
COMBINING DNA METHYLATION WITH DEEP

LEARNING IMPROVES SENSITIVITY AND ACCURACY

OF EUKARYOTIC GENOME ANNOTATION

Gregory J. Zynda

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Luddy School of Informatics, Computing, and Engineering

Indiana University

April 2020

Accepted by the Graduate Faculty, Indiana University, in partial

fulfillment of the requirements of the degree of Doctor of Philosophy.

Doctoral Committee

Mehmet Dalkilic, Ph.D.

Haixu Tang, Ph.D.

Yuzhen Ye, Ph.D.

Donald Williamson, Ph.D.

Matthew W. Vaughn, Ph.D.

April 7th, 2020

ii

Copyright c© 2020

Gregory J. Zynda

iii

This work is dedicated to

My wife, Mel,

for her love and support

iv

ACKNOWLEDGEMENTS

I am grateful to my advisor, Mehmet Dalkilic, for seeing potential in an eager un-

dergrad, who was passionate about bioinformatics, but without direction. He allowed

me to explore the field, discover my expertise, and reach this achievement.

I would also like to thank my committee members, Yuzhen Ye and Donald Williamson,

for their valuable time and feedback. In particular, Haixu Tang, who exposed me to

real-world bioinformatics at the CGB, and Matthew Vaughn, who gave me a home

at TACC to continue my research and contribute to his.

I am especially grateful to my wife, Mel, who encouraged and supported me

throughout this journey. When problems arose, my friends, Robert, Steve, and James

were always willing to listen and help me work through them. Finally, I want to thank

my parents, Laura and Greg, for their love, support, and genuine interest.

v

Gregory J. Zynda

Combining DNA methylation with deep learning improves sensitivity and accuracy

of eukaryotic genome annotation

The genome assembly process has significantly decreased in computational com-

plexity since the advent of third-generation long-read technologies. However, genome

annotations still require significant manual effort from scientists to produce trust-

worthy annotations required for most bioinformatic analyses. Current methods for

automatic eukaryotic annotation rely on sequence homology, structure, or repeat de-

tection, and each method requires a separate tool, making the workflow for a final

product a complex ensemble.

Beyond the nucleotide sequence, one important component of genetic architecture

is the presence of epigenetic marks, including DNA methylation. However, no auto-

matic annotation tools currently use this valuable information. As methylation data

becomes more widely available from nanopore sequencing technology, tools that take

advantage of patterns in this data will be in demand.

The goal of this dissertation was to improve the annotation process by developing

and training a recurrent neural network (RNN) on trusted annotations to recognize

multiple classes of elements from both the reference sequence and DNA methylation.

We found that our proposed tool, RNNotate, detected fewer coding elements than

GlimmerHMM and Augustus, but those predictions were more often correct. When

predicting transposable elements, RNNotate was more accurate than both Repeat-

Masker and RepeatScout. Additionally, we found that RNNotate was significantly

less sensitive when trained and run without DNA methylation, validating our hypoth-

esis. To our best knowledge, we are not only the first group to use recurrent neural

vi

networks for eukaryotic genome annotation, but we also innovated in the data space

by utilizing DNA methylation patterns for prediction.

Mehmet Dalkilic, Ph.D.

Haixu Tang, Ph.D.

Matthew W. Vaughn, Ph.D.

Donald Williamson, Ph.D.

Yuzhen Ye, Ph.D.

vii

CONTENTS

Acknowledgements v

Abstract vi

Abbreviations xxiv

1. Contribution 1

2. Introduction 3

2.1 Genome annotation . 4

2.2 Computational annotation . 5

2.2.1 Annotation of repetitive elements 5

2.2.2 Annotation of genes . 7

2.2.3 Ensemble methods for annotation 8

2.3 Sequence tagging with machine learning 9

3. Methodology 11

3.1 Collecting requirements and building a specification 11

3.1.1 Input Specification - Unclassified 11

3.1.2 Output Specification - Training and Predictions 13

3.1.3 Data Shape - Input and Output 16

viii

3.2 Developing data access interfaces . 19

3.2.1 FASTA access . 19

3.2.2 Methylation alignment and access 20

3.2.3 Annotation access . 21

3.3 Developing a flexible model . 22

3.3.1 Convolutional section . 23

3.3.2 Recurrent section . 23

3.3.3 Hidden section . 26

3.3.4 Loss functions . 26

3.4 Data traversal methods . 27

3.4.1 Independent traversal . 28

3.4.2 Stateful traversal . 29

3.4.3 Stranded traversal . 29

3.5 Aggregation and decoding of output 32

3.6 Data sources . 34

3.7 Determining optimal model architecture 34

3.7.1 Collecting local error metrics 35

3.7.2 Hyperparameter sweep of model 35

3.8 Final training . 36

3.9 Evaluation metrics . 37

4. Results and Discussion 39

4.1 Initial results . 39

4.2 Hyperparameter sweep . 40

ix

4.3 Long training . 44

4.4 Base level evaluation of transcripts 47

4.4.1 Base level performance of exon and gene predictions 48

4.4.2 Base level performance of mRNA predictions 50

4.4.3 Base level performance of CDS predictions 52

4.4.4 Overall base level performance 52

4.5 Base level evaluation of transposable elements 53

4.6 Region level evaluation of transcripts 55

4.6.1 Characteristics of transcription regions 58

4.7 Region level evaluation of transposable elements 59

4.8 Impact of DNA methylation on prediction 62

4.9 Investigating model performance . 65

4.9.1 Regional exon methylation . 67

4.9.2 Regional mRNA methylation 69

4.9.3 Regional CDS methylation . 69

4.9.4 Regional gene methylation . 71

4.9.5 Performance conclusions from methylation 71

4.10 Runtime performance . 77

4.11 Issues limiting portability . 78

5. Future Work 80

5.1 Removing strand specific categories from output 80

5.2 Improving data variety . 80

5.3 Optimizing hyperparameter search 81

x

5.4 K-mers to improve the prediction of coding features 82

5.5 Incorporating additional data dimensions 82

6. Conclusions 84

7. Appendix 86

7.1 Software . 86

7.2 Data . 86

8. Additional Work 88

8.1 Feature Frequency Profiles for Automatic Sample Identification using
PySpark . 88

8.1.1 Abstract . 88

8.1.2 Introduction . 89

8.1.3 Related work . 91

8.1.4 Spark For Genomics . 92

8.1.5 Approach . 94

8.1.6 Classifying Reads . 96

8.1.7 Methodology . 97

8.1.8 Results . 98

8.1.9 Conclusion . 99

8.1.10 Availability . 101

8.2 Repliscan: a tool for classifying replication timing regions 101

8.2.1 Abstract . 101

8.2.2 Background . 102

8.2.3 Implementation . 105

xi

8.2.4 Results and Discussion . 122

8.2.5 Conclusions . 131

8.2.6 Availability . 132

Bibliography 132

Curriculum Vitae

xii

LIST OF TABLES

3.1 The numerical nucleotide mapping code for encoding sequences into a
numerical format for use by model. 12

3.2 RNNotate input specification detailing the order, type, and range for
each dimension of the input. 13

3.3 Annotation features type tracked by RNNotate. The first two columns
denote the feature’s strand-specific indices, the third column tracks
the data type, and the fourth column provides a description. The
final two rows enable sub-classification levels of TE related features
(bold), which are numerical and unstranded. 15

3.4 Numerical codes used in index 64 of output specification (Table 3.3)
for collected TE orders. 17

3.5 Numerical codes used in index 65 of output specification (Table 3.3)
for collected TE superfamilies. 18

3.6 Features predicted by RNNotate when low-frequency features are ex-
cluded. Bold features can still allow the prediction of TE sub-classifications. 19

3.7 Size comparison between normal and Meth5py files. Original size in
megabytes (MB), Meth5py size in MB, and space savings in percent. 21

3.8 Strengths and weaknesses of different ways to process batches (Inde-
pendent, Stateful) and sequences (Forward, Bidirectional). 25

3.9 Example independent classifications. Given category counts at 3 in-
dices, output classifications are demonstrated for two thresholds (t):
0.5 and 0.4. 32

xiii

3.10 Final output GFF3 specification in tabular format. Each row repre-
sents a column in the GFF3 tab-delimited format. Columns 1, 4, 5,
and 7 describe the location of a prediction. Column 2 designates the
source of the prediction. Column 3 is the feature type, and corre-
sponds to a category in Table 3.3. Columns 6 and 8 correspond to
score and phase, which are not used, and left empty with “.”. 33

3.11 Architecture parameter permutations for testing. 36

4.1 Hyperparameter multiple regression on validation MSE at epoch 20.
Bold P-values are significant (P ¡ 0.05). 43

4.2 The top 5 models at epoch 20, sorted by median validation MSE and
median validation IQR. 43

4.3 Corresponding median mean squared error (MSE) and interquartile
range (IQR) for both Chromosome 1 (Training) and Chromosome 3
(Validation). Data was sorted by validation MSE and IQR. 45

4.4 Base level performance measures. True positive (TP), false positive
(FP), true negative (TN), false negative (FN) counts were calculated
for each tool, feature type, and strand combination in megabases. Sen-
sitivity (SENS), specificity (SPEC), and precision (PREC) were also
calculated. Glimmer stands for GlimmerHMM in this table. 49

4.5 Average of base-level sensitivity (SENS), specificity (SPEC), and pre-
cision (PREC) across features by tool and strand. Bold values repre-
sent the best tool for each performance/strand (column) category. . . 53

4.6 Base level performance measures for TEs. True positive (TP), false
positive (FP), true negative (TN), false negative (FN) counts were
calculated for each tool and strand combination in megabases. Sen-
sitivity (SENS), specificity (SPEC), precision (PREC), and accuracy
(ACC) were also calculated, with top values in bold for each strand. . 54

4.7 Region level performance of transcription elements. True positive
(TP), false positive (FP), and false negative (FN) counts were cal-
culated for each tool, feature type, and strand combination in total
regions. Sensitivity (SENS) and precision (PREC) were also calcu-
lated based on region counts. 57

xiv

4.8 Region level performance of transposable elements. True positive
(TP), false positive (FP), and false negative (FN) counts were cal-
culated for each tool, feature type, and strand combination in total
regions. Sensitivity (SENS) and precision (PREC) were also calcu-
lated based on region counts. 60

4.9 Training and validation error after training without methylation. Cor-
responding median mean squared error (MSE) and interquartile range
(IQR) for both Chromosome 1 (Training) and Chromosome 3 (Vali-
dation). Data was sorted by validation MSE, and the best (lowest) 10
values were kept. 62

4.10 Base level performance measures of RNNotate. True positive (TP),
false positive (FP), true negative (TN), false negative (FN) counts
were calculated for each model version, feature type, and strand com-
bination in megabases. Sensitivity (SENS), specificity (SPEC), and
precision (PREC) were also calculated with top values in bold. All
comparisons were unstranded made against the Chromosome 3 of the
Araport11 annotation. 64

4.11 t-test of Transcription methylation differences. Tabulation of MSE
values from each methylation context. For each category of MSE val-
ues (TP-FP and TP-FN), a one-tailed t-test was performed to compare
methylation differences of features originating from the reverse strand
(-) and the forward strand (+). 75

4.12 t-test of TE methylation differences. Tabulation of MSE values from
each methylation context. For each category of MSE values (TP-FP
and TP-FN), a one-tailed t-test was performed to compare methylation
differences of features originating from the reverse strand (-) and the
forward strand (+). 76

4.13 Runtime and resource requirements of tools. For each tool, the wall
clock runtime was recorded in “minutes:seconds” along with the max-
imum memory usage in gigabytes (GB). 77

8.1 Accuracy of read classification from sparkmer and Kraken. 99

8.2 Example coverage values to demonstrate replication timing classification.120

xv

LIST OF FIGURES

2.1 Growth of “Complete” virus (green), prokaryote (gold), and eukaryote
(blue) genomes at NCBI over time by year. 4

3.1 Genome browser view of interleaved TEs in the Araport11 annotation. 16

3.2 The performance of querying annotation data for increasing region
sizes was compared between HDF5 (blue) and the interval tree format
(yellow). 22

3.3 Illustration of model architecture possibilities. Data flows from the
inputs at the bottom upward to the outputs at the top. The optional
convolutional layer with “same” padding and variable width (3 shown)
is represented in orange. The optional stateful recurrent states are
represented by the blue regions flanking the purple recurrent section.
The optional bidirectional layer is represented by the semi-transparent
flow in the purple recurrent layer. The configurable hidden layers are
represented in green. The final output layer is represented in yellow. 24

3.4 Starting from comparing a binary matrix to itself, a percentage of total
values are randomly changed to 0 or 1, and compared to the original
with the binary cross-entropy (blue) and mean squared error (gold)
loss functions. 27

3.5 Illustration of independent batch traversal. The different sequence
colors are only used to visually separate subsequences. Batches can
contain any number of sequences. 28

3.6 Illustration of stateful batch traversal. Below the chromosome line, is
an example of online stateful learning with one sequence per batch.
The chromosome in the Batched Learning example is processed with
a batch size of 2, so it is traversed in 2 subsequences with 50% overlap. 30

xvi

3.7 The “Genomic Data” row illustrates both stranded genomic data, and
annotation features. The “Traversal Coordinates” row illustrates dis-
crete sections of data. The “Unstranded Traversal” row demonstrates
what information is present in each data batch. The “Stranded Traver-
sal” row demonstrates how a chromosome is processed and which
strands of annotation data are present. 31

3.8 Left: The comparison figure will be 2-D with half of the parameters
represented on the y-axis, and the other half represented on the x-
axis. Right: Each circle will represent a model, and poor performing
models with large IQRs or medians will blend in with the background
by being small and similar to the background. 37

4.1 Hyperparameter comparison at epoch 5. Model parameters are repre-
sented on the bordering tables. Model error represented by circle color,
where light circles have high error and dark circles have low error. A
model’s error distribution is inversely represented by each circle’s area,
where a large circle has a tight IQR and small circles have a large IQR.
The top 5 models are annotated with their rank and a red circle. . . 41

4.2 Hyperparameter comparison at epoch 20. Model parameters are rep-
resented on the bordering tables. Model error represented by circle
color, where light circles have high error and dark circles have low
error. A model’s error distribution is inversely represented by each
circle’s area, where a large circle has a tight IQR and small circles
have a large IQR. The top 5 models are annotated with their rank and
a red circle. 42

4.3 Error during long training. The top two plots show error rate along
the training and testing chromosomes. Initial epochs start in blue and
transition to red for late epochs. The epoch with the lowest median
test MSE is plotted in gold. The bottom plot contrasts the training
(blue) and testing (red) MSE distributions of across epochs. 46

4.4 Base level performance of exons and genes. Left - Venn diagram show-
ing the logical relations between predictions of Araport11 Chromosome
3 exons by RNNotate and Augustus. Right - Venn diagram showing
the logical relations between exon predictions of Araport11 Chromo-
some 3 genes. 50

xvii

4.5 Base level performance of mRNA. Top-Left - Venn diagram showing
the logical relations between predictions of Araport11 Chromosome
3 mRNA by RNNotate and GlimmerHMM from the forward strand.
Top-Right - Logical relations between mRNA predictions by RNNotate
and GlimmerHMM from the reverse strand. Bottom-Center - Logical
relations between mRNA predictions by RNNotate and GlimmerHMM
from both strands. 51

4.6 Reciprocal overlap of CDS features. Histogram of reciprocal overlap
for each predicted CDS feature from each of the 3 tools against Ara-
port11 CDS regions. The vertical red line represents the 75% threshold
used for “true-positive” classifications. 56

4.7 Descriptive comparison of CDS predictions. Left figure shows the nu-
cleotide proportion distributions for CDS predictions on either strand
by tool (RNNotate, GlimmerHMM, Augustus) or reference (Araport11).
Right figure shows the sqrt(length) distributions of CDS predictions
on either strand by tool or reference. 59

4.8 Reciprocal overlap of transposable elements. Histogram of reciprocal
overlap for each predicted TE from each of the 3 tools against TEs in
the Araport11 annotation. The vertical red line represents the 75%
threshold used for true-positive classifications. 60

4.9 Descriptive comparison of TE predictions. Left figure shows the nu-
cleotide proportion distributions for TE predictions on either strand
by tool (RNNotate, RepeatMasker, RepeatScout) or reference (Ara-
port11). Right figure shows the sqrt(length) distributions of CDS pre-
dictions on either strand by tool or reference. 61

4.10 Error during long training without methylation. The top two plots
show error rate along the training and testing chromosomes. Initial
epochs start in blue and transition to red for late epochs. The epoch
with the lowest median test MSE is plotted in gold. The bottom plot
contrasts the training (blue) and validation (red) MSE distributions
of across epochs. 63

4.11 Base level logical relations between Araport11 Chromosome 3 features
and bases predicted by RNNotate and RNNotate without methylation
(w/o Methylation). 66

xviii

4.12 Genome browser view of Araport11 gene AT3G19670.2 (blue), and its
prediction by Augustus (green), GlimmerHMM (orange), RNNotate
(red), and RNNotate without methylation (purple). 67

4.13 Methylation around exon predictions. Methylation frequencies by
strand and context (CG, CHG, CHH) for 3 regions: 20 averaged bins
1kb upstream from feature, 20 averaged bins for feature, and 20 aver-
aged bins 1kb downstream from feature. The gray vertical lines serve
to visually separate each region. True-positive predictions are repre-
sented by “both” (green), False-positive predictions are represented
by “RNNotate” orange, and False-negatives are represented by “Ara-
port11” (blue). 68

4.14 Methylation around mRNA predictions. Methylation frequencies by
strand and context (CG, CHG, CHH) for 3 regions: 20 averaged bins
1kb upstream from feature, 20 averaged bins for feature, and 20 aver-
aged bins 1kb downstream from feature. The gray vertical lines serve
to visually separate each region. True-positive predictions are repre-
sented by “both” (green), False-positive predictions are represented
by “RNNotate” orange, and False-negatives are represented by “Ara-
port11” (blue). 70

4.15 Methylation around CDS predictions. Methylation frequencies by
strand and context (CG, CHG, CHH) for 3 regions: 20 averaged bins
1kb upstream from feature, 20 averaged bins for feature, and 20 aver-
aged bins 1kb downstream from feature. The gray vertical lines serve
to visually separate each region. True-positive predictions are repre-
sented by “both” (green), False-positive predictions are represented
by “RNNotate” orange, and False-negatives are represented by “Ara-
port11” (blue). 72

4.16 Methylation around gene predictions. Methylation frequencies by strand
and context (CG, CHG, CHH) for 3 regions: 20 averaged bins 1kb up-
stream from feature, 20 averaged bins for feature, and 20 averaged
bins 1kb downstream from feature. The gray vertical lines serve to vi-
sually separate each region. True-positive predictions are represented
by “both” (green), False-positive predictions are represented by “RN-
Notate” orange, and False-negatives are represented by “Araport11”
(blue). 73

xix

4.17 Effect of model architecture on memory consumption by batch. The
left figure shows total memory usage after each training batch for three
different model architectures. The right figure shows the memory in-
crease after each training batch for three different model architectures.
In the figure legends, “lstm=1,2” designates 1 or 2 LSTM layers and
“td=1,2” designates 1 or 2 time-distributed hidden layers. 78

8.1 Number of complete genomes archived by NCBI genome. 90

8.2 PySpark workflow for reference k-mer counting. 93

8.3 PySpark workflow for classifying input reads. 95

8.4 Histogram illustrating the default partitioning of the reads RDD after
k-mer calculation. 97

8.5 Runtime of sparkmer on increasing numbers of executors. 100

8.6 Overview of the cell cycle. Cell division takes place in two stages:
interphase and mitosis. Interphase is when a cell copies its genome in
preparation to physically divide during mitosis. Interphase starts with
cell growth and preparation for DNA synthesis in Gap (G1). After G1,
DNA is replicated in regions during the Synthesis (S) phase. The cell
then transitions into a second growth phase - Gap 2 (G2). When the
cell has finished growing, the cell divides into two daughter cells in
Mitosis (M). 102

8.7 Repliscan workflow. Diagram of the preliminary alignment and quality
control methods at the top, and the Repliscan methods at the bottom. 107

8.8 Replication signal and sampling uncertainty. The top two graphs show
raw and windowed replication signal across A. thaliana chromosome 3.
The bottom two graphs show raw and windowed replications signals
at 18.5-19.0 megabases from the top view as represented by the gray
selection area. The red bars represent sampling uncertainty (

√
λ for

Poisson distributions). 108

8.9 Normalized and transformed replication signals. Violin plots showing
how the normalized and aggregated A. thaliana chromosome 3 repli-
cation signals from G1, early (E), middle (M), and late (L) S-phase
data was bounded from [0,∞). We separately experimented with with
log transforms to make the distributions more normal-like, and square
root transforms to stabilize the spread. 110

xx

8.10 Outlying coverage in chromosome 3. Based on the normal distribution
fit (yellow) to the log transformed coverage distribution of early (E),
middle (M), and late (L) S-phase data, windows that fall in the tails
shaded in gray are removed from the analysis. 113

8.11 Smoothing comparisons. A - Noise (green) is added to an original
signal (purple), and then smoothed with a 4 unit (40 point) moving
average (orange), a 5 unit (25% subset) LOESS (red), and a level 3
Haar wavelet (blue). Both the moving average and LOESS spread out
the peaks and artificially lowered signal amplitudes, while the Haar
wavelet keeps bounds and peak heights close to the original. B - The
A. thaliana middle S-phase normalized signal (green), is smoothed
with a moving average (orange), LOESS (red), and the level 3 Haar
wavelet (blue) for comparison. 116

8.12 Replication threshold from coverage. The upper plot shows how much
of A. thaliana chromosome 3 will be kept for downstream analysis as a
function of the signal threshold. The lower plot shows the chromosome
coverage differential as a function of the threshold. The vertical red
line in each plot marks the optimal threshold of 0.92. 120

8.13 Comparison of A. thaliana and Z. mays segmentation. Following the
segmentation legend on the right, A. thaliana chromosome 3 (top) and
Z. mays chromosome 10 (bottom) have been classified into segmenta-
tion regions by Repliscan. The large white regions in the A. thaliana
figure are unclassified regions due to high or very low signal. Below
each replication segmentation is a depiction of the chromosome, with
the centromere location marked in yellow [112], [113]. 123

8.14 Composition of replication segmentation. The segment composition
shows that replication in A. thaliana is skewed towards early S repli-
cation, while Z. mays has an even distribution across early, middle,
and late S. We can also see that the non-sequential early-late (EL) and
early-middle-late (EML) classifications comprise a very small propor-
tion of the classified segments in both cases. 124

8.15 Segment size distribution. Boxplots for every combination of replica-
tion time, illustrating the distribution of segment sizes. Early (E) and
mid-late (ML) S were largest in A. thaliana, while early and late (L)
were largest in Z. mays. 125

xxi

8.16 Segmentation differences in downsampled data. After downsampling
the A. thaliana data, the accuracy of median (top) and sum (bot-
tom) aggregation, and outlier detection using log gamma, none (NA),
normal, square root gamma, and whiskers. Inflection points in the
differences are labeled with black diamonds. 126

8.17 Unconverged log gamma fit. Most of the data is removed when the
iterative fitting function fails to converge with the log transformed
gamma distribution. Instances like this produce the spikes of differ-
ences in Figure 8.16. 127

8.18 Human fibroblast Repli-seq. 50 kilobase sliding window replication sig-
nals (blue) reproduced from Hansen et al., published “BJ-G1 segment”
regions, and 50 kilobase Repliscan results (bottom). 129

8.19 D. melanogaster KC167 Repli-Seq. Reproduction of the LOESS smoothed
continuous replication profile (Lubelsky LOESS), and the thresholded,
discrete early (blue) and late timing domains (Lubelsky > 0.5) from
original Lubelsky et al. study. Repliscan segmentation results with
Early (Early, Early-Mid) and Late (Mid-Late, Late) replication (2S),
and Early, Early-Mid, Mid-Late, and Late replication (4S) configura-
tion with 10 kilobase windows. 130

xxii

LIST OF LISTINGS

4.1 Run command for long training session 44
4.2 Command for running GlimmerHMM 47
4.3 Command for running Augustus . 47
4.4 Command for running RepeatMasker 53
4.5 Command for running RepeatScout 53

xxiii

ABBREVIATIONS

NCBI: National Center for Biotechnology Information

RNN: Recurrent neural network

CNN: Convolutional neural network

LSTM: Long short-term memory

GRU: Gated recurrent unit

CPU: Central processing unit

GPU: Graphics processing unit

CG: When a cytosine (C) nucleotide is sequentially followed by a guanine (G) nu-
cleotide in the 5’ to 3’ direction.

