42 research outputs found

    A Deep Learning Approach to LncRNA Subcellular Localization Using Inexact q-mer

    Get PDF
    Long non coding Ribonucleic Acids (lncRNAs) can be localized to different cellular components, such as the nucleus, exosome, cytoplasm, ribosome, etc. Their biological functions can be influenced by the region of the cell they are located. Many of these lncRNAs are associated with different challenging diseases. Thus, it is crucial to study their subcellular localization. However, compared to the vast number of lncRNAs, only relatively few have annotations in terms of their subcellular localization. Conventional computational methods use q-mer profiles from lncRNA sequences and then train machine learning models, such as support vector machines and logistic regression with the profiles. These methods focus on the exact q-mer. Given possible sequence mutations and other uncertainties in genomic sequences and their role in biological function, a consideration of these changes might improve our ability to model lncRNAs and their localization. I hypothesize that considering these changes may improve the ability to predict subcellular localization of lncRNAs. To test this hypothesis, I propose a deep learning model with inexact q-mers for the localization of lncRNAs in the cell. The proposed method can obtain a high overall accuracy of 94.7%, an average of 91.3% on a benchmark dataset, using the 8-mers with mismatches. In comparison, the exact 8-mer result was 89.8%. The proposed approach outperformed existing state-of-art lncRNA predictors on two different datasets. Therefore, the results support the hypothesis that deep learning models using inexact q-mers can improve the performance of computational lncRNA localization algorithms. The lengths of the lncRNAs vary from hundreds to thousands of nucleotides. In this work, I also check whether the length of lncRNA will impact the prediction accuracy. The results show that when the lncRNA sequence\u27s length is between 2000 and 3000 nucleotides, our model is more accurate

    Common Features in lncRNA Annotation and Classification: A Survey

    Get PDF
    Long non-coding RNAs (lncRNAs) are widely recognized as important regulators of gene expression. Their molecular functions range from miRNA sponging to chromatin-associated mechanisms, leading to effects in disease progression and establishing them as diagnostic and therapeutic targets. Still, only a few representatives of this diverse class of RNAs are well studied, while the vast majority is poorly described beyond the existence of their transcripts. In this review we survey common in silico approaches for lncRNA annotation. We focus on the well-established sets of features used for classification and discuss their specific advantages and weaknesses. While the available tools perform very well for the task of distinguishing coding sequence from other RNAs, we find that current methods are not well suited to distinguish lncRNAs or parts thereof from other non-protein-coding input sequences. We conclude that the distinction of lncRNAs from intronic sequences and untranslated regions of coding mRNAs remains a pressing research gap

    Met exon 14 skipping: A case study for the detection of genetic variants in cancer driver genes by deep learning

    Get PDF
    Background: Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable. Methods: We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data. Furthermore, for discovery purposes we also developed a sparsely connected autoencoder to identify uncharacterized MET isoforms. Results: The neural networks had a Met exon 14 skipping detection rate greater than 94% when tested on a manually curated set of 690 TCGA bronchus and lung samples. When globally applied to 2605 TCGA samples, we observed that the majority of false positives was characterized by a blurry coverage of exon 14, but interestingly they share a common coverage peak in the second intron and we speculate that this event could be the transcription signature of a LINE1 (Long Interspersed Nuclear Element 1)-MET (Mesenchymal Epithelial Transition receptor tyrosine kinase) fusion. Conclusions: Taken together, our results indicate that neural networks can be an effective tool to provide a quick classification of pathological transcription events, and sparsely connected autoencoders could represent the basis for the development of an effective discovery tool

    One-class SVM and supervised machine learning models for uncovering associations of non-coding RNA with diseases

    Get PDF
    The study of MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs) and gene interactions may be expected to provide new technologies to serve as valuable biomarkers for personalized treatments of diseases and to aid in the prognosis of certain conditions. These molecules act at the genome level by regulating or suppressing their protein expression functions. The primary challenge in the study of these non-coding molecules involves the necessity of finding labeled data indicating positive and negative interactions when predicting interactions using machine-learning or deep-learning techniques. However, usually we end up with a scenario of unbalanced data or unstable scenarios for using these models. An additional problem involves the extraction of features derived from the binding of these non-coding RNAs and genes. This binding process usually occurs fully or partially in animal genetics, which leads to considerable complexity in studying the process. Therefore, the main objective of the present work is to demonstrate that it is possible to use features extracted for miRNAs sequences in the development of diseases such as breast cancer, breast neoplasms, or if there is any influence with immune genes related to the SARS-COV-2. We performed experiments focusing on the erb-b2 receptor tyrosine kinase 2 (ERBB2) gene involved in breast cancer. For this purpose, we gathered miRNA-mRNA information from the binding between these two genetic molecules. In this part of our research, we applied a One-Class SVM and an Isolation Forest to discriminate between weak interactions, outliers given by the one-class model, and strong interactions that could occur between miRNA and mRNA (messenger RNA). Additionally, this study aimed to differentiate between breast cancer cases and breast neoplasm conditions. In this section we used the information encoded in lncRNAs. The additional feature used in this part was the frequency of k-mers, i.e., small portions of nucleotides, along with the data from the energy released in miRNA folding. The models used to discriminate between these diseases were One-Class SVM, SVM, and Random Forest. In the final part of the present work, we described a subset of probable miRNA binding with SARS-COV-2 RNA, focusing on those miRNAs with a relationship with genes involved in the immunological system of the human body. The models used as classifiers were One-Class SVM, SVM, and Random Forest. The results obtained in the present study are comparable to those found in the current literature and demonstrate the feasibility of using one-class models combined with features from the coupling of non-coding genes or mRNAs and their relationships with forms of breast cancer and viral infections. This work is expected to establish a basis for future avenues of research to apply one-class machine-learning models with feature extraction based on genomic sequences to the study of the relationship between non-coding RNAs and various diseases.School of ComputingPh. D. (Computing

