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Abstract

Bisimulation up-to enhances the coinductive proof method for
bisimilarity, providing efficient proof techniques for checking prop-
erties of different kinds of systems. We prove the soundness of such
techniques in a fibrational setting, building on the seminal work of
Hermida and Jacobs. This allows us to systematically obtain up-to
techniques not only for bisimilarity but for a large class of coinduc-
tive predicates modelled as coalgebras. By tuning the parameters
of our framework, we obtain novel techniques for unary predicates
and nominal automata, a variant of the GSOS rule format for simi-
larity, and a new categorical treatment of weak bisimilarity.

Categories and Subject Descriptors F.3 [Logics and meanings of
programs]; F.4 [Mathematical logic and formal languages]

General Terms Theory.

Keywords fibrations, coinductive predicates, bisimulation up-to,
GSOS, up-to techniques, similarity, bialgebras, nominal automata.

1. Introduction

1.1 Coinduction up-to

The rationale behind coinductive up-to techniques is the following.
Suppose you have a characterisation of an object of interest as a
greatest fixed-point. For instance, behavioural equivalence in CCS
is the greatest fixed-point of a monotone function B on relations,
describing the standard bisimulation game. This means that to
prove two processes equivalent, it suffices to exhibit a relation R
that relates them, and which is a B-invariant, i.e., R ⊆ B(R).
Such a task can however be painful or inefficient, and one could
prefer to exhibit a relation which is only a B-invariant up to some
function A, i.e., R ⊆ B(A(R)).

Not every function A can safely be used: A should be sound for
B, meaning that any B-invariant up to A should be contained in a
B-invariant. Instances of sound functions for behavioural equiva-
lence in process calculi usually include transitive closure, context
closure and congruence closure. The use of such techniques dates
back to Milner’s work on CCS [21]; a famous example of an un-
sound technique is that of weak bisimulation up to weak bisimi-
larity. Since then, coinduction up-to proved useful, if not essential,
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in numerous proofs about concurrent systems (see [25] for a list of
references); it has been used to obtain decidability results [8], and
more recently to improve standard automata algorithms [7].

The theory underlying these techniques was first developed by
Sangiorgi [27]. It was then reworked and generalised by one of the
authors to the abstract setting of complete lattices [24, 25]. The key
observation there is that the notion of soundness is not composi-
tional: the composition of two sound functions is not necessarily
sound itself. The main solution to this problem consists in restrict-
ing to compatible functions, a subset of the sound functions which
enjoys nice compositionality properties and contains most of the
useful techniques.

An illustrative example of the benefits of a modular theory
is the following: given a signature Σ, consider the congruence
closure function, that is, the function Cgr mapping a relation R
to the smallest congruence containing R. This function has proved
to be useful as an up-to technique for language equivalence of
non-deterministic automata [7]. It can be decomposed into small
pieces as follows: Cgr = Trn ◦ Sym ◦ Ctx ◦ Rfl , where Trn
is the transitive closure, Sym is the symmetric closure, Rfl is
the reflexive closure, and Ctx is the context closure associated
to Σ. Since compatibility is preserved by composition (among
other operations), the compatibility of Cgr follows from that of its
smaller components. In turn, transitive closure can be decomposed
in terms of relational composition, and context closure can be
decomposed in terms of the smaller functions that close a relation
with respect to Σ one symbol at a time. Compatibility of such
functions can thus be obtained in a modular way.

A key observation in the present work is that when we move
to a coalgebraic presentation of the theory, compatible functions
generalise to functors equipped with a distributive law (Section 3).

1.2 Fibrations and coinductive predicates

Coalgebras are a tool of choice for describing state based systems:
given a functor F determining its type (e.g., labelled transition sys-
tems, automata, streams), a system is just an F -coalgebra (X, ξ).
When F has a final coalgebra (Ω, ω), this gives a canonical notion
of behavioural equivalence [17]:

X

ξ

��

J·K
// Ω

ω

��

FX
F J·K

// FΩ

two states x, y ∈ X are equivalent if they are mapped to the same
element in the final coalgebra.

When the functor F preserves weak pullbacks—which we
shall assume throughout this introductory section for the sake of
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simplicity—behavioural equivalence can be characterised coin-
ductively using Hermida-Jacobs bisimulations [14, 30]: given an
F -coalgebra (X, ξ), behavioural equivalence is the largest B-
invariant for a monotone function B on RelX , the poset of binary
relations over X . This function B can be decomposed as

B , ξ
∗ ◦ Rel(F )X : RelX → RelX

Let us explain the notations used here. We consider the category Rel
whose objects are relations R⊆X2 and morphisms from R⊆X2

to S⊆Y 2 are maps from X to Y sending pairs in R to pairs in
S. For each set X the poset RelX of binary relations over X is
a subcategory of Rel, also called the fibre over X . The functor
F has a canonical lifting to Rel, denoted by Rel(F ). This lifting
restricts to a functor Rel(F )X : RelX → RelFX , which in this
case is just a monotone function between posets. The monotone
function ξ∗ : RelFX → RelX is the inverse image of the coalgebra
ξ mapping a relation R ⊆ (FX)2 to (ξ × ξ)−1(R).

To express other predicates than behavioural equivalence, one
can take arbitrary liftings of F to Rel, different from the canonical

one. Any lifting F yields a functor B defined as

B , ξ
∗ ◦ FX : RelX → RelX (†)

The final coalgebra, or greatest fixed-point for such a B is called

a coinductive predicate [13, 14]. By taking appropriate F , one can
obtain, for instance, various behavioural preorders: similarity on
labelled transition systems (LTSs), language inclusion on automata,
or lexicographic ordering of streams.

This situation can be further generalised using fibrations. We
refer the reader to the first chapter of [16] for a gentle introduction,
or to Section 2 for succinct definitions. The functor p : Rel → Set
mapping a relation R ⊆ X2 to its support set X is a fibration,
where the inverse image ξ∗ is just the reindexing functor of ξ. By
choosing a different fibration than Rel, one can obtain coinductive
characterisations of objects that are not necessarily binary relations,
e.g., unary predicates like divergence, ternary relations, or metrics.

Our categorical generalisation of compatible functions provides
a natural extension of this fibrational framework with a systematic
treatment of up-to techniques: we provide functors (i.e., monotone
functions in the special case of the Rel fibration) that are compatible
with those functors B corresponding to coinductive predicates.

For instance, when the chosen lifting F is a fibration map, the
functor corresponding to a technique called “up to behavioural
equivalence” is compatible (Theorem 1). The canonical lifting of
a functor is always such a fibration map, so that when F is the
functor for LTSs, we recover the soundness of the very first up-to
technique from the literature, namely “bisimulation up to bisimi-
larity” [21]. One can also check that another lifting of this same
functor but in another fibration yields the divergence predicate, and
is a fibration map. We thus obtain the validity of the “divergence up
to bisimilarity” technique.

1.3 Bialgebras and up to context

Another important class of techniques comes into play when con-
sidering systems with an algebraic structure on the state space (e.g.,
the syntax of a process calculus). A minimal requirement for such
systems usually is that behavioural equivalence should be a congru-
ence. In the special case of bisimilarity on LTSs, several rule for-
mats have been proposed to ensure such a congruence property [1].
At the categorical level, the main concept to study such systems
is that of bialgebras. Assume two endofunctors T, F related by a
distributive law λ : TF ⇒ FT . A λ-bialgebra consists in a triple
(X,α, ξ) where (X,α) is a T -algebra, (X, ξ) is an F -coalgebra,
and a diagram involving λ commutes. It is well known that in such
a bialgebra, behavioural equivalence is a congruence with respect
to T [31]. This is actually a generalisation of the fact that bisimi-

larity is a congruence for all GSOS specifications [3]: GSOS spec-
ifications are in one-to-one correspondence with distributive laws
between the appropriate functors [2, 31].

This congruence result can be strengthened into a compatibility
result [26]: in any λ-bialgebra, the contextual closure function
that corresponds to T is compatible for behavioural equivalence.
By moving to fibrations, we generalise this result so that we can
obtain up to context techniques for arbitrary coinductive predicates:
unary predicates like divergence, by using another fibration than
Rel; but also other relations than behavioural equivalence, like the
behavioural preorders mentioned above, or weak bisimilarity.

The technical device we need to establish this result is that
of bifibrations, fibrations p whose opposite functor pop is also a
fibration. We keep the running example of the Rel fibration for
the sake of clarity; the results are presented in full generality in
the remaining parts of the paper. In such a setting, any morphism
f : X → Y in Set has a direct image

∐
f : RelX → RelY . Now

given an algebra α : TX → X for a functor T on Set, any lifting

T of T gives rise to a functor on the fibre above X , defined dually
to (†):

C ,
∐

α ◦ TX : RelX → RelX (‡)

When we take for T the canonical lifting of T in Rel, then C is
the contextual closure function corresponding to the functor T .
We shall see that we sometimes need to consider variations of the
canonical lifting to obtain a compatible up-to technique (e.g., up to
“monotone” contexts for checking language inclusion of weighted
automata—Section 5.1).

Now, starting from a λ-bialgebra (X,α, ξ), and given two lift-

ings T and F of T and F , respectively, the question is whether the
above functor C is compatible with the functor B defined earlier
in (†). The simple condition we give in this paper is the following:
the distributive law λ : TF ⇒ FT should lift to a distributive law
λ : T F ⇒ F T (Theorem 2).

This condition is always satisfied in the bifibration Rel, when

T and F are the canonical liftings of T and F . Thus we obtain
as a corollary the compatibility of bisimulation of up to context in
λ-bialgebras, which is the main result from [26]—soundness was
previously observed by Lenisa et al. [19, 20] and then Bartels [2].

The present work allows us to go further in several directions,
as illustrated below.

1.4 Contributions and Applications

The main contribution of this paper is the abstract framework
developed in Section 4; it allows us to derive the soundness of a
wide range of both novel and well-established up-to techniques for
arbitrary coinductive predicates. Sections 5 and 6 are devoted to
several such applications, which we describe now.

