537 research outputs found

    Business Intelligence from Web Usage Mining

    Full text link
    The rapid e-commerce growth has made both business community and customers face a new situation. Due to intense competition on one hand and the customer's option to choose from several alternatives business community has realized the necessity of intelligent marketing strategies and relationship management. Web usage mining attempts to discover useful knowledge from the secondary data obtained from the interactions of the users with the Web. Web usage mining has become very critical for effective Web site management, creating adaptive Web sites, business and support services, personalization, network traffic flow analysis and so on. In this paper, we present the important concepts of Web usage mining and its various practical applications. We further present a novel approach 'intelligent-miner' (i-Miner) to optimize the concurrent architecture of a fuzzy clustering algorithm (to discover web data clusters) and a fuzzy inference system to analyze the Web site visitor trends. A hybrid evolutionary fuzzy clustering algorithm is proposed in this paper to optimally segregate similar user interests. The clustered data is then used to analyze the trends using a Takagi-Sugeno fuzzy inference system learned using a combination of evolutionary algorithm and neural network learning. Proposed approach is compared with self-organizing maps (to discover patterns) and several function approximation techniques like neural networks, linear genetic programming and Takagi-Sugeno fuzzy inference system (to analyze the clusters). The results are graphically illustrated and the practical significance is discussed in detail. Empirical results clearly show that the proposed Web usage-mining framework is efficient

    Data Mining in Smart Grids

    Get PDF
    Effective smart grid operation requires rapid decisions in a data-rich, but information-limited, environment. In this context, grid sensor data-streaming cannot provide the system operators with the necessary information to act on in the time frames necessary to minimize the impact of the disturbances. Even if there are fast models that can convert the data into information, the smart grid operator must deal with the challenge of not having a full understanding of the context of the information, and, therefore, the information content cannot be used with any high degree of confidence. To address this issue, data mining has been recognized as the most promising enabling technology for improving decision-making processes, providing the right information at the right moment to the right decision-maker. This Special Issue is focused on emerging methodologies for data mining in smart grids. In this area, it addresses many relevant topics, ranging from methods for uncertainty management, to advanced dispatching. This Special Issue not only focuses on methodological breakthroughs and roadmaps in implementing the methodology, but also presents the much-needed sharing of the best practices. Topics include, but are not limited to, the following: Fuzziness in smart grids computing Emerging techniques for renewable energy forecasting Robust and proactive solution of optimal smart grids operation Fuzzy-based smart grids monitoring and control frameworks Granular computing for uncertainty management in smart grids Self-organizing and decentralized paradigms for information processin

    Artificial intelligence methodologies and their application to diabetes

    Get PDF
    In the past decade diabetes management has been transformed by the addition of continuous glucose monitoring and insulin pump data. More recently, a wide variety of functions and physiologic variables, such as heart rate, hours of sleep, number of steps walked and movement, have been available through wristbands or watches. New data, hydration, geolocation, and barometric pressure, among others, will be incorporated in the future. All these parameters, when analyzed, can be helpful for patients and doctors' decision support. Similar new scenarios have appeared in most medical fields, in such a way that in recent years, there has been an increased interest in the development and application of the methods of artificial intelligence (AI) to decision support and knowledge acquisition. Multidisciplinary research teams integrated by computer engineers and doctors are more and more frequent, mirroring the need of cooperation in this new topic. AI, as a science, can be defined as the ability to make computers do things that would require intelligence if done by humans. Increasingly, diabetes-related journals have been incorporating publications focused on AI tools applied to diabetes. In summary, diabetes management scenarios have suffered a deep transformation that forces diabetologists to incorporate skills from new areas. This recently needed knowledge includes AI tools, which have become part of the diabetes health care. The aim of this article is to explain in an easy and plane way the most used AI methodologies to promote the implication of health care providers?doctors and nurses?in this field

    Hybrid and adaptive genetic fuzzy clustering algorithms

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Machine Learning with Applications in Breast Cancer Diagnosis and Prognosis

