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Abstract Labeled state-to-function transition systems, FuTS for short, admit multiple transition
schemes from states to functions of finite support over general semirings. As such they constitute a
convenient modeling instrument to deal with stochastic process languages. In this paper, the notion
of bisimulation induced by a FuTS is addressed from a coalgebraic point of view. A correspondence
result is proven stating that FuTS-bisimulation coincides with the behavioral equivalence of the asso-
ciated functor. As generic examples, the concrete existing equivalences for the core of the stochastic
process algebras PEPA and IML are related to the bisimulation of specific FuTS, providing via the
correspondence result coalgebraic justification of the equivalences of these calculi.

1 Introduction

Process description languages equipped with formal operational semantics are successful formalisms
for modeling concurrent systems and analyzing their behavior. Typically, the operational semantics is
defined by means of a labeled transition system following the SOS approach. The states of the transition
systems are just process terms, while the labels of the transitions between states represent the possible
actions and interactions. Process description languages often come equipped with process equivalences,
so that system models can be compared according to specific behavioral relations.

In the last couple of decades, process languages have been enriched with quantitative information.
Among these quantitative extensions, those allowing a stochastic representation of time, usually referred
to as stochastic process algebras, have received particular attention. The main aim has been the integra-
tion of qualitative descriptions and quantitative analysis in a single mathematical framework by building
on the combination of labeled transition systems and continuous-time Markov chains. The latter being
one of the most successful approaches to modeling and analyzing the performance of computer systems
and networks. An overview on stochastic process algebras, equivalences and related analysis techniques
can be found in [14, 1, 3], for example. A common feature of many stochastic process algebras is that
actions are enriched with the rates of exponentially distributed random variables that characterize their
duration. Although exploiting the same class of distributions, the models and the techniques underlying
the definition of the calculi turn out to be significantly different in many respects. A prominent differ-
ence concerns the modeling of the race condition by means of the choice operator, and its relationship to
the issue of transition multiplicity. In the quantitative setting, multiplicities can make a crucial distinc-
tion between processes that are qualitatively equivalent. Several significantly different approaches have
been proposed for handling transition multiplicity. The proposals range from multi-relations [17, 13], to
proved transition systems [23], to LTS with numbered transitions [14], to unique rate names [9], just to
mention a few.
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In [7], Latella, Massink et al. have proposed a variant of LTS, called Rate Transition Systems (RTS).
In LTS, a transition is a triple (P,α,P′ ) where P and α are the source state and the label of the transition,
respectively, while P′ is the target state reached from P via the transition. In RTS, a transition is a triple
of the form (P,α,P ). The first and second component are the source state and the label of the transition,
as in LTS, while the third component P is a continuation function which associates a non-negative real
value to each state P′. A non-zero value for the state P′ represents the rate of the exponential distribution
characterizing the time for the execution of the action represented by α, necessary to reach P′ from P
via the transition. If P maps P′ to 0, then state P′ is not reachable from P via the transition. The use
of continuation functions provides a clean and simple solution to the transition multiplicity problem and
make RTS particularly suited for stochastic process algebra semantics. In order to provide a uniform
account of the many stochastic process algebras proposed in the literature, in previous joint work of
the first two authors [8] Labelled State-to-Function Transition Systems (FuTS) have been introduced
as a natural generalization of RTS. In FuTS the co-domain of the continuation functions are arbitrary
semirings, rather than just the non-negative reals. This provides increased flexibility while preserving
basic properties of primitive operations like sum and multiplication.

In this paper we present a coalgebraic treatment of FuTS that allow multiple state-to-function tran-
sition relations involving arbitrary semirings. Given label sets L i and semirings R i, a FuTS takes the
general format S = (S , 〈�i 〉

n
i=1 ) with transition relations�i ⊆ S ×L i × FS( S ,R i ). Here, FS( S ,R i )

are the sets of functions from S to R i of finite support, a subcollection of functions also occurring in
other work combining coalgebra and quantitative modeling. We will associate to S the product of the
functors FS(·,R i )L i . For this to work, we need the transition relations�i to be total and determinis-
tic for the coalgebraic modeling as a function. Maybe surprisingly, this isn’t a severe restriction at all
in the presence of continuation functions: the zero-continuation λs′.0 expresses that no LTS-transition
exists from the state s to any state s′; if s allows a transition to some state s1 as well as a state s2, the
continuation function will simply yield a non-zero value for s1 and for s2.

The notion of S-bisimulation that arises from a FuTS S is reinterpreted coalgebraically as the be-
havioral equivalence of a functor that is induced by S, along the lines sketched above. Behavioral
equivalence rather than coalgebraic bisimulation is targeted, since, dependent on the semirings involved,
weak pullbacks may not be preserved and the construction of a mediating morphism for a coalgebraic
bisimulation from a concrete one may fail for degenerate denominators. However, following a familiar
argument, we show that the functor associated with a FuTS does possess a final coalgebra and therefore
has an associated notion of behavioral equivalence indeed. It is noted, in the presence of a final coalgebra
for FuTS a more general definition of behavioral equivalence based on cospans coincides [20]. A corre-
spondence result is proven in this paper that shows that the concrete bisimulation of a FuTS, coincides
with behavioral equivalence of its functor. Pivotal for its proof is the absence of multiplicities in the
FuTS treatment of quantities.

Using the bridge established by the correspondence result, we continue by showing for two well-
known stochastic process algebras, viz. Hillston’s PEPA [17] and Hermanns’s IML [13], that the respec-
tive standard notion of strong equivalence and strong bisimulation coincides with behavioral equivalence
of the associated FuTS. This constitutes the main contribution of the paper. PEPA stands out as one of
the prominent Markovian process algebras, while IML specifically provides separate prefix constructions
for actions and for delays. The equivalences of PEPA and of IML are compared with the bisimulations
of the respective FuTS as given by an alternative operational semantics involving the state-to-function
scheme. In passing, the multiplicities have to be dealt with. Appropriate lemmas are provided relating
the relation-based cumulative treatment with FuTS to the multirelation-based explicit treatment of PEPA
and IML.
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Related work on coalgebra includes [28, 19, 26], papers that also cover measures and congruence
formats, a topic not touched upon here. For the discrete parts, regarding the correspondence of bisim-
ulations, our work aligns with the approach of the papers mentioned. In this paper the bialgebraic per-
spective of SOS and bisimulation [27] is left implicit. An interesting direction of research combining
coalgebra and quantities studies various types of weighted automata, including linear weighted automata,
and associated notions of bisimulation and languages, as well as algorithms for these notions [6, 25, 5].
In particular, building on a result on bounded functors [11], it is shown in [5] for a functor involving func-
tions of finite support over a field that the final coalgebra exists. Below, we have followed the scheme
of [5] to obtain such a result for a functor induced by a FuTS. The notions of equivalence addressed in
this paper, as often in coalgebraic treatments of process relations, are all strong bisimilarities.

The present paper is organized as follows: Section 2 briefly discusses some material on semirings
and coalgebras. Labeled state-to-function transition systems and FuTS as well as the associated notion
of bisimulation are provided in Section 3. The coalgebraic counterparts of FuTS and FuTS-bisimulation
are defined in Section 4, where we also establish the correspondence with behavioral equivalence of the
final coalgebra. In Section 5 the standard equivalence of PEPA is identified with the bisimulation of a
FuTS and, hence, with behavioral equivalence. In Section 6 the same is done for the language of IMC
where actions and delays are present on equal footing. Section 7 wraps up and discusses directions of
future research. An appendix provides the proofs of a number of lemmas.

2 Preliminaries

A tuple R = (R,+, 0, ∗, 1) is called a semiring, if (R,+, 0) is a commutative monoid with neutral ele-
ment 0, (R, ∗, 1) is a monoid with neutral element 1, ∗ distributes over +, and 0∗ r = r∗0 = 0 for all r ∈ R.
As examples of a semiring we will use are the booleans B = {false, true } with disjunction as sum
and conjunction as multiplication, and the non-negative reals R>0 with the standard operations. We will
consider, for a semiring R and a function ϕ : X→R, countable sums

∑
x∈X′ ϕ(x) in R, for X′ ⊆ X. For

such a sum to exist we require ϕ to be of finite support, i.e. the support set spt(ϕ) = { x ∈ X | ϕ(x) , 0 } is
finite. Here, 0 is the neutral element of R with respect to +.