When working in the predicate fibration on Set, one can char-
acterise some formulas from modal logic as coinductive predicates
(see [9] for an account of coalgebraic modal logic). Our frame-
work allows us to introduce up-to techniques in this setting: we
consider the formula νx.〈τ 〉x in Section 5.2, and we provide a
technique called “divergence up to left contexts and behavioural
equivalence”. We use it to prove divergence of a simple process us-
ing a finite invariant, while the standard method requires an infinite
one.

One can also change the base category: by considering the fibra-
tion of equivariant relations over nominal sets, we show how to ob-
tain up-to techniques for language equivalence of non-deterministic
nominal automata [4]. In Section 5.3, these techniques allow us to
prove the equivalence of two nominal automata using an orbit-finite
relation, where the standard method would require an infinite one
(recall that the determinisation of a nominal automaton is not nec-
essarily orbit-finite).
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Another benefit of the presented theory is modularity w.r.t.
the liftings chosen to define coinductive predicates: two liftings
can be composed, and we give sufficient conditions for deriving
compatible functors for the composite lifting out of compatible
functors for its sub-components (Section 6). We give two examples
of such a situation: similarity, and weak bisimilarity on LTSs.

By using Hughes and Jacobs’ definition of similarity [15], we
obtain that for “up to context” to be compatible it suffices to start
from a monotone distributive law (Section 6.1). In the special case
of LTSs, this monotonicity condition amounts to the positive GSOS
rule format [12]: GSOS [3] without negative premises.

In Section 6.2 we propose a novel characterisation of weak
bisimilarity on LTSs, that fits into our framework. This allows us
to give a generic condition for “up to context” to be compatible
(and hence weak bisimilarity to be a congruence). In particular,
this condition rules out the sum operation from CCS, which is well
known not to preserve weak bisimilarity.

2. Preliminaries

We refer the reader to [16] for background on fibrations and recall
here basic definitions.

Definition 1. A functor p : E → B is called a fibration when for
every morphism f : X → Y in B and every R in E with p(R) = Y

there exists a map f̃R : f∗(R)→ R such that p(f̃R) = f satisfying
the universal property: For all maps g : Z → X in B and
u : Q → R in E sitting above fg (i.e., p(u) = fg) there is a

unique map v : Q→ f∗(R) such that u = f̃Rv and p(v) = g.

Q

∃!v %%

∀u

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

f∗(R)
f̃R

// R

Z

g
&&▲

▲▲
▲▲

▲▲
▲

fg

**❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

X
f

// Y

For X in B we denote by EX the fibre above X , i.e., the
subcategory of E with objects mapped by p to X and arrows sitting
above the identity on X .

A map f̃ as above is called a Cartesian lifting of f and is unique
up to isomorphism. If we make a choice of Cartesian liftings, the
association R 7→ f∗(R) gives rise to the so-called reindexing
functor f∗ : EY → EX .

The fibrations considered in this paper are bicartesian (both E
and B have a bicartesian structure strictly preserved by p) and split,
i.e., the reindexing functors behave well with respect to composi-
tion and identities: (1X)∗ = 1EX and (f ◦ g)∗ = g∗ ◦ f∗.

A functor p : E → B is called a bifibration if both p : E → B
and pop : Eop → Bop are fibrations. A fibration p : E → B is a
bifibration if and only if each reindexing functor f∗ : EY → EX
has a left adjoint

∐
f ⊣ f

∗, see [16, Lemma 9.1.2].

Example 1. Let Pred be the category of predicates: objects are
pairs of sets (P,X) with P ⊆ X and morphisms f : (P,X) →
(Q,Y ) are arrows f : X → Y that can be restricted to f

∣∣
P
: P →

Q.
Similarly, we can consider the category Rel whose objects are

pairs of sets (R,X) with R ⊆ X2 and morphisms f : (R,X) →
(S, Y ) are arrows f : X → Y such that f × f can be restricted to

f × f
∣∣
R
: R→ S.

The functors mapping predicates, respectively, relations to their
underlying sets are bifibrations. The fibres PredX and RelX sitting

aboveX are the posets of subsets ofX , respectively relations onX ,
ordered by inclusion. The reindexing functors are given by inverse
image and their left adjoints by direct image.

Given fibrations p : E → B and p′ : E ′ → B and F : B → B,

we call F : E → E ′ a lifting of F when p′F = Fp. Notice that a

lifting F restricts to a functor between the fibres FX : EX → EFX .
When the subscript X is clear from the context we will omit it.

A fibration map between p : E → B and p′ : E ′ → B is a pair

(F, F ) such that F is a lifting of F that preserves the Cartesian

liftings: (Ff)∗F = Ff∗ for any B-morphism f . We denote by
Fib(B) the category of fibrations with base B.

Example 2. A Set-endofunctor T has a canonical relation lifting
Rel(T ) : Rel → Rel. Represent R ∈ RelX as a jointly mono span
X ← R → X and apply T . Then Rel(T )(R) is obtained by
factorising the induced map TR→ TX×TX . When T preserves
weak pullbacks, (Rel(T ), T ) is a fibration map (see e.g. [15]).

3. Compatible Functors

Given two monotone functions A,B : C → C on a complete lattice
C, A is said to be B-compatible if AB ⊆ BA. In [25, Theorem
6.3.9], it is shown that any B-compatible function A is sound, that
is, it can be used as an up-to technique: every B-invariant up to A
is included in a B-invariant.

This result is an instance of a more general fact which holds
in any category C with countable coproducts and for any pair of
endofunctors A,B equipped with a distributive law γ : AB ⇒
BA. Indeed, following the proof of [2, Theorem 3.8], for any
BA-coalgebra ξ (that is a B-invariant up to A) one can find a
B-coalgebra ζ (that is a B-invariant) making the next diagram
commutative.

X

ξ

��

κ0 // AωX

ζ

��

BAX
Bκ1

// BAωX

(Here Aω denotes the coproduct
∐

i≤ω A
i of all finite iterations of

A and κ0, κ1 are the injections of X and AX respectively, into
AωX . Alternatively, we can replace the countable coproduct Aω

by the free monad on A, assuming the latter exists. In this case, the
result is an instance of the generalized powerset construction [28].)

Similarly, that compatible functions preserve bisimilarity [25,
Lemma 6.4.3] is an instance of the well-known fact [31] that a final
B-coalgebra νB lifts to a final γ-bialgebra for γ : AB ⇒ BA.
When C is a lattice, this entails that A(νB) ⊆ νB. For instance,
if B is a predicate for bisimilarity and A is the congruence closure
function, we obtain that bisimilarity is a congruence whenever the
congruence closure function is compatible.

As discussed in the Introduction, the main interest in compatible
functions comes from their nice compositionality properties. This
leads us to define compatibility of arbitrary functors of type C → C′

rather than just endofunctors.

Definition 2. Consider two endofunctors B : C → C and B′ :
C′ → C′. We say that a functor A : C → C′ is (B,B′)-compatible
when there exists a natural transformation γ : AB ⇒ B′A.

Notice that the pair (A, γ) is a morphism between endofunctors
B and B′ in the sense of [20]. Since the examples dealt with in
this paper involve only poset fibrations, we will omit the natural
transformation γ from the notation. Moreover, given an endofunc-
tor B : C → C, we will simply write that A : Cn → Cm is
B-compatible, when A is (Bn, Bm)-compatible.

This definition makes it possible to use the internal notions of
product and pairing to emphasise the compositionality aspect. For
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instance, coproduct becomes a compatible functor by itself, rather
than a way to compose compatible functors.

Proposition 1. Compatible functors are closed under the following
constructions:

(i) composition: if A is (B,C)-compatible and A′ is (C,D)-
compatible, then A′ ◦A is (B,D)-compatible;

(ii) pairing: if (Ai)i∈ι are (B,C)-compatible, then 〈Ai〉i∈ι is
(B,Cι)-compatible;

(iii) product: if A is (B,C)-compatible and A′ is (B′, C′)-
compatible, then A× A′ is (B×B′, C×C′)-compatible;

Moreover, for an endofunctor B : C → C,

(iv) the identity functor Id : C → C is B-compatible;

(v) the constant functor to the carrier of any B-coalgebra is B-
compatible, in particular the final one if it exists;

(vi) the coproduct functor
∐

: Cι → C is (Bι, B)-compatible.

4. Up-to Techniques in a Fibration

Throughout this section we fix a bifibration p : E → B, an end-

ofunctor F : B → B, a lifting F : E → E of F and a coalgebra
ξ : X → FX . Intuitively, the studied system lives in the base cate-
gory B while its properties live in EX , the fibre above X . We thus
instantiate the category C from the previous section with EX .

As explained in the Introduction (†), we discuss proof tech-
niques for the properties modelled as final coalgebras of the func-

tor ξ∗ ◦ FX : EX → EX , that we refer hereafter as F ξ. In Rel,

when F is the canonical lifting, Rel(F )ξ-coalgebras are exactly
the Hermida-Jacobs bisimulations [14].

To obtain sound techniques for F ξ, it suffices to find F ξ-
compatible endofunctors on EX . We provide such functors by giv-

ing conditions on the liftingF , abstracting away from the coalgebra
ξ at hand.

4.1 Compatibility of Behavioural Equivalence Closure

The most basic technique is up to behavioural equivalence, a prime
example of which is Milner’s up to bisimilarity [21], where a
relation R is mapped into∼R∼. If f is the unique morphism from
ξ to a finalF -coalgebra (assumed to exist), behavioural equivalence
is the kernel of f . This leads us to consider the functor

Bhv = f
∗ ◦
∐

f : EX → EX .

For the fibrations Pred → Set and Rel → Set the functor Bhv
maps a predicate, respectively a relation, to its closure under be-
havioural equivalence. The compatibility of Bhv is an instance of:

Theorem 1. Suppose that (F , F ) is a fibration map. For any F -
coalgebra morphism f : (X, ξ) → (Y, ζ), the functor f∗ ◦

∐
f is

F ξ-compatible.

Proof sketch. We exhibit a natural transformation

f
∗ ◦
∐

f ◦ (ξ
∗ ◦ F )⇒ (ξ∗ ◦ F ) ◦ f∗ ◦

∐
f

obtained by pasting the 2-cells (a), (b), (c), (d) in the following
diagram:

EX
F // EFX

ξ∗
//

∐
Ff

&&▼
▼▼

▼▼
▼

⇓(b)

EX

∐
f

//

⇓(d)

EY
f∗

//
88

ζ∗qq
qq
qq
q

⇓(c)

EX

EFY
(Ff)∗

&&▼
▼▼

▼▼
▼

⇓(a)

EX

∐
f

// EY
f∗

//

F
88qqqqqqq
EX

F // EFX

ξ∗
// EX

(a) Since (F, F ) is a fibration map we have that

Ff
∗ = (Ff)∗F

(b) is a consequence of Lemma 3 in Appendix B.