CHG: When a cytosine (C) nucleotide is sequentially followed by any nucleotide
except guanine (H = C,T,A), which is then followed by a guanine (G) nucleotide
in the 5’ to 3’ direction.

CHH: When a cytosine (C) nucleotide is sequentially followed by any two nucleotides
except guanine (H = C,T,A) in the 5’ to 3’ direction.

CDS: Coding DNA sequence

TE: Transposable element

DNA: Deoxyribonucleic acid

RNA: Ribonucleic acid

RNA-seq: RNA sequencing

CHIP-seq: Chromatin Immunoprecipitation Sequencing

xxiv

SAM: Sequence Alignment/Map file format

BAM: Binary version of SAM file format

TimEx: Time of replication

Repli-seq: Replication label incorporation sequencing

Edu: 5-Ethynyl-2’-deoxyuridine

BrdU: 5-Bromo-2’-deoxyuridine

NGS: Next generation sequencing

SRA: Sequence read archive

G1: Gap 1 of cell division

G2: Gap 2 of cell division

S: Synthesis phase of cell division

E: Early S-phase replication

M: Middle S-phase replication

L: Late S-phase replication

WB: Whisker bounds

xxv

1. Contribution

The genome assembly process has significantly decreased in computational com-

plexity since the advent of third-generation long-read technologies. However, genome

annotations still require significant manual effort from scientists to produce trust-

worthy annotations required for, most bioinformatic analyses. Current methods for

automatic eukaryotic annotation rely on sequence homology, structure, or repeat de-

tection, and each method requires a separate tool, making the workflow for a final

product a complex ensemble. The goal of this dissertation was to improve the anno-

tation process by training a recurrent neural network (RNN) on trusted annotations

to recognize multiple classes of elements.

While deep neural network tools exist for making annotation predictions on prokary-

otic genomes [1], none exist for eukaryotic genomes. Such tools have been infeasible

due to the greater size and complexity of eukaryotic genomes. which are both more

complex and an order of magnitude larger. One important component of genetic ar-

chitecture is the presence of epigenetic marks, including DNA methylation. However,

no automatic annotation tools currently use this valuable information. As methyla-

tion data becomes more widely available from nanopore sequencing technology [2],

[3], tools that take advantage of patterns in this data will be in demand. This disser-

tation evaluated the effect of including DNA methylation as an annotation indicator,

1

and found that it increased prediction sensitivity of all element categories.

This culminating annotation tool, RNNotate, was developed to support both

Python 2 and 3, and execution on CPUs and GPUs. Continuous and high-coverage

testing during development ensured all output was consistent as features were added

and functions were optimized. RNNotate also supports distributed execution with

Horovod [4] to further reduce the time to solution for large eukaryotic genomes and

to efficiently utilize modern high-performance computing clusters. RNNotate is cur-

rently available in a documented and open software repository and through the conda

package manager for other researchers to easily deploy to either reproduce the findings

of this dissertation or perform new analyses of their own.

In addition to these direct outcomes, this work has made several peripheral contri-

butions to the bioinformatics community. First, the BSMAP methylation caller was

optimized and parallelized to enable faster analysis. Second, programming interfaces

for randomly accessing methylation data were created and published. Third, a nu-

merical specification and programming interfaces for reading and writing annotations

numerically was created. Lastly, a well documented, flexible framework for analyzing

genomic data with recurrent neural networks was developed, validated on multiple

types of hardware, and published for other researchers to create their own models

and investigate their own hypotheses.

2

2. Introduction

For a novel organism to be studied genetically, the genome of that organism must

be first assembled and then annotated. A genome assembly is a complete and con-

tiguous picture of an organism’s genome, ideally comprised of whole chromosome

molecules. After assembly is complete, researchers can then discover which regions

of DNA encode for proteins and other elements. This identification process and cul-

minating result is genome annotation.

While most biological research is dependent on both the genome assembly and

annotation to serve as reference points for making comparisons, the annotation, in

particular, maps out which regions are functionally significant to the biological pro-

cesses in the organism. An annotation is created by comparing the assembly sequence

to known sequences of repeats and genes from related organisms. There are auto-

mated tools for performing this search, but manual intervention still results in higher

fidelity, making it preferred. The manual process is extremely expensive in terms of

time and expertise, so annotations are often improved over time as experts study and

contribute to them.

3

2.1 Genome annotation

Similar to Moore’s law, sequencing technology improves year after year, and third-

generation long read technologies enable the assembly of eukaryotic genomes in as

little as two days [5], [6]. This exponential trend can be measured by tracking the

number of completed genomes archived at the National Center for Biotechnology

Information (NCBI) as shown in Figure 2.1 [7]. Expanding our genome library is

still relevant because genomes from new organisms expose us to novel and diverse

biological functions and also allows us to observe more evolutionary patterns in greater

detail.

Fig. 2.1: Growth of “Complete” virus (green), prokaryote (gold), and eukaryote (blue)
genomes at NCBI over time by year.

When an organism is studied at the genetic level, there are usually two prereq-

uisites: an assembled reference genome of a trusted quality [8], and a corresponding

4

annotation. Genome annotations are generally produced in two stages: the compu-

tational phase and then the manual annotation phase [9]. While the new long read

technologies are accelerating genome assembly, the process for annotating genomes

has fallen behind due to complicated computational pipelines and the manual curation

bottleneck.

The computation phase attempts to make both intrinsic and extrinsic predic-

tions of both repetitive elements and protein coding genes. The manual annotation

phase was traditionally done by hand, where humans would review evidence for each

predicted gene to decide on structures, but this is becoming more automated to in-

corporate more information and accelerate the process as software becomes more

sophisticated and more data becomes available [10].

2.2 Computational annotation

In the computation phase, the annotation pipelines for both NCBI [11] and En-

sembl [12] first detect and filter out repetitive elements. Masking, or removing,

these repetitive subsequences reduces the overall complexity of the reference and

prevents coding repeats like retrotransposons from confounding gene detection. Sec-

ond, genes are predicted through numerous methods and then functionally annotated

from databases of curated genes from other organisms.

2.2.1 Annotation of repetitive elements

Transposable elements (TEs) are DNA sequences that can “jump” and replicate

throughout their host genome [13]. Their repetitive and prolific presence increases the

5

difficulty of genome assembly [14], sequence alignment [15], and genome annotation

[16]. The detection and classification of TEs is crucial since they comprise significant

portions of eukaryotic genomes [17] and their transposition can induce large-scale

genome rearrangement. Current methods to identify repetitive and transposable el-

ements can be categorized into three main categories: homology search, structure

recognition, and repeat discovery.

2.2.1.1 Homology search Homology search methods are extrinsic, meaning they

depend on databases of prior information to make predictions. Tools like TESeeker

[18] and RepeatMasker [15] require external databases of known repetitive elements

in order to recognize those present in a genome. Since this method relies on known

and curated data, it can lead to precise results. However, the dependence on prior

information makes the use of this class of tool inappropriate on new genomes which

may contain many novel families of transposable elements.

2.2.1.2 Structure recognition Structure recognition scans a genome for coding

sequences structured like specific types of transposable elements (DNA-only transpo-

son, retroviral-like retrotransposons, and non-retroviral retrotransposons) [19]. For

example, LTR STRUC scans a genome and recognizes a coding pattern specific to

LTR retrotransposons [20]. Since structure recognition tools identify transposable el-

ements based on specific patterns or products to enable mobility, they are suitable for

application to novel genomes. However, since they rely on recognizing the open read-

ing frames of coding products, genes are often incorrectly reported as transposable

elements.

6

2.2.1.3 Repeat discovery Repeat discovery methods like those of RepeatScout

[16] detect highly repeated novel transposable elements based on frequency and re-

peated patterns. This method is best suited for the de novo identification of transpos-

able elements in novel genomes since classifications are based on outlying patterns in

the input genome. While generally applicable, this method is susceptible to reporting

false-positives from non-transposing repeats (tandem repeats, segmental duplications,

and satellites).

2.2.2 Annotation of genes

After repetitive elements are detected and masked, genes are annotated through

assembled transcript alignment, RNA-evidence, and structure prediction. All three

methods are intrinsic and can detect coding sequences based on how DNA is tran-

scribed into RNA and the rules programmed into their models, without curated data

sources.

2.2.2.1 Assembled transcript alignment The annotation method of assem-

bled transcript alignment begins with the deep sequencing of RNA from an organism.

These sequencing reads are then assembled into contiguous gene transcripts [10], [21].

The assemblies for each of these can then be aligned back to the genome assembly of

DNA to reveal the genes and their individual exons. Since this protocol directly sam-

ples genes, it is the most trusted and popular method of gene annotation, but it does

require that the genes be expressed. The requirement of deep sequencing requirement

also makes the method cost-prohibitive, especially since the genome assembly already

required extremely deep sequencing coverage.

7

2.2.2.2 RNA-evidence While not as exact as transcript alignment, genes can

also be annotated through direct RNA-evidence without assembly. In this method,

the RNA from an organism is sequenced at a relatively low coverage depth and then

directly aligned back to the genome annotation. The genes can then be annotated

based on differences in coverage by tools like Cufflinks [22] and ESTAnnotator [23].

While this method is lower in cost and computation complexity than assembling

transcripts, it still requires that a gene be actively expressed for annotation.

2.2.2.3 Structure prediction The final, and least popular, method for gene an-

notation is structure prediciton. This is a de novo method that requires no additional

sequencing and makes predictions purely from the genome reference sequence. Struc-

ture prediction Tools such as GlimmerHMM [24], GeneMark-ES [25], and Augustus

[26] use probabilistic models to detect genes by recognizing valid open reading frames

based on how nucleotides code for amino acids during translation. This method cate-

gory returns the most false-positives, but can be run on any genome assembly, making

it the most cost-effective. Unlike the other two methods, structure prediction works

on DNA, so it does not require that a gene be actively expressed.

2.2.3 Ensemble methods for annotation

Each of the mentioned annotation methods and tools have their own strengths

and weaknesses, so most annotation protocols utilize multiple methods and aggre-

gate the results to either improve the confidence of consensus classifications or filter

out false positives. Many tools have also been developed as top-level orchestration

scripts that run multiple classifiers in the background [10], [27], [28]. While these

8

tools take the effort out of decoding and combining the results from multiple tools,

they are often difficult to install, maintain, and use due to the number of required

software dependencies. For instance, REPET has 13 sub-tool dependencies, each

with their own library dependencies. To improve the usability and reproducibility

software, the bioinformatics community has built over 7000 packages in the Bioconda

package repository. Even though REPET is one of the most trusted methods for TE

annotation, it is not present in Bioconda due to the difficulty of its installation.

2.3 Sequence tagging with machine learning

Machine learning with neural networks has become accessible through standard-

ized libraries [29]–[32], and research has demonstrated that these models can make

inferences from whole collections of data which humans often miss. New tools com-

prised of deep neural networks have recently arisen to also improve the annotation of

genomes. DeepAnnotator uses a recurrent neural network to detect genes in prokary-

otic sequences 100 bases at a time [1]. DeepRibo incorporates ribosome profiling

signals to improve the identification of genes [33]. DeepTSS is a convolutional neu-

ral network designed to detect transcription start sites in 299 base pair sequences

[34]. Da Cruz et al. created a convolutional neural network to classify the order and

superfamily of transposable elements [35]. A recurrent neural network (RNN) has

also been developed to classify RNA sequences as either coding or non-coding [36].

However, none have attempted eukaryotic genome annotation. Our tool, RNNotate,

begins this work and explores the usage of a recurrent neural network to take genomic

input to produce an annotation.

While the standard signal for detecting actively transcribing genes is RNA-seq,

9

there are many other sequencing protocols for detecting other targets. Bisulfite-

sequencing is a protocol to reveal DNA methylation, a type of epigenetic modification

to DNA. In plants, DNA methylation is the addition of a methyl group to a cytosine

making 5-methylcytosine [19]. This means that not all cytosines are equal, adding a

new dimension for genomic exploration. Previous studies of DNA methylation have

also shown that different classes of genetic elements have their own unique DNA

methylation signature, and both the mechanism and pattern of DNA methylation

has been found to differ between euchromatin and heterochromatin [37]. Euchro-

matin is associated with physically accessible gene sequences on the chromosome

arms and heterochromatin is repeat-heavy and densely packed into the centromere

and other physical features like knobs [38], [39]. It has also been found that mCHH

islands enforce boundaries between active chromatin around genes and transposons

in maize [40]. This work explores the effect of including DNA methylation as an ad-

ditional dimension to facilitate whole genome annotation predictions for both genes

and transposable elements.

10

3. Methodology

3.1 Collecting requirements and building a specification

The tool has been designed in such a way that it can be trained on the anno-

tations from multiple organisms, and then generate a valid general feature format

(GFF3) annotation file which can be consumed by other tools [41]. Since the goal

of this project is a model to predict known features, a vocabulary and specification

was predefined for both the input and output after surveying the data supplied in

reference (FASTA), methylation (BAM), and annotation (GFF3) files from trusted

data archives: NCBI [11], Ensembl [42], and Phytozome [43].

3.1.1 Input Specification - Unclassified

Recurrent models in Keras and Tensorflow 1.14+ expect time series input, where

each timestep has the same data structure [30], [44]. This requires that any descriptive

information be encoded into each timestep instead of existing once in a data header.

Each input sequence is a contiguous region from the reference, where the nucleotide

and methylation data have been encoded into a 2-dimensional numerical format at

the base pair level.

We included four dimensions from the FASTA reference sequence: a single-base

11

nucleotide code to communicate the sequence (Table 3.1), the relative location along

the chromosome for location based trends, the genome ploidy to account for heterozy-

gosity, and the assembly quality since scaffolds will have a different landscape and

fidelity from whole chromosome molecules. The specification for these categories can

be seen in Table 3.2.

Tab. 3.1: The numerical nucleotide mapping code for encoding sequences into a
numerical format for use by model.

Nucleotide Numerical Code
A 0
G 1
T 2
C 3
N 4

Other 4

Previous studies have used k-mer based vocabularies to detect reading frames [1],

but in traditional natural language processing research, there is a trade-off between

processing individual characters and whole words (k-mers). Character-level models

are larger, but they are capable of learning subtler rules that word-based models miss

[45]. Initial toy-scale prototypes were able to detect valid reading frames from single

nucleotide characters, so we continued with them in hopes that enough subtle rules

could be learned to accurately predict a useful annotation.

The methylation data at each base pair location consists of six values: the fre-

quency and read count for each of the three methylation context in plants CG, CHG,

CHH. The methylation frequency is a floating-point number in the range [0, 1], and

the read count, with range [0, inf], conveys a measure of certainty for the frequency

value through sequencing depth. The read count does not require normalization for

12

separate samples since uncertainty at a single base is independent of the read count

at the next.

Tab. 3.2: RNNotate input specification detailing the order, type, and range for each
dimension of the input.

Index Data type Range Description
0 uint-4 [0, 4] Nucleotide code (Table 3.1)
1 float-32 (0, 1] Fraction of chromosome (first character is

1/len)
2 float-32 [0,1] CG methylation ratio
3 uint-8 [0, 256] Number of CG reads
4 float-32 [0,1] CHG methylation ratio
5 uint-8 [0, 256] Number of CHG reads
6 float-32 [0,1] CHH methylation ratio
7 uint-8 [0, 256] Number of CHH reads
8 uint-4 [0, 16) Ploidy
9 uint-4 [0, 3] Assembly Quality: (Unkonwn, Contig,

Scaffold, Chromosome)

3.1.2 Output Specification - Training and Predictions

The model is trained using supervised methods, so the output specification not

only defines what can be predicted, but also what can be learned. To determine the

necessary vocabulary to encode a variety of organisms, annotations from the archives

Ensembl [12] and Phytozome [43], and projects like TAIR [46] and Gramene [47]

were surveyed to compound a list of common elements and metadata to consistently

support the analysis of new data. The full list of 64 features chosen to be recognized

by RNNotate can be seen in Table 3.3. In addition to common features like exons,

rare features such as tmRNA were included in case they had distinct characteristics

that set them apart from standard featureless DNA.

13

All annotations from these data archives were in the GFF3 format, which is the

standard file format for storing features. The GFF3 format is a tab-delimited text

file expressing the coordinates and metadata of a single feature interval per line. The

features in a GFF3 file may not only overlap, but also be dependently linked into

a hierarchy such as multiple exons belonging to a gene. To reduce the complexity

of the output specification, the dependency information was ignored and only the

location and feature type was tracked. To allow for a single base to belong to multiple

overlapping features, like the previous gene and exon relationship, the classification

of each position is represented categorically with a binary vector. The coding strand

is captured by representing each category twice in the binary vector, the first for

the forward strand, and the second for the reverse as shown in Table 3.3. Since

this binary categorical specification is limited to single gene on each (+/-) strand at

each base, only the longest version is represented instead of each alternative splicing

model. This rule applies to all features of the same category that overlap. Several of

the categories in the binary categorical vector are types of repetitive elements, two

additional numerical values (Table 3.3) were included to track their sub-classifications.

The survey of annotation archives found that both Ensembl and Phytozome strip

repetitive elements from their annotations [12]. While this hinders the study of trans-

posable elements, it makes downstream analyses like gene annotation and alignment

easier. Luckily, they are present at the project level in both TAIR, Araport11 [48], and

Gramene. Since different projects utilized different workflows to classify repetitive el-

ements, there were discrepancies in their naming. Translation tools were created and

included with RNNotate to decode project-specific names into a universal set, which

can be adapted for future organisms. Tools currently exist to predict both the order

14

Tab. 3.3: Annotation features type tracked by RNNotate. The first two columns
denote the feature’s strand-specific indices, the third column tracks the data type, and
the fourth column provides a description. The final two rows enable sub-classification
levels of TE related features (bold), which are numerical and unstranded.

+ Index - Index Data type Description
0 32 bool CDS - Coding sequence
1 33 bool RNase MRP RNA
2 34 bool SRP RNA - Signal recognition particle
3 35 bool antisense RNA
4 36 bool antisense lncRNA
5 37 bool biological region
6 38 bool chromosome
7 39 bool contig - Originates from a contiguous region
8 40 bool exon
9 41 bool five prime UTR
10 42 bool gene
11 43 bool lnc RNA - Long non-coding RNA
12 44 bool mRNA - Messenger RNA
13 45 bool miRNA - MicroRNA
14 46 bool ncRNA - Non-coding RNA
15 47 bool ncRNA gene - Does not encode proteins
16 48 bool pre miRNA - Drosha processing remnant
17 49 bool pseudogene
18 50 bool pseudogenic exon
19 51 bool pseudogenic tRNA
20 52 bool pseudogenic transcript
21 53 bool rRNA - Ribosomal RNA
22 54 bool region - Genomic region
23 55 bool snRNA - Small nuclear RNA
24 56 bool snoRNA - Small nucleolar RNA
25 57 bool supercontig - Contigs combined into scaffolds
26 58 bool tRNA - Transfer RNA
27 59 bool three prime UTR
28 60 bool tmRNA - Transfer messenger RNA
29 61 bool transposable element
30 62 bool transposable element gene
31 63 bool transposon fragment

64 uint-8 transposable element Order
65 uint-8 transposable element Superfamily

15

and superfamily of repetitive elements and both of these subcategories were present

in the Araport11 and Gramene annotations. While TEs are more frequent in areas

like the heterochromatin, these predictions often do not overlap, but are interleaved

as shown in Figure 3.1.

Fig. 3.1: Genome browser view of interleaved TEs in the Araport11 annotation.

This rule may not apply to the entire genome, and the landscape may be an

artifact of the tools used to generate the annotation. Since investigating or resolving

these occurrences is beyond the scope of this work, only two additional numerical

fields were included in the output specification to encode for them (Table 3.3). This

means there are top-level stranded TE (+ and -) categories, along with integer values

that encode for a common set of orders (Table 3.4) and superfamilies (Table 3.5).

3.1.3 Data Shape - Input and Output

Depending on the model architecture, recurrent neural networks may require both

the input and output data shapes down to the batch size be statically defined at run-

time when the neural network is compiled. To process multiple sequences in parallel,

input sequences of shape [S, I] are batched together into 3-dimensional matrices of

shape [B, S, I]. Where B represents the number of sequences in each batch, S repre-

sents the base pair length of each sequence, and I represents the dimensionality (fields)

of the input at each base pair - 4 reference and 6 methylation values totalling 10. The

16

Tab. 3.4: Numerical codes used in index 64 of output specification (Table 3.3) for
collected TE orders.

Value Name Description
0 Unassigned Order was not specified or is unknown
1 DNA Dna transposon
2 LINE Long interspersed nuclear repeat
3 LTR Long terminal repeat
4 Low complexity Tandem repeats, polypurine, and AT-rich regions
5 RC Rolling circle replication
6 Retroposon Repetitive DNA reverse transcribed from RNA
7 rRNA Ribosomal RNA
8 Satellite Large arrays of tandemly repeating DNA
9 Simple repeat Micro-satellites
10 SINE Short interspersed nuclear elements
11 snRNA Small nuclear RNA
12 TIR Terminal inverse repeats
13 tRNA Transfer RNA

corresponding output will also have shape [B, S, O], where O is the dimensionality of

the output at each base pair (64 + 2 = 66).

In the event TE sub-classifications and low-frequency features are too sparse for

the model to effectively learn, two separate options for respectively excluding each

group were implemented. When the non-binary TE sub-classifications are excluded,

the output dimensionality is reduced by 2 (64), and the model switches to the steeper

binary cross-entropy loss function. When low-frequency features are excluded, only

the features listed in Table 3.6 are predicted, reducing the output to dimension to 8,

or 10 (8+2) when TE sub-classifications are included.

17

Tab. 3.5: Numerical codes used in index 65 of output specification (Table 3.3) for
collected TE superfamilies.

Value Name
0 Unassigned
1 Cassandra
2 Caulimovirus
3 centr
4 CMC-EnSpm
5 Copia
6 En-Spm
7 Gypsy
8 HAT
9 hAT-Ac
10 hAT-Charlie
11 hAT-Tag1
12 hAT-Tip100
13 Harbinger
14 Helitron
15 L1
16 L1-dep
17 Mariner
18 MuDR
19 MULE-MuDR
20 PIF-Harbinger
21 Pogo
22 RathE1 cons
23 RathE2 cons
24 RathE3 cons
25 Tc1
26 TcMar-Mariner
27 TcMar-Pogo
28 TcMar-Stowaway
29 tRNA
30 solo

18

Tab. 3.6: Features predicted by RNNotate when low-frequency features are excluded.
Bold features can still allow the prediction of TE sub-classifications.

+ Index - Index Data type Feature
0 8 bool CDS
1 9 bool exon
2 10 bool five prime UTR
3 11 bool gene
4 12 bool mRNA
5 13 bool three prime UTR
6 14 bool transposable element
7 15 bool transposable element gene

3.2 Developing data access interfaces

The final model will need to be trained on subsequences that cover entire genomes

multiple times. Most bioinformatics formats assume that files will be streamed from

start to finish, which makes the selection of specific regions computationally expensive.

This characteristic requires the development of efficient random-access interfaces to

reference, bisulfite, and annotation data.

3.2.1 FASTA access

The FASTA format can be indexed to allow for efficient random access from disk

via samtools [49] or other libraries [50], but sequential region access was improved

by caching large regions in memory, which is updated infrequently. Random search

patterns fall back to separate read requests to the filesystem, so the large cache is

not constantly updated. This interface also translates each possible nucleotide code

from the FASTA format specification into a numerical value for the model so the

transformation happens early, and only a reduced representation of the data is held

19

in memory.

3.2.2 Methylation alignment and access

Data produced by the Bisulfite protocol looks identical to data from DNA se-

quencing [51], so both the alignment process and quality control steps are similar.

