when S is a commutative ring, annihilators and transpose maps can be generalized as operations carried out
within the dual module (i.e. linear maps from an S-module to S, seen as a module) [26]. We leave these extensions as
future work.

References

[1] Jirı́ Adámek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories - The Joy of Cats. Wiley, 1990.
[2] Jürgen Albert and Jarkko Kari. Handbook of Weighted Automata, chapter Digital Image Compression, pages 213–250. Monographs in

Theoretical Computer Science. Springer, 2009.
[3] Christel Baier, Marcus Größer, and Frank Ciesinski. Handbook of Weighted Automata, chapter Model Checking Linear-Time Properties of

Probabilistic Systems, pages 213–250. Monographs in Theoretical Computer Science. Springer, 2009.
[4] Michael Barr. Terminal coalgebras in well-founded set theory. Theor. Comput. Sci., 114(2):299–315, 1993.
[5] Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages. Springer-Verlag, 1988.
[6] Michele Boreale. Weighted bisimulation in linear algebraic form. In In Proc. of International Conference on the Theory of Concurrency

(CONCUR), 2009, volume 5710 of Lecture Notes in Computer Science, pages 163–177, 2009.
[7] Peter Buchholz. Bisimulation relations for weighted automata. Theor. Comput. Sci., 393(1-3):109–123, 2008.
[8] Juan Francisco Camino, J. William Helton, and Robert E. Skelton. A symbolic algorithm for determining convexity of a matrix function:

How to get schur complements out of your life. In Proceedings of the 39th IEEE Conference on Decision and Control, 2000.
[9] Manfred Droste and Paul Gastin. Weighted automata and weighted logics. In Luı́s Caires, Giuseppe F. Italiano, Luı́s Monteiro, Catuscia

Palamidessi, and Moti Yung, editors, ICALP, volume 3580 of Lecture Notes in Computer Science, pages 513–525. Springer, 2005.
[10] Peter Freyd. Abelian categories. Harper and Row, 1964.
[11] Israel Gelfand, Sergei Gelfand, Vladimir Retakh, and Robert Lee Wilson. Quasideterminants. Advances in Mathematics, 193(1):56 – 141,

2005.
[12] H. Peter Gumm. Copower functors. Theor. Comput. Sci., 410(12-13):1129–1142, 2009.
[13] H. Peter Gumm and Tobias Schröder. Monoid-labeled transition systems. Electr. Notes Theor. Comput. Sci., 44(1), 2001.
[14] Paul Halmos. Finite dimensional vector spaces. Springer, 1974.
[15] Udo Hebisch and Hans Joachim Weinert. Semirings and semifields. In M. Hazewinkel, editor, Handbook of Algebra, volume 1, pages 425 –

462. North-Holland, 1996.
[16] Alberto Isidori. Nonlinear Control Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd edition, 1995.
[17] Chi-Chang Jou and Scott A. Smolka. Equivalences, congruences, and complete axiomatizations for probabilistic processes. In Jos C. M.

Baeten and Jan Willem Klop, editors, CONCUR, volume 458 of Lecture Notes in Computer Science, pages 367–383. Springer, 1990.
[18] Paris C. Kanellakis and Scott A. Smolka. Ccs expressions, finite state processes, and three problems of equivalence. Inf. Comput., 86(1):43–

68, 1990.
[19] Daniel Kirsten and Ina Mäurer. On the determinization of weighted automata. Journal of Automata, Languages and Combinatorics,

10(2/3):287–312, 2005.

30

[20] Werner Kuich. Handbook of Formal Languages, Vol. 1, Word, Language, Grammar, chapter Semirings and formal power series, page 609677.
Springer-Verlag, 1997.

[21] Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf. Comput., 94(1):1–28, 1991.
[22] Mathematica. http://www.wolfram.com/mathematica/.
[23] Mehryar Mohri. Finite-state transducers in language and speech processing. Computational Linguistics, 23(2):269–311, 1997.
[24] Mehryar Mohri. Handbook of Weighted Automata, chapter Weighted Automata Algorithms, pages 213–250. Monographs in Theoretical

Computer Science. Springer, 2009.
[25] The NCAlgebra package. http://math.ucsd.edu/ñcalg/.
[26] Joseph Rotman. Advanced Modern Algebra. Prentice-Hall, 2002.
[27] Jan J.M.M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci., 249(1):3–80, 2000.
[28] Jan J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theor. Comput. Sci.,

308(1-3):1–53, 2003.
[29] Jan J.M.M. Rutten. A coinductive calculus of streams. Mathematical Structures in Computer Science, 15(1):93–147, 2005.
[30] Jan J.M.M. Rutten. Rational streams coalgebraically. CoRR, abs/0807.4073, 2008.
[31] Yousef Saad. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM, 2003.
[32] Aarto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series. Texts and Monographs on Computer Science.

Springer-Verlag, 1978.
[33] Marcel Paul Schützenberger. On the definition of a family of automata. Information and Control, 4(2-3):245–270, 1961.
[34] Alexandra Silva. Kleene Coalgebra. PhD thesis, Radboud Universiteit Nijmegen, 2010.
[35] Eugene W. Stark. On behaviour equivalence for probabilistic i/o automata and its relationship to probabilistic bisimulation. Journal of

Automata, Languages and Combinatorics, 8(2):361–395, 2003.

31