(c) is a natural isomorphism and comes from the fact that f is a
coalgebra map and the fibration is split.

(d) is obtained from (c) using the counit of
∐

f ⊣ f
∗ and the unit

of
∐

Ff ⊣ (Ff)∗.

(Note that this proof decomposes into a proof that
∐

f is (F ξ, F ζ)-

compatible, by pasting (b) and (d), and a proof that f∗ is (F ζ , F ξ)-
compatible, by pasting (a) and (c). These two independent results
can be composed by Proposition 1(i) to obtain the theorem.)

Corollary 1. If F is a Set-functor preserving weak pullbacks
then the behavioural equivalence closure functor Bhv is Rel(F )ξ-
compatible.

Proof. (Rel(F ), F ) is a fibration map whenever F preserves weak
pullbacks (see e.g. [15]).

From Theorem 1 we also derive the soundness of up-to Bhv for
unary predicates: the monotone predicate liftings used in coalge-
braic modal logic [9] are fibration maps [17], thus the hypothesis
of Theorem 1 are satisfied.

4.2 Compatibility of Equivalence Closure

In this section we show that compatibility of equivalence closure
can be modularly derived from compatibility of reflexive, symmet-
ric and transitive closures. For the latter it suffices to prove that
relational composition is compatible. Composition of relations can
be expressed in a fibrational setting, by considering the category
Rel ×Set Rel obtained as a pullback of the fibration Rel → Set
along itself:

Rel×Set Rel

��

❴
✤

// Rel

��

Rel // Set

Then relational composition is a functor ⊗ : Rel ×Set Rel → Rel
mapping R,S ⊆ X ×X to their composition. As we will see as a
corollary of Proposition 2, when proving compatibility of relational

composition with respect to F ξ we can abstract away from the
coalgebra ξ and simply use that ⊗ is a morphism of endofunctors

from F
2

to F .
Compatibility of symmetric and reflexive closures can be

proved following the same principle. This leads us to consider
for an arbitrary fibration E → B its n-fold product in the category
Fib(B), denoted by E×Bn → B. The objects in E×Bn are tuples of
objects in E belonging to the same fibre. This product is computed

fibrewise, that is, E×Bn
X =EnX . For n=0 we have E0=B.

Hereafter, we are interested in functors G : E×Bn → E that
are liftings of the identity functor on B: for each X in B we have
functors GX : EnX → EX . Then relational composition is just an
instance of G for n=2.

Proposition 2. Let G : E×Bn → E be a lifting of the identity,

with a natural transformation GF
n
⇒ FG. Then GX is F ξ-

compatible.

We list now several applications of the proposition for the fibra-
tion Rel→ Set.

(n=0) Let Rfl : Set→ Rel be the functor mapping each set X to ∆X ,

the identity relation on X . RflX is F ξ-compatible if

∆FX ⊆ F∆X . (∗)
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(n=1) Let Sym : Rel → Rel be the functor mapping each relation

R ⊆ X2 to its converse R−1 ⊆ X2. SymX is F ξ-compatible

if for all relations R ⊆ X2

F (R)−1 ⊆ F (R−1). (∗∗)

(n=2) Let ⊗ : Rel ×Set Rel → Rel be the relational composition

functor. Then ⊗X is F ξ-compatible if for all R,S ⊆ X2

FR⊗ FS ⊆ F (R ⊗ S) (∗∗∗)

If moreover T1, T2 : RelX → RelX are two F ξ-compatible
functors, their pointwise composition T1⊗T2 = ⊗X ◦〈T1, T2〉
is F ξ-compatible by Proposition 1 (i,ii).

The transitive closure functor Trn is obtained from⊗ in a modular
way:

Trn =
∐

i≥0

(−)i : EX → EX

where (−)0 = Id and (−)i+1 = Id ⊗ (−)i. Using Proposition 1
we get

Corollary 2. If F is a Set-functor then the reflexive and sym-
metric closure functors RflX and SymX are Rel(F )ξ-compatible.
Moreover, ifF preserves weak pullbacks, then the transitive closure
functor TrnX is Rel(F )ξ-compatible.

Proof. The above conditions (∗) and (∗∗) always hold for the

canonical lifting F = Rel(F ); (∗∗∗) holds for Rel(F ) when F
preserves weak pullbacks.

By compositionality (Proposition 1), one can then deduce com-
patibility of the equivalence closure functor: this functor can be de-

fined as Eqv , Trn ◦ (Id + Sym +Rfl), where + denotes binary
coproduct.

WhenF ξ has a final coalgebra S, one can define a “self closure”

EX-endofunctor Slf = S̃ ⊗ Id ⊗ S̃, where S̃ : EX → EX is
the constant to S functor. Thanks to Proposition 1, the functor Slf

is F ξ-compatible whenever (∗∗∗) holds. When F preserves weak

pullbacks and F is instantiated to the canonical lifting Rel(F ), Slf
coincides with Bhv since S is just behavioural equivalence in this
case. If instead we consider the lifting that yields weak bisimilarity
(to be defined in Section 6.2), Slf corresponds to a technique
called “weak bisimulation up to weak bisimilarity”, while Bhv
corresponds to “weak bisimulation up to (strong) bisimilarity”.

4.3 Compatibility of Contextual Closure

For defining contextual closure, we assume that the state space
of the coalgebra is equipped with an algebraic structure. More
precisely, we fix a bialgebra for a distributive law λ : TF ⇒ FT ,
that is, a triple (X,α, ξ), where α : TX → X is a an algebra and
ξ : X → FX is a coalgebra such that the next diagram commutes:

TX X FX

TFX FTX

Tξ

α ξ

λX

Fα

Theorem 2. Let T , F : E → E be liftings of T and F . If λ : T F ⇒
F T is a natural transformation sitting above λ, then

∐
α ◦T is

F ξ-compatible.

Proof sketch. We exhibit a natural transformation

(
∐

α ◦ T ) ◦ (ξ
∗ ◦ F )⇒ (ξ∗ ◦ F ) ◦ (

∐
α ◦ T ) .

This is achieved in Figure 1 by pasting five natural transformations,
obtained as follows:

(a) is the counit of the adjunction
∐

λX
⊣ λ∗

X .

(b) comes from λ being a lifting of λ.

(c) comes from the bialgebra condition, the fibration being split,
and the units and counits of the adjunctions

∐
α ⊣ α

∗,
∐

Fα ⊣
(Fα)∗, and

∐
λX
⊣ λ∗

X .

(d) arises since T is a lifting of T , using the universal property of
the Cartesian lifting (Tξ)∗.

(e) comes from F being a lifting of F , combined with the unit and
counit of the adjunction

∐
α ⊣ α

∗.

(Note that like for Theorem 1, this proof actually decomposes into

a proof that T is (F ξ, (Tξ)
∗ ◦ λ∗

X)-compatible, and a proof that∐
α is ((Tξ)∗ ◦ λ∗

X , F ξ)-compatible.)

When the fibration at issue is Rel→ Set and T is the canonical
lifting Rel(T ), one can easily check that

∐
α◦Rel(T ) applied to a

relation R gives exactly its contextual closure as described in [26].
For this reason, we abbreviate

∐
α◦Rel(T ) to Ctx . When more-

over F is the canonical lifting Rel(F ), we get:

Corollary 3 ([26, Theorem 4]). If F, T are Set-functors and
(X,α, ξ) is a bialgebra for λ : TF ⇒ FT . The contextual clo-
sure functor Ctx is Rel(F )ξ-compatible.

Proof. The canonical lifting Rel(−) is a 2-functor [17, Exercise

4.4.6]. Therefore λ = Rel(λ) fulfils the assumption of Theorem 2.

Our interest in Theorem 2 is not restricted to prove compatibil-
ity of up to Ctx . By taking non canonical liftings of T , one derives
novel and effective up-to techniques, such as the monotone contex-
tual closure and the left-contextual closure defined in Sections 5.1

and 5.2. In order to apply Theorem 2 for situations when either T

or F is not the canonical relation lifting, one has to exhibit a λ sit-

ting above λ. In Rel, such a λ exists if and only if for all relations

R ⊆ X2, the restriction of λX ×λX to T FR corestricts to F TR.
A similar condition has to be checked for Pred→ Set.

4.4 Abstract GSOS

For several applications, it is convenient to consider natural trans-
formations of a slightly different type λ : T (F × Id)⇒ FT, where
T is the free monad over T . These are called abstract GSOS specifi-
cations since, as shown in [31], they generalise GSOS rules to any
behaviour endofunctor F . Each such λ induces a distributive law
λ† : T(F × Id) ⇒ (F × Id)T of the monad T over the copointed
functor F × Id, whose bialgebras are the objects of our interest
(see Appendix B.3). In order to prove compatibility via Theorem

2, one should exhibit a λ† sitting above λ†. The following lemma
simplifies such a task.

Lemma 1. Let λ : T (F × Id)⇒ F T be a natural transformation

sitting above λ : T (F × Id)⇒ FT. Then there exists a λ† : T(F ×
Id)⇒ (F × Id)T sitting above λ† : T(F × Id)⇒ (F × Id)T.