For this work, Bisulfite sequencing reads were aligned to their respective reference

using BSMAPz [52], and only properly-paired, uniquely mapping reads were kept for

calling methylation frequencies. While the mapping process has been able to adapt

and borrow from performant DNA aligners, the methylation callers that aggregate the

alignment records into site-specific methylation ratios were single-core and memory

intensive. To ensure that methylation results from this study could be quickly repro-

duced without requiring large-memory hardware, the methylation caller for BSMAP

was optimized to efficiently call methylation frequencies from read alignments in par-

allel [53]. Since methylation can only take place at specific sites (CG, CHG, CHH,

where H = C,A,T), methylation callers produce sparse tabular output which lists

the frequency a cytosine is methylation by location. The format is both legible and

browsable, but randomly accessing specific points or whole regions is computation-

ally expensive. A new methylation file format and API, Meth5py [54], was created

to losslessly store methylation calls in fixed-width, sparse, compressed, and indexed

data structures for efficient seek and read operations. The Hierarchical Data Format

(HDF5) format was ideal for this workload since each chromosome data matrix can

be stored as a separate dataset, while compression and caching are handled behind

the scenes by the library itself [55]. Once converted into this new format, regions of

methylation data can be extracted and converted into the numerical format required

20

by the model with a 52.6% space savings (Table 3.7).

Tab. 3.7: Size comparison between normal and Meth5py files. Original size in
megabytes (MB), Meth5py size in MB, and space savings in percent.

File Original (MB) Meth5py (MB) Savings (%)
th.bam.mr 2098 976 53
th M1-C Rt.bam.mr 2038 960 53
th M1-C St.bam.mr 1909 921 52
th M2-C Rt.bam.mr 2029 956 53
th M2-C St.bam.mr 1949 933 52

3.2.3 Annotation access

The format that the annotation, or target, data will be presented to the model

has been defined, but this is a dense format which maps well to the base pair level

recurrent neural network. Most genomes are functionally sparse, with elements that

can span thousands of base pairs when they do occur. Simply converting an anno-

tation into this dense format and holding it in memory would allow for the fastest

processing, but the space trade-off is expensive since every base has 66 values. Two

alternatives are storing the dense format on disk in HDF5 format, similar to the

methylation data, or storing it in chromosome-level interval trees.

Converting the data once to an HDF5 format means that a target region simply

needs to be queried and then presented to the model. No additional conversion would

be necessary, but the data would be coming from disk with latency. An interval tree

is a data structure designed to store intervals and efficiently answer which intervals

overlap with a given point or range query. Using such a structure would allow the

annotation to efficiently live in memory, but selected intervals would need to be

21

converted to the dense format before going to the model.

To determine which method would be best, both formats were developed. The

TAIR10 annotation was converted to each format. The HDF5 arrays were stored

on solid state disk (SSD) and the interval trees for each chromosome were held in

memory. Regions ranging from 100 to 10,000,000 base pairs in length were randomly

chosen and dense model arrays were generated from each data structure. The results

in Figure 3.2 showed that the interval tree structure was always faster than the HDF5

format for all lengths even though it required an additional decoding step to the dense

format.

Fig. 3.2: The performance of querying annotation data for increasing region sizes was
compared between HDF5 (blue) and the interval tree format (yellow).

3.3 Developing a flexible model

While there are recommended practices and models proven capable for certain

workloads like image classification or sentiment analysis, there is little guidance for

22

learning entire genomes. Model development began around a recurrent neural network

to tag, or annotate, the input data. Since it was impossible pre-determine the best

architecture for this research, the model was designed to be extremely flexible for

experimentation through trial and error. Since hundreds to thousands of models

will need to be tested for different research questions, structure configuration takes

place on the command line interface (CLI) at runtime instead of requiring that new

code be tediously generated for each test. While the model will have numerous

architectures, they all conform to the following structure: an optional convolutional

layer of variable width, a section of recurrent layers (purple in Figure 3.3), an optional

section of hidden layers (green in Figure 3.3), and a final output section for generating

the correct output dimensionality (yellow in Figure 3.3).

3.3.1 Convolutional section

To improve the chances of recognizing short patterns such as coding frames or

microsatellites, the input can first be transformed through a convolutional neural

network (CNN) layer [56]. The CNN neurons use a rectified linear unit (ReLU)

activation and a convolution width chosen at runtime, which both require tuning

depending on the target. A pooling layer was not used after the convolution since

the model needs to generate a single prediction for each input base instead of a single

tag or description for a collection.

3.3.2 Recurrent section

The recurrent section is designed to be extremely flexible to give the model as

much power as possible while also being efficient. Each input point is processed by

23

Fig. 3.3: Illustration of model architecture possibilities. Data flows from the inputs
at the bottom upward to the outputs at the top. The optional convolutional layer
with “same” padding and variable width (3 shown) is represented in orange. The
optional stateful recurrent states are represented by the blue regions flanking the
purple recurrent section. The optional bidirectional layer is represented by the semi-
transparent flow in the purple recurrent layer. The configurable hidden layers are
represented in green. The final output layer is represented in yellow.

either an RNN, LSTM, or GRU cell [57] and utilize GPU-accelerated versions when

appropriate hardware is detected by TensorFlow. Each cell also has a configurable

24

number of internal neurons with hyperbolic tangent (tanh) activation functions. The

chain of recurrent cells can process input batches either independently or statefully,

and sequences either in the forward direction or bidirectionally, which have different

strengths (Table 3.8). Independent RNNs process sequences as sets of dependent

inputs, but multiple sequences can be processed in parallel very quickly. Stateful

RNNs circumvent the sequence length limit imposed by vanishing-gradients by passing

the cell state between batches at the cost of concurrency.

Tab. 3.8: Strengths and weaknesses of different ways to process batches (Independent,
Stateful) and sequences (Forward, Bidirectional).

RNN Type Pro Con
Independent Fast Inappropriate for long pat-

terns
Stateful Ideal for long sequences Unable to process long se-

quences in parallel
Forward Requires fewer cells Unable to use information

later in the sequence
Bidirectional Access to future informa-

tion
Slower and unable to be
stateful

In standard RNNs, independent and stateful, sequences are processed sequentially

by input unit, so information only flows from past to future. Bidirectional RNNs are

another RNN architecture type that can pass information from future timepoints back

to earlier times in a sequence (Figure 3.3) by processing a sequence both forward and

backward. To help prevent overfitting during training, both recurrent dropout and

several types of regularization can also be configured in the recurrent layer. Once

the recurrent architecture has been defined, multiple layers can be stacked like a

multilayer perceptron to increase the overall power.

The recurrent section can also be repeated and densely connected to potentially

25

learn complex patterns and relationships. Normally, deep models are limited by

vanishing gradients, but input and output signals are passed to these repeated sections

with dense connections inspired by DenseNet [58]. These connections concatenate

the original input to the beginning of each recurrent section, along with broadcasting

the output of each recurrent section forward as shown in Figure 3.3. This type of

architecture allows each recurrent section to learn separate patterns since they all

have access to the original input, while also having the option to reuse the output

from previous sections.

3.3.3 Hidden section

After the recurrent section, multiple dense, hidden layers of variable neurons with

tanh activation can be defined. These layers are time-distributed and applied in-

dependently to each RNN timestep. Lastly, the final output layer is always a time

distributed hidden layer with a neuron for each output dimension and either linear

activation to allow for non-binary output values when classifying TE sub-classification

or sigmoid for all binary outputs if not.

3.3.4 Loss functions

By default, the model is evaluated using the mean squared error (MSE) function

to allow for both multiple classification labels and the integer values representing sin-

gularity TE order and super families in the output. When the TE sub-categories are

excluded from the output, the steeper binary cross-entropy (logloss) loss function is

used for evaluating the model during training. Since the binary cross-entropy function

only expects 0 and 1 output values, the final output hidden layer also had to be from

26

linear to sigmoid activation. While stratifying transposable elements into separate

classification bins theoretically yields more information, the binary cross-entropy loss

function is much steeper than the mean squared error function as demonstrated in

Figure 3.4 and may accelerate convergence.

Fig. 3.4: Starting from comparing a binary matrix to itself, a percentage of total
values are randomly changed to 0 or 1, and compared to the original with the binary
cross-entropy (blue) and mean squared error (gold) loss functions.

3.4 Data traversal methods

For the model to predict the classification of each base at least once, the entire

genome must be passed through the model at least once. Physical memory limits

and vanishing-gradients prevent whole chromosomes from being processed as singu-

lar input sequences. These limitations required that the chromosomes be segmented

27

and individually classified. Since the recurrent layers in this model support state-

ful execution, there are two traversal methods available: independent and stateful

batches.

3.4.1 Independent traversal

Independent batches are generated in a sliding window method. A window of

the specified sequence length will slide a specified number of offset bases as shown in

Figure 3.5. To prevent bases from accidentally being skipped, this slide distance must

be less than or equal to the sequence size. Initially, each region in a batch was retrieved

individually, but this bottlenecked the analysis since large batches with significant

overlap were targeted with independent traversal. For i/o efficiency, a single long

region is fetched from disk for each batch. This long region is then reshaped, without

modifying the actual memory, into a new view of the correct sequence length and

offset. In the case of distributed execution, “worker-1” will process the first batch,

“worker-2” will process the second batch, and so on.

Fig. 3.5: Illustration of independent batch traversal. The different sequence colors
are only used to visually separate subsequences. Batches can contain any number of
sequences.

28

3.4.2 Stateful traversal

With stateful execution, subsequences of a huge sequence are consecutively pro-

cessed with state information flowing forward through time. The simplest way to

statefully traverse a chromosome is the “online” method, where the first batch con-

tains a single sequence for bases 1-100, the second batch contains a single sequence

for bases 101-200, and so on until the end of the chromosome. The other is to di-

vide the main sequence into multiple sequences which are each statefully processed

as shown in Figure 3.6. To enable some robustness to the classification, stateful se-

quences overlap with their neighbor by 50%. An example of this would be taking a

sequence of 99 bases and processing it in batches of 2 with the ranges 1-66 and 34-99,

where the two sequences overlap over the range 34-66. When this type of traversal is

distributed, the original batch size is divided amongst workers so the total batch size

does not increase, which would increase the number of subdivisions and shorten the

dependence chain.

Since stateful batches are spread across such long regions, it was not possible

to retrieve the necessary data with a single read and then reshape it as with the

independent batches. To prevent the analysis from bottlenecking during stateful

traversals, multiple data-retrieval workers are used to accelerate data retrieval and

transformation.

3.4.3 Stranded traversal

This current method processes chromosomes in the forward direction only. Pre-

dictions are generated for both the forward and reverse strand, but the model will

29

Fig. 3.6: Illustration of stateful batch traversal. Below the chromosome line, is an
example of online stateful learning with one sequence per batch. The chromosome in
the Batched Learning example is processed with a batch size of 2, so it is traversed
in 2 subsequences with 50% overlap.

need to not only learn to predict the structure of a gene in the forward direction

based on the input data,

5’UTR -> ORF -> 3’UTR

but the reverse direction as well.

3’UTR <- ORF <- 5’UTR

To allow the model to apply the same rules to coding elements irrespective of their

origin, a stranded traversal method was implemented.

The stranded traversal begins with the same DNA and methylation input as an un-

stranded one, except target data from the reverse strand of the annotation is masked.

This means that only features originating from the forward strand can be learned from

30

the forward traversal along the chromosome. After processing the entire forward di-

rection of a chromosome, data is then generated in the reverse direction, where the

last coordinate is now the first. The queried nucleotide sequence is also reverse com-

plemented, and all training data from the annotation is masked on the forward strand.

Once again, this forces all features originating from the reverse strand be predicted

during the reverse traversal. Figure 3.7 illustrates and compares this process to a

standard forward-only traversal. To prevent the model from being biased towards a

specific strand because it was always learned last, the batches from each strand were

interleaved for an even distribution.

Fig. 3.7: The “Genomic Data” row illustrates both stranded genomic data, and an-
notation features. The “Traversal Coordinates” row illustrates discrete sections of
data. The “Unstranded Traversal” row demonstrates what information is present in
each data batch. The “Stranded Traversal” row demonstrates how a chromosome is
processed and which strands of annotation data are present.

31

3.5 Aggregation and decoding of output

With the exception of online traversals, the model will produce overlapping pre-

dictions. These overlapping predictions are tracked so the final classification of each

base comes from multiple predictions, which can be aggregated for a more robust

result. Due to the characteristics of independent and stateful batches, two different

aggregation methods were designed for optimal classification power.

Since the predictions from independent batches are also independent, any over-

lapping predictions from the input traversal are aggregated to filter out marginal

results. To ensure that this aggregation step does not interfere with the model resid-

ing in memory, results are stored on disk in HDF5 format. The datasets are used to

track the occurrence of each feature type along with a total count since non-coding

regions do not have an explicit class in the specification and will not increase a feature

count. After all batches have been processed, the aggregation arrays are crawled base

by base to assemble contiguous regions. Since each base can be apart of multiple fea-

tures in the annotation, simply choosing the most popular category with arguments

of the maxima (argmax) is not used. Instead, a category is output if its fraction of

the total is above a specified threshold as demonstrated in Table 3.9.

Tab. 3.9: Example independent classifications. Given category counts at 3 indices,
output classifications are demonstrated for two thresholds (t): 0.5 and 0.4.

Index
Category

Total
Classification

A B C t=0.5 t=0.4
0 3 0 0 6 A A
1 3 3 0 6 A,B A,B
2 3 3 4 7 C A,B,C

32

Stateful batches are handled differently from independent batches because they

make predictions based on the information from the previous batch, and this prior

information, makes later predictions more trustworthy than early ones. Because of

this difference, no proportion method is used, and early predictions are overwritten

with more trustworthy classifications from later predictions. To prevent the aggrega-

tion data from bogarting model memory, HDF5 files are used to efficiently store data

on disk.

Once prediction is finished, the HDF5 files are crawled, and contiguous regions

are tracked and stored in a feature list. These feature lists are then scanned, and

smoothed by filling gaps smaller than 50 bases and removing features smaller than 50

bases. This process is analogous to removing salt and pepper noise from an image.

After smoothing each feature category, data is finally decoded into the standard,

tab-delimited GFF3 format, with the following columns (Table 3.10).

Tab. 3.10: Final output GFF3 specification in tabular format. Each row represents
a column in the GFF3 tab-delimited format. Columns 1, 4, 5, and 7 describe the
location of a prediction. Column 2 designates the source of the prediction. Column
3 is the feature type, and corresponds to a category in Table 3.3. Columns 6 and 8
correspond to score and phase, which are not used, and left empty with “.”.

Column Information
1 Chromosome
2 RNNotate (origin of prediction)
3 Feature type
4 Start coordinate
5 End coordinate
7 Strand
9 Attributes: unique ID, TE order, TE superfamily

33

3.6 Data sources

RNNotate was run on open data from A. thaliana for reproducibility and accessi-

bility. Input data came from both the Araport11 reference assembly [48] and bisulfite-

sequencing reads from wild-type stem and root samples from study PRJEB6701 [59]

for DNA methylation values. The reads were aligned with BSMAPz using the ZED

protocol [60], which requires a base-quality of 20, excludes repeated equal-quality hits,

uses random seed 77345 for reproducibility, and considers up to 10,000 seeds per read.

After alignment, samples were merged to maximize coverage and minimize sampling

uncertainty. Methylation frequencies were then called using properly-paired reads

with unique alignments. For training and evaluation, the model uses the Araport11

annotation, and transposable element identities from TAIR10 [46].

3.7 Determining optimal model architecture

The model architecture was specifically designed to be flexible so an optimal ar-

chitecture could be discovered for this research. The only way to identify the optimal

architecture is by comparing results from numerous configurations. The model returns

loss values during training, but these are only suitable for debugging for two reasons.

First, the model currently supports two different loss functions, mean squared error

and binary cross-entropy, whose values are incomparable. Second, a single loss value

is calculated for a whole batch. This is fine for small independent batches of data,

but stateful batches span large regions, so the loss metric will not represent a local

region.

34

3.7.1 Collecting local error metrics

To get an accurate measure of error for an entire chromosome, the model pauses

training and, using the same data traversal, makes predictions on the data. Then,

regardless of the actual loss metric used for training, the mean squared error is calcu-

lated for each output sequence, and temporarily stored. The error is then averaged

in non-overlapping 1 kilobase windows and stored in tab-separated values (TSV) for-

mat, which can be plotted as shown by Figure 9.2.1. By default, the model does this

every 5 epochs during the training process, but this frequency can be configured at

runtime for different levels of learning resolution.

3.7.2 Hyperparameter sweep of model

Initial testing found independent batches, regularization, and short sequences to

perform poorly, so the hyperparameter sweep will explore the 648 permutations of

arguments in Table 3.11. Each permutation will be trained on A. thaliana Chromo-

some 1 and 2, and validated on Chromosome 3 for an unbiased performance estimate.

Data was split into 512 base sequences, and 608 sequences per batch. Each model

was then trained over 20 epochs, and evaluated every 5th epoch.

After training, the performance of each permutation was evaluated by the median

and interquartile range (IQR) from chromosome-wide MSE values for both the train-

ing and validation chromosomes - yielding 4 summary values per model. Both the

median and IQR are robust metrics which convey the center and spread of the chromo-

some error distributions. The median is the 50th percentile of the error distribution,

and represents the most likely value without being affected by extreme outliers. The

35

Tab. 3.11: Architecture parameter permutations for testing.

Parameter Arguments
CNN width 0, 3, 5, 6
LSTM neurons 32, 64, 128
LSTM layers 1, 2, 3
Learning rate 0.01, 0.001, 0.0001
Dropout rate 0, 0.3
Dense blocks 0, 2, 4
Total Permutations 648

IQR is the difference between the 75th and 25th percentiles, and describes the spread

of half the data while also being robust against outliers.

The collected median and IQR values from the training and validation data were

used to create a two-dimensional comparison plot to highlight argument effects and

trends as shown in Figure 3.8. The comparison figure will be 2-D with half of the

parameters represented on the y-axis, and the other half represented on the x-axis.

Each circle will represent a model, and poor performing models with large IQRs

or medians will blend in with the background by being small and similar to the

background.Tables can be sorted to show specific ranks, but a scatter plot such as

this highlights superior performance while also grouping parameters visually.

3.8 Final training

Once an effective model architecture was identified, it was trained on the full data

collection, A. thaliana chromosomes 1, 2, 4, and 5, for 200 epochs. The comparison

tests were trained on a subset of the data for 20 epochs for a relatively quick compar-

ison of how each model learned, while this training session allows a model to reach

36

Fig. 3.8: Left: The comparison figure will be 2-D with half of the parameters repre-
sented on the y-axis, and the other half represented on the x-axis. Right: Each circle
will represent a model, and poor performing models with large IQRs or medians will
blend in with the background by being small and similar to the background.

its full potential on the provided data. Once again, chromosome 3 was withheld from

training and only used for validation. Since the model may diverge or overfit during

training, which would cause the last epoch to not be the best when evaluated on the

validation data, the model was again checkpointed and MSE values were collected

after every 5th epoch.

3.9 Evaluation metrics

After training, the output annotation from the model with the lowest validation

MSE and IQR was evaluated against the original Araport11 annotation [48]. The

following statistical performance measures were used for evaluation at both the base

pair and region level [61], [62]: TP, FP, TN, FN, Sensitivity, Specificity, and Precision.

These two resolution levels of information were previously used by Baidouri et al. for

37

evaluating the performance of their TE annotation pipeline, and were easily adopted

to all features predicted by RNNotate [63]. Regions were determined to be “true-

positive” if they had at least 75% reciprocal overlap with a region of the same type and

strand from the control annotation. Nucleotide proportion and length distribution

characteristic metrics were also generated for each region to compare the composition

of predictions from different sources.

In addition to comparisons against the known annotation, RNNotate was bench-

marked against the performance of other tools to measure usefulness. No other tools

exist for making predictions from DNA methylation, so we focused on de novo pre-

diction tools: GlimmerHMM [24] and Augustus [26] transcription predictions, and

RepeatScout [16] and RepeatMasker [15] for transposable element predictions. Tools

like gffcompare [64] and ParsEval [65] exist for comparing annotations, but they focus

on transcription features. This is both too specific, where they compare fine grain

differences like gene isoforms and exon chains, but also ignore all features not related

to protein-coding genes. RNNotate was designed to classify as many curated fea-

tures as possible, so differannotate was developed as a generic option for calculating

our performance metrics and characteristics and finally generating Venn diagrams of

logical relations and box plots of characteristic distributions [62].

38

4. Results and Discussion

4.1 Initial results

All parameters were tested during development and testing, but those which were

identified early on as inefficient or ineffective were not included in the final hyperpa-

rameter sweep. Independent batches were always inferior to stateful since they were

limited in size. LSTMs also performed better than both RNN and GRU cells, which

told us the long-term memory was useful with our long sequences. Bidirectional re-

current layers required an order of magnitude more memory, and were outperformed

by unidirectional models for all data traversals. The TE sub-classifications and full

annotation categories were found to be too sparse, and features like genes, CDS, and

TEs dominated the learning process. When data was only processed in the forward

(unstranded) direction, the model recognized very few features on the reverse strand.

We found both regularizers and batch normalization to have negligible effect due to

a combination of our batch sizes and learning rates. We also found dense connections

scaled better and conveyed more information than a deep hidden section.

39

4.2 Hyperparameter sweep

The hyperparameter sweep was run in 7 hours on 31 compute nodes of Longhorn,

an IBM cluster with four Nvidia V100 cards per node, at the Texas Advanced Com-

puting Center. Each individual model in the parameter space was trained for 20

epochs and evaluated every 5th epoch by generating classification predictions on the

input sequences and then calculating the mean squared error for each individual

sequence. This not only increased the evaluation resolution, but was crucial for accu-

rately capturing the error in large and diverse batches of data. Two visual comparison

summaries generated from this data at epochs 5 and 20 can be seen below in Figures:

4.1 and 4.2.

Several models with a 0.01 learning rate had very high error rates in Figure 4.2,

but some models also managed to perform well with the same learning rate. Beyond

these outliers, there were no obvious visual trends in Figure 4.1 and Figure 4.2 since

the ineffective parameters were excluded from the hyperparameter sweep.

Parameters were also encoded into a simple numerical format to facilitate a mul-

tiple regression analysis in python with statsmodels [66]. Simple polar values were

converted to 0 when False and 1 when True. Learning rate was converted inversely:

0.01:0, 0.001:1, 0.0001:2. The number of dense blocks, CNN width, layers, and neu-

rons were sorted and encoded sequentially with the smallest value being 0 and incre-

menting by 1. The multiple regression found both the learning rate and the number

of dense blocks to have a significant effect on the model’s ability to predict the vali-

dation data as shown in Table 4.1. While not significant by having a p-value greater

than 0.05, the number of neurons each recurrent cell and layers in each recurrent

40

Fig. 4.1: Hyperparameter comparison at epoch 5. Model parameters are represented
on the bordering tables. Model error represented by circle color, where light circles
have high error and dark circles have low error. A model’s error distribution is
inversely represented by each circle’s area, where a large circle has a tight IQR and
small circles have a large IQR. The top 5 models are annotated with their rank and
a red circle.

41

Fig. 4.2: Hyperparameter comparison at epoch 20. Model parameters are represented
on the bordering tables. Model error represented by circle color, where light circles
have high error and dark circles have low error. A model’s error distribution is
inversely represented by each circle’s area, where a large circle has a tight IQR and
small circles have a large IQR. The top 5 models are annotated with their rank and
a red circle.

42

block were also found to have a mild effect on the prediction capability.

Tab. 4.1: Hyperparameter multiple regression on validation MSE at epoch 20. Bold
P-values are significant (P ¡ 0.05).

Coefficients Standard Error t-Statistic P-value
const 0.1104 0.015 7.359 0
CNN Width -0.0016 0.004 -0.384 0.701
Neurons 0.0109 0.006 1.862 0.063
Layers 0.0103 0.006 1.787 0.074
Learning Rate -0.026 0.006 -4.514 7.61E-06
Drop Rate 0.0151 0.009 1.595 0.111
Dense Blocks -0.0145 0.006 -2.481 0.013

The actual MSE and IQR values from the top five models (highlighted in red in

Figure 4.2) are in Table 4.2 below. The top four models all had the same median

MSE and IQR values, along with the same parameters for each argument except for

the CNN width. Since the models performed the same for all CNN widths, including

zero (no CNN), it was decided to simply exclude the CNN for the optimal model to

reduce the overall complexity and maximize the throughput.