    Get PDF
    Breast cancer (BC) is one of the most common cancers among women worldwide, representing the majority of new cancer cases and cancer-related deaths according to global statistics, making it a significant public health problem in today’s society. The early diagnosis of BC can improve the prognosis and chance of survival significantly, as it can promote timely clinical treatment to patients. Further accurate classification of benign tumours can prevent patients undergoing unnecessary treatments. Thus, the correct diagnosis of BC and classification of patients into malignant or benign groups is the subject of much research. Because of its unique advantages in critical features detection from complex BC datasets, machine learning (ML) is widely recognised as the methodology of choice in BC pattern classification and forecast modelling. In this paper, we aim to review ML techniques and their applications in BC diagnosis and prognosis. Firstly, we provide an overview of ML techniques including artificial neural networks (ANNs), support vector machines (SVMs), decision trees (DTs), and k-nearest neighbors (k-NNs). Then, we investigate their applications in BC. Our primary data is drawn from the Wisconsin breast cancer database (WBCD) which is the benchmark database for comparing the results through different algorithms. Finally, a healthcare system model of our recent work is also shown

    Integrating Information Theory Measures and a Novel Rule-Set-Reduction Tech-nique to Improve Fuzzy Decision Tree Induction Algorithms

    Get PDF
    Machine learning approaches have been successfully applied to many classification and prediction problems. One of the most popular machine learning approaches is decision trees. A main advantage of decision trees is the clarity of the decision model they produce. The ID3 algorithm proposed by Quinlan forms the basis for many of the decision trees’ application. Trees produced by ID3 are sensitive to small perturbations in training data. To overcome this problem and to handle data uncertainties and spurious precision in data, fuzzy ID3 integrated fuzzy set theory and ideas from fuzzy logic with ID3. Several fuzzy decision trees algorithms and tools exist. However, existing tools are slow, produce a large number of rules and/or lack the support for automatic fuzzification of input data. These limitations make those tools unsuitable for a variety of applications including those with many features and real time ones such as intrusion detection. In addition, the large number of rules produced by these tools renders the generated decision model un-interpretable. In this research work, we proposed an improved version of the fuzzy ID3 algorithm. We also introduced a new method for reducing the number of fuzzy rules generated by Fuzzy ID3. In addition we applied fuzzy decision trees to the classification of real and pseudo microRNA precursors. Our experimental results showed that our improved fuzzy ID3 can achieve better classification accuracy and is more efficient than the original fuzzy ID3 algorithm, and that fuzzy decision trees can outperform several existing machine learning algorithms on a wide variety of datasets. In addition our experiments showed that our developed fuzzy rule reduction method resulted in a significant reduction in the number of produced rules, consequently, improving the produced decision model comprehensibility and reducing the fuzzy decision tree execution time. This reduction in the number of rules was accompanied with a slight improvement in the classification accuracy of the resulting fuzzy decision tree. In addition, when applied to the microRNA prediction problem, fuzzy decision tree achieved better results than other machine learning approaches applied to the same problem including Random Forest, C4.5, SVM and Knn

    A Survey on Data Mining Techniques Applied to Energy Time Series Forecasting

    Get PDF
    Data mining has become an essential tool during the last decade to analyze large sets of data. The variety of techniques it includes and the successful results obtained in many application fields, make this family of approaches powerful and widely used. In particular, this work explores the application of these techniques to time series forecasting. Although classical statistical-based methods provides reasonably good results, the result of the application of data mining outperforms those of classical ones. Hence, this work faces two main challenges: (i) to provide a compact mathematical formulation of the mainly used techniques; (ii) to review the latest works of time series forecasting and, as case study, those related to electricity price and demand markets.Ministerio de Economía y Competitividad TIN2014-55894-C2-RJunta de Andalucía P12- TIC-1728Universidad Pablo de Olavide APPB81309
    corecore