For a bialgebra (X,α, 〈ξ, id〉), the existence of λ† ensures, via

Theorem 2, compatibility w.r.t. (F × Id)〈ξ,id〉 , which is not exactly

F ξ. However, this difference is harmless in poset fibrations: coal-
gebras for the two functors coincide, and for any pointed functor A

compatible with (F × Id)〈ξ,id〉, every F ξ-invariant up to A is also

an (F × Id)〈ξ,id〉-invariant up to A.
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EX EFX EX ETX EX

ETFX

EFTX EFTX

EX ETX EX EFX EX

⇓ (d)

F ξ∗

T

⇓ (b)

T
∐

α

⇓ (c)

(Tξ)∗
∐

λX

⇓ (a)
λ∗
X

⇓ (e)

∐
Fα

T
∐

α

F

F ξ∗

Figure 1. Compatibility of contextual closure in a fibration

5. Examples

5.1 Inclusion of weighted automata

To illustrate how to instantiate the above framework, we consider
weighted automata. We first give a short description of their coal-
gebraic treatment [6]. For a semiring S and a set X , we denote by

S
X
ω the set of functions f : X → S with finite support. These func-

tions can be thought of as linear combinations
∑

x∈X f(x) ·x, and

in fact S−
ω : Set→ Set is the monad sending each set X to the free

semi-module generated by X .
A weighted automaton over a semiring S with alphabet A is

a pair (X, 〈o, t〉), where X is a set of states, o : X → S is an
output function associating to each state its output weight and

t : X → (SX
ω )A is a weighted transition relation. Denoting by

F the functor S × (−)A, weighted automata are thus coalgebras

for the composite functor FS−
ω . By the generalised powerset con-

struction [28], they induce bialgebras for the functor F , the monad
S
−
ω , and the distributive law λ : S−

ωF ⇒ FS−
ω given for all sets

X by λX(
∑
ri(si, ϕi)) = 〈

∑
risi, λa.

∑
riϕi(a)〉. Indeed ev-

ery (X, 〈o, t〉) induces a bialgebra (SX
ω , µ, 〈o

♯, t♯〉) where µ is the

multiplication of S−
ω and 〈o♯, t♯〉 : SX

ω → S × (SX
ω )A is the linear

extension of 〈o, t〉, defined as (Fµ) ◦ λ ◦ (S
〈o,t〉
ω ).

For a concrete example we take the semiring R
+ of positive

real numbers. A weighted automaton is depicted on the left below:

arrows x
a,r
→ y mean that t(x)(a)(y) = r and arrows x

r
⇒ mean

that o(x) = r.

x
0
��

a,1
''
y
1
��

a,1

��

a,1

gg

x
0
KS

a // y
1
KS

a // x+y
1
KS

a // · · ·

y
0
��

a
// x+y
1
��

a
// x+2y

2
��

a
// · · ·

(1)

On the right is depicted (part of) the corresponding bialgebra: states

are elements of (R+)Xω (hereafter denoted by v, w), arrows v
a
→ w

mean that t♯(v)(a) = w and arrows v
r
⇒ mean that o♯(v) = r.

Whenever S carries a partial order≤, one can take the following

lifting F : Rel→ Rel of F defined for R ⊆ X2 by:

{((r, ϕ), (s, ψ)) | r ≤ s ∧ ∀a.ϕ(a) R ψ(a)} ⊆ (FX)2.

Then the functor F 〈o♯,t♯〉 = 〈o
♯, t♯〉∗◦F : RelX → RelX maps

a relation R ⊆ X2 into

{(x, y) | o♯(x) ≤ o
♯(y) ∧ ∀a.t♯(x)(a) R t

♯(y)(a)} .

The carrier of a final F 〈o♯,t♯〉-coalgebra is a relation, denoted

by -, which we call inclusion: when S is the Boolean semiring, it
coincides with language inclusion of non-deterministic automata.

For any two v, w ∈ S
X
ω , one can prove that v - w by

exhibiting a F 〈o♯,t♯〉-invariant relating them. These invariants are

usually infinite, since there are infinitely many reachable states in

a bialgebra SX
ω , even for finite X . This is the case when trying to

check x - y in (1): we should relate infinitely many reachable
states.

In order to obtain finite proofs, we exploit the algebraic structure
of bialgebras and employ an up to context technique. To this end,
we use the canonical lifting of the monad S

−
ω , defined for all

R ⊆ X2 as

Rel(S−
ω )(R) =

{(∑
rixi,

∑
riyi

)
| xi R yi

}

We prove that the endofunctor Ctx =
∐

µ ◦Rel(S
−
ω ) isF 〈o♯,t♯〉-

compatible by Theorem 2: it suffices to check that for any relation

R on X , the restriction of λX×λX to Rel(S−
ω )F (R) corestricts to

FRel(S−
ω )(R). This is the case when for all n1,m1, n2,m2 ∈ S

such that n1 ≤ m1 and n2 ≤ m2, we have (a) n1+n2 ≤ m1+m2

and (b) n1 · n2 ≤ m1 · m2. These two conditions are satisfied,
e.g., in the Boolean semiring or in R

+ and thus, in these cases,

we can prove inclusion of automata using F 〈o♯,t♯〉-invariants up

to Ctx . For example, in (1), the relation R = {(x, y), (y, x+y)}
is a F 〈o♯,t♯〉-invariant up to Ctx (to check this, just observe that

(x+y, x+2y) ∈ Ctx (R)). This finite relation thus proves x - y.

Unfortunately, condition (b) fails for the semiring R of (all)
real numbers. Nevertheless, our framework allows us to define
another up-to technique, which we call “up to monotone contextual
closure”. It is obtained by composing

∐
µ and a non-canonical

lifting of R−
ω :

R
−
ω (R) =

{(∑
rixi,

∑
riyi

)
|
ri ≥ 0⇒ xi R yi
ri < 0⇒ yi R xi

}

The restriction of λX × λX to R
−
ωF (R) corestricts to FR−

ω (R).
Therefore, by Theorem 2, the monotone contextual closure is

F 〈o♯,t♯〉-compatible.

5.2 Divergence of processes

Up-to techniques can be instrumental in proving unary predicates.
We take the fibration Pred → Set and we focus on the diver-
gence predicate νu.〈τ 〉u defined on LTSs. The latter are coalge-
bras ξ : X → F (X) for the Set-functor FX = Pω(L × X),
where L = {a, a, b, b . . . , τ} is a set of labels containing a spe-
cial symbol τ and Pω is the finite powerset functor. We lift F to

F
〈τ〉

: Pred→ Pred, defined for all sets X as

F
〈τ〉
X (P ⊆ X) = {S ∈ FX | ∃(τ, x) ∈ S, x ∈ P}.

The final F
〈τ〉
ξ -coalgebra consists precisely of all the states in

X satisfying νu.〈τ 〉u. Hence, to prove that a state p diverges, it

suffices to exhibit an F
〈τ〉
ξ -invariant containing p.
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When the LTS is specified by some process algebra, such invari-
ants might be infinite. Suppose for instance that we have a parallel
operator defined by the following GSOS rules and their symmetric
counterparts:

x
l
→ x′

x|y
l
→ x′|y

x
a
→ x′ y

a
→ y′

x|y
τ
→ x′|y′

.

Consider the processes p
a
→ p|p and q

a
→ q. To prove that p|q

diverges, any invariant should include all the states that are on the

infinite path p|q
τ
→ (p|p)|q

τ
→ . . . .

Instead, an intuitive proof would go as follows: assuming that
p|q diverges one has to prove that the τ successor (p|p)|q also di-
verges. Rather than looking further for the τ -successors of (p|p)|q,
observe that

(a) since p|q diverges by hypothesis, then also (p|q)|p diverges,
and

(b) since (p|q)|p is bisimilar (i.e., behavioural equivalent) to
(p|p)|q, then also (p|p)|q diverges.

Formally, (b) corresponds to using the functor Bhv from Sec-
tion 4.1. For (a) we define the left contextual closure functor as

Ctx ℓ(P⊆X) = {(. . . (x|y1)| . . .)|yn | x ∈ P, yi ∈ X}. In-

deed, it is easy to see that P = {p|q} is an F
〈τ〉
ξ -invariant up to

Bhv ◦ Ctx ℓ, i.e, P ⊆ F
〈τ〉
ξ ◦ Bhv ◦ Ctx ℓ(P ).

In order to prove soundness of this “up to behavioural equiva-
lence and left contextual closure”, we show compatibility of Bhv

and Ctx ℓ separately. For the former, we note that F
〈τ〉

is defined

exactly as in coalgebraic modal logic [9, 13] and thus (F
〈τ〉
, F )

is a fibration map: Theorem 1 applies. The functor Ctx ℓ is defined
just as Ctx , but instead of the canonical lifting of the endofunctor
for binary operations T (X) = X×X we use the predicate lifting

T (P ⊆ X) = P×X ⊆ TX . The conditions of Lemma 1 are met
for the distributive law given by the above GSOS rules (see Ap-

pendix C). The functor Ctx ℓ can be seen to be the composition∐
µ ◦ T where T is the free monad on T and µ is the multiplication

of T. We can thus apply Theorem 2 and obtain its compatibility.

5.3 Equivalence of nominal automata

Nominal automata and variants [4] have been considered as a
means of studying languages over infinite alphabets, but also for the
operational semantics of process calculi [22]. We refer the reader
to [23] for background on the category Nom of nominal sets. These
are sets equipped with actions of the group of permutations on a
countable set A of names, satisfying an additional finite support
condition.

Consider the nominal automaton below. The part reachable
from state ∗ corresponds to [5, Example I.1].

∗

a

�� a // a

b

�� a // ⊤

a

��

⋆

a
::✉✉✉✉✉✉ b // a′ b

yy
a
OO

It is important to specify how to read this drawing: the represented
nominal automaton has as state space the orbit-finite nominal set
{∗} + {⋆} + A + A

′ + {⊤}, where A′ is a copy of A. It suffices
in this case to give only one representative of each of the five
orbits: we span all the transitions and states of the automaton by
applying all possible finite permutations to those explicitly written.

For example, the transition a
c
→ a is obtained from a

b
→ a by

applying the transposition (b c) to the latter.

With this semantics in mind, one can see that the state ∗ accepts
the language of words in the alphabet A where some letter appears
twice: it reads a word in A, then it nondeterministically guesses
that the next letter will appear a second time and verifies that this
is indeed the case. The state ⋆ accepts the same language, in a
different way: it reads a first letter, then guesses if this letter will be
read again, or, if a distinct letter—nondeterministically chosen—
will appear twice.