Tab. 4.2: The top 5 models at epoch 20, sorted by median validation MSE and median
validation IQR.

Rank 1 2 3 4 5
CNN Width 0 3 5 6 0
LSTM Neurons 128 128 128 128 128
LSTM Layers 2 2 2 2 3
Learning Rate 0.001 0.001 0.001 0.001 0.001
Drop Rate 0 0 0 0 0
Dense Blocks 4 4 4 4 2
MSE 0.072457 0.072457 0.072457 0.072457 0.072460
IQR 0.055270 0.055270 0.055270 0.055270 0.054531

43

4.3 Long training

This project originally targeted both CPU and GPU hardware with the ability to

distribute the computation across multiple compute nodes when possible to support as

many computing environments as possible. For the final long training session however,

we ended up relying on a single V100 GPU for the final long training session for two

reasons. First, TensorFlow’s CPU implementation of recurrent neural networks leaked

memory after every batch that was processed, which eventually caused every long

training session to fail when running on a CPU. Second, huge batch sizes increased

the training and classification throughput, but hindered the learning process.

The optimal model with four densely connected recurrent blocks, two layers of 128-

neuron LSTM layers per recurrent block, and a learning rate of 0.001 was then trained

for 200 epochs on A. thaliana Chromosomes 1, 2, 4, and 5 using Command 4.1. There

were two differences between this training session and the hyperparameter sweep: The

model was trained on chromosomes 1, 2, 4, and 5 instead of only 1 and 2, and the

model was trained for 200 epochs instead of 20.

Listing 4.1: Run command for long training session

$ RNNotate −R Araport11 . f a −D o u t d i r −N l o n g t r a i n −M th .bam

. mr −P 2 −o 512 −v t r a i n −f −A Araport11 . g f f 3 −E 200 −B

608 −−stranded −L 512 −C lstm −n 128 − l 2 −r 0 .001 −d 0 −−

conv 0 −H 0 −S −−dense 4 −−f ewer −−noTEMD −−t r a i n 1 ,2 ,4 ,5

−−t e s t 3 −−every 5

The MSE and IQR values were, again, collected every 5 epochs, and the results

44

from the top five epochs can be seen in Table 4.3. The model had the lowest median

MSE at training epoch 20, but the final MSE value was different than the hyper-

parameter search because more chromosomes were included for training. The model

continued to decrease in training error past epoch 20, but error increased on the

validation data as visualized in Figure 4.3 and shown in Table 4.3.

Tab. 4.3: Corresponding median mean squared error (MSE) and interquartile range
(IQR) for both Chromosome 1 (Training) and Chromosome 3 (Validation). Data was
sorted by validation MSE and IQR.

Training Validation Training Validation
Epoch MSE IQR MSE IQR Epoch MSE IQR MSE IQR
20 0.041 0.044 0.069 0.063 100 0.039 0.057 0.081 0.065
15 0.057 0.059 0.070 0.062 155 0.012 0.010 0.082 0.069
25 0.030 0.033 0.071 0.064 120 0.014 0.010 0.082 0.062
5 0.073 0.042 0.075 0.041 65 0.019 0.019 0.082 0.062
10 0.071 0.051 0.075 0.050 110 0.014 0.010 0.082 0.064
35 0.024 0.023 0.076 0.054 140 0.011 0.007 0.083 0.060
75 0.016 0.013 0.077 0.054 150 0.012 0.009 0.083 0.061
70 0.017 0.014 0.077 0.059 160 0.011 0.008 0.084 0.064
30 0.051 0.059 0.078 0.068 135 0.016 0.025 0.084 0.065
45 0.020 0.017 0.078 0.061 125 0.015 0.013 0.084 0.066
90 0.014 0.010 0.079 0.059 130 0.015 0.018 0.085 0.065
55 0.031 0.043 0.080 0.065 145 0.011 0.007 0.085 0.059
105 0.013 0.009 0.080 0.057 165 0.924 0.033 0.921 0.031
115 0.013 0.008 0.080 0.057 170 0.924 0.033 0.921 0.031
50 0.024 0.028 0.080 0.067 175 0.924 0.033 0.921 0.031
85 0.015 0.011 0.080 0.062 180 0.924 0.033 0.921 0.031
40 0.043 0.052 0.080 0.069 185 0.924 0.033 0.921 0.031
60 0.019 0.016 0.081 0.061 190 0.924 0.033 0.921 0.031
95 0.015 0.011 0.081 0.056 195 0.924 0.033 0.921 0.031
80 0.014 0.010 0.081 0.061 200 0.924 0.033 0.921 0.031

MSE was then plotted by location across both the training and testing chromo-

somes in the top of Figure 4.3 to reveal any trends tied to location. In the “Training”

45

plot in Figure 4.3, the model learns to recognize the repeat-heavy heterochromatin

[39], but those rules must not be general since there was not a similar dip in the testing

data. Overall, the error rate was level across the testing chromosome, which shows

that the model did not excel at predicting either repeats in the heterochromatin, or

genes in the euchromatin.

Fig. 4.3: Error during long training. The top two plots show error rate along the
training and testing chromosomes. Initial epochs start in blue and transition to red
for late epochs. The epoch with the lowest median test MSE is plotted in gold.
The bottom plot contrasts the training (blue) and testing (red) MSE distributions of
across epochs.

The box plots in Figure 4.3 track the error rate over the entire training process.

While the error on the training data continued to decrease until epoch 160, the model

performed best on the validation (Testing) data at epoch 20. The box plots do show

that the solution space of this model is complex and managed to break out of its

46

local minimum at epoch 160, and did not recover. RNNotate was then restored to

the model at epoch 20, and the A. thaliana genome was processed in entirety in 16

minutes using 16 gigabytes of memory.

While the raw error rate does reveal a picture of overall performance, it does not

convey specific strengths or weaknesses of the model. The classifications were split

into two groups, transcripts and transposable elements, and compared at both the

base and region level against the known annotation and trusted de novo tools.

4.4 Base level evaluation of transcripts

The resulting GFF3 file produced by RNNotate, at the 20th epoch, was compared

against the Araport11 annotation and both GlimmerHMM (Command 4.2) and Au-

gustus (Command 4.3) predictions, which are both used for predicting transcripts.

Listing 4.2: Command for running GlimmerHMM

$ glimmerhmm Araport11 . f a t r a i n e d d i r / a r a b i d o p s i s −g −o

glimmerhmm . g f f 3

Listing 4.3: Command for running Augustus

$ augustus −−strand=both −−s i n g l e s t r a n d=f a l s e −−g f f 3=on −−

sample=0 −−prog r e s s=f a l s e −−UTR=on −−uniqueGeneId=true −−

s p e c i e s=a r a b i d o p s i s Araport11 . f a > augustus . g f f 3

While RNNotate attempted to predict every element curated in Araport11, Glim-

merHMM predicted

{CDS, mRNA}

47

elements and Augustus predicted

{CDS, exon, gene, intron, start codon, stop codon, transcript,

transcription end site, transcription start site}

of which only CDS elements were common between all tools, and {exon, mRNA, and

gene} were common between RNNotate and at least one tool. Performance metrics

were calculated at the base pair (bp) level for each element, strand, tool combination

and compounded into Table 4.4.

4.4.1 Base level performance of exon and gene predictions

Starting with exons in Table 4.4, RNNotate detected 47% (sensitivity) of the exon

bases in the Araport11 annotation while Augustus detected 80%, and both tools had

similar precision rates. Even with the stranded traversal, RNNotate predicted exons

with a higher sensitivity on the reverse strand (54%) than on the forward strand

(32%), hinting that either the batches or data was still biased towards specific strands.

In contrast, the methods of Augustus predicted exons with near equal performance

from either strand. Similar to exons, the sensitivity rate of gene predictions by

RNNotate (54%) was lower than Augustus for all strands (92%), however RNNotate

had a higher specificity (96%) and precision (95%) than Augustus (62% and 75%)

for all strands. This result shows that RNNotate went beyond learning open reading

frames and was able to predict actual genic regions (Figure 4.4, which were extensively

validated with RNA-Seq in the Araport11 annotation.

48

Tab. 4.4: Base level performance measures. True positive (TP), false positive (FP),
true negative (TN), false negative (FN) counts were calculated for each tool, feature
type, and strand combination in megabases. Sensitivity (SENS), specificity (SPEC),
and precision (PREC) were also calculated. Glimmer stands for GlimmerHMM in
this table.

Strand Tool TP FP TN FN SENS SPEC PREC
exon +/- RNNotate 5.41 0.74 11.19 6.11 0.47 0.94 0.88

Augustus 9.35 1.11 10.82 2.18 0.81 0.91 0.89
+ RNNotate 1.86 0.67 17.02 3.9 0.32 0.96 0.74

Augustus 4.52 0.56 17.13 1.25 0.78 0.97 0.89
- RNNotate 3.27 0.49 16.92 2.77 0.54 0.97 0.87

Augustus 4.75 0.63 16.79 1.29 0.79 0.96 0.88
mrna +/- RNNotate 7.88 0.51 8.2 6.86 0.53 0.94 0.94

Glimmer 11.4 0.86 7.86 3.34 0.77 0.9 0.93
+ RNNotate 2.7 0.72 15.43 4.61 0.37 0.96 0.79

Glimmer 5.5 0.42 15.73 1.81 0.75 0.97 0.93
- RNNotate 4.82 0.38 15.44 2.82 0.63 0.98 0.93

Glimmer 5.85 0.49 15.33 1.79 0.77 0.97 0.92
cds +/- RNNotate 3.43 0.57 16.22 3.24 0.52 0.97 0.86

Glimmer 6.21 1.53 15.27 0.46 0.93 0.91 0.8
Augustus 6.4 1.75 15.04 0.27 0.96 0.9 0.79

+ RNNotate 1.05 0.32 19.91 2.18 0.33 0.98 0.77
Glimmer 3 0.74 19.49 0.23 0.93 0.96 0.8
Augustus 3.08 0.86 19.37 0.14 0.96 0.96 0.78

- RNNotate 2.3 0.39 19.61 1.16 0.67 0.98 0.85
Glimmer 3.21 0.79 19.21 0.25 0.93 0.96 0.8
Augustus 3.31 0.9 19.1 0.15 0.96 0.96 0.79

gene +/- RNNotate 6.98 0.41 10.11 5.96 0.54 0.96 0.95
Augustus 11.84 3.97 6.55 1.1 0.92 0.62 0.75

+ RNNotate 2.25 0.47 16.47 4.27 0.35 0.97 0.83
Augustus 5.71 2.02 14.92 0.81 0.88 0.88 0.74

- RNNotate 4.5 0.36 16.31 2.29 0.66 0.98 0.93
Augustus 6.01 2.08 14.59 0.79 0.88 0.88 0.74

49

Fig. 4.4: Base level performance of exons and genes. Left - Venn diagram showing the
logical relations between predictions of Araport11 Chromosome 3 exons by RNNotate
and Augustus. Right - Venn diagram showing the logical relations between exon
predictions of Araport11 Chromosome 3 genes.

4.4.2 Base level performance of mRNA predictions

Similar to exons and genes, RNNotate detected 53% of the mRNA bases while

GlimmerHMM detected more at 77%. Strand bias was again present with mRNA

predictions from RNNotate sequences, where predictions from the forward strand

had a 37% sensitivity, while predictions from the reverse strand had 63% sensitivity.

Similar to exon results, the specificity and precision rates for mRNA predictions from

RNNotate were slightly higher, at 94% and 94% respectively, than GlimmerHMM

with 90% and 93% respectively.

50

Fig. 4.5: Base level performance of mRNA. Top-Left - Venn diagram showing the
logical relations between predictions of Araport11 Chromosome 3 mRNA by RN-
Notate and GlimmerHMM from the forward strand. Top-Right - Logical relations
between mRNA predictions by RNNotate and GlimmerHMM from the reverse strand.
Bottom-Center - Logical relations between mRNA predictions by RNNotate and
GlimmerHMM from both strands.

51

4.4.3 Base level performance of CDS predictions

All three tools predicted CDS regions, and previous trends continued. RNNotate

had a lower sensitivity rate at 52% than both GlimmerHMM and Augustus, respec-

tively at 93% and 96%. Predictions from RNNotate were also biased towards the

reverse strand, where sensitivity was at 33% on the forward strand and 67% on the

reverse. Even though sensitivity was lower, RNNotate always had equal or higher

specificity (97%) and precision (86%) rates than GlimmerHMM (91% and 80%) and

Augustus (90% and 79%) for predictions from both strands.

4.4.4 Overall base level performance

Averaging the values of each feature category from Table 4.4 into Table 4.5 helps

elucidate the trends found while analysing the results for each individual feature cat-

egory. RNNotate had the lowest sensitivity rate for predicting transcription features

out of all the tools, with results biased towards the reverse strand. However, even

though RNNotate predicted fewer bases for each category, its specificity and preci-

sion was equal or higher than the other tools. Beyond the raw numbers, this result

is impressive since GlimmerHMM and Augustus, which were trained on the entire

A. thaliana annotation, predict a subset of the features, while RNNotate predicts all

of them, making the rules generated during training fairly complex. Future versions

of RNNotate will work towards reducing strand bias through modified batching and

altered data representations.

52

Tab. 4.5: Average of base-level sensitivity (SENS), specificity (SPEC), and precision
(PREC) across features by tool and strand. Bold values represent the best tool for
each performance/strand (column) category.

SENS SPEC PREC
+/- + - +/- + - +/- + -

RNNotate 0.51 0.34 0.63 0.95 0.97 0.98 0.91 0.78 0.89
GlimmerHMM 0.85 0.84 0.85 0.91 0.97 0.97 0.87 0.87 0.86
Augustus 0.9 0.87 0.88 0.81 0.94 0.93 0.81 0.8 0.8

4.5 Base level evaluation of transposable elements

RepeatMasker (Command 4.4) and RepeatScout (Command 4.5) were run on the

Araport11 reference assembly and the open repeat library Dfam Consensus 3.1 [67]

for homology searches to generate TE predictions. Both tools output predictions

called “similarity”, which were treated as “transposable element” features for com-

parison against the original Araport11 annotation and the predictions generated by

RNNotate. The base-level performance results were compounded below in Table 4.6.

Listing 4.4: Command for running RepeatMasker

$ RepeatMasker −e ncbi −pa 24 −s p e c i e s a r a b i d o p s i s −d i r . −

g f f Araport11 . f a

Listing 4.5: Command for running RepeatScout

$ b u i l d l m e r t a b l e −sequence Araport11 . f a −f r e q out . f r e q − l

11

$ RepeatScout −sequence Araport11 . f a −output out . rep . f a −f r e q

out . f r e q − l 11 −goodlength 75

$ cat out . rep . f a | f i l t e r −stage −1. p r l > out . rep . f i l t 1 . f a

53

$ RepeatMasker −pa 24 −s −d i r . − l i b out . rep . f i l t 1 . f a

Araport11 . f a

$ cat out . rep . f i l t 1 . f a | f i l t e r −stage −2. p r l −−cat Araport11 .

f a . out −−thresh 10 > out . rep . f i l t 2 . f a

$ RepeatMasker −pa 24 −s −d i r . − l i b out . rep . f i l t 2 . f a −nolow

−norna −n o i s −g f f Araport11 . f a

Tab. 4.6: Base level performance measures for TEs. True positive (TP), false positive
(FP), true negative (TN), false negative (FN) counts were calculated for each tool and
strand combination in megabases. Sensitivity (SENS), specificity (SPEC), precision
(PREC), and accuracy (ACC) were also calculated, with top values in bold for each
strand.

Strand Tool TP FP TN FN SENS SPEC PREC ACC

+/- RNNotate 1.53 0.15 18.37 3.41 0.31 0.99 0.91 0.85
RepeatMasker 0.13 0.28 18.24 4.81 0.03 0.99 0.31 0.78
RepeatScout 1.59 0.36 18.16 3.35 0.32 0.98 0.82 0.84

+ RNNotate 0.78 0.42 20.49 1.77 0.31 0.98 0.65 0.91
RepeatMasker 0.06 0.34 20.56 2.49 0.03 0.98 0.16 0.88
RepeatScout 0.48 0.59 20.32 2.08 0.19 0.97 0.45 0.89

- RNNotate 0.47 0.09 20.91 1.98 0.19 1 0.84 0.91
RepeatScout 0.47 0.57 20.43 1.99 0.19 0.97 0.45 0.89

Starting with strand agnostic classifications (+/-), RepeatMasker performed the

worst with few true positives, twice as many false-positives, and many false nega-

tives. While RepeatMasker was clearly the worst performing, both RNNotate and

RepeatScout were fairly equivalent. RepeatScout had a slightly higher sensitivity

rate than RNNotate (32% vs 31%), but RNNotate had half as many false-positive

predictions, making it more precise.

On the forward strand (+), RepeatMasker performed the worst out of the three

54

tools again. RNNotate performed the best, with twice the sensitivity rate as Re-

peatScout (31% vs 19%). As with the strand agnostic results, RNNotate was equally

specific as RepeatScout, but more precise with its predictions (65% vs 45%).

On the reverse strand (-) there were no predictions from RepeatMasker, since

it only generated predictions on the forward strand. RNNotate and RepeatScout

once again had equivalent sensitivity rates (19% and 19%). However, RepeatScout

returned 6 times as many false-positive bases, making it half as precise as RNNotate

(45% vs 84%).

These results show that RNNotate was more sensitive when predicting elements

on the forward strand (31% vs 19%), which is a reverse of the bias it showed when

predicting transcription elements. As the methods for training RNNotate improve,

we plan to investigate whether this bias arose from the training process or there is

a real biological mechanism confounding the prediction. RepeatScout had a lower

strand-specific precision, showing it also had trouble determining the correct strand

of its transposable element predictions. This could mean both tools have room for

improvement, and possibly that the transposable elements reported in the annota-

tion are not perfect. Transcription elements can be verified through RNA-seq, but

transposable elements cannot be sensed directly, only recognized when they move or

by their patterns.

4.6 Region level evaluation of transcripts

While base level metrics give an idea of overall performance, the actual predictions

may not reflect complete features. Metrics generated from the contiguous regions

55

of each prediction are better for conveying the fidelity, and therefore usefulness, of

the output annotation predictions. Predicted regions from each of the three tools

(RNNotate, RepeatMasker, and RepeatScout) were determined to be true-positive

based on their overlap with CDS regions in the Araport11 annotation. Figure 4.6

shows the reciprocal overlap distribution for the predictions from each tool. Both

GlimmerHMM and Augustus had more perfect (100%) matches, but RNNotate had

fewer predictions with no (0%) overlap.

Fig. 4.6: Reciprocal overlap of CDS features. Histogram of reciprocal overlap for each
predicted CDS feature from each of the 3 tools against Araport11 CDS regions. The
vertical red line represents the 75% threshold used for “true-positive” classifications.

To determine if the predictions match up to known elements and serve as a useful

annotation, region-based performance metrics were calculated with differannotate.

Since sensitivity and precision were both usually below 90% for predictions from all

three tools, and there were no obvious trends in 4.6 for determining a cutoff, a

liberal 75% reciprocal overlap between a known and predicted region was required

to be counted as a true-positive result. Due to the sparse nature of features, the

false-positive category was excluded since the regions were extremely large. This

56

exclusion meant that only the sensitivity (SENS) and precision (PREC) rates could

be calculated in Table 4.7.

Tab. 4.7: Region level performance of transcription elements. True positive (TP), false
positive (FP), and false negative (FN) counts were calculated for each tool, feature
type, and strand combination in total regions. Sensitivity (SENS) and precision
(PREC) were also calculated based on region counts.

Element Strand Tool TP FP FN SENS PREC
exon +/- RNNotate 9353 9954 29930 0.24 0.48

Augustus 23619 9259 15664 0.6 0.72
+ RNNotate 3096 4649 16505 0.16 0.4

Augustus 11669 4541 7932 0.6 0.72
- RNNotate 6198 5364 13484 0.32 0.54

Augustus 11922 4746 7760 0.61 0.72
mrna +/- RNNotate 2098 6398 7323 0.22 0.25

GlimmerHMM 2900 3537 6521 0.31 0.45
+ RNNotate 729 3417 3977 0.16 0.18

GlimmerHMM 1436 1799 3270 0.31 0.44
- RNNotate 1361 2989 3354 0.29 0.31

GlimmerHMM 1462 1740 3253 0.31 0.46
cds +/- RNNotate 9707 6526 20685 0.32 0.6

GlimmerHMM 23571 5426 6821 0.78 0.81
Augustus 25198 6442 5194 0.83 0.8

+ RNNotate 3092 2782 12001 0.21 0.53
GlimmerHMM 11633 2722 3460 0.77 0.81
Augustus 12417 3212 2676 0.82 0.79

- RNNotate 6559 3800 8740 0.43 0.63
GlimmerHMM 11931 2711 3368 0.78 0.82
Augustus 12774 3237 2525 0.84 0.8

gene +/- RNNotate 1909 4955 4635 0.29 0.28
Augustus 3631 2010 2913 0.56 0.64

+ RNNotate 633 2401 2626 0.19 0.21
Augustus 1797 977 1462 0.55 0.65

- RNNotate 1263 2567 2022 0.38 0.33
Augustus 1824 1043 1461 0.56 0.64

While predictions from RNNotate showed good performance based on the base

57

pair resolution metrics, both Augustus and GlimmerHMM were superior at predict-

ing correct regions of their respective categories. RNNotate did make some correct

predictions, but they were lost in large quantities of false positives. Taking a look at

strand agnostic (+/-) gene predictions in Table 4.7, RNNotate found more than twice

as many false positives as true. This shows that while RNNotate had a 95% precision

rate when classifying base pairs, they were too irregular and did not represent whole

features even after gap filling and filtering.

4.6.1 Characteristics of transcription regions

All three tools predicted CDS regions, so nucleotide proportion and length statis-

tics were generated on these regions in Figure 4.7. Both the base composition and

length distribution of predicted CDS regions show that regions produced by RNNotate

were different in both size and composition than those in the Araport11 annotation

and those predicted by GlimmerHMM and Augustus.

The nucleotide proportions of both GlimmerHMM and Augustus matched those

in Araport11 in Figure 4.7, where the proportion of A matched T and G matched

C, but A and T both occurred more frequently than G and C. Looking at the RN-

Notate proportion distributions, the A and T proportions are equivalent, but the C

proportion is higher and unsynchronized from the G proportion.

The length distributions of CDS predictions in Figure 4.7 once again show that

predictions from GlimmerHMM and Augustus matched the actual distribution from

Araport11. CDS regions predicted by RNNotate were as long as the 3 other sources,

but many short CDS sequences were absent.

58

Fig. 4.7: Descriptive comparison of CDS predictions. Left figure shows the nu-
cleotide proportion distributions for CDS predictions on either strand by tool (RN-
Notate, GlimmerHMM, Augustus) or reference (Araport11). Right figure shows the
sqrt(length) distributions of CDS predictions on either strand by tool or reference.

4.7 Region level evaluation of transposable elements

For each of the three tools, predicted regions were determined to be true-positive

based on their reciprocal overlap with TEs in the Araport11 annotation. Figure 4.8

shows that RepeatMasker had the fewest high-overlap predictions, and many false-

positives that could not be matched to any Araport11 TEs. RNNotate had more high-

overlap predictions than RepeatMasker, but no perfect (100%) matches. RepeatScout

had the most high-overlap matches, but was even with RNNotate with low-overlap

false-positives. Once again, a threshold of 75% reciprocal overlap was used to classify

predictions as either true or false positives, which is represented by the red vertical

line in Figure 4.8, and performance metrics were calculated and collected in Table 4.8.

As with the base pair metrics, RepeatMasker was the lowest performing tool of

the three, with only 12 correctly predicted transposable elements. RNNotate was

10 times better with 119, leading to a 1.8% sensitivity rate and 4.1% precision rate.

59

Fig. 4.8: Reciprocal overlap of transposable elements. Histogram of reciprocal over-
lap for each predicted TE from each of the 3 tools against TEs in the Araport11
annotation. The vertical red line represents the 75% threshold used for true-positive
classifications.

While this may not seem impressive, RepeatScout, which performed best, had a 4.6%

sensitivity rate and a 6.6% precision rate. To determine if the FP were too small to

match a TE, or simply wrong, descriptive statistics were generated in Figure 4.9.