We use the notation FS(X,R ) for the collection of all functions of finite support from the set X
to the semiring R. A construct [ x1 7→ r1, . . . , xn 7→ rn ], with xi ∈ X, i = 1 . . .n all distinct, ri ∈ R, i =

1 . . .n, denotes the mapping that assigns ri to xi, i = 1 . . .n, and assigns 0 to all x ∈ X different from
all xi. In particular [], or more precisely []R, is the constant function x 7→ 0 and Xx = [ x 7→ 1] is the
characteristic function on R for x ∈ X. For ϕ ∈ FS(X,R ), we write ⊕ϕ for the value

∑
x∈X ϕ(x) in R. For

ϕ,ψ ∈ FS(X,R ), the function ϕ + ψ is the pointwise sum of ϕ and ψ, i.e. (ϕ + ψ)(x) = ϕ(x) + ψ(x) ∈ R.
Clearly, ϕ + ψ is of finite support as ϕ and ψ are. Given an injective operation | : X ×X→ X, we define
ϕ | ψ : X→R, by (ϕ | ψ)(x) = ϕ(x1)∗ψ(x2) if x = x1 | x2 for some x1, x2 ∈ X, and (ϕ | ψ)(x) = 0 otherwise.
Again, ϕ | ψ is of finite support as ϕ and ψ are. This is used in the setting of syntactic processes P that
may have the form P1 ‖A P2 for two processes P1 and P2 and a syntactic operator ‖A.

Lemma 1. Let X be a set, R a semiring, and | an injective binary operation on X. For ϕ,ψ ∈ FS(X,R )
it holds that ⊕(ϕ + ψ) = ⊕ϕ + ⊕ψ and ⊕(ϕ | ψ ) = (⊕ϕ)∗ (⊕ψ). �

We recall some basic definitions from coalgebra. See e.g. [24] for more details. For a functor F : Set→
Set on the category Set of sets and functions, a coalgebra of F is a set X together with a mapping
α : X → F (X). A homomorphism between two F -coalgebras (X,α) and (Y,β) is a function f : X → Y
such that F ( f ) ◦α = β ◦ f . An F -coalgebra (Ω,ω) is called final, if there exists, for every F -coalgebra
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(X,α), a unique homomorphism [[·]]FX : (X,α)→ (Ω,ω). Two elements x1, x2 of a coalgebra (X,α) are
called behavioral equivalent with respect to F if [[x1]]FX = [[x2]]FX , notation x1 ≈F x2.

Using a characterization of [12], a functor F on Set is bounded, if there exist sets A and B and
a surjective natural transformation η : A× (·)B ⇒ F . Here, A× (·) is the functor that maps a set X to
the Cartesian product A × X and maps a function f : X → Y to the mapping A × f : A × X → A × Y
with (A× f )(a, x) = (a, f (x)), while (·)B denotes the functor that maps a set X to the function space XB

of all functions from B to X and that maps a function f : X → Y to the mapping f B : XB → YB with
f B(ϕ)(b) = f (ϕ(b)). For bounded functors we have the following result, see [11] for a proof.

Theorem 2. If a functor F : Set→ Set is bounded, then its final coalgebra exists. �

A number of proofs of results on process languages P in this paper relies on so-called guarded recur-
sion [2]. Typically, constants X are a syntactical ingredient in these languages. As usual, if X := P, i.e.
the constant X is declared to have the process P as its body, we require P to be prefix-guarded. Thus,
any occurrence of a constant in the body P is in the scope of a prefix-construct of the language. Guarded
recursion assumes the existence of a function c : P → N such that c(P1 •P2) > max{c(P1), c(P2) } for all
syntactic operations • of P, and moreover c(X) > c(P) if X := P.

3 Labeled State-to-Function Transition Systems

The definition of a labeled state-to-function transition system, FuTS for short, involves a set of states S
and one or more relations of states and functions from states into a semiring. For sums over arbitrary
subsets of states to exist, the functions are assumed to be of finite support.

Definition 1. A FuTS S, in full a labeled state-to-function transition system, over a number of label
sets L i and semirings R i, i = 1 . . .n, is a tuple S = (S , 〈�i 〉

n
i=1 ) such that�i ⊆ S ×L i×FS( S ,R i ), for

i = 1 . . .n. •

As usual, we write s
`
�i v for (s, `,v) ∈�i. For a FuTS S = (S , 〈�i 〉

n
i=1 ) the set S is called the set of

states. We refer to each�i as a state-to-function transition relation of S or just as a transition relation of
it. If forSwe have that n = 1, i.e. there is only one state-to-function transition relation�, thenS is called
simple. A FuTS S is called total and deterministic if for each transition relation�i ⊆ S ×L i×FS(S ,R i )

involved and for all s ∈ S , ` ∈ L i, we have s
`
�i v for exactly one v ∈ FS(S ,R i ). In such a situation, the

zero-function []R i plays a special role. A state-to-function transition s
`
�i []R i reflects the absence of a

non-trivial transition s
`
�i v for v , []R i . In the context of LTS one says that s has no `-transition. For

the remainder of the paper, all FuTS we consider are assumed to be total and deterministic.1

Examples For the modeling of CCS processes, we choose a set of actions A as label set and the
booleans B as semiring. Consider the two CCS processes P = a.b.0 + a.c.0 and Q = a.(b.0 + c.0), their
representation as a FuTS is depicted in Figure 1. For process P we have P

a
� [b.0 7→ true, c.0 7→ true],

while the process Q we have Q
a
� [b.0 + c.0 7→ true]. So, FuTS are able to represent branching.

As another example of a simple FuTS, Figure 1 displays a FuTS over the action set A and the
semiring R>0 of the non-negative real numbers. The functions v0 to v4 used in the example have the
property that ⊕vi(s) = 1, for i = 0 . . .4. Usually, such a FuTS over R>0 is called a (reactive) probabilistic
transition system.

1Definition 1 slightly differs in formulation from the one in [8].
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Figure 1: FuTS for two CCS processes and a probabilistic process.

In Section 6 we will provide semantics for the process language IML of interactive Markov
chains [13, 16] using FuTS. Unlike many other stochastic process algebras, a single IML process can in
general both perform action-based transitions and time-delays governed by exponential distributions.

It will be notationally convenient to consider a (total and deterministic) FuTS as a tuple (S , 〈θi 〉
n
i=1 )

with transition functions θi : S →L i → FS( S ,R i ), i = 1 . . .n, rather than using the form (S , 〈�i 〉
n
i=1 )

that occurs more frequent for concrete examples in the literature. Alternatively, using disjoint unions,
one could see a FuTS represented by a function θ′ : S →

⊕n
i=1 L i →

⊕n
i=1 FS(S ,R i ) satisfying the

additional property that θ′(s)(` ) ∈ FS(S ,R i ) if ` ∈ L i. As this fits less smoothly with the category-
theoretical approach of Section 4, we stick to the former format. Note, an interpretation of a FuTS as a
function S →

⊕n
i=1

(
L i→ FS(S ,R i )

)
does not suit our purposes as the IML example above illustrates.

We will use the notation with transition functions θi : S →L i→ FS( S ,R i ) to introduce the notion
of bisimilarity for a FuTS.

Definition 2. Let S = (S , 〈θi 〉
n
i=1 ) be a FuTS over the label sets L i and semirings R i, i = 1 . . .n. An

equivalence relation R ⊆ S ×S is called an S-bisimulation if R(s1, s2) implies∑
t′∈[t]R θi (s1)(` )(t′ ) =

∑
t′∈[t]R θi (s2)(` )(t′ ) (1)

for all t ∈ S , i = 1 . . .n and ` ∈ L i. Two elements s1, s2 ∈ S are called S-bisimilar if R(s1, s2) for some
S-bisimulation R for S. Notation s1 ∼S s2. •

We use the notation [t]R to denote the equivalence class of t ∈ S with respect to R. Note that sums in
equation (1) exist since the functions θi (s j)(` ) ∈ FS( S ,R i ), i = 1 . . .n, j = 1,2, are of finite support.
Hence, θi (s j)(` )(t′) = 0 ∈ R i for all but finitely many t′ ∈ [t]R ⊆ S .