Formally, nominal automata are FPω-coalgebras 〈o, t〉 where

F : Nom → Nom is given by FX = 2 × XAand the monad Pω

is the finitary version of the power object functor in the category of
nominal sets (mapping a nominal set to its finitely-supported orbit-
finite subsets). In our example, o(a) = 0 and t(a) is the following
map:

t(a) =

{
b 7→ {a} b#a
a 7→ {⊤}

By the generalised powerset construction [28], 〈o, t〉 induces a
deterministic nominal automata, which is a bialgebra on Pω(X)
with the algebraic structure given by union. To prove that ∗ and ⋆
accept the same language, we should play the bisimulation game
in the determinisation of the automaton. However, the latter has
infinitely many orbits and a rather complicated structure. A bisim-
ulation constructed like this will thus have infinitely many orbits.
Instead, we can show that the orbit-finite relation spanned by the
four pairs

({∗}, {⋆}), ({a}, {a, a′}), ({⊤}, {a,⊤}), ({∗}, A′)

is a bisimulation up to congruence (w.r.t. union).
The soundness of this technique is established in Appendix D

using the fibration Rel(Nom)→ Nom of equivariant relations. We
derive the compatibility of contextual closure using Theorem 2, and
compatibility of the transitive, symmetric, and reflexive closures
using Proposition 2. Compatibility of congruence closure follows
from Proposition 1(i).

6. Compositional Predicates

In this section we consider a structured way of defining coinduc-
tive predicates, by composing lifted functors. Assume a fibration
p : E → B and a functor ⊗ : E ×B E → E . Given two liftings

F1, F2 : E → E of the same endofunctor F on B, one can then de-

fine a composite lifting⊗◦〈F1, F2〉, which we denote by F1⊗F2.
We will instantiate this to the fibration Rel → Set with relational
composition for ⊗, to define simulation and weak bisimulation as
coinductive predicates.

One advantage of this approach is that the compatibility of up-
to-context can be proved in a modular way.

Theorem 3. Let T be a lifting of T having a γ : T⊗ ⇒ ⊗T
2

above Id: T ⇒ T . Let both F1 and F2 be liftings of F . If

λ1 : T F1 ⇒ F1 T and λ2 : T F2 ⇒ F2 T sit above the same
λ : TF ⇒ FT , then there exists λ : T (F1 ⊗ F2) ⇒ (F1 ⊗ F2)T
above λ.

Notice that the canonical lifting Rel(T ) always satisfies the first
hypothesis of the theorem when ⊗ is relational composition.

6.1 Simulation up-to

We recall simulations for coalgebras as introduced in [15]. An
endofunctor F on Set is said to be ordered if it factors through the
forgetful functor from Pre (the category of preorders) to Set: this
means that for every X , FX is equipped with a preorder ⊑FX .

An ordered functor gives rise to a constant relation lifting ⊑ of

F defined as ⊑(R ⊆ X2) = ⊑FX . Then the lax relation lifting
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Rel(F )⊑ is defined as

Rel(F )⊑ = ⊑⊗ Rel(F )⊗⊑

where ⊗ is relational composition. For a coalgebra ξ : X → FX ,

the coalgebras for the endofunctor ξ∗◦Rel(F )⊑X—which we denote

as Rel(F )⊑ξ —are called simulations; the final one is called similar-

ity. We list two examples of ordered functors and their associated
notion of simulations, and refer to [15] for many more.

Example 3. For weighted automata on a semiring S equipped with

a partial order ≤, the functor FX = S × XA is ordered with
⊑FX defined as (s, φ) ⊑FX (r, ψ) iff s ≤ r and φ = ψ. It is

immediate to see that Rel(F )⊑ coincides with the lifting F defined
in Section 5.1.

For LTSs, the functor FX = Pω(A×X) is ordered with subset

inclusion ⊆. In this case a simulation is a relation R ⊆ X2 such

that for all (x, y) ∈ R: if x
a
−→ x′ then there exists y′ such that

x′ a
−→ y′ and x′Ry′.

An ordered functor F is called stable if (Rel(F )⊑, F ) is a
fibration map [15]. Since polynomial functors are stable, as well as
the one for LTSs [15], the following results hold for the coalgebras
in Example 3.

Proposition 3. If F is a stable ordered functor, then Bhv , Slf , and

Trn are Rel(F )⊑ξ -compatible.

Proof. Compatibility of Bhv comes from Theorem 1. Compatibil-
ity of Slf and Trn comes from Proposition 2: stable functors satisfy
(∗∗∗) [15, Lemma 5.3].

We proceed to consider the compatibility of up to context, for
which we assume an abstract GSOS specification λ : T (F×Id)⇒

FT. By Theorem 3, proving compatibility w.r.t. Rel(F )⊑ξ is re-

duced to proving compatibility w.r.t. its components Rel(F ) and

⊑. For the former, compatibility comes immediately from the proof
of Corollary 3. For the latter, we need to assume that the abstract
GSOS specification is monotone, i.e, such that for any setX , the re-
striction of λX×λX to Rel(T )(⊑FX ×∆X) corestricts to⊑FTX.
If T is a polynomial functor representing a signature, then this
means that for any operator σ (of arity n) we have

b1 ⊑FX c1 . . . bn ⊑FX cn

λX(σ(b,x)) ⊑FTX λX(σ(c,x))

where b,x = (b1, x1), . . . , (bn, xn) with xi ∈ X and similarly
for c,x. If ⊑ is the order on the functor for LTSs, monotonicity
corresponds to the positive GSOS format [12] which, as expected,
is GSOS [3] without negative premises. Monotonicity turns out to
be precisely the condition needed to apply Lemma 1, yielding

Proposition 4. Let λ be a monotone abstract GSOS specification

and (X,α, 〈ξ, id〉) be a λ†-bialgebra. Then Ctx is (Rel(F )⊑ ×
Id)〈ξ,id〉-compatible.

6.2 Weak bisimulation-up-to

A weak bisimulation is a relation R ⊆ X2 on the states of an LTS

such that for every pair (x, y) ∈ R: (1) if x
l
−→ x′ then y

l
⇒ y′ with

(x′, y′) ∈ R and (2) if y
l
−→ y′ then x

l
⇒ x′ with (x′, y′) ∈ R.

Here → and ⇒ are two LTSs, i.e., coalgebras for the functor
FX = Pω(L×X), and ⇒ is the saturation [21] of →. Weak
bisimilarity can alternatively be reduced to strong bisimilarity on
⇒, but the associated proof method is rather tedious. To remain
faithful to the above definition, we define weak bisimulations via
the following lifting of F×F :

F × F = ρ⊗ Rel(F × F )[⊇⊆]
,

where ρ is the constant functor defined as ρ(R ⊆ X2) =
{((U, V ), (V,U)) | U, V ∈ FX} and Rel(F × F )[⊇⊆] is the lax
relation lifting of F ×F for the ordering (U1, V1)[⊇⊆](U2, V2) iff
U2 ⊆ U1 and V1 ⊆ V2.

For an intuition, observe that an F × F -coalgebra is a pair
〈ξ1, ξ2〉 : X → FX × FX of LTSs that we denote with→1 and

→2. An invariant for Rel(F ×F )
[⊇⊆]
〈ξ1,ξ2〉

is a relation R ⊆ X2 such

that for each (x, y) ∈ R: (1) if y
l
−→1 y

′ then x
l
−→1 x

′ with x′Ry′,

and (2) if x
l
−→2 x

′ then y
l
−→2 y

′ with x′Ry′. Composing with ρ
“flips” the LTSs→1 and→2: an invariant for F × F 〈ξ1,ξ2〉 is now

an R ⊆ X2 such that: (1) if y
l
−→1 y

′ then x
l
−→2 x

′ with x′Ry′,

and (2) if x
l
−→1 x′ then y

l
−→2 y′ with x′Ry′. It is easy to see

that for 〈ξ1, ξ2〉 = 〈→,⇒〉, coalgebras for F × F 〈ξ1,ξ2〉 are weak
bisimulations and the final coalgebra is weak bisimilarity.

In Appendix E, we show that (F × F, F ) is a fibration map and
by Theorem 1 we now obtain the following.

Corollary 4. Bhv is F × F 〈ξ1,ξ2〉-compatible.

For 〈ξ1, ξ2〉 = 〈→,⇒〉, behavioural equivalence is simply
strong bisimilarity. Consequently, Corollary 4 actually gives the
compatibility of weak bisimulation up to strong bisimilarity [25].
One could wish to use up to Slf or up to Trn for weak bisimu-
lations. However, the condition (∗∗∗) from Section 4.2 fails, and
indeed, weak bisimulations up to weak bisimilarity or up to transi-
tivity are not sound [25].

For up to context, we use Theorem 3 to reduce compatibility

w.r.t. F × F to compatibility w.r.t. ρ and Rel(F × F )[⊇⊆] (for
which we can reuse the result of the previous section).

Proposition 5. Let λ : T (F × Id) ⇒ FT be a positive GSOS

specification and (X,α, 〈ξ1, id〉) and (X,α, 〈ξ2, id〉) be two λ†-

bialgebras then Ctx is (F × F × Id)〈ξ1,ξ2,id〉-compatible.

The above proposition requires both→ and⇒ to be models [1]
of the same positive GSOS specification λ. This means that the
rules of λ should be sound for both → and ⇒. For instance, in
the case of CCS,⇒ is not a model of λ because the rule for non-
deterministic choice is not sound for⇒. Nevertheless, we can use
our framework to prove the compatibility of weak bisimulation up
to contextual closure w.r.t. the remaining operators.

7. Directions for future work

Our nominal automata example leads us to expect that the frame-
work introduced in this paper will lend itself to obtaining a clean
theory of up-to techniques for name-passing process calculi. For
instance, we would like to understand whether the congruence rule
format proposed by Fiore and Staton [11] can fit in our setting: this
would provide general conditions under which up-to techniques re-
lated to name substitution are sound in such calculi.

Another interesting research direction is suggested by the di-
vergence predicate we studied in Section 5.2. Other formulas of
(coalgebraic) modal logic [9] can be expressed by taking different
predicate liftings, and yield different families of compatible func-
tors. This suggests a connection with the proof systems in [10, 29]:
we can regard proofs in those systems as invariants up to some com-
patible functors. By using our framework and the logical distribu-
tive laws of [18], we hope to obtain a systematic way to derive or
enhance such proof systems, starting from a given abstract GSOS
specification.
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A. Proofs for Section 3

The following Proposition generalises the compositionality results
for compatible functions on lattices, see [24] or [25, Proposi-
tion 6.3.11].