Tab. 4.8: Region level performance of transposable elements. True positive (TP), false
positive (FP), and false negative (FN) counts were calculated for each tool, feature
type, and strand combination in total regions. Sensitivity (SENS) and precision
(PREC) were also calculated based on region counts.

Strand Tool TP FP FN SENS PREC
+/- RNNotate 119 2797 6342 0.018 0.041

RepeatMasker 12 9653 6449 0.002 0.001
RepeatScout 300 4237 6161 0.046 0.066

+ RNNotate 65 1821 3219 0.02 0.034
RepeatMasker 8 9657 3276 0.002 0.001
RepeatScout 85 2140 3199 0.026 0.038

- RNNotate 38 992 3139 0.012 0.037
RepeatScout 89 2223 3088 0.028 0.038

60

The nucleotide proportions in Figure 4.9 show that both RepeatScout and RNNo-

tate both matched the actual proportions present in the Araport11 TE annotation.

RepeatMasker returned regions which were extremely biased towards adenine (A) nu-

cleotides and thymine (T) nucleotides, meaning it may have classified simple repeats

in the DNA as transposable elements.

The length distributions in Figure 4.9 showed that predictions from both Re-

peatScout and RNNotate were once again in sync with actual transposable ele-

ments present in the Araport11 annotation. RepeatMasker had the least realistic

TE lengths, where all except a few outliers were smaller than 75% (Q1) of those

present in the Araport11 annotation.

Fig. 4.9: Descriptive comparison of TE predictions. Left figure shows the nu-
cleotide proportion distributions for TE predictions on either strand by tool (RN-
Notate, RepeatMasker, RepeatScout) or reference (Araport11). Right figure shows
the sqrt(length) distributions of CDS predictions on either strand by tool or reference.

61

4.8 Impact of DNA methylation on prediction

One of the main reasons this research was undertaken was to determine if the

inclusion of DNA methylation actually provided a useful dimension for predicting

genomic features. It has been shown that the model can produce better or comparable

results to trusted tools when it is included, but it is still unknown if the inclusion of

DNA methylation impacted the results overall. To answer this question, the optimal

model was once again trained for 200 epochs with the same parameters, except the

methylation data was excluded. Evaluation also took place every 5th epoch, and the

top 10 loss values were recorded for both the training and validation data in Table 4.9.

Tab. 4.9: Training and validation error after training without methylation. Corre-
sponding median mean squared error (MSE) and interquartile range (IQR) for both
Chromosome 1 (Training) and Chromosome 3 (Validation). Data was sorted by vali-
dation MSE, and the best (lowest) 10 values were kept.

Training Data Validation Data
Rank Epoch MSE IQR MSE IQR

1 135 0.0622 0.0502 0.0714 0.0521
2 115 0.0621 0.0492 0.0718 0.0534
3 170 0.0618 0.0532 0.0719 0.0544
4 150 0.0519 0.0553 0.0719 0.0659
5 145 0.0613 0.049 0.0735 0.0517
6 165 0.0684 0.0484 0.0744 0.052
7 140 0.0687 0.0402 0.0745 0.0413
8 160 0.0636 0.0511 0.0745 0.0524
9 185 0.0685 0.0561 0.0745 0.0563
10 120 0.0626 0.0509 0.0748 0.0524

When excluding the dimension of DNA methylation, the model performed opti-

mally after training for 135 epochs (Table 4.9), which was almost 6 times the number

of epochs used for the optimal model with DNA methylation. The error distribution

62

box plots in Figure 4.10 show that there was no significant learning improvement

over time. The fact the model never began overfitting to the data like in Figure 4.3,

where training and validation error began to diverge, could mean that the model was

memorizing specific methylation patterns, and not the relative location included in

the input.

Fig. 4.10: Error during long training without methylation. The top two plots show
error rate along the training and testing chromosomes. Initial epochs start in blue
and transition to red for late epochs. The epoch with the lowest median test MSE is
plotted in gold. The bottom plot contrasts the training (blue) and validation (red)
MSE distributions of across epochs.

The output from this model was then cleaned with the same gap filling and filtering

rules originally used. Afterwards, results were compared to Araport11 and those when

run with DNA methylation with differannotate. Performance metrics for all feature

categories were collected in Table 4.10, where the “RNNotate” sample is the original,

63

and “w/o Methylation” is when DNA methylation was excluded. Strand specific

results (+,-) were excluded since previous results determined that RNNotate to have

strand bias in its predictions.

Tab. 4.10: Base level performance measures of RNNotate. True positive (TP), false
positive (FP), true negative (TN), false negative (FN) counts were calculated for
each model version, feature type, and strand combination in megabases. Sensitivity
(SENS), specificity (SPEC), and precision (PREC) were also calculated with top
values in bold. All comparisons were unstranded made against the Chromosome 3 of
the Araport11 annotation.

Element Tool TP FP TN FN SENS SPEC PREC
3’ UTR RNNotate 0.42 0.15 21.74 1.14 0.27 0.99 0.74

w/o Methylation 0.12 0.02 21.87 1.45 0.08 1 0.84
3’ UTR RNNotate 0.14 0.06 22.09 1.17 0.11 1 0.7

w/o Methylation 0.03 0.01 22.14 1.28 0.02 1 0.78
exon RNNotate 5.41 0.74 11.19 6.11 0.47 0.94 0.88

w/o Methylation 3.9 0.37 11.56 7.62 0.34 0.97 0.91
mrna RNNotate 7.88 0.51 8.2 6.86 0.53 0.94 0.94

w/o Methylation 6.88 0.32 8.4 7.87 0.47 0.96 0.96
cds RNNotate 3.43 0.57 16.22 3.24 0.52 0.97 0.86

w/o Methylation 2.2 0.27 16.52 4.47 0.33 0.98 0.89
TE RNNotate 1.53 0.15 18.37 3.41 0.31 0.99 0.91

w/o Methylation 1 0.1 18.42 3.94 0.2 1 0.91
gene RNNotate 6.98 0.41 10.11 5.96 0.54 0.96 0.95

w/o Methylation 6.08 0.26 10.26 6.86 0.47 0.98 0.96
TE gene RNNotate 0.89 0.15 21.17 1.25 0.42 0.99 0.86

w/o Methylation 0.61 0.09 21.22 1.53 0.29 1 0.87

For all eight feature categories, RNNotate was more sensitive and made more posi-

tive predictions when DNA methylation was included in the input data. However, the

model that resulted from training without DNA methylation was slightly more spe-

cific and precise with its classifications, showing that signals from DNA methylation

not only resulted in more positives, but more false-positive predictions.

64

The feature category that was least affected by the exclusion of DNA methylation

were genes, where RNNotate had a sensitivity of 54% with methylation and 47% with-

out it. The prediction of “five prime utr” features was most affected by the exclusion

of DNA methylation, where RNNotate had a sensitivity of 11% with methylation and

2% without it. Visualizing the logical relation of these two categories in Figure 4.11

illustrates the equally high precision of gene predictions from each model, while also

showing the discrepancy between five prime untranslated region (five prime utr) pre-

dictions.

The prediction of a gene was also visualized in a genome browser in Figure 4.12.

Both Augustus and GlimmerHMM generated a gene model that looked similar, but

was shorter than the model in Araport11. RNNotate also generated a corresponding

model, and was able to predict corresponding untranslated region (UTR) predictions

in the areas that were truncated by GlimmerHMM and Augustus. The prediction

generated by RNNotate without methylation data was fragmented and sparse, and

did not represent the actual gene like when it was run with DNA methylation.

4.9 Investigating model performance

In an effort to understand why RNNotate was outperformed by RepeatScout,

GlimmerHMM, and Augustus for certain measures of performance, and why there

were strand effects in the predictions, we took a look at DNA methylation on and

around predicted and known Araport11 features.

For each feature category, contiguous regions were stratified by strand to show

possible differences in methylation-based indicators. DNA methylation frequencies

65

Fig. 4.11: Base level logical relations between Araport11 Chromosome 3 features and
bases predicted by RNNotate and RNNotate without methylation (w/o Methylation).

66

Fig. 4.12: Genome browser view of Araport11 gene AT3G19670.2 (blue), and its
prediction by Augustus (green), GlimmerHMM (orange), RNNotate (red), and RN-
Notate without methylation (purple).

for each context (CG, CHG, CHH) were separately collected from each region, and

both one kilobase (kb) up and downstream. For each of the three region categories,

the positional methylation frequency values were split into 20 bins, to allow for the

comparison of varying feature lengths, and averaged. The 60 values, 20 for each of

the three regions, were then tracked and then averaged for each context.

4.9.1 Regional exon methylation

RNNotate was twice as sensitive at predicting exons on the reverse strand (32%)

as it was on the forward strand (16%) (Table 4.7). For exons on the forward strand In

Figure 4.13, false-positive predictions (gold) had a higher than average methylation

frequency, also called hypermethylation, across all three contexts while also preserving

the characteristic plateau in the exon region. On the reverse strand, the CG methy-

lation patterns were similar across all exon predictions. False-positives were slightly

hypermethylated for CHG and CHH methylation, but true-positive predictions had

lower than average methylation frequencies, also called hypomethylation.

67

Fig. 4.13: Methylation around exon predictions. Methylation frequencies by strand
and context (CG, CHG, CHH) for 3 regions: 20 averaged bins 1kb upstream from
feature, 20 averaged bins for feature, and 20 averaged bins 1kb downstream from
feature. The gray vertical lines serve to visually separate each region. True-positive
predictions are represented by “both” (green), False-positive predictions are repre-
sented by “RNNotate” orange, and False-negatives are represented by “Araport11”
(blue).

68

4.9.2 Regional mRNA methylation

As with exon predictions, RNNotate was twice as sensitive at predicting mRNA

regions on the reverse strand (29%) as the forward (16%) as shown in Table 4.7.

However, unlike exons, the precision for mRNA regions was twice as high on the re-

verse strand (31%) as the forward (18%). Looking at methylation patterns for mRNA

on the forward strand in Figure 4.14, the 729 true-positives matched the 3977 false-

negatives perfectly. In contrast, the 3417 false-positives were hypermethylated and

did not match the characteristic pattern. On the reverse strand, there were 1361 true-

positive regions whose methylation patterns correlated with the 3354 false-negatives.

There were fewer false-positives on this strand (2989), and while no contexts differed

as much as those on the forward strand, both CHG and CHH were more correlated

than CG methylation. These results show that the model relied more on methylation

for mRNA predictions on the reverse strand than it did on the forward strand, and

that indicator provided twice the sensitivity and specificity.

4.9.3 Regional CDS methylation

Once again, RNNotate was twice as sensitive on the reverse strand as it was on

the forward, with respective rates of 43% and 21%. However, the margin in precision

was narrower, with 65% on the reverse strand and 53% on the forward. Looking at

CG methylation from both strands in Figure 4.15, the patterns between prediction

classes were fairly similar. In contrast, for both CHG and CHH methylation, the

valley-like patterns from true- and false-positive predictions were more similar on

the reverse strand. On the forward strand, true-positive methylation patterns were

69

Fig. 4.14: Methylation around mRNA predictions. Methylation frequencies by strand
and context (CG, CHG, CHH) for 3 regions: 20 averaged bins 1kb upstream from
feature, 20 averaged bins for feature, and 20 averaged bins 1kb downstream from
feature. The gray vertical lines serve to visually separate each region. True-positive
predictions are represented by “both” (green), False-positive predictions are repre-
sented by “RNNotate” orange, and False-negatives are represented by “Araport11”
(blue).

70

similar to true-positive on the reverse, but the false-positive patterns were closer to

false-negatives. These trends show that the model relied more on CHG and CHH

methylation data for predictions on the reverse strand than it did on the forward.

While not perfect, this increased reliance doubled the sensitivity of predictions.

4.9.4 Regional gene methylation

The gene predictions made by RNNotate were also twice as sensitive on the reverse

strand (35%) as they were on forward (19%), but precision was only slightly better

at 33% and 21% respectively. The patterns for CG methylation in Figure 4.16 were

similar between the strands, but false-positive predictions on the reverse strand had

lower methylation frequencies than the false-negative pattern. For both CHG and

CHH methylation contexts, the true- and false-positive methylation patterns were

more correlated on the reverse strand than they were on the forward strand. This

could mean that the valley shape that these two contexts create in a gene body could

have a larger effect on reverse predictions than those on the forward strand.

4.9.5 Performance conclusions from methylation

If the model is biased towards making predictions based on patterns of DNA

methylation, the methylation frequency profile of true-positive (TP) would be similar

to false-positive (FP) with a small difference. At the same time, the TP profile would

be an exaggeration of the false-negative (FN) trend, where features with the most

obvious were detected. Following this logic, if the most obvious trends were removed

from the FN pool, the TP profile would be lower than FN for cases of hypomethylation

71

Fig. 4.15: Methylation around CDS predictions. Methylation frequencies by strand
and context (CG, CHG, CHH) for 3 regions: 20 averaged bins 1kb upstream from
feature, 20 averaged bins for feature, and 20 averaged bins 1kb downstream from
feature. The gray vertical lines serve to visually separate each region. True-positive
predictions are represented by “both” (green), False-positive predictions are repre-
sented by “RNNotate” orange, and False-negatives are represented by “Araport11”
(blue).

72

Fig. 4.16: Methylation around gene predictions. Methylation frequencies by strand
and context (CG, CHG, CHH) for 3 regions: 20 averaged bins 1kb upstream from
feature, 20 averaged bins for feature, and 20 averaged bins 1kb downstream from
feature. The gray vertical lines serve to visually separate each region. True-positive
predictions are represented by “both” (green), False-positive predictions are repre-
sented by “RNNotate” orange, and False-negatives are represented by “Araport11”
(blue).

73

and higher than FN for cases of hypermethylation, and a large difference between the

two.

Conversely, if the model tended to not rely on DNA methylation for predictions,

the FP profile would be dissimilar to the TP profile. The TP profile would also be

extremely similar to FN since the methylation pattern outliers were not detected and

removed.

The median squared error between TP and FP profiles (Both and RNNotate) and

TP and FN profiles (Both and Araport11) was calculated for each feature, context,

and strand combination. A t-test was then used to determine if the error distribu-

tions between the forward (+) and reverse (-) significantly differed. The analyses

of transcription elements (Table 4.11) and transposable elements (Table 4.12) were

conducted separately since their methylation profiles were utilized differently.

Looking at the error values for transcription elements in Table 4.11, the mean

MSE(TP-FP) was lower on reverse strand feature predictions at 0.002 than on the

forward strand at 0.006. The difference between these two error distributions was also

significant at 0.02. This means that when making predictions on the reverse strand,

the model was over classifying regions that matched a feature’s methylation pattern.

Moving to the mean MSE(TP-FN), the reverse strand was higher than the forward

strand at 0.001 and 0.0003 respectively. Even though the mean MSE was 3 times

greater on the reverse strand, the t-test did not find the two error distributions to be

significantly different. However, since the mean was higher on the reverse strand, the

model was overfit to the most extreme methylation patterns.

74

Tab. 4.11: t-test of Transcription methylation differences. Tabulation of MSE values
from each methylation context. For each category of MSE values (TP-FP and TP-
FN), a one-tailed t-test was performed to compare methylation differences of features
originating from the reverse strand (-) and the forward strand (+).

MSE(TP-FN) MSE(TP-FN)
- + - +

cds CHG 1.40E-05 1.84E-04 2.08E-04 1.31E-04
CHH 2.00E-06 7.80E-05 1.50E-05 1.27E-04
CG 3.46E-04 5.00E-06 1.35E-04 8.00E-06

exon CG 1.10E-03 9.92E-03 2.81E-04 1.91E-04
CHG 2.57E-03 1.41E-02 9.09E-04 4.50E-04
CHH 1.12E-04 3.71E-04 5.10E-05 1.60E-05

gene CG 2.19E-03 7.40E-05 3.18E-03 4.29E-04
CHG 3.20E-05 7.00E-06 9.49E-04 3.20E-05
CHH 3.00E-06 3.61E-03 7.30E-05 1.34E-03

mrna CG 1.71E-02 3.10E-02 6.26E-03 3.94E-04
CHG 5.25E-03 9.15E-03 1.61E-03 6.10E-05
CHH 1.77E-04 2.69E-04 9.50E-05 5.00E-06

mean 2.41E-03 5.73E-03 1.15E-03 2.65E-04
variance 2.38E-05 8.75E-05 3.45E-06 1.42E-07
t-Stat -2.1872 1.6497
P(T<=t) 0.0256 0.0636

These two findings show that the model was more reliant on feature-specific pat-

terns of DNA methylation for predictions on the reverse strand. This means that the

model was more reliant and possibly overfit to the methylation patterns methylation

patterns of FP predictions was more similar to the TP predictions.

Looking at the error values for transposable elements (TEs) in Table 4.12, the

mean MSE(TP-FP) was lower on forward strand feature predictions at 0.0023 than

on the reverse strand at 0.026. While this was almost a 10 times difference between

the two, there were only 3 values for each category, so the t-test did not show a

statistically significant difference. While not statistically distinct, the means show

75

Tab. 4.12: t-test of TE methylation differences. Tabulation of MSE values from each
methylation context. For each category of MSE values (TP-FP and TP-FN), a one-
tailed t-test was performed to compare methylation differences of features originating
from the reverse strand (-) and the forward strand (+).

MSE(TP-FP) MSE(TP-FN)
- + - +

CG 0.0553 0.0042 0.0278 0.0318
CHG 0.0179 0.0022 0.0186 0.0218
CHH 0.0053 0.0005 0.0088 0.0013

mean 0.0262 0.0023 0.0184 0.0183
variance 0.0007 0.0000 0.0001 0.0002
t-Stat 1.7114 0.0379
P(T<=t) 0.1146 0.4866

that reliance on DNA methylation has flipped for classifying TEs, and the forward

strand is now over classifying them based on methylation patterns.

The mean MSE(TP-FN) was almost equal for TE predictions on the reverse strand

(0.0184) and the forward strand (0.0183). Since there was not a significant difference

between the two strands, and the error for both was larger than the 0.00115 and

0.00027 means from the transcription features, we can assume that the model was

equally reliant on extreme methylation patterns when making predictions from either

strand.

These results found that RNNotate was more reliant on DNA methylation signals

when predicting transcription elements on the reverse strand. This aligns with aggre-

gated base level results in Table 4.5, which saw higher sensitivity (63%) and precision

(89%) for predictions on the reverse strand in comparison to the forward strand (34%

and 78%). We also found that the model has separate mechanisms for classifying TEs

since the analysis of DNA methylation patterns showed that forward strand, instead

76

of reverse strand) elements were over classified based on their methylation patterns.

This finding was supported by increased sensitivity on the forward strand (31% vs

19%) in Table 4.6.

4.10 Runtime performance

Both the running wall clock time and maximum memory usage were recorded for

RNNotate and each of the 4 other tools used for comparison. CPU core utilization was

not collected since RNNotate uses GPUs while the other tools are a mix of threaded

and serial codes. The results in Table 4.13 show that RNNotate completed annotating

the whole A. thaliana genome in 15 minutes, 42 seconds using 16.6 gigabytes (GB) of

memory. While this is fairly reasonable for modern research-grade code that is used

to large resource limits, all historic tools used less than a gigabyte of memory, and

all except RepeatScout completed in less time.

Tab. 4.13: Runtime and resource requirements of tools. For each tool, the wall clock
runtime was recorded in “minutes:seconds” along with the maximum memory usage
in gigabytes (GB).

Runtime (m:ss) Memory (GB)
RNNotate 15:42.05 16.6
Augustus 13:17.39 0.33
GlimmerHMM 1:42.30 0.34
RepeatMasker 1:29.25 0.89
RepeatScout 17:15.47 0.92

77

4.11 Issues limiting portability

While the original goal of this project was to be portable and allow for the model

to target both CPUs or GPUs for execution, the CPU version had to be dropped

for several reasons discovered during usage. First, Tensorflow 1.14, 1.15 and 2.0

leak memory during each training batch of recurrent neural networks when running

on CPUs both with and without Intel’s MKL-DNN enabled at a rate proportional

to model size, meaning larger models consumed more memory faster as shown in

Figure 4.17.

Fig. 4.17: Effect of model architecture on memory consumption by batch. The left
figure shows total memory usage after each training batch for three different model
architectures. The right figure shows the memory increase after each training batch
for three different model architectures. In the figure legends, “lstm=1,2” designates
1 or 2 LSTM layers and “td=1,2” designates 1 or 2 time-distributed hidden layers.

This leak could be mitigated in 1.14 and 1.15 by disabling the MKL-DNN and

altering the run config, but it was always present in 2.0. The leak is not present

78

in any of the three mentioned versions when using GPUs for execution. Second,

Tensorflow’s XLA optimizer encountered numerical errors while computing losses on

a CPU, but ran without error on a GPU using Nvidia’s implementation. Third, even

though CPUs are more accessible and the model handled distributed execution, the

model trained much quicker on a single GPU than it did on several HPC nodes with

InfiniBand interconnect and significantly more memory for the model and batches of

data to reside in.

79

5. Future Work

5.1 Removing strand specific categories from output

The raw performance results showed that RNNotate excelled at making transcrip-

tion predictions on the reverse strand, and TE predictions on the forward strand. Our

follow-up analysis of DNA methylation patterns around predictions also found that

the model increased the weight of DNA methylation patterns when classifying bases.

This shows that the model has separate, and unequal, rules when making predictions

for each strand. To remove this bias and improve performance overall, we would like

to explore two changes to our model. First, we will remove the strand-specific output

from the specification. Since the model will no longer be required to determine which

strand the data originated from, we hope it will not develop separate processes for

classification. Second, since relative location was used by the model to determine the

strand of the input, we would like to experiment with removing this dimension. We

believe excluding this data may also increase data reusability.

5.2 Improving data variety

Two constant challenges in this machine learning project were juggling the huge

quantities of data, and traversing it in such a way that training was not biased

80

towards a specific strand, chromosome, or feature. As demonstrated in Figure 4.3, the

optimal model began to overfit to the training data after epoch 20. It is believed that

performance can be further improved by diversifying the training data. First, even

though it might require truncation, we would include data from multiple chromosomes

in each batch. Second, data traversals currently start from the first nucleotide, and

allowing starting offsets would slightly change up the batches. Lastly, since the model

did not overfit the same data without DNA methylation (Figure 4.10), we would

include the option to mutate a certain percentage of nucleotides and methylation

values to increase reusability over more training epochs.

5.3 Optimizing hyperparameter search

While the hyperparameter sweep this research used did find an optimal model for

predicting the data, there were two problems. First, it was run for 20 epochs, and

the best epoch for the optimal model configuration was also found to be after the

20th epoch. Other models may have converged at a lower loss value at a later epoch,

so hyperparameter optimization should be run for more epochs with future version.

Second, finding the best performing model with 648 combinations of input parameters

ran for 7 hours on 124 Nvidia v100 GPUs, which are server-grade and expensive, and

acting as the bottleneck for future work. To reduce the resources required to identify

an optimal architecture, RNNotate could benefit from a hyperparameter optimization

method that does not use brute-force. Both Talos [68] and Tune [69] are third-

party hyperparameter optimizers that randomly sample the hyperparameter space

and iterate towards an optimal choice. Talos runs sequentially on a single computer,

limiting the dataset size it can evaluate, but Tune can scale to multiple servers in the

81

cloud or high-performance computing (HPC) cluster. Both options require significant

refactoring of the RNNotate code, which prevented their incorporation in this initial

version.

5.4 K-mers to improve the prediction of coding features

While the hyperparameter sweep found that convolving the input had a minimal

effect on the predictive power of the model, we would like to include the option to

represent the reference sequence as k-mers, which are analogous to n-grams, in future

versions. We believe this feature would be worthwhile because the convolutional layer

transformed the entire input, while the k-mer representation would only affect the

reference base sequence. Depending on the value of “k”, or width of the window, the

complexity of the input data will significantly increase, so we will also explore the

merits of encoders to stratify inputs.

5.5 Incorporating additional data dimensions

Draft genome studies usually begin with a reference assembled from DNA and an

annotation from a combination of predictions on the DNA and RNA. The A. thaliana

annotation is on the eleventh version (Araport11), and the primary source behind each

improvement is the incorporation of information learned from novel data such as long

iso-seq reads [70], chromatin immunoprecipitation and sequencing (CHIP-seq) [71],

and other epigenetic marks.