For the combined FuTS of the two CCS-processes of Figure 1, the obvious equivalence relation relating
b.0 and b.0 + c.0 is not a FuTS-bisimulation. Although

∑
t′∈[0]R θ(b.0)(b)(t′) = θ(b.0)(b)(0) = true and∑

t′∈[0]R θ(b.0 + c.0)(b)(t′) = θ(b.0 + c.0)(b)(0) = true, we have
∑

t′∈[0]R θ(b.0)(c)(t′) = false, while∑
t′∈[0]R θ(b.0 + c.0)(c)(t′) = true, taking sums, i.e. disjunctions, in B.

4 FuTS coalgebraically

In this section we will cast FuTS in the framework of coalgebras and prove a correspondence result of
FuTS-bisimulation and behavioral equivalence for a suitable functor on Set.
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Definition 3. Let L be a set of labels and let R be a semiring. The functor VL
R

: Set→ Set assigns
to a set X the function space FS(X,R )L of all functions ϕ : L → FS(X,R ) and assigns to a function
f : X→ Y the mappingVL

R
( f ) : FS(X,R )L→ FS(Y,R )L where

VL
R

( f )(ϕ)(` )(y) =
∑

x′∈ f−1(y) ϕ(` )(x′)

for all ϕ ∈ FS(X,R )L, ` ∈ L and y ∈ Y. •

Again we rely on ϕ(` ) ∈ FS(X,R ) having a finite support for the sum to exist and for VL
R

being well-
defined. In fact, we have spt(VL

R
( f )(ϕ)(` ) ) = { f (x) | x ∈ spt(ϕ)(` ) }.

As we aim to compare our notion of bisimulation for FuTS with behavioral equivalence for the
functor VL

R
, given a set of labels L and a semiring R, we need to check that VL

R
possesses a final

coalgebra. We follow the approach of [5].

Lemma 3. Let L be a set of labels, R a semiring. Then the functorVL
R

on Set is bounded. �

Working with total and deterministic FuTS, we can interpret a FuTS S = (S , 〈θi 〉
n
i=1 ) over the label sets

L i and semirings R i, i = 1 . . .n as a product θ1 × · · · × θn : S →
∏n

i=1 (L i → FS(S ,R i ) ) of functions
θi : S →L i→ FS(S ,R i ). To push this idea a bit further, we want to consider the FuTS S = (S, 〈θi 〉

n
i=1 )

as a coalgebra of a suitable product functor on Set.

Definition 4. Let S = (S , 〈θi 〉
n
i=1 ) be a FuTS over the label sets L i and semirings R i, i = 1..n. The

functorVS on Set is defined byVS =
∏n

i=1 V
L i
R i

=
∏n

i=1 FS( · ,R i )L i .

The point is, under conditions that are generally met, coalgebras come equipped with a natural notion of
behavioral equivalence that can act as a reference for strong equivalences, in particular of bisimulation
for FuTS. Below, see Theorem 5, we prove that S-bisimilarity as given by Definition 2 coincides with
behavioral equivalence for the functorVS as given by Definition 4, providing justification for the notion
of equivalence defined on FuTS.

For the notion of behavioral equivalence for the functor VS obtained from S to be defined, we
establish that it possesses a final coalgebra.

Theorem 4. The functorVS has a final coalgebra.

Proof. By Lemma 3 we have that each factor VL i
R i

of VS is bounded, and hence possesses a final coal-
gebra Ω

V
L i
R i

by Theorem 2. It follows that also VS has a final coalgebra ΩS. Writing [[·]]SX for the final

morphism of aVS-coalgebra X into ΩS, we have

ΩS = Ω
V
L1
R1

× · · ·×Ω
V
Ln
Rn

and [[·]]SX = [[·]]
V
L1
R1

X × · · ·× [[·]]
V
Ln
Rn

X

as can be straightforwardly shown. �

Since the functor VS of a FuTS has a final coalgebra, we can speak of the behavioral equivalence ≈S
induced by VS. Next we establish, for a FuTS S, the correspondence of S-bisimulation ∼S as given by
Definition 2 and behavioral equivalence ≈S.

Theorem 5. Let S = (S , 〈θi 〉
n
i=1 ) be a FuTS over the label sets L i and semirings R i , i = 1 . . .n. Then

s1 ∼S s2⇔ s1 ≈S s2, for all s1, s2 ∈ S .
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Proof. Let s1, s2 ∈ S . We first prove s1 ∼S s2 ⇒ s1 ≈S s2. So, assume s1 ∼S s2. Let R ⊆ S × S be an
S-bisimulation with R(s1, s2). Put θ = θ1× · · ·× θn. Note (S , θ ) is aVS-coalgebra. We turn the collection
of equivalence classes S/R into aVS-coalgebra (S/R, θR) by putting

θi
R( [s]R )(` )( [t]R ) =

∑
t′∈[t]R θi(s)(` )(t′) and θR = θ1

R × · · ·× θ
n
R

for s, t ∈ S , ` ∈ L i, i = 1 . . .n. This is well-defined since R is an S-bisimulation: if R(s, s′) then we have∑
t′∈[t]R θi(s)(` )(t′) =

∑
t′∈[t]R θi(s′)(` )(t′). The canonical mapping εR : S → S/R is aVS-homomorphism:

For i = 1 . . .n, ` ∈ L i and t ∈ S , we have both

FS(εR,R i )L i(θi(s) )(` )([t]R) =
∑

t′ ∈ [t]R θi(s)(` )(t′) and θ i
R([s]R)(` )([t]R) =

∑
t′ ∈ [t]R θi(s)(` )(t′)

Thus, FS(εR,R i )Li ◦θi = θ i
R ◦εR. Since VS(εR) =

∏n
i=1 FS(εR,R i )L i it follows that εR is a VS-homo-

morphism. Therefore, by uniqueness of a final morphism, we have [[·]]SS = [[·]]SS/R ◦ εR. In particular,
[[s1]]SS = [[s2]]SS since εR(s1) = εR(s2). Thus, s1 ≈S s2.

For the reverse, i.e. s1 ≈S s2 ⇒ s1 ∼S s2, assume s1 ≈S s2, i.e. [[s1]]SS = [[s2]]SS . Since the map
[[·]]SS : (S , θ )→ (ΩS, ωS ) is a VS-homomorphism, the relation RS with RS(s′, s′′)⇔ [[s′]]SS = [[s′′]]SS is
an S-bisimulation: Suppose RS(s′, s′′), i.e. s′ ≈S s′′, for some s′, s′′ ∈ S. Assume θΩS = θ1

ΩS
× · · · × θn

ΩS
.

Pick 1 6 i 6 n, ` ∈ L i, t ∈ S . Put [[t]]SS = w ∈ΩS. Let [t]S denote the equivalence class of t in RS.∑
t′∈[t]S θi(s′)(` )(t′)
=

∑
t′∈( [[·]]SS )−1(w) θi(s′)(` )(t′) (by definition of RS and w)

= θi
ΩS

( [[s′]]SS )(` )(w) ( [[·]]SS is aVS-homomorphism)

= θi
ΩS

( [[s′′]]SS )(` )(w) (s′ ≈S s′′ by assumption)

=
∑

t′∈( [[·]]SS )−1(w) θi(s′′)(` )(t′) ( [[·]]SS is aVS-homomorphism)

=
∑

t′∈[t]S θi(s′′)(` )(t′) (by definition of RS and w)

Thus, if RS(s′, s′′) then
∑

t′∈[t]S θi(s′)(` )(t′) =
∑

t′∈[t]S θi(s′′)(` )(t′) for all i = 1 . . .n, t ∈ S , ` ∈ L i and
RS is an S-bisimulation. Since [[s1]]SS = [[s2]]SS , it follows that RS(s1, s2). Thus RS is an S-bisimulation
relating s1 and s2. Conclusion, it holds that s1 ∼S s2. �

5 FuTS Semantics of PEPA

Next we will consider a significant fragment of the process algebra PEPA [17], including the parallel
operator implementing the scheme of so-called minimal apparent rates, and provide a FuTS semantics
for it. We will show that PEPA’s notion of equivalence =pepa , called strong equivalence in [17], fits with
the bisimilarity ∼pepa as arising from the FuTS semantics.