Proposition 1. Compatible functors are closed under the following
constructions:

(i) composition: if A is (B,C)-compatible and A′ is (C,D)-
compatible, then A′ ◦A is (B,D)-compatible;

(ii) pairing: if (Ai)i∈ι are (B,C)-compatible, then 〈Ai〉i∈ι is
(B,Cι)-compatible;

(iii) product: if A is (B,C)-compatible and A′ is (B′, C′)-
compatible, then A× A′ is (B×B′, C×C′)-compatible;

Moreover, for an endofunctor B : C → C,

(iv) the identity functor Id : C → C is B-compatible;

(v) the constant functor to the carrier of any B-coalgebra is B-
compatible, in particular the final one if it exists;

(vi) the coproduct functor
∐

: Cι → C is (Bι, B)-compatible.

Proof. (i) Given γ : AB ⇒ CA and γ′ : A′C ⇒ DA′ we
obtain

A′AB
A′γ +3 A′CA

γ′A +3 DA′A

(ii) Given natural transformations γi : AiB ⇒ CAi for all i ∈ ι
we obtain a natural transformation

〈Ai〉i∈ιB Cι〈Ai〉i∈ι

〈AiB〉i∈ι

〈γi〉i∈ι +3 〈CAi〉i∈ι

(iii) Given γ : AB ⇒ CA and γ′ : A′B′ ⇒ C′A′ we construct
γ × γ′ : (A× A′)(B ×B′)⇒ (C × C′)(A× A′).

Items (iv), (v) and (vi) are trivial. For example, the latter is imme-
diate using the universal property of the coproduct.

B. Proofs for Section 4

The next simple Lemma about liftings in fibrations will be used
throughout this appendix, e.g., to prove Proposition 2, but also
Theorem 2.

Lemma 2. Let p : E → B and p′ : E ′ → B be two fibrations

and assume T : E → E ′ is the lifting of a functor T : B → B.
Consider a B-morphism f : X → Y . Then there exists a natural
transformation:

θ : T ◦ f∗ ⇒ (Tf)∗ ◦ T : EY → E
′
TX .

Proof. In order to define θR for someR in EY , we use the universal

property of the Cartesian lifting T̃ fT (R). In a diagram:

T (f∗(R))

(Tf)∗(TR) TR

TX TY

T (f̃R)

T̃ fTR

θR

Tf

(2)

Lemma 3. Let p : E → B be a bifibration and assume F : E → E
is the lifting of a functor F : B → B. Consider a B-morphism
f : X → Y . Then there exists a natural transformation:

ρ :
∐

Ff ◦ F ⇒ F ◦
∐

f : EX → EFY .

Proof. The proof uses the universal property of the opcartesian lift-
ings. Equivalently, from Lemma 2 we have a natural transformation

Ff∗ ⇒ (Ff)∗F . Taking the adjoint transpose via
∐

Ff ⊣ (Ff)∗

we get a natural transformation
∐

Ff Ff
∗ ⇒ F . A further ad-

joint transpose via the adjunction
∐

f ⊣ f∗ yields the desired

ρ :
∐

FfF ⇒ F
∐

f .

B.1 Proofs for Section 4.2

In this section we prove Proposition 2. For the sake of clarity we

explain how F
n

is defined for n = 2. Recall that E×BE is obtained
as a pullback of p along p in Cat.

For a lifting F of F , the functor F
2

makes the next diagram
commute.

E ×B E //

��

F
2

''

E

p

��

F

%%▲
▲▲

▲▲
▲

E ×B E
❴
✤

//

��

E

p

��

E
p

//

F ''P
PP

PP
PP B

F

&&▲
▲▲

▲▲
▲

E
p

// B

This means that on each fibre we have

F
n

X = (FX)n : EnX → E
n
FX .

As a consequence of Lemma 2 we obtain:

Lemma 4. Let p : E → B and assume G : E×Bn → E is a lifting
of the identity on B. If f : X → Y is a B-morphism, there is a
canonical natural transformation

θ : G(f∗)n ⇒ f
∗
G : EY → EGX .

Proof. This is an instance of Lemma 2 for T = Id and T = G. We
also use that the Cartesian lifting of a B-morphism f in E×Bn is
(f∗)n, where f∗ is the Cartesian lifting in E .

Proposition 2. Let G : E×Bn → E be a lifting of the identity on B
such that there exists a natural transformation GF

n
⇒ FG. Then

GX is F ξ-compatible.

Proof. Consider the natural transformation obtained as the compo-
sition

GX(ξ∗)n(F )n ⇒ ξ
∗
GX(F )n ⇒ ξ

∗
FGX

and use that (ξ∗ ◦ F )n = (ξ∗)n ◦ (F )n. The first natural transfor-
mation comes from Lemma 4 applied for ξ.

B.2 Proofs for Section 4.3

In the next Theorem we only use that the fibration p : E → B is a

bifibration and is split. 1

Theorem 2. Let T , F : E → E be liftings of T and F . If λ : T F ⇒
F T is a natural transformation sitting above λ, then

∐
α ◦T is

F ξ-compatible.

1 The Beck-Chevalley condition is not required for the functors
∐

f .
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Proof. We exhibit a natural transformation
∐

α ◦ T ◦ ξ
∗ ◦ F ⇒ ξ∗ ◦ F ◦

∐
α ◦ T .

This is achieved in Figure 1 by pasting five natural transformations,
obtained as follows:

(a) is the counit of the adjunction
∐

λX
⊣ λ∗

X .

(b) comes from λ being a lifting of λ, see Lemma 5.

(c) comes from the bialgebra condition, the fibration being split,
and the units and counits of the adjunctions

∐
α ⊣ α

∗,
∐

Fα ⊣
(Fα)∗, and

∐
λX
⊣ λ∗

X . See Lemma 6.

(d) arises since T is a lifting of T , using the universal property of
the Cartesian lifting (Tξ)∗, see Lemma 2.

(e) comes from F being a lifting of F , combined with the unit and
counit of the adjunction

∐
α ⊣ α

∗, see Lemma 3.

Lemma 5. Consider a fibration p : E → B, two B-endofunctors

F, T with corresponding liftings T , F . Assume λ : TF ⇒ FT is

a natural transformation and λ : TF ⇒ FT sits above λ. Then
there exists a 2-cell as in the diagram below:

EX EFX ETFX

EX ETX EFTX

F

id

T

T F

λ∗
X⇓ (3)

Proof. For R ∈ EFTX the R-component of the required natural
transformation is the dashed line in the diagram below and is
obtained using the universal property of the Cartesian lifting of λX .

TFR

λ∗(FTR) FTR

TFX FTX

λR

λ̃FTR

λX

(4)

The naturality in R can be easily checked and is a consequence of
the uniqueness of the factorisation.

Lemma 6. Given (X,α, ξ) an λ-bialgebra as in (5)

TX X FX

TFX FTX

α

Tξ

ξ

Fα

λX

(5)

and p : E → B a split fibration, there exists a 2-cell

ETFX ETX EX

EFTX EFX EX

(Tξ)∗

∐
λX

∐
α

∐
Fα

ξ∗

id⇓ (6)

Proof. We obtain the required natural transformation as the com-
posite of the natural transformations of (7) below.

∐
α ◦(Tξ)

∗

⇓ (
∐

λ ⊣ λ
∗)

∐
α ◦(Tξ)

∗ ◦ λ∗ ◦
∐

λ

⇓ (
∐

Fα ⊣ (Fα)∗)

∐
α ◦(Tξ)

∗ ◦ λ∗ ◦ (Fα)∗ ◦
∐

Fα ◦
∐

λ

⇓ (bialg)

∐
α ◦α

∗ ◦ ξ∗ ◦
∐

Fα ◦
∐

λ

⇓ (
∐

α ⊣ α
∗)

ξ∗ ◦
∐

Fα ◦
∐

λ
(7)

Except for the third one, these 2-cells are obtained from the
units or counits of the adjunctions recalled on the right column. The
third natural transformation is actually an isomorphism and arises
from (X,α, ξ) being a bialgebra and the fibration being split.

B.3 Proofs for Section 4.4

In this section we will prove Lemma 1. First we recall some basic
facts on the free monad T over a functor T on some category C.

Assuming T has free algebras over any X in C one can show
that the free monad T over T exists. We can define TX as the
free T -algebra on X , or equivalently, as the initial algebra for the
functor X + T (−). Thus for each X in C one has an isomorphism

[ηX , κX ] : X + TTX → TX.

The η above gives the unit of the monad T. The monad multiplica-
tion µ : TTX → TX is given as the unique morphism obtained by
equipping TX with the TX + T (−)-algebra structure [id, κX ].

Recall from [31] that there exists a bijective correspondence
between natural transformations

λ : T (F × Id)⇒ FT

and distributive laws

λ
† : T(F × Id)⇒ (F × Id)T.

We briefly recall here how λ† is obtained from λ. For X in B, we
equip (F × Id)TX with a FX × X + T (−)-algebra structure,
given by the sum of :

FX ×X
(F×Id)ηX // (F × Id)TX

FTTX
FµX // FTX

T (F × Id)TX

λTX

77♣♣♣♣♣♣♣♣♣♣♣

Tπ2TX
''◆

◆◆
◆◆

◆◆
◆◆

◆◆
//❴❴❴❴❴❴❴❴❴ (F × Id)TX

OO

��

TT
κX

// TX
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Hence λ
†
X is defined as the unique (F × Id)X + T (−)-algebra

morphism:

TT(F × Id)X
T (λ

†
X

)
//

κ(F×Id)X

��

T (F × Id)TX

〈FµXλTX κX (Tπ2T)X〉

��

T(F × Id)X
λ
†
X //❴❴❴❴ (F × Id)TX

(F × Id)X

η(F×Id)X

OO

(F×Id)ηX

66♥♥♥♥♥♥♥♥♥♥♥♥

(8)

The following technical lemma is needed to establish that when-

ever the lifting of T of a functor T has free algebras, the free monad

over T is the lifting of the free monad over T .

Lemma 7. Consider a lifting T of a B-endofunctor T and assume

T has free algebras.