    Deep learning tools are top performers in long non-coding RNA prediction

    Get PDF
    The increasing amount of transcriptomic data has brought to light vast numbers of potential novel RNA transcripts. Accurately distinguishing novel long non-coding RNAs (lncRNAs) from protein-coding messenger RNAs (mRNAs) has challenged bioinformatic tool developers. Most recently, tools implementing deep learning architectures have been developed for this task, with the potential of discovering sequence features and their interactions still not surfaced in current knowledge. We compared the performance of deep learning tools with other predictive tools that are currently used in lncRNA coding potential prediction. A total of 15 tools representing the variety of available methods were investigated. In addition to known annotated transcripts, we also evaluated the use of the tools in actual studies with real-life data. The robustness and scalability of the tools' performance was tested with varying sized test sets and test sets with different proportions of lncRNAs and mRNAs. In addition, the ease-of-use for each tested tool was scored. Deep learning tools were top performers in most metrics and labelled transcripts similarly with each other in the real-life dataset. However, the proportion of lncRNAs and mRNAs in the test sets affected the performance of all tools. Computational resources were utilized differently between the top-ranking tools, thus the nature of the study may affect the decision of choosing one well-performing tool over another. Nonetheless, the results suggest favouring the novel deep learning tools over other tools currently in broad use

    Computational analysis of human genomic variants and lncRNAs from sequence data

    Get PDF
    The high-throughput sequencing technologies have been developed and applied to the human genome studies for nearly 20 years. These technologies have provided numerous research applications and have significantly expanded our knowledge about the human genome. In this thesis, computational methods that utilize sequence data to study human genomic variants and transcripts were evaluated and developed. Indel represents insertion and deletion, which are two types of common genomic variants that are widespread in the human genome. Detecting indels from human genomes is the crucial step for diagnosing indel related genomic disorders and may potentially identify novel indel makers for studying certain diseases. Compared with previous techniques, the high-throughput sequencing technologies, especially the next- generation sequencing (NGS) technology, enable to detect indels accurately and efficiently in wide ranges of genome. In the first part of the thesis, tools with indel calling abilities are evaluated with an assortment of indels and different NGS settings. The results show that the selection of tools and NGS settings impact on indel detection significantly, which provide suggestions for tool selection and future developments. In bioinformatics analysis, an indel’s position can be marked inconsistently on the reference genome, which may result in an indel having different but equivalent representations and cause troubles for downstream. This problem is related to the complex sequence context of the indels, for example, short tandem repeats (STRs), where the same short stretch of nucleotides is amplified. In the second part of the thesis, a novel computational tool VarSCAT was described, which has various functions for annotating the sequence context of variants, including ambiguous positions, STRs, and other sequence context features. Analysis of several high- confidence human variant sets with VarSCAT reveals that a large number of genomic variants, especially indels, have sequence features associated with STRs. In the human genome, not all genes and their transcripts are translated into proteins. Long non-coding ribonucleic acid (lncRNA) is a typical example. Sequence recognition built with machine learning models have improved significantly in recent years. In the last part of the thesis, several machine learning-based lncRNA prediction tools were evaluated on their predictions for coding potentiality of transcripts. The results suggest that tools based on deep learning identify lncRNAs best. Ihmisen genomivarianttien ja lncRNA:iden laskennallinen analyysi sekvenssiaineistosta Korkean suorituskyvyn sekvensointiteknologioita on kehitetty ja sovellettu ihmisen genomitutkimuksiin lähes 20 vuoden ajan. Nämä teknologiat ovat mahdollistaneet ihmisen genomin laaja-alaisen tutkimisen ja lisänneet merkittävästi tietoamme siitä. Tässä väitöstyössä arvioitiin ja kehitettiin sekvenssiaineistoa hyödyntäviä laskennallisia menetelmiä ihmisen genomivarianttien sekä transkriptien tutkimiseen. Indeli on yhteisnimitys lisäys- eli insertio-varianteille ja häviämä- eli deleetio-varianteille, joita esiintyy koko genomin alueella. Indelien tunnistaminen on ratkaisevaa geneettisten poikkeavuuksien diagnosoinnissa ja eri sairauksiin liittyvien uusien indeli-markkereiden löytämisessä. Aiempiin teknologioihin verrattuna korkean suorituskyvyn sekvensointiteknologiat, erityisesti seuraavan sukupolven sekvensointi (NGS) mahdollistavat indelien havaitsemisen tarkemmin ja tehokkaammin laajemmilta genomialueilta. Väitöstyön ensimmäisessä osassa indelien kutsumiseen tarkoitettuja laskentatyökaluja arvioitiin käyttäen laajaa valikoimaa indeleitä ja erilaisia NGS-asetuksia. Tulokset osoittivat, että työkalujen valinta ja NGS-asetukset vaikuttivat indelien tunnistukseen merkittävästi ja siten ne voivat ohjata työkalujen valinnassa ja kehitystyössä. Bioinformatiivisessa analyysissä saman indelin sijainti voidaan merkitä eri kohtiin referenssigenomia, joka voi aiheuttaa ongelmia loppupään analyysiin, kuten indeli-kutsujen arviointiin. Tämä ongelma liittyy sekvenssikontekstiin, koska variantit voivat sijoittua lyhyille perättäisille tandem-toistojaksoille (STR), jossa sama lyhyt nukleotidijakso on monistunut. Väitöstyön toisessa osassa kehitettiin laskentatyökalu VarSCAT, jossa on eri toimintoja, mm. monitulkintaisten sijaintitietojen, vierekkäisten alueiden ja STR-alueiden tarkasteluun. Luotettaviksi arvioitujen ihmisen varianttiaineistojen analyysi VarSCAT-työkalulla paljasti, että monien geneettisten varianttien ja erityisesti indelien ominaisuudet liittyvät STR-alueisiin. Kaikkia ihmisen geenejä ja niiden geenituotteita, kuten esimerkiksi ei-koodaavia RNA:ta (lncRNA) ei käännetä proteiiniksi. Koneoppimismenetelmissä ja sekvenssitunnistuksessa on tapahtunut huomattavaa parannusta viime vuosina. Väitöstyön viimeisessä osassa arvioitiin useiden koneoppimiseen perustuvien lncRNA-ennustustyökalujen ennusteita. Tulokset viittaavat siihen, että syväoppimiseen perustuvat työkalut tunnistavat lncRNA:t parhaiten