While this initial version of RNNotate focused on incorporating DNA methylation

data, generic interfaces for adding BAM and bedGraph data as model input will be

82

developed. Both of these formats support random reads and can effectively represent

the target signal from RNA-seq, CHIP-seq, and many other protocols. While each

combination of input dimensions will require a separate model, it is my hope that

RNNotate will be able to contribute to quality annotations at all stages of study.

83

6. Conclusions

RNNotate was developed as a novel method for genome annotation, which used a

recurrent neural network for the actual prediction. Neural networks for prokaryotic

annotation exist, but we designed efficient methods to enable eukaryotic annotation,

while also exploring the effect of including DNA methylation data to improve predic-

tions.

A hyperparameter search identified an optimal model architecture, which was

trained on A. thaliana chromosomes 1, 2, 4, and 5. We found that RNNotate detected

fewer CDS elements than GlimmerHMM and Augustus at predicting CDS elements,

but those predictions were more often correct. We also found that RNNotate was

more accurate than both RepeatMasker and RepeatScout at predicting transposable

elements. RepeatScout was slightly more sensitive than RNNotate, but returned

twice as many false-positives.

When RNNotate was trained and run without DNA methylation, its predictions

were significantly less sensitive, predicting fewer positive feature targets overall and

slightly increasing the precision. The gene model predictions that were originally

whole when DNA methylation was included became fragmented without it as well. We

also found that DNA methylation patterns were used to a greater extent in predictions

on strands with superior performance.

84

These results from this initial version of RNNotate are promising, but not ready

to replace trusted tools and pipelines; however, it could be used to supplement them.

Excluding DNA methylation from the input to RNNotate demonstrated its merits

for generating annotation predictions, and its inclusion from long-reads will benefit

the study of novel organisms. We hope that removing strand specific output and

improving the training process will remove some strand biases and improve the results

overall.

In addition to the direct outcomes, this work has made several peripheral contribu-

tions to the bioinformatics community. The BSMAP methylation caller was optimized

and parallelized to enable faster analysis. Programming interfaces for randomly ac-

cessing methylation data were created and published. A numerical specification and

programming interfaces for reading and writing annotations numerically was created.

Lastly, a well documented, flexible framework for analyzing genomic data with re-

current neural networks was developed, validated on multiple types of hardware, and

published for other researchers to create their own models and investigate their own

hypotheses.

85

7. Appendix

7.1 Software

All software developed for this research is available on GitHub:

RNNotate: https://github.com/zyndagj/RNNotate

differannotate: https://github.com/zyndagj/differannotate

BSMAPz: https://github.com/zyndagj/BSMAPz

7.2 Data

All data used for this research is open-source and available online:

Arabidopsis thaliana.TAIR10.dna.toplevel.fa TAIR10 genome assembly used by Ara-

port11 annotation. ftp://ftp.ensemblgenomes.org/pub/plants/current/

fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.

fa.gz

PRJEB6701 Study containing bisulfite-sequencing reads from wild-type stem and

root samples of A. thaliana

86

https://github.com/zyndagj/RNNotate
https://github.com/zyndagj/differannotate
https://github.com/zyndagj/BSMAPz
ftp://ftp.ensemblgenomes.org/pub/plants/current/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ensemblgenomes.org/pub/plants/current/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ensemblgenomes.org/pub/plants/current/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz

Araport11 GFF3 genes transposons.201606.gff The Araport11 annotation GFF3 file.

https://www.arabidopsis.org/download_files/Genes/Araport11_genome_

release/Araport11_GFF3_genes_transposons.201606.gff.gz

TAIR10 Transposable Elements.txt Identities of repeats in Araport11 annotation.

https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/

TAIR10_transposable_elements/TAIR10_Transposable_Elements.txt

87

https://www.arabidopsis.org/download_files/Genes/Araport11_genome_release/Araport11_GFF3_genes_transposons.201606.gff.gz
https://www.arabidopsis.org/download_files/Genes/Araport11_genome_release/Araport11_GFF3_genes_transposons.201606.gff.gz
https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_transposable_elements/TAIR10_Transposable_Elements.txt
https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_transposable_elements/TAIR10_Transposable_Elements.txt

8. Additional Work

The following sections are all quoted directly from their relevant publications. The

parts included were directly contributed by the author. Full texts and references can

be found with the original publications.

8.1 Feature Frequency Profiles for Automatic Sample Identification using

PySpark

8.1.1 Abstract

When the identity of a next generation sequencing sample is lost, reads or assem-

bled contigs are aligned to a database of known genomes and classified as the match

with the most hits. However, any alignment based methods are very expensive when

dealing with millions of reads and several thousand genomes with homologous se-

quences. Instead of relying on alignment, samples and references could be compared

and classified by their feature frequency profiles (FFP), which is similar to the word

frequency profile (n-gram) used to compare bodies of text. The FFP is also ideal in

a metagenomics setting to reconstruct a mixed sample from a pool of reference pro-

files using a linear model or optimization techniques. To test the robustness of this

method, an assortment of samples will be matched to complete references from NCBI

88

Genome. Since a MapReduce framework is ideal for calculating feature frequencies

in parallel, this method will be implemented using the PySpark API and run at scale

on Wrangler, an XSEDE system designed for big data analytics.

8.1.2 Introduction

In the realm of natural language processing the idea of n-grams, or overlapping

subsequences of n items, is commonly used to summarize and model large bodies of

text. Documents are broken down into word or character n-grams and the occurrence

of each n-gram is tallied. Besides showing popular n-grams and relationships between

entities, this is also a simple way to transform text into numerical vectors for quanti-

tative analysis. N-grams have been previously used for genre classification [72], spam

detection [73], and authorship identification [74].

Computational biology often borrows from other fields as technology progresses.

Because DNA is long sequential chain of values, methods are often adapted from time-

series analysis, but methods from natural language processing can be used as well.

Synonymous to n-grams, computational biology has k-mers, which are subsequences

of overlapping k-length nucleotides along strands of DNA. While the idea is simple,

it is robust enough to be a universal statistic for genomes of greatly different sizes

an origin. K-mers have been used for error detection [75], sequence assembly [76],

repetitive element detection [16], sample classification [77], and genome comparison

[78].

Using k-mers for sequence comparison is advantageous over common methods be-

cause they don’t require alignment. Whenever large sequences are compared, local

alignment methods are used to find the best match while also allowing for differences.

89

Alignment isn’t used for comparing kmers, because they are just counted. All dif-

ferences in sequence result in different overall levels or k-mers unique to a specific

dataset. In the context of sample read identification, each of the hundreds of millions

of reads from a next-generation sequencing run need to be aligned to a database of

each possible genome. This is the same process that occurs when a read is identified

with BLAST [79]. Local alignment is an O(N2) dynamic programming method, so

repeating it for large numbers of references isn’t ideal. The NCBI genome archives

will continue to grow at an exponential rate as shown in Figure 8.1, making any

alignment-free methods attractive.

Fig. 8.1: Number of complete genomes archived by NCBI genome.

One of the most popular models for text analysis is MapReduce, which maps

functions to pieces of data in parallel, and then reduces the result together. Since the

preprocessing and statistical methods are very similar, we propose the use of Apache

Spark for distributed k-mer frequency calculation of reference genomes and sequencing

90

reads [80]. Not only will Spark’s partitioning methods split the data between workers

and to disk when there is too much to hold in memory, but it will also orchestrate the

parallel computations taking place. This will circumvent the drawbacks of code that

have high memory requirements and only function single-node in shared memory like

jellyfish [81].

8.1.3 Related work

K-mer frequencies have been previously utilized for both genome comparison and

sequencing read classification. Sims et al. utilized k-mer feature frequency profiles to

compare genomes of varying lengths using the Jensen-Shannon divergence. They then

constructed phylogenies based on their computed divergences which closely resembled

the official taxonomic phylogenies from NCBI. Wood and Salzberg created the tool

Kraken to match reads to their genus of origin based on k-mer presence. Kraken does

this by constructing a database from a collection of genome references and a known

taxonomy to collapse k-mers to their lowest common ancestor. Because our database

is distributed across multiple executors instead of together on a single computer,

our implementation skips this preprocessing step and relies on the quantity of the

information in the genome references over the quality of the taxonomy.

Kraken has been shown to be very precise when classifying reads, but is inac-

cessible to the average user for two main reasons. First, it requires at least 70GB of

system memory to run and most XSEDE systems have 2GB of memory per core. This

means some kind of large-memory resource is required. Second, it is highly dependent

on its database. Kraken requires that each genome be included in an accompanying

taxonomy. Sequencing is getting cheaper and haploid assembly is push-button since

91

the advent of long-read technologies [82], but curated taxonomies can lag behind.

Kraken also requires that the database be rebuilt whenever samples change, and this

is a time-consuming process bound by disk operations.

Apart from sequence classification and k-mer counting, here has been some recent

work to support bioinformatics analysis on the Spark platform with the ADAM suite

[83]. However, this is not general purpose and specifically targets the storage and

analysis of specific types of files. ADAM also focuses on analyses that translate

well to tabular data, like point mutations in the variant call format. These point

mutations are sets of mutation coordinates, and an analysis across samples is well

suited to Spark’s current native data analysis abilities.

8.1.4 Spark For Genomics

Even with the push of ADAM and large companies that specialize in MapReduce

like Google starting to get into the field of genomics, the platform is still gaining

traction within the community. We however, saw that the feature frequency profile

was ideal for transforming genomic data into vectors more suited to a MapReduce

framework. We implemented sparkmer using PySpark, the Python API to the Spark

platform. PySpark allows for full Spark utilization without writing any non-python

code or multiple command line calls like with Hadoop Streaming. Besides MapReduce

becoming more accessible, Spark has full access to python’s 67,000 packages.

92

Fig. 8.2: PySpark workflow for reference k-mer counting.

93

8.1.5 Approach

8.1.5.1 Reference k-mer Counting After transferring a collection of Fasta ref-

erences to the hadoop distributed file system (HDFS), all k-mers, for a specified k,

are counted as laid out in Figure 8.2. First, all fasta files are filtered to remove

header sequences and line breaks, and then concatenated into a contiguous sequence.

For reference sets with large genomes, like eukaryotes, sequences can be split into

sub-sequences with k-bp (k-mer) of overlap and repartitioned for evenly distributed

processing.

k-mers for each section are then computed and immediately transformed into an

index. The indices are calculated by treating each k-mer as a base-4 representation

of a base-10 index, where {A:0, G:1, C:2, T:3}. We decided to use the base-4 index

method as opposed to the more commonly used hash index after having two key

collisions when counting 3-mers with 210 valid keys. Not only does our indexing

method avoid collisions, but it also runs in constant time and does not require a

lookup table for the inverse.

Reads will be classified based on Jaccard Similarity, to index arrays are trans-

formed into Python sets. The sets will not only allow for efficient unions and inter-

sections during when calculating similarity and reducing, but also is a sparse repre-

sentation of k-mer presence. Sparse data types are necessary when counting k-mers

because a dense vector to keep track of all 20-mers requires 4TB of memory. We also

experimented with sparse vector structures, but they were unnecessary since we never

use the count, just the presence of a k-mer.

94

Fig. 8.3: PySpark workflow for classifying input reads.

95

8.1.6 Classifying Reads

Reads are then transformed into sets of k-mer indices using the same method for

genomes and classified as shown in Figure 8.3. While developing this process, we

experienced over-allocation errors from the executors after calculating read k-mers,

no matter the number of partitions. After mapping the partitions of our data and

counting the number of records in each and plotting the histogram (Figure 8.4), we

discovered that a majority of the Resilient Distributed Dataset (RDD) partitions

were being left empty. We are not sure if the low complexity read names all hashed

to the same partitions or filtering and joining the reads caused the problem, but

neither shuffling nor repartitioning had any effect on the distribution of the data.

We finally fixed this by manually partitioning the reads with an integer index. This

forced a uniform distribution of the data across the partitions, so no executors were

overwhelmed later in the analysis.

Large quantities of reads and large reference databases leads to huge number of

pairwise comparisons. To reduce the number of required comparisons, we filter our

database down to 150 probable candidates. These candidates are determined by first

creating a global k-mer set by reducing all input read sets with with a union. This

global k-mer set is then compared to all 11,112 bacteria and virus genomes, and

the 150 references with the highest similarity are kept. Then each of the read sets

is compared to each of the 150 best-candidate references by mapping the Jaccard

Similarity to the Cartesian product of the two RDDs and reducing each read by the

maximum similarity as the final classification.

96

Fig. 8.4: Histogram illustrating the default partitioning of the reads RDD after k-mer
calculation.

8.1.7 Methodology

We tested sparkmer on a 26 node (1 master, 25 workers) hadoop instance on the

XSEDE system Wrangler. Wrangler is an ideal platform for Spark becuase each node

has 4TB of EMC flash for the hadoop distributed file system, making Sparks ability to

spill partitions to disk as efficient as possible. To validate sparkmer, we used the same

11,112 references (5,242 bacterial and 5,870 viral) used in the database for Kraken.

Then, sparkmer was run using the same HiSeq accuracy dataset created to test the

accuracy of Kraken [84]. The HiSeq accuracy dataset consists of 10,000 reads from

10 sources of origin:

• A. hydrophila

• B. cereus

97

• B. fragilis

• M. abscessus

• P. fermentans

• R. sphaeroides

• S. aureus

• S. pneumoniae

• V. cholerae

• X. axonopodis

Each of the 10 sources contributed 1,000 reads. Lastly, HiSeq accuracy was con-

verted to fastq format, a standard format for reads coming from a next-generation

sequencer.

8.1.8 Results

No matter how dissimilar a read was to the 150 possible candidates it is compared

to by sparkmer, an identity is always assigned. While this practice makes sense since

each fragment of DNA had to originate from some organism, it does not ensure that

the species of origin is present in the reference database. Kraken goes the opposite

route and will label reads as unknown when there is an insufficient number of k-mers

unique to a specific genus. To facilitate this unique requirement, Kraken has a default

k-mer size of 31, keeping memory requirements high. The differences between these

98

two methods can be obviously seen in the classification precision, which is the number

of correctly-classified reads over the total number of classified reads, in Table 8.1.

Kraken had a precision rate of 98% while sparkmer had 70%. These results may

seem disparate, but Kraken left 20% (2,000) of its reads unclassified, even while using

the extremely large 31-mers for analysis. Even though sparkmer classified all 10,000

reads, its sensitivity, or the number of correctly-classified reads of the total number

of reads, was still lower than Krakenś, but it also used 15-mers for the analysis.

Tab. 8.1: Accuracy of read classification from sparkmer and Kraken.

sparkmer Kraken
Correct 6951 7760

Incorrect 3049 131
Unclassified 0 2109

Precision 69.5% 98.3%
Sensitivity 69.5% 77.6%

To test how well sparkmer scaled on our 24 worker nodes, we ran the HiSeq Accuracy

test with 60, 90, 120, and 150 executors. Sparkmer experienced strong scaling up un-

til 150 executors, where the network traffic when reducing by key ended up being the

bottleneck. Sparkmer’s fastest runtime was 1 hour; classifying 167 reads per minute

on average. Even though sparkmer could take advantage more processors than the

24 that Kraken ran on, Kraken was much faster and classified reads at a rate of 1422

reads per minute on Wrangler.

8.1.9 Conclusion

Based on the runtime analysis, PySpark is an ideal framework for counting k-

mers, because sparkmer counted them across all 11,112 genomes in 3 minutes. Even

99

Fig. 8.5: Runtime of sparkmer on increasing numbers of executors.

though sparkmer was 10 times slower than Kraken for actual classification tasks, it

still shows promise. Sparkmer was a naive approach to a difficult problem, and it was

exciting to see it not only become feasible using the PySpark framework, but also

scale without manually orchestrating communication and each task.

These initial results were promising, so we plan on exploring new ways to improve

the performance of sparkmer. The final distance reduction by read name was one of

the costliest because of the sheer number of keys to reduce by. The PySpark streaming

API is still immature, but we hope to use is to process large files of reads in small

windows so there are fewer keys to reduce by. This may even allow for the inclusion of

all genomes in the final similarity computation. If not, we will continue using a filtered

set of probable candidates to reduce the number of pairwise comparisons. However,

we will improve on this step by collapsing extremely similar references to reduce

the number of redundant genomes. Hopefully these changes not only increase the

throughput of sparkmer in the future, but also increase the precision, so a commodity

100

system running sparkmer can compete with the Kraken running on large-memory

resources.

8.1.10 Availability

sparkmer is written in Python using the PySpark API and is available for download

from https://github.com/zyndagj/sparkmer.

8.2 Repliscan: a tool for classifying replication timing regions

8.2.1 Abstract

8.2.1.1 Background Replication timing experiments that use label incorpora-

tion and high throughput sequencing produce peaked data similar to ChIP-Seq ex-

periments. However, the differences in experimental design, coverage density, and

possible results make traditional ChIP-Seq analysis methods inappropriate for use

with replication timing.

8.2.1.2 Results To accurately detect and classify regions of replication across

the genome, we present Repliscan. Repliscan robustly normalizes, automatically re-

moves outlying and uninformative data points, and classifies Repli-seq signals into

discrete combinations of replication signatures. The quality control steps and self-

fitting methods make Repliscan generally applicable and more robust than previous

methods that classify regions based on thresholds.

101

https://github.com/zyndagj/sparkmer

8.2.1.3 Conclusions Repliscan is simple and effective to use on organisms with

different genome sizes. Even with analysis window sizes as small as 1 kilobase, reliable

profiles can be generated with as little as 2.4x coverage.

8.2.2 Background

The most essential property of the cell is its ability to accurately duplicate its DNA

and divide to produce two daughter cells [85]. The cell’s replication cycle starts with

G1 phase, in which molecules essential for cell division are produced, then proceeds

to replicating DNA in S phase. After all DNA in the genome is duplicated, the cell

continues to grow in G2 phase until it divides into two daughter cells at the end of

Mitosis, or M phase, at which point it is ready to start the cell cycle again (Figure 8.6).

Interphase

M
itosis

G2

S

G1

M

Fig. 8.6: Overview of the cell cycle. Cell division takes place in two stages: interphase
and mitosis. Interphase is when a cell copies its genome in preparation to physically
divide during mitosis. Interphase starts with cell growth and preparation for DNA
synthesis in Gap (G1). After G1, DNA is replicated in regions during the Synthesis
(S) phase. The cell then transitions into a second growth phase - Gap 2 (G2). When
the cell has finished growing, the cell divides into two daughter cells in Mitosis (M).

102

To ensure accuracy and efficiency, S phase is complex and highly regulated. In-

stead of duplicating in a single zipping motion, reminiscent of transcription, DNA is

synthesized in regions at distinct times in eukaryotes, initiating at multiple origins

of replication [86]. This synthesis process takes place in a live cell, so replication

mechanisms need to be coordinated with active transcription, chromatin configura-

tion, and three-dimensional structure [87]. For example, early replication correlates

with chromatin accessibility [88].

To better understand the coordinated program of DNA replication, two types

of protocols have been developed to examine genome-wide replication profiles based

on DNA sequencing data. One based on the time of replication, TimEx [89], [90],

and the other based on incorporation of a labeled precursor into newly replicated

DNA, Repli-seq [91]–[96]. Time of replication (TimEx) measures DNA coverage at

sequential times in S-phase. The normalized early S-phase signal should be mostly 1x

coverage, additively transitioning to 2x coverage in late S-phase. In contrast to this

method, Repli-seq works by only sequencing newly replicated DNA. Theoretically, in

a single cell, this means once a region is replicated, it should not appear in samples

taken at later times, except in the case of allelic timing differences. Both methods

have been shown to yield similar results [97], [98] for when and where genomic regions

replicate, but each requires a distinct type of analysis. The methods described in this

paper focuses on data produced by label incorporation (Repli-seq).

8.2.2.1 Data Description In continuation to our analysis of A. thaliana chro-

mosome 4 in 2010 [99], we updated our laboratory protocol to be more stringent as

described in Hansen et al. 2010[96], Bass et al. 2014[100], Bass et al. 2015[101],

103

and Wear et al. 2016[102]. We increased the sensitivity of the labelling process by

using 5-Ethynyl-2’-deoxyuridine (EdU), which does not require harsh denaturation

of DNA, unlike 5-Bromo-2’-deoxyuridine (BrdU) used in previous work. A flow cy-

tometer is then used to separate labeled from unlabeled nuclei, and to resolve labeled

nuclei into different stages of S phase based on their DNA content. Next, DNA is

extracted from sorted nuclei. The newly replicated DNA is immunoprecipitated and

then sequenced using an Illumina sequencer. Previous protocols used microarrays for

labeled DNA detection, which provided signal on probes at fixed intervals across a

genome. Directly sequencing the immunoprecipitated DNA allows for a continuous

display of replication activity across the genome.

Following the Repli-seq protocol, we created an exemplar A. thaliana dataset for

development, with nuclei from: G1 (non-replicating control) and early, middle, and

late S phase. While the amplification, fragmentation, and sequencing of next gen-

eration sequencing (NGS) libraries should be unbiased and random, physical factors

affect the sequenceability of each region. To correct for these effects, we use the raw

non-replicating DNA from the G1 control to normalize any sequenceability trends.

8.2.2.2 Introducing Repliscan In addition to our updated laboratory proto-

col for generically measuring DNA replication, we needed to improve the sensitivity

and robustness of our analytical method. In previous work, log-ratios and aggres-

sive smoothing were used to classify genomic regions by their time of replication.

While this yielded results with high true positive rates, we found that this approach

over-smoothed our deep coverage, next generation sequencing data. We created the

Repliscan method to analyze generic, DNA sequence-based replication timing data

104

without user-specified thresholds. Accepting any number of S-phase timepoints as

input, Repliscan removes uninformative or outlying data, smooths replication peaks,

and classifies regions of the genome by replication time.

8.2.3 Implementation

The analysis of the replication time data starts like any other DNA sequencing

analysis, with quality control, mapping, and alignment filtering. Quality control

consisted of removing contaminating 3’ universal sequencing adapters from the paired

reads, and trimming the 5’ ends with quality scores below 20 with the program

Trim Galore![103] version 0.3.7, which is designed to maintain read pairs. While

it is obvious that low-quality regions need to be removed or masked because those

base calls are untrustworthy, any contaminating sequences from adapters hinder the

alignment process even more because they are always high-quality and may comprise

a large part of the read. Therefore, reads in the output from Trim Galore! shorter

than 40 base pairs were discarded, and resulting singletons (unpaired reads) were not

included for alignment.

We then used BWA-MEM [104] version 0.7.12 with default parameters to align

the quality-filtered reads to the TAIR10 A. thaliana reference genome [46]. After

alignment, we filtered out any reads with multiple alignments using samtools[49]

version 1.3. Removing these non-uniquely aligning reads is essential because they

come from repetitive elements or other duplications in the genome that could replicate

at different times, thereby confounding region classification into discrete replication

times. After our stringent alignment requirements, fewer than 0.5% of our reads were

identified as duplicates by samtools. We decided that removing the duplicates from

105

our data was unnecessary due to the depth of our sequencing and localized nature

of replication peaks. We also performed a correlation analysis of our samples and

replicates, confirming their high level of similarity.

8.2.3.1 Windowing The DNA sequencing workflow leaves us with raw replica-

tion signals across a genome, which we must classify into distinct genomic regions

and assign replication times. Our methods for this process build on methods from

Lee et al.[99] and are illustrated in Figure 8.7.

At first glance, Repli-seq data appears similar to dense ChIP-seq data [105], when

viewed in a genome browser (Figure 8.8). However, instead of highlighting a lim-

ited number of coverage peaks as sites of molecular interactions, replication timing

data consists of coverage across the entire genome accented with extremely wide

peaks corresponding to regions of replication initiation and subsequent spreading.

This background coverage with subtle, broad increases in depth makes deep coverage

essential to reduce sampling error when detecting statistically-relevant differences.

Even though the cost of sequencing has plummeted since 2007, deep-coverage DNA

sequencing is still expensive for higher eukaryotes.