Definition 5. The set PPEPA of PEPA processes is given by the BNF P ::= nil | (a,λ).P | P+ P | P ‖A P | X
where a ranges over the set of actions A, λ over R>0, A over the set of finite subsets of A, and X over
the set of constants X. •

PEPA, like many other stochastic process algebras (e.g. [15, 4]), couples actions and rates. The prefix
(a,λ) of the process (a,λ).P expresses that the duration of the execution of the action a ∈ A is sampled
from an exponential distribution of rate λ. The parallel composition P ‖A Q of a process P and a process Q
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(NIL)
nil

δa
�p []R>0

(RAPF1)
(a,λ).P

δa
�p [P 7→ λ]

(RAPF2)
b , a

(a,λ).P
δb
�p []R>0

(CHO)
P

δa
�p P Q

δa
�p Q

P + Q
δa
�p P + Q

(CNS)
P

δa
�p P X := P

X
δa
�p P

(PAR1)
P

δa
�p P Q

δa
�p Q a < A

P ‖A Q
δa
�p (P ‖AXQ ) + (XP ‖AQ )

(PAR2)
P

δa
�p P Q

δa
�p Q a ∈ A

P ‖A Q
δa
�p arf(P,Q) · (P ‖AQ )

Figure 2: FuTS semantics for PEPA.

for a set of actions A ⊆A allows for the independent, asynchronous execution of actions of P and Q not
occurring in the subset A, on the one hand, and requires the simultaneous, synchronized execution of P
and Q for the actions occurring in A, on the other hand. The FuTS-semantics of the fragment of PEPA
that we consider here, is given by the SOS of Figure 2, on which we comment below.

Characteristic for the PEPA language is the choice to model parallel composition, or cooperation in
the terminology of PEPA, scaled by the minimum of the so-called apparent rates. By doing so, PEPA’s
strong equivalence becomes a congruence [17]. Intuitively, the apparent rate ra(P) of an action a for a
process P is the sum of the rates of all possible a-executions for P. When considering the CSP-style
parallel composition P ‖A Q, with cooperation set A, an action a occurring in A has to be performed by
both P and Q. The rate of such an execution is governed by the slowest, on average, of the two processes
in this respect.2 Thus ra(P ‖A Q) for a ∈ A is the minimum min{ra(P), ra(Q) }. Now, if P schedules an
execution of a with rate r1 and Q schedules a transition of a with rate r2, in the minimal apparent rate
scheme the combined execution yields the action a with rate r1 ·r2 ·arf(P,Q). Here, the ‘syntactic’ scaling
factor arf(P,Q), the apparent rate factor, is defined by

arf(P,Q) =
min{ra(P), ra(Q) }

ra(P) · ra(Q)

assuming ra(P),ra(Q) > 0, otherwise arf(P,Q) = 0. Thus, for P ‖A Q the minimum min{ra(P), ra(Q) }
of the apparent rates is adjusted by the relative probabilities r1/ra(P) and r2/ra(Q) for executing a by P
and Q, respectively. See [17, Definition 3.3.1] (or the appendix) for an explicit definition of the apparent
rate ra of a PEPA-process.

The FuTS we consider for the semantics of PEPA in Figure 2 involves a set of labels ∆ defined by
∆ = { δa | a ∈ A}. The symbol δa denotes the execution of the action a, with a duration that is still to be
established. The underlying semiring for the simple FuTS for PEPA is the semiring R>0 of non-negative
reals.

Definition 6. The FuTS Spepa = (PPEPA,�p ) over ∆ and R>0 has its transition relation given by the
rules of Figure 2. •

We discuss the rules of Figure 2. The FuTS semantics provides nil
δa
�p []R>0 , for every action a, with

[]R>0 the 0-function λP.0 of R>0. However, the latter expresses θpepa(nil)( δa)(P′) = 0 for every a ∈ A

2One cannot take the slowest process per sample, because such an operation cannot be expressed as an exponential distri-
bution in general.
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and P′ ∈ PPEPA, or, in standard terminology, nil has no transition. For the rated action prefix (a,λ) we
distinguish two cases: (i) execution of the prefix in rule (RAPF1); (ii) no execution of the prefix in
rule (RAPF2). In the case of rule (RAPF1) the label δa signifies that the transition involves the execution
of the action a. The continuation [ P 7→ λ ] is the function that assigns the rate λ to the process P. All other
processes are assigned 0, i.e. the zero-element of the semiring R>0. In the second case, rule (RAPF2),
for labels δb with b , a, we do have a transition, but it is a degenerate one. The two rules for the prefix,
in particular having the ‘null-continuation’ rule (RAPF2), support the unified treatment of the choice
operator in rule (CHO) and the parallel operator in rules (PAR1) and (PAR2).

Note the semantic sum of functions P + Q replacing the syntactic sum in P + Q. The treatment of
constants is as usual. Regarding the parallel operator ‖A, with respect to some subset of actions A ⊆ A,
the so-called cooperation set, there are again two rules. Now the distinction is between interleaving and
synchronization. In the case of a label δa involving an action a not in the subset A, either the P-operand
or the Q-operand of P ‖A Q makes progress. For example, the effect of the pattern P ‖AXQ is that the
value P(P′) · 1 is assigned to a process P′ ‖A Q, the value P(P′) · 0 = 0 to a process P′ ‖A Q′ for some
Q′ , Q, and the value 0 for a process not of the form P′ ‖A Q′. Here, as in all other rules, the right-hand
sides of the transitions only involve functions in FS(PPEPA,R>0 ) and operators on them.

For the synchronization case of the parallel construct, assuming P
δa
� P and Q

δa
� Q, the ‘semantic’

scaling factor arf(P,Q) is applied to P ‖AQ (with ‖A on FS(PPEPA,R>0 ) induced by ‖A on PPEPA). This
scaling factor, defined for functions in FS(PPEPA,R>0 ), is given by

arf(P, Q) =
min {⊕P, ⊕Q}
⊕P ·⊕Q

provided ⊕P,⊕Q> 0, and arf(P, Q) = 0 otherwise. This results for arf(P,Q) · (P ‖AQ ), for a process R =

R1 ‖A R2, in the value arf(P, Q) · (P ‖AQ )(R1 ‖A R2) = arf(P, Q) ·P(R1) ·Q(R2).
The following lemma establishes the relationship between the ‘syntactic’ and ‘semantic’ apparent

rate factors defined on processes and on continuation functions, respectively.

Lemma 6. Let P ∈ PPEPA and a ∈ A. Suppose P
δa
�p P. Then ra(P) = ⊕P. �

The proof of the lemma is straightforward. It is also easy to prove, by guarded induction, that the FuTS
Spepa given by Definition 6 is total and deterministic. So, it is justified to write Spepa = (PPEPA, θpepa ).
We use ∼pepa to denote the bisimilarity induced by Spepa.

Lemma 7. The FuTS Spepa is total and deterministic. �

Example To illustrate the ease to deal with multiplicities in the FuTS semantics, consider the PEPA

processes P1 = (a,λ).P and P2 = (a,λ).P + (a,λ).P for some P ∈ PPEPA. We have P1
δa
�p [ P 7→ λ ] by

rule (RAPF1), but P2
δa
�p [ P 7→ 2λ ] by rule (RAPF1) and rule (CHO). The latter makes us to compute

[ P 7→ λ ]+[ P 7→ λ ], which equals [ P 7→ 2λ ]. Thus, in particular we have P1 /pepa P2. Intuitively it is clear
that, in general we cannot have P + P ∼ P for any reasonable quantitative process equivalence ∼ in the
Markovian setting. Having twice as many a-labelled transitions, the average number for (a,λ).P+(a,λ).P
of executing the action a per time unit is double the average of executing a for (a,λ).P.