1. The functor p : E → B has a right adjoint 1 : B → E inducing

an adjunction2

Alg(T ) ⊥ Alg(T )

Alg(p)

Alg(1)

2. The functor Alg(p) preserves the initial algebras.

3. When P ∈ EX for some X in B, the free T -algebra over P sits
above the free T -algebras over X .

4. The free monad T over T exists and is a lifting of the free monad
T over T .

Proof. 1. Since the fibration considered here is bicartesian, one
can define 1(X) as the terminal object in EX . Then the state-
ment of this item is an immediate consequence of [14, Theo-
rem 2.14].

2. follows because Alg(p) is a left adjoint.

3. follows from item 1) applied for the lifting P + T of X + T .

4. is an immediate consequence of item 3).

Lemma 1. Consider a lifting T of a B-endofunctor T and as-

sume T has free algebras. Let λ : T (F × Id) ⇒ FT be a nat-
ural transformation sitting above λ : T (F × Id) ⇒ FT. Then

λ
†
: T(F × Id) ⇒ (F × Id)T sits above λ† : T(F × Id) ⇒

(F × Id)T.

Proof. We know that TX is the free T -algebra on X . Let

[ηX , κX ] : X + TTX → TX

denote the initial X + T (−)-algebra. Similarly, let

[ηP , κP ] : P + TTP → TP

denote the initial P + T (−)-algebra. By Lemma 7 we know that
when P ∈ EX we have that [ηP , κP ] is a lifting of [ηX , κX ].

2 The functor Alg stems from the 2-categorical notion of inserter, see [33]
or [14, Theorem 2.14,Appendix A.5] for a concise exposition.

For P ∈ EX the map λ
†
P is defined similarly to (8), as the

unique map such that:

TT(F × Id)P
T (λ

†
P
)
//

κ
(F×Id)P

��

T (F × Id)TP

〈FµP λ
TP κP (Tπ2T)P 〉

��

T(F × Id)P
λ
†
P //❴❴❴❴ (F × Id)TP

(F × Id)P

η
(F×Id)P

OO

(F×Id)ηP

77♥♥♥♥♥♥♥♥♥♥♥

(9)

By Lemma 7 we have that the (F × Id)P +T (−)-algebras T(F ×
Id)P and (F × Id)TP of diagram (9) sit above the (F × Id)X +
T (−)-algebras T(F × Id)X , respectively (F × Id)TX of di-

agram (8). By uniqueness of λ
†
X it follows that λ

†
P sits above

λ
†
X .

C. Details on Divergence

In this appendix, we discuss some details for showing compatibility

of Ctx ℓ that were omitted in the main text for lack of space.
First of all, observe that the GSOS rules defining the parallel

operator corresponds to a distributive law λ : T (F × Id) ⇒ FT,
which is defined for all sets X , x, y ∈ X and S, T ∈ Pω(L×X)
as

(S, x), (T, y) 7→ {(l, x′|y) | (l, x′) ∈ S}

∪ {(l, x|y′) | (l, y′) ∈ T}

∪ {(τ, x′|y′) | ∃a, (a, x′) ∈ S ∧ (a, y′) ∈ T}

∪ {(τ, x′|y′) | ∃a, (a, x′) ∈ S ∧ (a, y′) ∈ T}.

Intuitively, S and T are the sets of transitions of the states x and y.
The first set {(l, x′|y) | (l, x′) ∈ S} corresponds to the first GSOS
rule

x
l
→ x′

x|y
l
→ x′|y

and similarly for the others.

By virtue of Lemma 1, to prove compatibility of Ctx ℓ, we
only have to show that for all predicates P ⊆ X , the restriction

of λX to T (F
〈τ〉
× Id)P corestricts to F

〈τ〉
TP , that is when-

ever (S, x), (T, y) ∈ T (F
〈τ〉
× Id)P , then λX((S, x), (T, y)) ∈

F
〈τ〉

TP .

The latter means, by definition of F
〈τ〉

, that there exists a

(τ, t) ∈ λX((S, x), (T, y)) such that t ∈ TP . This can be proved

as follows: since S ∈ F
〈τ〉
P , then there exists (τ, x′) ∈ S such

that x′ ∈ P . By definition of λX , (τ, x′|y) ∈ λX((S, x), (T, y)).
Finally, since x′ ∈ P , then x′|y ∈ TP .

D. Details on Nominal Automata

In this section we assume the reader has some familiarity with
nominal sets, see [23].

D.1 The base category

We denote by A a countable set of names. The category Nom of
nominal sets has as objects sets X equipped with an action · :
Sym(A)×X → X of the group of finitely supported permutations
on A (that is, permutations generated by transpositions of the form
(a b)) and such that each x ∈ X has a finite support. Morphisms
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in Nom are equivariant functions, i.e., functions that preserve the
group action.

D.2 The fibration at issue

It is well known that Nom can equivalently be described as a
Grothendieck topos. Since Nom is a regular category, by [16, Ob-
servation 4.4.1] we know that the subobject fibration on Nom is in
fact a bifibration. Furthermore, by a change-of-base situation de-
scribed below we obtain the bifibration Rel(Nom) → Nom, see
also [16, Example 9.2.5(ii)]

Rel(Nom) //

��

Sub(Nom)

��

Nom
I 7→I×I

// Nom

Objects of Rel(Nom) are equivariant relations. That is, if X is a

nominal set, a nominal relation on X is just a subset R ⊆ X2

such that xRy implies (π · x)R(π · y) for all permutations π. This
bifibration is also split and bicartesian.

D.3 The functors and the distributive law

We will use the following Nom-endofunctors:

1. F : Nom→ Nom given by FX = 2×XA, where 2 = {0, 1}
is equipped with the trivial action and XA is given by the

internal hom. Concretely, an element f ∈ XA is a function
f : A → X such that there exists a finite subset S ⊆ A and
f(π(a)) = π · f(a) for all names a ∈ A and permutations
π ∈ Sym(A) fixing the elements of S.

2. Pω : Nom→ Nom that maps a nominal setX to its orbit-finite
finitely supported subsets. In particular one can check that Pω

is a monad and let µ denote its multiplication, given by union.

The functors Pω and F are related by a distributive law

λ : PωF ⇒ FPω.

For a nominal set X , the map λX is given by the product of the
morphisms acting on S ∈ PωF (X) by

S 7→ 1 ∈ 2 iff 1 ∈ (Pωτ1)(S)

and

S 7→ λa.{x ∈ X|∃f ∈ (Pωτ2)(S). f(a) = x} ∈ (PωX)A

where τ1, τ2 are the projections from FX to 2, respectively XA.

D.4 The liftings

The distributive law λ can be lifted to Rel(Nom), see [17, Exercise
4.4.6].

Rel(λ) : Rel(Pω)Rel(F )⇒ Rel(F )Rel(Pω).

Concretely, for R ∈ Rel(Nom)X , the nominal relation Rel(F )(R)
is given by (o, f) Rel(F )(R) (o′, f ′) iff o = o′ and for all a ∈ A

we have f(a)Rf ′(a).
On the other hand Rel(Pω) is given by S Rel(Pω)(R) S

′ iff
for all x ∈ S exists y ∈ S′ with xRy and for all y ∈ S′ exists
x ∈ S with xRy. As for Rel(λ)R, this is obtained as the restriction
of λR × λR to Rel(Pω)Rel(F )(R).

D.5 Soundness of bisimulation up to congruence

Nondeterministic nominal automata [4] can be modelled as FPω-
coalgebras, while deterministic nominal automata are represented
as F -coalgebras. The classical notion of finiteness is replaced by
orbit-finiteness—from a categorical perspective this makes sense,

since orbit-finite nominal sets are exactly the finitely presentable
objects in the lfp category Nom.

The generalised powerset construction [28] can be applied in
this situation as well, that is, a nondeterministic nominal automata
modelled as a coalgebra

〈o, t〉 : X → 2× Pω(X)A

yields an F -coalgebra structure

〈o♯, t♯〉 : PωX → 2× (PωX)A,

on PωX , given by the composite F (µ)◦λ◦Pω(〈o, t〉). The reason
why determinisation fails in a nominal setting [4] is that the finitary
power object functor Pω does not preserve orbit finiteness. This is
the case in the example of Section 5.3.

Notice that (PωX,µ, 〈o
♯, t♯〉) is a λ-bialgebra.

The fibrations Rel(Nom) → Nom and Sub(Nom) → Nom
are well-founded in the sense of [13]. To prove this we can ap-
ply [13, Lemma 3.4], which gives as a sufficient condition for well-
foundedness: that the fibre above each finitely presentable object
be finite. Indeed, recall from [32] that finitely presentable nominal
sets are the orbit-finite ones. Then, it is easy to check that a nominal
set with n orbits has 2n equivariant nominal subsets.

Hence, by [Theorem 3.7][13], the final Rel(F )〈o,t〉-coalgebra
exists and can be computed as the limit of an ωop-chain in the fibre
Rel(Nom)X . We will use this coinductive predicate to prove that
two states of a nominal automata accept the same language.

We can apply Theorem 2 to prove that the contextual closure
Ctx =

∐
µ ◦Rel(Pω) is Rel(F )〈o♯,t♯〉-compatible.

Thus bisimulation up to context is a valid proof technique for
nominal automata.

Moreover, we can apply Proposition 2 to prove compatibility
of the up to reflexive, symmetric and transitive closure techniques,
respectively.

(n=0) Let Rfl : Nom → Rel(Nom) be the functor mapping each
nominal set X to ∆X , the identity relation on X . Then RflX is
Rel(F )〈o,t〉-compatible since ∆FX = Rel(F )∆X .

(n=1) Let Sym : Rel(Nom) → Rel(Nom) be the functor mapping

each nominal relation R ⊆ X2 to its converse R−1 ⊆ X2.
SymX is F 〈o,t〉-compatible since F (R)−1 ⊆ F (R−1) for all

relations R ⊆ X2.

(n=2) Let⊗ : Rel(Nom)×Nom Rel(Nom)→ Rel(Nom) be the nomi-
nal relational composition functor. Composition of nominal re-
lations is computed just as in Set and one can show that Rel(F )
preserves it. Thus ⊗ is Rel(F )〈o,t〉-compatible.

Employing Proposition 1 and the fact that congruence closure is
obtained as the composition of the equivalence, context and reflex-
ive closure functors we derive that bisimulation up to congruence
is a sound technique.