Lee et al. defined putative replicons in A. thaliana and calculated the median

length to be 107 kilobases [99]. To achieve greater signal depth in each replication

timing sample, we transformed each BAM alignment file into 1 kilobase coverage win-

dows using bedtools [106]. While this transformation slightly reduces the resolution of

our analysis, Figure 8.8 shows that the proportion of sampling error to measured sig-

nal is greatly reduced with the increased coverage. The windows also put all changes

in coverage on the same coordinate system, simplifying comparisons between samples

106

Timing
Files

{ES,MS,LS}_ratio_3.smooth.gff3 ratio_segmentation.gff3

Normalized Ratio Files

Trim Galore! was used to trim
adapters from the 5’ ends of both

reads.

Adapter Trimming

Reads were aligned to
TAIR10 using BWA MEM.

Alignment

Alignment
Filtering

Discarded
Orphans

Multiple alignments

Input FilesES.fastq MS.fastq LS.fastq G1.fastq

ES.bam MS.bam LS.bam G1.bam

Properly paired
unique alignments

Bedgraph
Files

{ES,MS,LS}_norm.bedraph

Sample/Control
Control for Sequencability

Using Bedtools
v2.22 intersect

Convert to Windows

Smoothed Ratio Files

Classification determined by
proportion.

Timing Classification

Lower threshold until
chromosome coverage is

affected.

Replication Threshold

Deeptools
RPGC method

Bedtools
V2.22 map

Aggregate and Normalize

Exclude 2.5%
coverage tails

Reduce Type-I Error

{ES,MS,LS}_ratio_3.smooth.bedraph

Level 3 smoothing
(low-pass) using wavelets.

Haar Smoothing

{ES,MS,LS}_ratio.bedraph

Prelim
in

ary M
eth

ods
R

epliscan
 M

eth
ods

Fig. 8.7: Repliscan workflow. Diagram of the preliminary alignment and quality
control methods at the top, and the Repliscan methods at the bottom.

107

and experiments.

Fig. 8.8: Replication signal and sampling uncertainty. The top two graphs show raw
and windowed replication signal across A. thaliana chromosome 3. The bottom two
graphs show raw and windowed replications signals at 18.5-19.0 megabases from the
top view as represented by the gray selection area. The red bars represent sampling
uncertainty (

√
λ for Poisson distributions).

We chose 1 kilobase windows because they not only reduce sampling error, but

are also two orders of magnitude smaller than the expected A. thaliana replicons.

Repliscan does not summarize information with sliding windows, so choosing a win-

dow size that is an order of magnitude smaller than the expected replicon size is

important to approximately align to the actual replication borders. Our analysis will

theoretically allow the detection of regions of replication as small as 1 kilobase; how-

ever such regions are unlikely to exist in cells subjected to realistic labeling protocols.

Therefore, in the final timing classification, Repliscan will merge neighboring regions

with similar properties into larger segments. The 1 kilobase resolution then helps to

highlight transitions between such segments. In some circumstances, such as working

with low coverage data, it may be advantageous to use a larger window size. However,

to achieve the best results when adapting Repliscan to other species, we suggest the

expected replicon size be factored into calculations that establish window size and

108

sequencing depth.

8.2.3.2 Replicate Aggregation and Normalization To further decrease sam-

pling effects, and achieve consistent results between experiments, we used multiple

biological replicates and adopted aggregation methods to either increase coverage or

summarize replication signals using functions provided by “bedtools map” [106]. For

experiments with low coverage, we pooled timing t = 1..T replicates r = 1..R together

by summing coverage signal k across each window i = 1..N .

kit =
R∑

r=1

kitr (8.1)

When coverage was sufficient, we used the signal mean (or the more robust signal

median) to clean up aberrant coverage. For these methods, replicates were first nor-

malized for sequencing depth using sequence depth scaling [107]. This normalization

step removed differences in sequencing depth between replicates by scaling each sam-

ple to an average depth of 1x.

kit = median

(
N ∗ kitr∑N

i=1 kitr

)
(8.2)

After aggregation, the combined signals were normalized once more to scale any

imbalances in replicate numbers back to 1x, prior to making comparisons between

replication times.

kit =
N ∗ kit∑N

i=1 kit
(8.3)

Our A. thaliana test data was relatively high coverage at 30x per bioreplicate, so we

used the median function to generate a robust signal, instead of defaulting to sum.

109

8.2.3.3 Reducing Type I Error Repliscan aims to detect and highlight peaks

of replication coverage, but some peaks may be too high and may in fact be false-

positives caused by errors in the reference. For instance, if a repetitive element is

present three times in the actual genome, but present only once in the reference

sequence due to assembly error, all reads would align uniquely to the same location.

If two of the actual elements replicate early and the third in middle S phase, the early

peak would be twice as large and dominate the classification process. To reduce type

I error arising from genomic repeats, we needed to detect and exclude these areas

from the final classification because there is no way to resolve such duplication events

without improving the reference genome.

The distribution of sequencing coverage is bounded on the left at zero, with very

long, positive tails (Figure 8.9). Before we can detect any outliers we first need to

transform the data to actually fit a probability distribution.

G1 E M L
0

1

2

3

4

5

R
e
p
lic

a
ti

o
n
 S

ig
n
a
l

Normalized Data

G1 E M L
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
log-Transformed

G1 E M L
0.0

0.5

1.0

1.5

2.0

sqrt-Transformed

Fig. 8.9: Normalized and transformed replication signals. Violin plots showing how
the normalized and aggregated A. thaliana chromosome 3 replication signals from
G1, early (E), middle (M), and late (L) S-phase data was bounded from [0,∞). We
separately experimented with with log transforms to make the distributions more
normal-like, and square root transforms to stabilize the spread.

In Figure 8.9, we show that both the log and square root transformations stabilized

110

the spread and skew. The log transformation extends the (0, 1) tail and shortens the

[1,∞) tail, making the distribution more normal-like. The square root transform also

shortens [1,∞) tail and spreads the [0, 1) tail, but not to the same extent, leaving the

distribution skewed towards 0. While different, both transformations improve the fit

of different probability distributions.

Normally, sequencing depth is modeled with a Poisson distribution because the

integer counts are discrete[108], positive, and asymmetric. However, our aggregated

and normalized data is continuous, positive, and asymmetric. To accurately model

these sequencing values we use the Gamma distribution for highly-skewed data and

the normal-like methods for symmetric data[109]. In all, we provide four combinations

of methods to transform the data and detect outliers:

fitting a gamma distribution to the log transformed data,

log(Kt) ∼ Γ(αt, βt) ≡ Gamma(αt, βt) (8.4)

fitting a gamma distribution to the square root transformed data,

√
Kt ∼ Γ(αt, βt) ≡ Gamma(αt, βt) (8.5)

fitting a normal distribution to the log transformed data,

log(Kt) ∼ N (µ, σ2) ≡ Normal(µ, σ2) (8.6)

111

or calculating the whisker bounds (WB) of a boxplot from the log transformed data

Xt = log(Kt) (8.7)

IQR(Xt) = P75(Xt)− P25(Xt) (8.8)

WB(Xt) = [P25(Xt)− 1.5 ∗ IQR(Xt), P75(Xt) + 1.5 ∗ IQR(Xt)] , (8.9)

where P is the percentile function. (8.10)

We use scipy[110] version 0.15.0 to fit all probability distributions to the actual cov-

erage windows. Windows with coverage in the upper and lower 2.5% tails of the

calculated probability distributions, or outliers when using whiskers, are considered

unrepresentative and removed (Figure 8.10).

log(kit) =


0 P97.5(αt, βt) < X < P2.5(αt, βt)

kit Otherwise

(8.11)

For simple cases, or when the transformed data does not resemble a probability dis-

tribution, we also provide the option of a rank-based (percentile) cutoff. By default,

this will remove the upper and lower 2.5% coverage values, but this value can also be

customized by the user.

The outliers in the positive coverage tails that this method removes may comprise

a significant amount of coverage, so we perform another round of normalization to

return the sample to 1x coverage. Each of the five methods has its own strengths

and computation complexity. Most coverage data can be accurately modeled with

the normal distribution. For cases when the transformed coverage distributions are

112

still skewed, we suggest using the gamma distributions. If for some reason, the cov-

erage data is multimodal, the whisker or percentile cutoff methods will both remove

outliers from the data. We recommend the whisker method over a percentile cutoff

because the whiskers remove data from a derived distribution, while the percentile

indiscriminately removes a percentage of the data.

Fig. 8.10: Outlying coverage in chromosome 3. Based on the normal distribution fit
(yellow) to the log transformed coverage distribution of early (E), middle (M), and
late (L) S-phase data, windows that fall in the tails shaded in gray are removed from
the analysis.

8.2.3.4 Normalize for Sequenceability Amplification, fragmentation, and shot-

gun sequencing DNA is a non-uniform random process. Coupled with imperfect

113

alignment efficiency from repetitive regions and incomplete reference genomes, ar-

tificial peaks arising from differences in the efficiency with which specific genomic

regions can be sequenced are easy to confuse with actual signal peaks. This does

not have a significant impact on comparisons between samples, but makes it difficult

to compare adjacent genomic regions. Our sequencing protocol included a sample of

non-replicating G1 DNA to correct for this phenomenon.

In G1, the cell is growing in physical size but no DNA replication is taking place,

so the copy number of each sequence in the genome is at the 2C level. Variations in

sequenceability can thus be separated from variations in signal attributable to DNA

replication. Dividing each of the S-phase samples by the G1 sample normalizes each

of the windows by giving the ratio of treatment coverage over expected coverage.

rt =
kt
k1

, where k1 is the control. (8.12)

To better illustrate this process, consider two replication coverage windows next to

each other: the first one is accessible and easy to sequence, and therefore produces

more fragments per unit input DNA than the second window, which is hard to se-

quence. The normalization step would lower the signal from the first window, dividing

it by a big coverage number from G1. It would also raise the signal from the second

window, which would be divided by a smaller G1 number, making the two windows

more comparable and reducing background noise. We recommend that such a con-

trol be implemented in all DNA sequencing based experiments to detect replication

timing, on the basis that a non-replicating G1 control is the best, and most uniform

representation of the genome. However, in the event that a non-replicating G1 is not

sequenced, all S-phase samples can be combined to synthesize a total-S control, or a

114

total DNA control can be used.

8.2.3.5 Haar Wavelet Smoothing Data sampling is always affected by noise.

Statistical noise can be accounted for and modeled with more sampling, more ro-

bust statistical methods, or by summarizing larger ranges of data. Adding replicates

for additional statistical power is cost-prohibitive, especially for larger genomes. In-

stead, we adopted the Haar wavelet transform to summarize replication data as an

orthonormal series generated by the Haar wavelet. Using Wavelets[111] version 1.0,

we performed a maximum overlap discrete wavelet transform with the Haar wavelet

using reflected boundaries and level 3 smoothing on a per-chromosome basis for each

sample. Wavelet decomposition is designed to represent a signal as a collection of fre-

quencies. Level 3 decomposition represents a signal as the upper 87.5% of frequencies.

Smoothing works as a low-pass filter, where small and frequent changes are removed,

while large and wide changes are preserved.

We specifically chose the Haar wavelet over other smoothing methods because it

is a square function with discrete boundaries and thus resembles the signals we aim

to detect. General smoothing methods like LOESS and moving average methods pro-

duce stabilized trends from data, but they work by summarizing subsets of the whole

picture. These methods also leave behind artifacts. A moving average will change a

square peak into a sawtooth pattern the size of the smoothing window and will be

affected by a single point of noise. LOESS is designed to model trends in sliding sub-

sets of the data, but each of the least-squares regression steps are vulnerable to noise

as with the moving average. LOESS will also spread out peaks in our data because

of our uniform window size (1 kilobase), and is designed to accurately model clusters

115

of points. As demonstrated in Figure 8.11A with simulated data, the Haar wavelet

accurately removes low-amplitude and high-frequency noise to reconstruct the origi-

nal signal without artificially expanding the peaks of replication signal. Applying the

moving average, LOESS, and Haar wavelet to actual A. thaliana data in Figure 8.11B

shows that both the moving average and LOESS can capture large trends, but the

Haar wavelet excels at highlighting subtle peaks in the data without under smoothing

and requiring the user to choose the range they summarize on. Any proportion or

range of the data is very different when choosing different window sizes. Haar only

removes low-amplitude frequency trends from the wavelet transform.

Fig. 8.11: Smoothing comparisons. A - Noise (green) is added to an original signal
(purple), and then smoothed with a 4 unit (40 point) moving average (orange), a 5
unit (25% subset) LOESS (red), and a level 3 Haar wavelet (blue). Both the moving
average and LOESS spread out the peaks and artificially lowered signal amplitudes,
while the Haar wavelet keeps bounds and peak heights close to the original. B - The
A. thaliana middle S-phase normalized signal (green), is smoothed with a moving
average (orange), LOESS (red), and the level 3 Haar wavelet (blue) for comparison.

We experimented with several levels of decomposition with our data, and found

that the low-frequency trends preserved with level 3 aligned to genes, transposable

elements, and histone marks on each genome the best. If the window size is kept at the

default of 1 kilobase, this decomposition level can be kept the same because the same

frequencies are represented. If the window size is changed to accommodate different

116

sequencing depths, we suggest that users experiment with different decomposition

levels, because this essentially changes the sampling rate of the analysis.

8.2.3.6 Defining Replication The analysis to this point yields a smoothed ratio

of normalized replication ratio signals rcwt in windows (w = 1..Y) per chromosome

(c = 1..X), with a range of [0,∞) that can be compared to each other, and leads to

the question of which signals can be considered confidently as resulting from DNA

replication. Lee et al.[99] originally considered array-based replication signals greater

than the control as actively replicating in their investigation of A. thaliana as follows.

replicatingct(w) =


1, if rcwt > 1

0, otherwise

, where cw = i (8.13)

The Repliscan software allows users to adopt this threshold method, but we also

include more robust methods to define replication. The simple threshold approach

above is appropriate when considering replication as a ratio, but because all signals

from the early, middle, and late S-phase samples represent labeled - and therefore,

replicating - DNA, even signals that are less than the control must be considered as

reflecting some level of replication activity. In other words, even though there may

be noise in the data, all replication signals should be genuine because EdU is only

incorporated into newly replicated DNA. Instead of simply choosing a smaller ratio

threshold, we implemented a percentile cutoff based on the distribution of the ratios.

By default, this method removes the lowest 2% of the values for a chromosome in a

117

given sample.

replicatingct(w) =


1, if rcwt > P0.02(rct)

0, otherwise

(8.14)

While this method is a data-dependent means for establishing a cutoff, it was not

considered ideal for an automatic analysis for two reasons. First, a cutoff is still being

dictated, even if it is more robustly supported than in previous analyses. Second,

this cutoff will always remove a flat percentage of the values, even if there is no

evidence they are not high-quality data points. To improve on these deficiencies, we

implemented a threshold for replication that depends on the information provided in

addition to the data.

To maximize the fraction of a chromosome with valid replication signal (or in-

formation), we designed an optimization method that incorporates as much of each

chromosome as possible by analyzing the rate that chromosome coverage changes with

replication signal. Using data from all time points, coverage is defined as the fraction

of windows with a signal greater than the threshold in at least one replication time.

coverage(Tc) =
rcwt > Tc

Y
, where Tc is the threshold for chromosome c (8.15)

Our optimization process begins from the point of the largest absolute change in cov-

erage (mTc), and lowers the replication threshold (Tc) until the absolute chromosome

fraction per sample/control coverage differential goes below 0.1, effectively leveling

out. In rare cases where this process does not converge, the threshold is set to be the

118

median of all chromosomes that do converge.

mTc = arg max
Tc

(|coverage‘(Tc)|) (8.16)

T̂c = arg max
Tc<mTc

(|coverage‘(Tc)| < 0.1) (8.17)

Rcwt =


rcwt, if rcwt > T̂c

0, otherwise

(8.18)

Such a search pattern circumvents any local optima in the coverage signal that may

have stalled a gradient descent. That being said, we implemented the threshold to

run on a per-chromosome basis to minimize the effect of any structural differences

(Figure 8.12).

The end result is a method that includes as much of the genome and coverage

information as possible, and prevents the use of small signals when they comprise a

small portion of the chromosomes. Our method is generically applicable to experi-

ments using the same Repli-seq protocol because the threshold is calculated from the

data. A critical benefit is that users are not required to be masters of their data or

this tool, and can instead focus on interpretation.

8.2.3.7 Classification/Segmentation Given a signal that can confidently be

considered as arising from DNA replication, we are able to classify segments of the

genome according to when in the cell cycle they are replicated. Suppose that in one of

the windows in Chromosome 3, we have the following levels of replication in Table 8.2.

We already know from Figure 8.12 that any values below 0.92 in Chromosome 3

are not considered replicating, so the middle S-phase value would become 0 and we

119

Fig. 8.12: Replication threshold from coverage. The upper plot shows how much
of A. thaliana chromosome 3 will be kept for downstream analysis as a function of
the signal threshold. The lower plot shows the chromosome coverage differential as
a function of the threshold. The vertical red line in each plot marks the optimal
threshold of 0.92.

Tab. 8.2: Example coverage values to demonstrate replication timing classification.

Time Early Middle Late

Coverage 0.93 0.8 3.0
Replicating 0.93 0 3.0

would say this window replicates in both early and late S-phase. However, the late

replication level is 3 times higher than that of early, which is just past the threshold for

replication at 0.93. Instead of making another replication threshold, we implemented

a general solution to compare values against each other using a proportion.

First, on a window-by-window basis, we take the infinity norm of all values, which

120

means we divide all values by the maximum for that window position.

Sct(w) =
Rcwt

‖Rcw‖∞
(8.19)

This operation scales the largest value to 1 and the others to the range [0,1]. A time

signal is then classified as predominantly replicating Cct(w) if the normalized value

is greater than 0.5, or at least half the size of the largest signal for that window.

Cct(w) =


1, if Sct(w) > 0.5,

0, otherwise

(8.20)

The infinity-norm ensures that the largest value will always be classified as replicating,

and this classification method allows for a window to be called strongly replicating

at more than one time in S-phase (e.g. both early and late) when other signals are

within 50% of the maximum value. Besides 0.5 being easy to test for, this creates an

equally partitioned solution space in the form of an n-dimensional hypercube. In the

case of our A. thaliana data, the space is a 3-dimensional cube with each dimension

being one of the time points: early, middle, and late S-phase. The 0.5 partition then

creates 8 equal-sized sub-cubes corresponding to each possible combination of times:

{Non-replicating, Early, Middle, and Late}

along with

{Early-Middle, Middle-Late, Early-Late, and Early-Middle-Late}

121

S-phase replication combinations.

8.2.4 Results and Discussion

8.2.4.1 Data To demonstrate the ability of our methods to adapt to different

datasets, we ran our pipeline on the A. thaliana Col-0 cell culture data (PRJNA330547)

that was used to develop these methods, and a separate similarly prepared Z. mays

B73 replication timing dataset (PRJNA327875) also from our lab.

A.thaliana

The A. thaliana experiment was comprised of 3 early S bioreplicates, 3 middle S

bioreplicates, 3 late S bioreplicates, and 1 G1 sample. Each bioreplicate was paired-

end sequenced to 36x coverage. The unique and properly-paired alignment rate for

each sample was approximately 85%, yielding a total of 30x viable replication data

from each sample. Due to the high coverage, we decided to use 1 kilobase windows

and merge bioreplicates with the median function for our analysis.

Z. mays

In the Z. mays experiment, there were 3 early S bioreplicates, 3 middle S biorepli-

cates, 2 late S bioreplicates, and 2 G1 technical replicates. Each bioreplicate was

paired-end sequenced to about 5x coverage. While there were more reads than the

A. thaliana experiment, the Z. mays genome is much larger, so coverage was lower.

Using the B73 AGPv3 genome assembly, the unique and properly-paired alignment

rate for each sample was approximately 99%, yielding a total of 5x viable replication

122

data from each bioreplicate. Even though a larger analysis window could have been

used, we decided to use the same 1 kilobase windows for this dataset, and deemed

the summation of bioreplicates was necessary to achieve enough coverage to highlight

peaks in the data.

8.2.4.2 Segmentation Overview Using 1 kilobase windows, median aggrega-

tion for A. thaliana, and sum aggregation for Z. mays, we used our default pipeline

to classify the replication timing of our data. We generated Figure 8.13 to show the

replication segmentation classification of Chromosome 3 in A. thaliana and Chromo-

some 10 in Z. mays.

Fig. 8.13: Comparison of A. thaliana and Z. mays segmentation. Following the
segmentation legend on the right, A. thaliana chromosome 3 (top) and Z. mays chro-
mosome 10 (bottom) have been classified into segmentation regions by Repliscan. The
large white regions in the A. thaliana figure are unclassified regions due to high or very
low signal. Below each replication segmentation is a depiction of the chromosome,
with the centromere location marked in yellow [112], [113].

In both instances, early replication is concentrated toward the ends of the chro-

mosome arms, with middle and late replication becoming more prominent closer to

the centromere and the highest concentration of late replicating sequences in the het-

erochromatin surrounding the centromere. These timing maps demonstrate that the

method developed using the A. thaliana data was successfully applied to the lower

123

coverage Z. mays data by simply choosing to aggregate replicates using the sum

instead of the median.

8.2.4.3 Segment Composition and Size Instead of viewing the chromosomes

as a whole, we can also get an idea of predominant replication times by looking at the

proportional composition. Figure 8.14 shows that Early, Early-Middle, and Middle-

Late S-phase replication makes up most of the segmentation profiles for A. thaliana

Chromosome 3. About 6% of the chromosome is missing around the centromere and

heterochromatic knob, which probably would have been classified in the Middle to

Late times based on what we do see. In Z. mays, we see a more uniform distribution

of Chromosome 10, which is 5-fold larger, across the replication segmentation classes.

Lee et al.[99] previously hypothesised a two-stage replication program, but our results,

which were generated using much shorter labeling times to capture much smaller

increments of replication, show a more even spread (Figure 8.14).

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Chromosome

A. thaliana Chromosome 3

Z. mays Chromosome 10

Segmentation Composition
E

EM

EL

EML

M

ML

L

Fig. 8.14: Composition of replication segmentation. The segment composition shows
that replication in A. thaliana is skewed towards early S replication, while Z. mays
has an even distribution across early, middle, and late S. We can also see that the
non-sequential early-late (EL) and early-middle-late (EML) classifications comprise
a very small proportion of the classified segments in both cases.

124

The Early-Late and Early-Middle-Late comprise a small portion of the chromo-

somes in both organisms and could arise naturally in the data through allelic and

cell population differences. Figure 8.15 shows a different summary of the segmen-

tation breakdown, highlighting the segment size distribution with boxplots. Once

again, Early-Late and Early-Middle-Late segments are distinct in that their lengths

are small relative to the other timing categories.

E EM EL EML M ML L

Time

0

20000

40000

60000

80000

100000

120000

140000

160000

S
e
g
m

e
n
t

S
iz

e
 (

b
p
)

A. vs Z. Size Distribution

A.

Z.

Fig. 8.15: Segment size distribution. Boxplots for every combination of replication
time, illustrating the distribution of segment sizes. Early (E) and mid-late (ML) S
were largest in A. thaliana, while early and late (L) were largest in Z. mays.

8.2.4.4 Downsampling and Stability of Results The relatively small genome

size of A. thaliana allowed us to obtain extremely deep sequencing coverage, which

125

is currently cost-prohibitive for larger genomes. To estimate a minimum coverage re-

quirement for our methods, we simulated experiments with lower coverage via down-

sampling. We first generated 3 technical replicates by randomly sorting the original

alignment files. We removed reads from each of the replicates in 1% increments with-

out replacement. Each of the 300 (100 x 3) simulated experiments were analyzed

using both median and sum aggregation, and no (none), log gamma, square root

gamma, normal, and whisker outlier removal. To account for differences arising from

the sorting order, the final classification for each window was determined by majority

across the 3 replicates. Classification ties were broken by treating the early, middle,

and late time classification combination as a 2-bit binary number, and taking the

median.