The standard operational semantics of PEPA [17, 18] is given in Figure 3. The transition relation → ⊆
PPEPA × (A×R>0 )×PPEPA is the least relation satisfying the rules. For a proper treatment of the rates,
the transition relation is considered as a multi-transition system, where also the number of possible
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(RAPF)
(a,λ).P

a,λ
→ P

(CHO1)
P

a,λ
→ P′

P + Q
a,λ
→ P′

(CHO2)
Q

a,λ
→ Q′

P + Q
a,λ
→ P′

(PAR1a)
P

a,λ
→ P′ a < A

P ‖A Q
a,λ
→ P′ ‖A Q

(PAR1b)
Q

a,λ
→ Q′ a < A

P ‖A Q
a,λ
→ P ‖A Q′

(CNS)
P

a,λ
→ P′ X := P

X
a,λ
→ P′

(PAR2)
P

a,λ1
→ P′ Q

a,λ2
→ Q′ a ∈ A

P ‖A Q
a,λ
→ P′ ‖A Q′

λ = arf(P,Q)·λ1·λ2

Figure 3: Standard semantics for PEPA.

derivations of a transition P
a,λ
→ P′ matters. We stress that such bookkeeping is not needed in the FuTS-

approach at all. In rule (PAR2) we use the ‘syntactic’ apparent rate factor for PEPA processes.

The so-called total conditional transition rate q[P,C,a] of a PEPA-process [17, 18] for a subset of pro-

cesses C ⊆PPEPA and a ∈A is given by q[P,C,a] =
∑

Q∈C
∑
{| λ | P

a,λ
→Q |}. Here, {| P

a,λ
→Q |} is the multiset

of transitions P
a,λ
→ Q and {| λ | P

a,λ
→ Q |} is the multiset of all λ’s involved. The multiplicity of P

a,λ
→ Q is

the number of different ways the transition can be derived using the rules of Figure 3. We are now ready
to define PEPA’s notion of strong equivalence [17, 18].

Definition 7. An equivalence relation R⊆PPEPA×PPEPA is called a strong equivalence if q[P1, [Q]R,a] =

q[P2, [Q]R,a] for all P1,P2 ∈ PPEPA such that R(P1,P2), all Q ∈ PPEPA and all a ∈ A. Two processes
P1,P2 ∈ PPEPA are strongly equivalent if R(P1,P2) for a strong equivalence R, notation P1 =pepa P2. •

The next lemma couples, for a PEPA-process P, an action a and a function P ∈ FS(PPEPA,R>0 ), the
evaluation P(P′) with respect to the FuTS-semantics to the cumulative rate for P of reaching P′ by a
transition involving the label a in the standard operational semantics.

Lemma 8. Let P ∈ PPEPA and a ∈ A. Suppose P
δa
� P. Then it holds that P(P′) =

∑
{| λ | P

a,λ
→ P′ |} for

all P′ ∈ PPEPA. �

With the lemma in place we can prove the following correspondence result for Spepa-bisimilarity with
respect to the FuTS for PEPA of Definition 6 and strong equivalence as given by Definition 7.

Theorem 9. For any two PEPA-processes P1,P2 ∈ PPEPA it holds that P1 ∼pepa P2 iff P1 =pepa P2.

Proof. Let R be an equivalence relation on PPEPA. Choose P,Q ∈ PPEPA and a ∈ A. Suppose P
δa
�p P.

Thus θpepa(P)(δa) = P. We have

q[P, [Q]R,a] =
∑

Q′∈[Q]R

∑
{| λ | P

a,λ
→ Q′ |} (by definition q[P, [Q]R,a]

=
∑

Q′∈[Q]R P(Q′) (by Lemma 8)
=

∑
Q′∈[Q]R θpepa(P)(a)(Q′) (by definition θpepa)

Therefore, for PEPA-processes P1 and P2 it holds that q[P1, [Q]R,a] = q[P2, [Q]R,a] for all Q ∈ PPEPA,
a ∈ A iff

∑
Q′∈[Q]R θpepa(P1)(a)(Q′) =

∑
Q′∈[Q]R θpepa(P2)(a)(Q′) for all Q ∈ PPEPA, a ∈ A. Thus, the

equivalence relation R is a strong equivalence iff R is an Spepa-bisimulation, from which the theorem
follows. �
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(NIL1)
a ∈ A

nil
a
�1 []B

(NIL2)
nil

δ
�2 []R>0

(APF3)
a.P

δ
�2 []R>0

(APF1)
a.P

a
�1 [P 7→ true]

(APF2)
b , a

a.P
b
�1 []B

(RPF1)
a ∈ A

λ.P
a
�1 []B

(RPF2)
λ.P

δ
�2 [P 7→ λ]

(PAR1)
P

α
�i P Q

α
�i Q α < A

P ‖A Q
α
�i (P ‖AX i

Q ) + (X i
P ‖AQ )

(i = 1,2) (PAR2)
P

a
�1 P Q

a
�1 Q a ∈ A

P ‖A Q
a
�1 P ‖AQ

(CHO)
P

α
�i P Q

α
�i Q

P + Q
α
�i P + Q

(i = 1,2) (CON)
P

α
�i P X := P

X
α
�i P

(i = 1,2)

Figure 4: FuTS semantics for IML.

In view of our general correspondence result Theorem 5, the above theorem shows that PEPA’s strong
equivalence =pepa is a behavioral equivalence, viz. behavioral equivalence ≈pepa with respect to the func-
tor of Spepa, and that its standard, FuTS and coalgebraic semantics coincide.

6 FuTS Semantics of IML

In this section we provide a FuTS semantics for a relevant part of the language of IMC [13]. IMC, In-
teractive Markov Chains, are automata that combine two types of transitions: interactive transitions that
involve the execution of actions and Markovian transitions that represent the progress of time governed
by exponential distribution. As a consequence, IMC embody both non-deterministic and stochastic be-
haviour. System analysis using IMC proves to be a powerful approach because of the orthogonality of
qualitative and quantitative dynamics, their logical underpinning and tool support. A number of equiva-
lences, both strong and weak, are available for IMC [10]. In our treatment here, dealing with a fragment
we call IML, we do not deal with internal τ-steps and focus on strong bisimulation.

Definition 8. The set PIML of IML processes is given by the BNF P ::= nil | a.P | λ.P | P+ P | P ‖A P | X
where a ranges over the set of actionsA, λ over R>0, A over the set of finite subsets ofA and X over the
set of constants X. •

In IML there are separate prefix constructions for actions a.P and for time-delays λ.P. No restriction
is imposed on the alternative and parallel composition of processes. For example, we have the process
P = a.λ.nil + µ.b.nil in IML. It should be noted that for IMC actions are considered to take no time.