D.6 The concrete example

The nondeterministic nominal automaton of Section 5.3 (reported
on the left below) is given formally by an FPω-coalgebra 〈o, t〉 on
the nominal set 1 + 1 + A + A + 1. For simplicity we denote the
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{∗}

a

��

R ❴❴❴❴❴❴❴❴❴ {⋆}

a

��

{∗, a}
Cgr(R)

{a} ∪ (A′ \ {a′})

{∗}

a

��

R ❴❴❴❴❴❴❴❴❴ A
′

a

��

{∗, a}
Cgr(R)

{a} ∪ (A′ \ {a′})

{a}

a

��

R ❴❴❴❴❴❴ {a, a′}

a

��

{⊤}
Cgr(R)

{a,⊤}

{a}

b

��

R ❴❴❴❴❴❴ {a, a′}

b

��

{a}
Cgr(R)

{a, a′}

{⊤}

a

��

R ❴❴❴❴❴❴ {a,⊤}

a

��

{⊤}
Cgr(R)

{⊤}

{⊤}

b

��

R ❴❴❴❴❴❴ {a,⊤}

b

��

{⊤}
Cgr(R)

{a,⊤}

Figure 2. Proving R to be a bisimulation up to congruence

second copy of A by A′. The map 〈o, t〉 is given below on the right.

∗

a

�� a // a

b

�� a // ⊤

a

��

⋆

a
::✉✉✉✉✉✉ b // a′ b

yy
a
OO

∗ 7→ (0, a 7→ {∗, a})

a 7→

(
0,

{
b 7→ {a} b#a

a 7→ {⊤}

)

⋆ 7→
(
0, a 7→ {a} ∪ A′ \ {a′}

)

a
′ 7→

(
0,

{
b 7→ {a′} b#a

a 7→ {a}

)

⊤ 7→ (1, a 7→ {⊤})

The determinisation of this automaton has infinitely many or-
bits. For example, the determinisation of the part reachable from ∗
is partially represented by

{∗}
a // {∗, a}

b��

a // {∗, a,⊤}

b��

abb

{∗, a, b}
a,b

//

c��

{∗, a, b,⊤}
c��

a,bbb

..

.
..
.

However, we can prove that ∗ and ⋆ accept the same language,
showing that the nominal relation R spanned by

({∗}, {⋆}), ({a}, {a, a′}), ({⊤}, {a,⊤}), ({∗}, A′)

is a bisimulation up to congruence, that is,R ⊆ Rel(F )〈o♯,t♯〉Cgr(R).
This is shown in Figure 2: for each pair in R, we check that the

successors are in Cgr(R). Note that for the pairs ({a}, {a, a′})
and ({⊤}, {a,⊤}), in the second and third rows, one needs to
check the successors for a and for a fresh name b. Instead for the
pairs ({∗}, {⋆}) and ({∗}, A′) in the first row, only successors for a
should be checked (since a does not belong to the support of these
states).

The only non-trivial computation is to check whether {∗, a}Cgr(R){a}∪
(A′ \ {a′}). We proceed as follows:

{∗, a} Cgr(R) {a} ∪ A′

Cgr(R) {a, a′} ∪ (A′ \ {a′})
Cgr(R) {a} ∪ (A′ \ {a′}).

E. Proofs for Section 6

Theorem 3. Let T be a lifting of T having a γ : T⊗ ⇒ ⊗T
2

above Id: T ⇒ T . Let both F1 and F2 be liftings of F . If

λ1 : T F1 ⇒ F1 T and λ2 : T F2 ⇒ F2 T sit above the same
λ : TF ⇒ FT , then there exists λ : T (F1 ⊗ F2) ⇒ (F1 ⊗ F2)T
above λ.

Proof. Since F1 and F2 are liftings of F : B → B it follows that

〈F1, F2〉 : E → E ×B E is a lifting of F . Moreover 〈λ1, λ2〉 :

T
2
〈F1, F2〉 ⇒ 〈F1, F2〉T is a lifting of λ.
Using that ⊗ : E ×B E → E lifts the identity we get that

F1 ⊗ F2 = ⊗ ◦ 〈F1, F2〉 is also a lifting of F .

T ⊗ 〈F1, F2〉
γ〈F1,F2〉+3 ⊗T

2
〈F1, F2〉

⊗〈λ1,λ2〉+3 ⊗〈F1, F2〉T

TF
id +3 TF

λ +3 FT

(10)

The required λ is obtained as the composite⊗〈λ1, λ2〉 ◦γ〈F1, F2〉
sitting above λ as in (10).

E.1 Proofs for Similarity

Proposition 4. Let λ be a monotone abstract GSOS specification

and (X,α, 〈ξ, id〉) be a λ†-bialgebra. Then Ctx is (Rel(F )⊑ ×
Id)〈ξ,id〉-compatible.

Proof. Recall that Ctx is defined as
∐

α ◦ Rel(T) and that, for

the canonical lifting, it holds that Rel(T)⊗ ⊆ ⊗Rel(T)2. We

decompose the lifting Rel(F )⊑ × Id as

(⊑× Id)⊗ (Rel(F )× Id)⊗ (⊑× Id)

where Id is the constant functor mapping R ⊆ X2 to ∆X . By
Theorem 3 we reduce the proof of the fact that Rel(T ) distributes

over Rel(F )⊑ × Id to the fact that Rel(T ) distributes over ⊑× Id
and Rel(F )× Id separately.

For the latter, observe that Rel(F )× Id = Rel(F × Id). Since

Rel(−) is a 2-functor [17, Exercise 4.4.6], we take λ
†
1 : Rel(T)Rel(F×

Id)⇒ Rel(F × Id)Rel(T ) as Rel(λ).
For the former we need to use Lemma 1 and exhibit a λ : Rel(T )(⊑×

Id)⇒ ⊑Rel(T) sitting above λ. This amounts to show that, for all

relationsR ⊆ X2, the restriction of λX×λX to Rel(T )(⊑× Id)R
corestricts to⊑Rel(T)R. Note that since⊑ and Id are constant, this
is exactly the condition for monotone abstract GSOS. This guar-

antees the existence of λ
†
2 : Rel(T)(⊑ × Id) ⇒ (⊑ × Id)Rel(T)

sitting above λ†.
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The existence of λ
†
1 and λ

†
2 ensures, via Theorems 3 and 2, that

Ctx is (Rel(F )⊑ × Id)〈ξ,id〉-compatible.

E.2 Proofs for Weak Bisimilarity

Lemma 8. (F × F, F ) is a fibration map.

Proof. Let f : X → Y be a function and R ⊆ X2 be a relation.
Then

F × F ((f × f−1(R))

= {(S, U, V,W ) |

∀(a, x) ∈ S. ∃(a, y) ∈ W. f(x)Rf(y),
∀(a, y) ∈ V. ∃(a, x) ∈ U. f(x)Rf(y)}

= {(S, U, V,W ) |

∀(a, x′) ∈ Ff [S]. ∃(a, y′) ∈ Ff [W ]. x′Ry′,
∀(a, y′) ∈ Ff [V ]. ∃(a, x′) ∈ Ff [U ]. x′Ry′}

= (Ff × Ff × Ff × Ff)−1(F × F (R))

Proposition 5. Let λ : T (F × Id) ⇒ FT be a positive GSOS

specification and (X,α, 〈ξ1, id〉) and (X,α, 〈ξ2, id〉) be two λ†-

bialgebras then Ctx is (F × F × Id)〈ξ1,ξ2,id〉-compatible.

Proof. From λ : T (F×Id)⇒ FT, we define λ̃ : T (F×F×Id)⇒
(F × F )T as 〈λ ◦ T (τ1 × τ3), λ ◦ T (τ2 × τ3)〉 where τi are

the projections from F × F × Id to F and Id. Such λ̃ induces
a distributive law

λ̃
† : T(F × F × Id)⇒ (F × F × Id)T.

From the λ†-bialgebras (X,α, 〈ξ1, id〉) and (X,α, 〈ξ2, id〉), we

construct (X,α, 〈ξ1, ξ2, id〉) which is a λ̃†-bialgebra.
Recall that Ctx is defined as

∐
α ◦ Rel(T) and that, for the

canonical lifting, it holds that Rel(T)⊗ ⊆ ⊗Rel(T)2. We decom-

pose the lifting F × F × Id as

(ρ× Id)⊗ (Rel(F × F )[⊇⊆] × Id)

where Id is the constant functor mapping R ⊆ X2 to ∆X . By
Theorem 3 we reduce the proof of the fact that Rel(T ) distributes

over F × F × Id to the fact that Rel(T ) distributes over ρ× Id and

Rel(F × F )[⊇⊆] × Id separately.
For the former, by Lemma 1, we have to prove that for all

relations R ⊆ X2, the restriction of λ̃X × λ̃X to Rel(T )(ρ× Id)R
corestricts to ρRel(T)R. This can be easily checked by using the

fact that both ρ and Id are constant and exploiting the definition

of λ̃. As a consequence there exists a λ̃1

†

: Rel(T)(ρ × Id) ⇒
(ρ× Id)Rel(T) sitting above λ̃†.

For Rel(F × F )[⊇⊆] × Id we can reuse Proposition 4, but first

we have to prove that the GSOS specification λ̃ is monotone w.r.t.
[⊇⊆]. Via simple computations, one can check that this is indeed
the case when the original GSOS specification λ is positive. As a

consequence there exists a λ̃2

†

: Rel(T)(Rel(F ×F )[⊇⊆]× Id)⇒
(Rel(F × F )[⊇⊆] × Id)Rel(T) sitting above λ̃†.

The existence of λ̃1

†

and λ̃2

†

entails, via Theorems 3 and 2
compatibility of Ctx for (F × F × Id)〈ξ1,ξ2,id〉.

Additional references for the appendix

[32] D. Petrişan. Investigations into Algebra and Topology over Nominal

Sets. PhD thesis, University of Leicester, 2012.

[33] R. Street. Fibrations and Yoneda’s lemma in a 2-category. In
GregoryM. Kelly, editor, Category Seminar, volume 420 of Lecture

Notes in Mathematics, pages 104–133. Springer Berlin Heidelberg,
1974.
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