    Deciphering the Hidden Language of Long Non-Coding RNAs: Recent Findings and Challenges

    Get PDF
    Long non-coding RNAs (lncRNAs) are crucial non-coding RNA genes involved in diverse cellular processes. However, the mechanisms underlying their emergence and functions remain incompletely understood. A major challenge in the field is to understand how lncRNA sequences affect their function. In recent years, comprehensive genetic and genomic studies have started to unfold the function of lncRNAs through their interactions, cellular organization, and structure. This comprehensive review delves into the intricate interplay between lncRNA sequences and their functional implications. Unlike other RNA types, lncRNAs exhibit a complex syntax, employing diverse functional elements such as protein recognition and miRNA binding sites, repeat elements, secondary structures, and non-canonical interactions with RNA and DNA binding proteins. By unraveling the hidden language that governs the function and classification of lncRNAs, we aim to shed light on the underlying principles shaping their diverse functions. Through a detailed examination of the intricate relationship between lncRNA sequences and their biological effects, this review offers insights into the sequences underlying lncRNA functionality. Understanding the unique sequence characteristics and functional elements employed by lncRNAs has the potential to advance our knowledge of gene regulation and cellular processes, providing a foundation for the development of novel therapeutic strategies and targeted interventions

    Combining DNA Methylation with Deep Learning Improves Sensitivity and Accuracy of Eukaryotic Genome Annotation

    Get PDF
    Thesis (Ph.D.) - Indiana University, School of Informatics, Computing, and Engineering, 2020The genome assembly process has significantly decreased in computational complexity since the advent of third-generation long-read technologies. However, genome annotations still require significant manual effort from scientists to produce trust-worthy annotations required for most bioinformatic analyses. Current methods for automatic eukaryotic annotation rely on sequence homology, structure, or repeat detection, and each method requires a separate tool, making the workflow for a final product a complex ensemble. Beyond the nucleotide sequence, one important component of genetic architecture is the presence of epigenetic marks, including DNA methylation. However, no automatic annotation tools currently use this valuable information. As methylation data becomes more widely available from nanopore sequencing technology, tools that take advantage of patterns in this data will be in demand. The goal of this dissertation was to improve the annotation process by developing and training a recurrent neural network (RNN) on trusted annotations to recognize multiple classes of elements from both the reference sequence and DNA methylation. We found that our proposed tool, RNNotate, detected fewer coding elements than GlimmerHMM and Augustus, but those predictions were more often correct. When predicting transposable elements, RNNotate was more accurate than both Repeat-Masker and RepeatScout. Additionally, we found that RNNotate was significantly less sensitive when trained and run without DNA methylation, validating our hypothesis. To our best knowledge, we are not only the first group to use recurrent neural networks for eukaryotic genome annotation, but we also innovated in the data space by utilizing DNA methylation patterns for prediction
    corecore