Definition 9. The formal semantics of PIML is given by the FuTS Siml = (PIML ,�1,�2 ) over the label
setsA and ∆ = {δ } and the semirings B and R>0 with transition relations�1 ⊆PIML×A×FS(PIML ,B )
and�2 ⊆ PIML ×∆×FS(PIML ,R>0 ) defined as the least relations satisfying the rules of Figure 4. •

To accommodate for action-based and delay-related transitions, the FuTS Siml is non-simple, having the
two transition-to-function relations�1 and�2. Actions a ∈A decorate�1, the special symbol δ deco-
rates�2. Note rule (APF3) and rule (RPF1) that involve the null-functions of R>0 and of B, respectively,
to express that a process a.P does not trigger a delay and a process λ.P does not execute an action. For the
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(APF)
a.P

a
→ P

(CHO1)
P

a
→ R

P + Q
a
→ R

(CHO2)
Q

a
→ R

P + Q
a
→ R

(CON1)
P

a
→ Q X := P

X
a
→ Q

(PAR1a)
P

a
→ P′ a < A

P ‖A Q
a
→ ,P′ ‖A Q

(PAR1b)
Q

a
→ Q′ a < A

P ‖A Q
a
→ P ‖A Q′

(PAR2)
P

a
→ P′ Q

a
→ Q′ a ∈ A

P ‖A Q
a
→ P′ ‖A Q′

(RPF)
λ.P

λ
d P

(CHO3)
P

λ
d R

P + Q
λ
d R

(CHO4)
Q

λ
d R

P + Q
λ
d R

(CON2)
P

λ
d Q X := P

X
λ
d Q

(PAR1c)
P

λ
d P′

P ‖A Q
λ
d P′ ‖A Q

(PAR1d)
Q

λ
d Q′

P ‖A Q
λ
d P ‖A Q′

Figure 5: Standard SOS rules for IML.

parallel construct ‖A, interleaving applies both for non-synchronized actions a < A as well as for delays
(but not mixed). Therefore, rule (PAR1) pertains to both�1 and�2, with α ranging over A∪∆. The
same holds for non-deterministic choice, rule (CHO), and constants, rule (CON). Finally, IML does not
provide synchronization of delays in the parallel construct. Rule (PAR2) only concerns the transition re-
lation�2. In rule (PAR1), for clarity, we decorated the characteristic functions, writing Xi

P , for i = 1,2,
for XP = [ P 7→ true ] in FS(PIML ,B ) and XP = [ P 7→ 1] in FS(PIML ,R>0 ).

Example Assume X := a.λ.b.X and Y := a.µ.b.Y . Put A = {a,b}. Then we have

X ‖A Y
a
�1 [λ.b.X ‖Aµ.b.Y 7→ true ] λ.b.X ‖Aµ.b.Y

δ
�2 [b.X ‖Aµ.b.Y 7→ λ, λ.b.X ‖A b.Y 7→ µ ]

b.X ‖A b.Y
b
�1 [ X ‖A Y 7→ true ] b.X ‖Aµ.b.Y

δ
�2 [b.X ‖A b.Y 7→ µ ]

λ.b.X ‖A b.Y
δ
�2 [b.X ‖A b.Y 7→ λ ]

It is not difficult to verify that Siml is a total and deterministic FuTS. Below we use Siml = (PIML , θ1, θ2 )
and write ∼iml for the associated bisimilarity.

Lemma 10. The FuTS Siml is total and deterministic. �

The standard SOS semantics of IML [13] is given in Figure 5 involving the transition relations

→⊆PIML ×A×PIML and d ⊆ PIML ×R>0×PIML

Below we will use the functions T and R based on→ andd, cf. [16]. We have T : PIML×A×2PIML →B

given by T(P,a,C) = true if the set {P′ ∈ C | P
a
→ P′ } is non-empty, for all P ∈ PIML , a ∈ A and any

subset C ⊆ PIML . For R : PIML ×PIML → R>0 we put R(P,P′) =
∑
{| λ | P

λ
d P′ |}. Here, as common

for probabilistic and stochastic process algebras, the comprehension is over the multiset of transitions

leading from P to P′ with label λ. We extend R to PIML ×2PIML by R(P,C) =
∑

P′ ∈C
∑
{| λ | P

λ
d P′ |}.

For IML we have the following notion of strong bisimulation [13, 16] that we will compare with the
notion of bisimulation associated with the FuTS Siml.
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Definition 10. An equivalence relation R ⊆ PIML ×PIML is called a strong bisimulation for IML if, for
all P1,P2 ∈ PIML it holds that

• for all a ∈ A and Q ∈ PIML : T(P1, a, [Q]R ) ⇐⇒ T(P2, a, [Q]R )

• for all Q ∈ PIML : R(P1, [Q]R ) = R(P2, [Q]R ).

for all P1,P2 ∈ PIML such that R(P1,P2). Two processes P1,P2 ∈ PIML are called strongly bisimilar if
R(P1,P2) for a strong bisimulation R for IML, notation P1 =iml P2. •

To establish the correspondence of FuTS bisimilarity ∼iml for Siml of Definition 9 and strong bisimilar-
ity =iml for IML, we need to connect the state-to-function relation�1 and the transition relation → as
well as the state-to-function relation�2 and the transition relationd .

Lemma 11.

(a) Let P ∈ PIML and a ∈ A. If P
a
�1 P then P

a
→ P′ ⇐⇒ P(P′) = true.

(b) Let P ∈ PIML . If P
δ
�2 P then

∑
{| λ | P

λ
d P′ |} = P(P′). �

We are now in a position to relate FuTS bisimulation and standard strong bisimulation for IML.

Theorem 12. For any two processes P1,P2 ∈ PIML it holds that P1 ∼iml P2 iff P1 =iml P2.

Proof. Let R be an equivalence relation on PIML . Pick P ∈ PIML , a ∈ A and choose any Q ∈ PIML .
Suppose P

a
� P. Thus θ1(P)(a) = P. Then we have

T(P, a, [Q]R ) ⇔ ∃Q′ ∈ [Q]R : P
a
→ Q′ (by definition of T)

⇔ ∃Q′ ∈ [Q]R : P(Q′) = true (by Lemma 11a)
⇔

∑
Q′∈[Q]R θ1(P)(a)(Q) = true (by definition of θ1)

Note, summation in B is disjunction. Likewise, on the quantitative side, we have

R(P, [Q]R ) =
∑

Q′∈[Q]R

∑
{| λ | P

λ
d Q′ |} (by definition of R)

=
∑

Q′∈[Q]R P(Q′ ) (by Lemma 11b)
=

∑
Q′∈[Q]R θ2(P)(δ)(Q) (by definition of θ2)

Combining the equations, we conclude that a strong bisimulation for IML is also a bisimulation for the
FuTS Siml, and vice versa. From this the theorem follows. �

Again, as a corollary of the theorem above, we have for IML that its notion of strong bisimulation is coal-
gebraically underpinned, as it coincides, calling to Theorem 5 once more, with behavioral equivalence
of the functor Viml induced by the FuTS Siml. As a consequence, the standard, FuTS and coalgebraic
semantics for IML are all equal.

7 Concluding remarks

Total and deterministic labeled state-to-function transition systems, FuTS, are a convenient instrument
to express the operational semantics of both qualitative and quantitative process languages. In this paper
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we have introduced the notion of bisimulation that arises from a FuTS, possibly involving multiple tran-
sition relations. A correspondence result, Theorem 5, relates the bisimulation of a FuTS S to behavioral
equivalence of the functor VS that arises from the FuTS S too. For two prototypical stochastic process
languages based on PEPA and on IMC we have shown that the notion of stochastic bisimulation associ-
ated with these calculi, coincides with the notion of bisimulation of the corresponding FuTS. Using these
FuTS as a stepping stone, the correspondence result bridges between the concrete notion of bisimulation
for PEPA and IMC, and the coalgebraic notion of behavioral equivalence. Hence, from this perspective,
the concrete notions are seen as the natural strong equivalence to consider.

It is shown in [5], in the context of weighted automata, that in general the type of functors FS(·,R )
may not preserve weak pullbacks and, therefore, the notions of coalgebraic bisimulation and of behav-
ioral equivalence may not coincide. Essential for the construction in their setting is the fact that the sum
of non-zero weights may add to weight 0. The same phenomenon prevents a general proof, along the
lines of [28], for coalgebraic bisimulation and FuTS bisimulation to coincide. In the construction of a
mediating morphism, going from FuTS bisimulation to coalgebraic bisimulation a denominator may be
zero, hence a division undefined, in case the sum over an equivalence class cancels out. In the concrete
case for [19], although no detailed proof is provided there, this will not happen with R>0 as underlying
semiring. We expect that for semirings enjoying the property that for a sum x = x1 + · · ·+ xn it holds that
x = 0 iff xi = 0 for all i = 1 . . .n, we will be able to prove that pullbacks are weakly preserved, and hence
that coalgebraic bisimulation and behavioral equivalence are the same.

Obviously, Milner-type strong bisimulation [21, 22] and bisimulation for FuTS over B coincide.
Also, strong bisimulation of [17] involving, apart from the usual transfer conditions, the comparison of
state information, viz. the apparent rates, can be treated with FuTS. Again the two notions of equivalence
coincide. We expect to be able to deal with discrete time and so-called Markov automata as well. For
dense time and general measures one may speculate that the use of functions of compact support with
respect to a suitable topology may be fruitful. Future research needs to reveal under what algebraic
conditions of the semirings, or similar structures, or the coalgebraic conditions on the format of the
functors involved standard bisimulation, FuTS-bisimulation, coalgebraic bisimulation and behavioral
equivalence will amount to similar identifications.
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A Additional proofs

Additional proof for Section 2

Lemma 1. Let X be a set, R a semiring and | an injective binary operation on X. For ϕ,ψ ∈ FS(X,R ) it
holds that ⊕(ϕ + ψ) = ⊕ϕ + ⊕ψ and ⊕(ϕ | ψ ) = (⊕ϕ)∗ (⊕ψ).

Proof. We verify ⊕(ϕ | ψ ) = (⊕ϕ)∗ (⊕ψ) for arbitrary ϕ,ψ ∈ FS(X,R ).

(⊕ϕ)∗ (⊕ψ)
=

(∑
x1 ∈X ϕ(x1)

)
∗
(∑

x2 ∈X ψ(x2)
)

(by definition ⊕)
=

∑
x1,x2 ∈X ϕ(x1)∗ψ(x2) (by distributivity of ∗ over +)

=
∑

x∈X, x=x1 |x2 ϕ(x1)∗ψ(x2) (by injectivity of | )
=

∑
x∈X, x=x1 |x2 (ϕ | ψ)(x) (by definition of ϕ | ψ)

=
∑

x∈X (ϕ | ψ)(x) (since (ϕ | ψ)(x) = 0 if x < |−1(X))

The fact ⊕(ϕ + ψ) = ⊕ϕ + ⊕ψ follows direct from the definitions and commutativity of +. �

Additional proof for Section 4

Lemma 3. Let L be a set of labels and R a semiring. Then functorVL
R

on Set is bounded.

Proof. Consider the elements ν ∈ FS(N,R )L as parametrized ‘valuation’ functions, and the elements
σ ∈ XN as ‘selection’ functions. The functor FS(N,R )L × (·)N : Set→ Set is the product functor of
the lifting idFS(N,R )L of the identity functor idFS(N,R ) to L and of the functor (·)N. Define the mapping
η : idFS(N,R )L × (·)N→VL

R
by putting

ηX(ν,σ)(` )(x) =
∑

n∈σ−1(x) ν(` )(n)

for ν ∈ FS(N,R )L, σ ∈ XN and ` ∈L. For ` ∈L and x ∈ X, the right-hand sum defining ηX(ν,σ)(` )(x) ex-
ists, since ν(` ) :N→R is of finite support. Note that ηX(ν,σ)(` ) is of finite support too: If ηX(ν,σ)(` )(x)
, 0, by definition

∑
{ν(` )(n) | n ∈ σ−1(x) } , 0. Then ν(` )(n) , 0 for some n ∈ σ−1(x). Thus, σ(n) = x for

some n ∈ spt(ν(` )). So, spt(ηX(ν,σ) ) ⊆ {σ(n) | n ∈ spt(ν(` )) } and spt(ηX(ν,σ) ) is finite.
Next we verify that η : idFS(N,R )L × (·)N →VL

R
is a natural transformation, i.e. we check that for

f : X→ Y it holds thatVL
R
◦ηX = ηY ◦ 〈 idFS(N,R )L , fN 〉.

For ν ∈ FS(N,R )L and σ ∈ XN we have, for ` ∈ L and y ∈ Y ,

(FS( f ,R )L ◦ηX )(ν,σ)(`)(y)

=
∑

x∈ f−1(y) ηX(ν,σ)(`)(x) =
∑

x∈ f−1(y)
∑

n∈σ−1(x) ν(`)(n)

=
∑

n∈ ( f ◦σ)−1 ν(`)(n) = ηY (ν, f ◦σ)(` )(y)

= ηY
(
(idFS(N,R )L × fN )(ν,σ)

)
(` )(y) = (ηY ◦ ( idFS(N,R )L × fN ))(ν,σ)(` )(y)
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Thus, FS( f ,R )L ◦ηX = ηY ◦ ( idFS(N,R )L × fN ) and η : idFS(N,R )L × (·)N→VL
R

is a natural transformation.
Finally, we check that ηX : idFS(N,R )L ×XN →VL

R
(X) is surjective. Choose a set X and a mapping

ϕ : L→ FS(X,R ). Say, spt(ϕ(` )) = { x`1, . . . , x
`
n(` )}. Without loss of generality we assume X , spt(ϕ(` ))

and pick x`0 ∈ X\spt(ϕ(` )). Define ν ∈ FS(N,R )L by ν(` )(n) = ϕ(` )(x`n) for n = 1 . . .n(` ) and ν(` )(n) = 0
otherwise. Define σ : N→ X by σ(n) = x`n for 1 6 n 6 n(` ) and σ(n) = x`0 otherwise. Then we have

ηX 〈 ν,σ 〉(` )(x`i ) =
∑

m∈σ−1(x`i ) ν(` )(m) = ν(` )(i) = ϕ(` )(x`i )
ηX 〈 ν,σ 〉(` )(x) =

∑
m∈σ−1(x) ν(` )(m) =

∑
n∈N\{1,...,n(` ) } ν(` )(n) = 0

for i = 1 . . .n(` ) and x < spt(ν(`)). Thus ηX 〈 ν,σ 〉(` )(x) = ϕ(` )(x) for all ` ∈ L and x ∈ X, ηX 〈 ν,σ 〉 = ϕ

and ηX : idFS(N,R )L ×XN→VL
R

(X) is surjective. �

Additional proofs for Section 5

Definition.[17, Definition 3.3.1] We put

ra(nil) = 0 ra(P + Q) = ra(P) + ra(Q)
ra((a,λ).P) = λ ra(P ‖A Q) = ra(P) + ra(Q) if a < A
ra((b,λ).P) = 0 for b , a ra(P ‖A Q) = min{ra(P), ra(Q) } if a ∈ A
ra(X) = ra(P) if X := P

Lemma 6. Let P ∈ PPEPA and a ∈ A. Suppose P
δa
�p P. Then ⊕P = ra(P).

Proof. Guarded recursion. We treat the two cases for the parallel construct.

Case P = P1 ‖A P2, a < A. Suppose P1
δa
�p P1, P2

δa
�p P2. Then P = (P1 ‖AXP2 ) + (XP1 ‖AP2 ).

Therefore we have

⊕P = ⊕(P1 ‖AXP2 ) + (XP1 ‖AP2 )
= ⊕(P1 ‖AXP2 ) + ⊕(XP1 ‖AP2 ) (by Lemma 1)
= (⊕P1 · ⊕XP2 ) + (⊕XP1 · ⊕P2 ) (by Lemma 1)
= ⊕P1 + ⊕P2 (since ⊕XP1 ,⊕XP2 = 1)
= ra(P1) + ra(P2) (by the induction hypothesis)
= ra(P1 ‖A P2) (by definition ra)

Case P = P1 ‖A P2, a ∈ A. Suppose P1
δa
�p P1, P2

δa
�p P2. Then P = arf(P1,P2 ) · (P1 ‖AP2 ). If

⊕P1,⊕P2 > 0 we have

⊕P = ⊕(arf(P1,P2 ) · (P1 ‖AP2 )
= arf(P1,P2 ) · ⊕P1 · ⊕P2 (by Lemma 1)

=
min {⊕P1, ⊕P2 }

⊕P1 · ⊕P2)
· ⊕P1 · ⊕P2 (by definition of arf)

= min {⊕P1, ⊕P2 }

= min {ra(P1), ra(P2) } (by the induction hypothesis)
= ra(P1 ‖A P2) (by definition ra)
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If ⊕P1,⊕P2 = 0, then arf(P1,P2) = 0, by definition, and ra(P1),ra(P2) = 0, by induction hypothesis.
Therefore we have ⊕P = arf(P1,P2) · ⊕P1 · ⊕P2 = 0 as well as ra(P1 ‖A P2) = min {ra(P1), ra(P2) } = 0.
So, also now, ⊕P = ra(P1 ‖A P2). The other cases are straightforward, in the case of P1 + P2 also relying
on Lemma 1. �

Corollary. If P
δa
� P and Q

δa
� Q, then arf(P,Q) = arf(P,Q).

Proof. Direct from the definitions. �

Lemma 8. Let P ∈ PPEPA and a ∈ A. Suppose P
δa
� P. Then it holds that P(P′) =

∑
{| λ | P

a,λ
→ P′ |} for

all P′ ∈ PPEPA.

Proof. Guarded induction on P. We only treat the cases for the parallel composition. Note, the op-
eration ‖A : PPEPA × PPEPA → PPEPA with ‖A(P1, P2 ) = P1 ‖A P2 is injective. Recall, for P1,P2 ∈

FS(PPEPA,R>0 ), we have (P1 ‖AP2)(P1 ‖A P2) = P1(P1) ·P2(P2).

Suppose a <A. Assume P1
a
� P1, P2

a
� P2, P1 ‖A P2

a
� P. We distinguish three cases. Case (I),

P′ = P′1 ‖A P2, P′1 , P1. Then we have

∑
{| λ | P1 ‖A P2

a,λ
→ P′ |}

=
∑
{| λ | P1

a,λ
→ P′1 |} (by rule (PAR1a))

= P1(P′1) (by the induction hypothesis)
= P1(P′1) ·XP2(P2) (as XP2(P2) = 1)
= (P1 ‖AXP2)(P′1 ‖A P2) + (XP1 ‖AP2)(P′1 ‖A P2)

(definition ‖A on FS(PPEPA,R>0 ), XP1(P′1) = 0)
= P(P′) (by rule (PAR1)

Case (II), P′ = P1 ‖A P′2, P′2 , P2: similar. Case (III), P′ = P1 ‖A P2. Then we have

∑
{| λ | P1 ‖A P2

a,λ
→ P′ |}

=
(∑
{| λ | P1

a,λ
→ P1 |}

)
+

(∑
{| λ | P2

a,λ
→ P2 |}

)
(by rules (PAR1a) and (PAR1b))

= P1(P1) +P2(P2) (by the induction hypothesis)
= (P1 ‖AXP2)(P1 ‖A P2) + (XP1 ‖AP2)(P1 ‖A P2)

(definition ‖A on FS(PPEPA,R>0 ), XP1(P1), XP2(P2) = 1)
= P(P′) (again by rule (PAR1)

Suppose a ∈ A. Assume P1
a
�P1, P2

a
�P2, P1 ‖A P2

a
�P. Without loss of generality, P′ = P′1 ‖A P′2

for suitable P′1,P
′
2 ∈ PPEPA.
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∑
{| λ | P1 ‖A P2

a,λ
→ P′ |}

=
∑
{| arf(P1,P2) ·λ1 ·λ2 | P1

a,λ1
→ P′1, P2

a,λ2
→ P′2 |} (by rule (PAR2))

= arf(P1,P2) ·
(∑
{| λ1 | P1

a,λ1
→ P′1 |}

)
·
(∑
{| λ2 | P2

a,λ2
→ P′2 |}

)
(by distributivity)

= arf(P1,P2) ·P1(P′1) ·P2(P′2) (by the induction hypothesis)
= arf(P1,P2) ·P1(P′1) ·P2(P′2) (by the corollary above)
= arf(P1,P2) · (P1 ‖AP2)(P′1 ‖A P′2) (definition ‖A on FS(PPEPA,R>0 ))
= P(P′) (by rule (PAR2)

The other cases are simpler and omitted here. �

Additional proofs for Section 6

Lemma 11.

(a) Let P ∈ PIML and a ∈ A. If P
a
�1 P then P

a
→ P′ ⇐⇒ P(P′) = true.

(b) Let P ∈ PIML . If P
δ
�2 P then

∑
{| λ | P

λ
d P′ |} = P(P′). �

Proof. (a) Guarded induction. Let a ∈ A. We treat the typical cases λ.P and P1 ‖A P2 for a < A.
Case λ.P. Suppose λ.P

a
� P. Then we have P = []B. Thus, both λ.P

a
→ P′ for no P′ ∈ PIML , as no

transition is provided in→, and P(P′) = false by definition of []B, for all P′ ∈ PIML .
Case P1 ‖A P2, a < A. Suppose P1

a
� P1, P2

a
� P2 and P1 ‖A P2

a
� P. Then it holds that P =

(P1 ‖AXP2) + (XP1 ‖AP2). Recall, for Q ∈ PIML and XQ ∈ FS(PIML ,B ), XQ(Q′) = true iff Q′ = Q,
for Q′ ∈ PIML . We have

P1 ‖A P2
a
→ P′

⇔ ( P1
a
→ P′1∧P′ = P′1 ‖A P2 ) ∨ ( P2

a
→ P′2∧P′ = P1 ‖A P′2 )

(by analysis of→)
⇔ (P1(P′1) = true∧P′ = P′1 ‖A P2 ) ∨ (P2(P′2) = true∧P′ = P1 ‖A P′2 )

(by the induction hypothesis)
⇔ (P1(P′1) ·XP2(P2) = true∧P′ = P′1 ‖A P2 ) ∨ (XP1(P1) ·P2(P′2) = true∧P′ = P1 ‖A P′2 )

(by definition of XP1 and XP2)
⇔ ( (P1 ‖AXP2)(P′1 ‖A P2) = true∧P′ = P′1 ‖A P2 )

∨ ( (XP1 ‖AP2)(P1 ‖A P′2) = true∧P′ = P1 ‖A P′2 )
(by definition of ‖A)

⇔ (P1 ‖AXP2)(P′) = true ∨ (XP1 ‖AP2)(P′) = true

(by definition of ‖A, XP1 and XP2)
⇔ ( (P1 ‖AXP2) + (XP1 ‖AP2) )(P′) = true

(by definition of + on FS(PIML ,B ))
⇔ P(P′) = true
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The other cases are standard or similar and easier.
(b) Guarded induction. We treat the cases for µ.P and P1 ‖A P2. Case µ.P. Assume P

δ
�2 P.

Suppose P = µ.P′. Then it holds that P admits a single d -transition, viz. P
µ
d P′. Thus we have∑

{| λ | P
λ
d P′ |} = µ = [ P′ 7→ µ ](P′) = P(P′). Suppose P = µ.P′′ for some P′′ , P. Then we have∑

{| λ | P
λ
d P′ |} = 0 = [ P′′ 7→ µ ](P′) = P(P′).

Case P1 ‖A P2. Assume P1
δ
�2 P1, P2

δ
�2 P2 and P1 ‖A P2

δ
� P. It holds that P = (P1 ‖AXP2) +

(XP1 ‖AP2). We calculate

∑
{| λ | P1 ‖A P2

λ
d P′ |}

=
∑
{| λ | P1

λ
d P′1, P′ = P′1 ‖A P2 |} +

∑
{| λ | P2

λ
d P′2, P′ = P1 ‖A P′2 |}

(by analysis ofd)

= (if P′ = P′1 ‖A P2 then
∑
{| λ | P1

λ
d P′1 |} else 0 end ) +

(if P′ = P1 ‖A P′2 then
∑
{| λ | P2

λ
d P′2 |} else 0 end )

= (if P′ = P′1 ‖A P2 then P1(P′1) else 0 end ) +

(if P′ = P1 ‖A P′2 then P2(P′2) else 0 end )
(by induction hypothesis for P1 and P2)

= (P1 ‖AXP2 )(P′) + (XP1 ‖AP2 )(P′)
(by definition of ‖A, XP1 ,XP2 and + on FS(PIML ,R>0 ))

= P(P′)

The remaining cases are left to the reader. �
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