020406080100 812
0

5

10

15

20

25

30

35

40

%
 d

if
fe

re
n
ce

s
in

 t
h
e

se
g
m

e
n
ta

ti
o
n

M
e
d
ia

n
M

e
d
ia

n
M

e
d
ia

n
M

e
d
ia

n
M

e
d
ia

n

Changes in Chr3 Segmentation

log gamma

NA

normal

sqrt gamma

whiskers

inflection

020406080100 912

% of original data

0

5

10

15

20

25

30

35

40

%
 d

if
fe

re
n
ce

s
in

 t
h
e

se
g
m

e
n
ta

ti
o
n

S
u
m

S
u
m

S
u
m

S
u
m

S
u
m

log gamma

NA

normal

sqrt gamma

whiskers

inflection

Fig. 8.16: Segmentation differences in downsampled data. After downsampling the
A. thaliana data, the accuracy of median (top) and sum (bottom) aggregation, and
outlier detection using log gamma, none (NA), normal, square root gamma, and
whiskers. Inflection points in the differences are labeled with black diamonds.

126

After confirming that the segmentation profiles from all three 100% replicates were

identical to our original segmentation, differences for each run type were calculated as

percent Hamming distances from the 100% version. All differences were compounded

and plotted as a fraction of the whole chromosome in Figure 8.16. The most obvious

results are the spikes of differences in both the median and sum log transformed

gamma runs when the iterative fitting function failed to converge (Figure 8.17).

Fig. 8.17: Unconverged log gamma fit. Most of the data is removed when the iter-
ative fitting function fails to converge with the log transformed gamma distribution.
Instances like this produce the spikes of differences in Figure 8.16.

Shifting attention to the square root gamma experiments in Figure 8.16, we see

that the fit function never fails to converge, but there is increased variability of results

among each level of downsampling. All other probability functions are very stable

between downsampling runs. We even see that summing the coverage to 90x provides

no improvement over the median - even at low coverage levels. The inflection points

show that the most stable method was aggregating replicates with the median oper-

ation and removing coverage by fitting a normal distribution to the log transformed

data. Results from this method began to noticeably diverge when downsampled to

8%, or 2.4x coverage. This indicates 5x coverage for the commonly studied species Z.

mays (2.3 gigabase genome[114]) is sufficient to calculate a replication profile, which

is quite tractable for a laboratory of modest financial means.

127

8.2.4.5 General Application of Repliscan To demonstrate that Repliscan is

generally applicable, we used it to analyze two published Repli-seq datasets: Human

fibroblast data from Hansen et al. 2010[96] (GSM923444) and D. melanogaster data

from Lubelsky et al. 2014[115] (PRJNA63463).

The Human fibroblast Repli-seq data contains samples from 6 fractions of S phase

(G1b, S1, S2, S3, S4, and G2) with two replicates each providing an average depth

of 0.02x coverage. Using the supplementary methods of Hansen et al., we were able

to reproduce their original tag density results. Reads from both replicates were first

combined and then aligned to the human reference genome (hg19). After alignment,

signals with more than 4 reads per 150 basepair window were removed. Lastly, a

percent total coverage in 50 kilobase wide windows was calculated every 1 kilobase

(Figure 8.18).

To analyze this data with Repliscan starting from the aligned reads, we first needed

a sequencing control. Both G1b and G2 contain replicating DNA in this experiment,

so we combined G1b, S1-4, and G2 to create a total-S (TS) control in the first line

of the Repliscan input configuration. After crafting the configuration file, we ran

Repliscan with a window size of 50 kilobases and aggregation through sum to match

the methods of Hansen et al. Figure 8.18 compares the output of Repliscan against

the reproduced results in a region from their original work. Given that there were 6

fractions of S-phase in the Repliscan input, there were (26 − 1) 63 possible classifi-

cations, but only 22 were present in the output segmentation. Repliscan presented

temporally sensible results with replication initiating in G1b and spreading to G2 all

while relying on the automatic tuning of Repliscan after matching the window size

128

(Figure 8.18). We compared our results from Repliscan to the “BJ-G1 segment” re-

gions published by Hansen et al. in their Supplementary Table S4 using the accuracy

statistical measure.

accuracy = (TP + TN)/(TP + FN + TN + FP) (8.21)

Where TP is the number of G1bS1 Repliscan classifications that match “BJ-

G1 segment”, FN is the number of non-G1bS1 classifications that match “BJ-G1 segment”,

TN is the number of non-G1bS1 classifications that also do not match “BJ-G1 segment”,

and FP is the number of G1bS1 classifications that do not match “BJ-G1 segment.”

We found that our Repliscan reanalysis had an accuracy of 83% with the published

“BJ-G1 segment” results.

Fig. 8.18: Human fibroblast Repli-seq. 50 kilobase sliding window replication signals
(blue) reproduced from Hansen et al., published “BJ-G1 segment” regions, and 50
kilobase Repliscan results (bottom).

We also reproduced the original continuous replication profiles of Lubelsky et

al. by processing the raw data as was done in the original paper. Replicates were

combined from each fraction of S phase (Early, Early-Mid, Late-Mid, and Late) and

129

aligned to the dm3 Release 5.12 genome. Unique alignments were kept and the RPKM

was calculated in 10 kilobase windows along the genome. The RPKMs from the 4

samples were then weighted and combined to create a single replication signal from 0

to 1. The replication signal was then LOESS smoothed with a span of 200 kilobases

(20 bins). This continuous signal was then classified as early replication when the

value was less than or equal to 0.5, and late replication when above 0.5 (Figure 8.19).

Similar to the work by Hansen et al., this experiment did not contain an non-

replicating G1 control, so we combined all fractions into a total-S (TS) control. For

inputting the raw data into Repliscan, we crafted two input configurations: one with

Early (early, early-mid) and Late (mid-late, late) (2S) to match the discrete results of

Lubelsky et al., and another with Early, Early-Mid, Mid-Late, and Late classifications

(4S) to highlight the classification capabilities of Repliscan. Coverage averaged around

4.4x, so we ran Repliscan with both (2S and 4S) input configurations, sum replicate

aggregation, and 10 kilobase windows to match the original analysis (Figure 8.19).

Fig. 8.19: D. melanogaster KC167 Repli-Seq. Reproduction of the LOESS smoothed
continuous replication profile (Lubelsky LOESS), and the thresholded, discrete early
(blue) and late timing domains (Lubelsky > 0.5) from original Lubelsky et al. study.
Repliscan segmentation results with Early (Early, Early-Mid) and Late (Mid-Late,
Late) replication (2S), and Early, Early-Mid, Mid-Late, and Late replication (4S)
configuration with 10 kilobase windows.

130

The Repliscan configuration with two S-phase fractions (2S) highly resembled the

thresholded continuous signal (Lubelsky > 0.5) with a statistical accuracy measure

of 95%. When Repliscan was run to capture all 4 S-phase combinations, more in-

formation was revealed about the replication timeline. Looking at the two left-most

late regions of “Lubelsky > 0.5” in Figure 8.19, we can see that the continuous signal

rides along the 0.5 threshold, and Repliscan predicted a long region of EMS-EMLS

with all four fractions of S taken into context, instead of detecting an initiation site

in the center. This situation is a good example of the type of coarse grained calls that

we are trying to avoid with Repliscan by allowing combinations of replication in our

classifications. Our 4S results were also found to be highly similar with the discrete

data, with a statistical accuracy of 78%.

8.2.5 Conclusions

Based on our results from running Repliscan on both A. thaliana and Z. mays

data, we have demonstrated that our methods offer a robust means of analyzing data

from replication timing experiments that use label incorporation. Although we argue

that a non-replicating G1 control should be preferred for biological reasons, our ana-

lytical method can be used equally well with control datasets derived from synthetic

total S phase pools or from total DNA. We have significantly improved on previ-

ous methods by incorporating non-destructive Haar smoothing, using optimization

methods to define replication, and classification through signal proportion. When

run using the same parameters but using data from different organisms, the methods

automatically tuned their thresholds to adjust for differences in coverage. Downsam-

pling our data showed our methods provided stable results at as little as 2.4x coverage

131

and 1 kilobase analysis windows. Even lower coverages can be accommodated at lower

resolution by using larger window sizes for the analysis. We also demonstrated that

Repliscan can be used to classify replication regions in external Repli-seq data by

applying it to both low-coverage Human and high-coverage D. Melanogaster experi-

ments with 4 to 6 S-phase fractions and synthetic total-S controls. There is no current

consensus pipeline for validation, so we compared the published results from the ex-

ternal datasets to those from Repliscan. We found that the Repliscan results were on

average 85% identical to the original findings of these papers.

In-depth explorations of the replication programs in A. thaliana and maize will be

published separately. We think these methods provide a path for greater understand-

ing of the DNA replication program in plants, humans, and other higher organisms.

8.2.6 Availability

8.2.6.1 Software Project home page: https://github.com/zyndagj/repliscan

8.2.6.2 Data The datasets supporting the conclusions of this article are avail-

able in the NCBI Sequence Read Archive (SRA) BioProjects PRJNA330547, PR-

JNA327875, and PRJNA63463 and GEO dataset GSM923444. All reproduced Hu-

man and D. Melanogaster Repli-seq results can be generated and viewed as described

in the Repliscan repository.

132

https://github.com/zyndagj/repliscan

BIBLIOGRAPHY

[1] M. R. Amin, A. Yurovsky, Y. Tian, and S. Skiena, “Deepannotator: Genome

annotation with deep learning,” in Proceedings of the 2018 ACM International

Conference on Bioinformatics, Computational Biology, and Health Informat-

ics, 2018, pp. 254–259.

[2] P. Ni, N. Huang, Z. Zhang, D.-P. Wang, F. Liang, Y. Miao, C.-L. Xiao, F. Luo,

and J. Wang, “Deepsignal: Detecting dna methylation state from nanopore se-

quencing reads using deep-learning,” Bioinformatics, vol. 35, no. 22, pp. 4586–

4595, 2019.

[3] J. T. Simpson, R. E. Workman, P. Zuzarte, M. David, L. Dursi, and W.

Timp, “Detecting dna cytosine methylation using nanopore sequencing,” Na-

ture methods, vol. 14, no. 4, p. 407, 2017.

[4] A. Sergeev and M. D. Balso, “Horovod: Fast and easy distributed deep learning

in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[5] H. J. Jansen, M. Liem, S. A. Jong-Raadsen, S. Dufour, F.-A. Weltzien, W.

Swinkels, A. Koelewijn, A. P. Palstra, B. Pelster, H. P. Spaink, et al., “Rapid

de novo assembly of the european eel genome from nanopore sequencing reads,”

Scientific reports, vol. 7, no. 1, pp. 1–13, 2017.

133

[6] C. Bleidorn, “Third generation sequencing: Technology and its potential im-

pact on evolutionary biodiversity research,” Systematics and biodiversity, vol. 14,

no. 1, pp. 1–8, 2016.

[7] NCBI, Eukaryotic, prokaryotic, and virus genome reports, Mar. 2019. [Online].

Available: ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/.

[8] P. Chain, D. Grafham, R. Fulton, M. Fitzgerald, J Hostetler, D Muzny, J Ali,

B Birren, D. Bruce, C Buhay, et al., “Genome project standards in a new era

of sequencing,” Science, vol. 326, no. 5950, pp. 236–237, 2009.

[9] M. Yandell and D. Ence, “A beginner’s guide to eukaryotic genome annota-

tion,” Nature Reviews Genetics, vol. 13, no. 5, pp. 329–342, 2012.

[10] B. L. Cantarel, I. Korf, S. M. Robb, G. Parra, E. Ross, B. Moore, C. Holt,

A. S. Alvarado, and M. Yandell, “Maker: An easy-to-use annotation pipeline

designed for emerging model organism genomes,” Genome research, vol. 18,

no. 1, pp. 188–196, 2008.

[11] F. Thibaud-Nissen, A. Souvorov, T. Murphy, M DiCuccio, and P Kitts, “Eu-

karyotic genome annotation pipeline,” The NCBI Handbook, vol. 2, 2013.

[12] B. L. Aken, S. Ayling, D. Barrell, L. Clarke, V. Curwen, S. Fairley, J. Fernan-

dez Banet, K. Billis, C. Garćıa Girón, T. Hourlier, et al., “The ensembl gene

annotation system,” Database, vol. 2016, 2016.

[13] B. McClintock, “The origin and behavior of mutable loci in maize,” Proceedings

of the National Academy of Sciences, vol. 36, no. 6, pp. 344–355, 1950.

134

ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/

[14] J. Wang, G. K.-S. Wong, P. Ni, Y. Han, X. Huang, J. Zhang, C. Ye, Y. Zhang,

J. Hu, K. Zhang, et al., “Reps: A sequence assembler that masks exact repeats

identified from the shotgun data,” Genome Research, vol. 12, no. 5, pp. 824–

831, 2002.

[15] A. Smit, R Hubley, and P Green, Repeatmasker open-4.0. 2013–2015, 2015.

[16] A. L. Price, N. C. Jones, and P. A. Pevzner, “De novo identification of repeat

families in large genomes,” Bioinformatics, vol. 21, no. suppl 1, pp. i351–i358,

2005.

[17] J. A. Ågren and S. I. Wright, “Co-evolution between transposable elements and

their hosts: A major factor in genome size evolution?” Chromosome research,

vol. 19, no. 6, p. 777, 2011.

[18] R. C. Kennedy, M. F. Unger, S. Christley, F. H. Collins, and G. R. Madey, “An

automated homology-based approach for identifying transposable elements,”

BMC bioinformatics, vol. 12, no. 1, p. 130, 2011.

[19] B. Alberts, A. Johnson, J. Lewis, M. Raff, P. Walter, and K. Roberts, Molecular

Biology of the Cell, 4th ed., ser. Molecular Biology of the Cell. Garland Science,

2002, isbn: 9780815332183. [Online]. Available: https://www.ncbi.nlm.nih.

gov/books/NBK21054/.

[20] E. M. McCarthy and J. F. McDonald, “Ltr struc: A novel search and iden-

tification program for ltr retrotransposons,” Bioinformatics, vol. 19, no. 3,

pp. 362–367, 2003.

[21] M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I.

Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, et al., “Full-length

135

https://www.ncbi.nlm.nih.gov/books/NBK21054/
https://www.ncbi.nlm.nih.gov/books/NBK21054/

transcriptome assembly from rna-seq data without a reference genome,” Nature

biotechnology, vol. 29, no. 7, p. 644, 2011.

[22] C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel,

S. L. Salzberg, J. L. Rinn, and L. Pachter, “Differential gene and transcript

expression analysis of rna-seq experiments with tophat and cufflinks,” Nature

protocols, vol. 7, no. 3, pp. 562–578, 2012.

[23] A. Hotz-Wagenblatt, T. Hankeln, P. Ernst, K.-H. Glatting, E. R. Schmidt, and

S. Suhai, “Estannotator: A tool for high throughput est annotation,” Nucleic

acids research, vol. 31, no. 13, pp. 3716–3719, 2003.

[24] W. H. Majoros, M. Pertea, and S. L. Salzberg, “Tigrscan and glimmerhmm:

Two open source ab initio eukaryotic gene-finders,” Bioinformatics, vol. 20,

no. 16, pp. 2878–2879, 2004.

[25] A. V. Lukashin and M. Borodovsky, “Genemark. hmm: New solutions for gene

finding,” Nucleic acids research, vol. 26, no. 4, pp. 1107–1115, 1998.

[26] M. Stanke, R. Steinkamp, S. Waack, and B. Morgenstern, “Augustus: A web

server for gene finding in eukaryotes,” Nucleic acids research, vol. 32, no. suppl 2,

W309–W312, 2004.

[27] T. Flutre, E. Duprat, C. Feuillet, and H. Quesneville, “Considering trans-

posable element diversification in de novo annotation approaches,” PloS one,

vol. 6, no. 1, 2011.

[28] A. F. Smit and R. Hubley, “Repeatmodeler open-1.0,” 2008-2015.

136

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.

Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,”

2017.

[30] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.

Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale

machine learning,” in 12th {USENIX} Symposium on Operating Systems De-

sign and Implementation ({OSDI} 16), 2016, pp. 265–283.

[31] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature em-

bedding,” in Proceedings of the 22nd ACM international conference on Multi-

media, 2014, pp. 675–678.

[32] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,

J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: A cpu and gpu math

expression compiler,” in Proceedings of the Python for scientific computing

conference (SciPy), Austin, TX, vol. 4, 2010.

[33] J. Clauwaert, G. Menschaert, and W. Waegeman, “Deepribo: A neural network

for precise gene annotation of prokaryotes by combining ribosome profiling

signal and binding site patterns,” Nucleic acids research, vol. 47, no. 6, e36–

e36, 2019.

[34] G. Khodabandelou, J. Mozziconacci, and E. Routhier, “Genome functional an-

notation using deep convolutional neural network,” bioRxiv, p. 330 308, 2018.

137

[35] M. H. da Cruz, P. T. Saito, A. R. Paschoal, and P. H. Bugatti, “Classifi-

cation of transposable elements by convolutional neural networks,” in Inter-

national Conference on Artificial Intelligence and Soft Computing, Springer,

2019, pp. 157–168.

[36] S. T. Hill, R. Kuintzle, A. Teegarden, E. Merrill III, P. Danaee, and D. A. Hen-

drix, “A deep recurrent neural network discovers complex biological rules to

decipher rna protein-coding potential,” Nucleic acids research, vol. 46, no. 16,

pp. 8105–8113, 2018.

[37] S. J. Cokus, S. Feng, X. Zhang, Z. Chen, B. Merriman, C. D. Haudenschild, S.

Pradhan, S. F. Nelson, M. Pellegrini, and S. E. Jacobsen, “Shotgun bisulphite

sequencing of the arabidopsis genome reveals dna methylation patterning,”

Nature, vol. 452, no. 7184, pp. 215–219, 2008.

[38] N. Gilbert, S. Boyle, H. Fiegler, K. Woodfine, N. P. Carter, and W. A. Bick-

more, “Chromatin architecture of the human genome: Gene-rich domains are

enriched in open chromatin fibers,” Cell, vol. 118, no. 5, pp. 555–566, 2004.

[39] Z. Lippman, A.-V. Gendrel, M. Black, M. W. Vaughn, N. Dedhia, W. R. Mc-

Combie, K. Lavine, V. Mittal, B. May, K. D. Kasschau, et al., “Role of trans-

posable elements in heterochromatin and epigenetic control,” Nature, vol. 430,

no. 6998, pp. 471–476, 2004.

[40] Q. Li, J. I. Gent, G. Zynda, J. Song, I. Makarevitch, C. D. Hirsch, C. N.

Hirsch, R. K. Dawe, T. F. Madzima, K. M. McGinnis, et al., “Rna-directed dna

methylation enforces boundaries between heterochromatin and euchromatin in

the maize genome,” Proceedings of the National Academy of Sciences, vol. 112,

no. 47, pp. 14 728–14 733, 2015.

138

[41] L. Stein, “Generic feature format version 3,” Sequence Ontology Project, pp. 1–

18, 2010.

[42] EMBL-EBI. (2020). Gene annotation in ensembl, [Online]. Available: https:

//useast.ensembl.org/info/genome/genebuild/genome_annotation.

html (visited on 01/21/2020).

[43] D. M. Goodstein, S. Shu, R. Howson, R. Neupane, R. D. Hayes, J. Fazo, T.

Mitros, W. Dirks, U. Hellsten, N. Putnam, et al., “Phytozome: A comparative

platform for green plant genomics,” Nucleic acids research, vol. 40, no. D1,

pp. D1178–D1186, 2012.

[44] F. Chollet et al. (2015). Keras, [Online]. Available: https://keras.io.

[45] A. Graves, “Generating sequences with recurrent neural networks,” arXiv

preprint arXiv:1308.0850, 2013.

[46] P. Lamesch, T. Z. Berardini, D. Li, D. Swarbreck, C. Wilks, R. Sasidharan,

R. Muller, K. Dreher, D. L. Alexander, M. Garcia-Hernandez, et al., “The

arabidopsis information resource (tair): Improved gene annotation and new

tools,” Nucleic acids research, vol. 40, no. D1, pp. D1202–D1210, 2012.

[47] M. K. Tello-Ruiz, S. Naithani, J. C. Stein, P. Gupta, M. Campbell, A. Olson,

S. Wei, J. Preece, M. J. Geniza, Y. Jiao, et al., “Gramene 2018: Unifying

comparative genomics and pathway resources for plant research,” Nucleic acids

research, vol. 46, no. D1, pp. D1181–D1189, 2018.

[48] C.-Y. Cheng, V. Krishnakumar, A. P. Chan, F. Thibaud-Nissen, S. Schobel,

and C. D. Town, “Araport11: A complete reannotation of the arabidopsis

139

https://useast.ensembl.org/info/genome/genebuild/genome_annotation.html
https://useast.ensembl.org/info/genome/genebuild/genome_annotation.html
https://useast.ensembl.org/info/genome/genebuild/genome_annotation.html
https://keras.io

thaliana reference genome,” The Plant Journal, vol. 89, no. 4, pp. 789–804,

2017.

[49] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,

G. Abecasis, and R. Durbin, “The sequence alignment/map format and sam-

tools,” Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009.

[50] Pysam, https://github.com/pysam-developers/pysam, 2019.

[51] M. Frommer, L. E. McDonald, D. S. Millar, C. M. Collis, F. Watt, G. W. Grigg,

P. L. Molloy, and C. L. Paul, “A genomic sequencing protocol that yields

a positive display of 5-methylcytosine residues in individual dna strands.,”

Proceedings of the National Academy of Sciences, vol. 89, no. 5, pp. 1827–

1831, 1992.

[52] G. J. Zynda, Bsmapz, https://github.com/zyndagj/bsmapz, 2019.

[53] Y. Xi and W. Li, “Bsmap: Whole genome bisulfite sequence mapping pro-

gram,” BMC bioinformatics, vol. 10, no. 1, p. 232, 2009.

[54] G. J. Zynda, Meth5py, https://github.com/zyndagj/Meth5py, 2019.

[55] A. Collette, Python and HDF5. O’Reilly, 2013.

[56] R. Collobert and J. Weston, “A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning,” in Proceedings of the

25th international conference on Machine learning, 2008, pp. 160–167.

[57] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

140

 https://github.com/pysam-developers/pysam
https://github.com/zyndagj/bsmapz
https://github.com/zyndagj/Meth5py

[58] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-

nected convolutional networks,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2017, pp. 4700–4708.

[59] D. K. Seymour, D. Koenig, J. Hagmann, C. Becker, and D. Weigel, “Evolution

of dna methylation patterns in the brassicaceae is driven by differences in

genome organization,” PLoS genetics, vol. 10, no. 11, 2014.

[60] J. Song, G. Zynda, S. Beck, N. M. Springer, and M. W. Vaughn, “Bisulfite se-

quence analyses using cyverse discovery environment: From mapping to dmrs,”

Current protocols in plant biology, vol. 1, no. 3, pp. 510–529, 2016.

[61] M. Burset and R. Guigo, “Evaluation of gene structure prediction programs,”

genomics, vol. 34, no. 3, pp. 353–367, 1996.

[62] G. J. Zynda, Differannotate, https://github.com/zyndagj/differannotate,

2019.

[63] M. El Baidouri, K. D. Kim, B. Abernathy, S. Arikit, F. Maumus, O. Panaud,

B. C. Meyers, and S. A. Jackson, “A new approach for annotation of trans-

posable elements using small rna mapping,” Nucleic acids research, vol. 43,

no. 13, e84–e84, 2015.

[64] Gffcompare, https://github.com/gpertea/gffcompare, version 0.11.5,

2019.

[65] D. S. Standage and V. P. Brendel, “Parseval: Parallel comparison and analysis

of gene structure annotations,” BMC bioinformatics, vol. 13, no. 1, p. 187,

2012.

141

https://github.com/zyndagj/differannotate
 https://github.com/gpertea/gffcompare

[66] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical model-

ing with python,” in 9th Python in Science Conference, 2010.

[67] R. Hubley, R. D. Finn, J. Clements, S. R. Eddy, T. A. Jones, W. Bao, A. F.

Smit, and T. J. Wheeler, “The dfam database of repetitive dna families,”

Nucleic acids research, vol. 44, no. D1, pp. D81–D89, 2016.

[68] Autonomio talos, https://github.com/autonomio/talos, 2019.

[69] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,

“Tune: A research platform for distributed model selection and training,”

arXiv preprint arXiv:1807.05118, 2018.

[70] M. L. Gonzalez-Garay, “Introduction to isoform sequencing using pacific bio-

sciences technology (iso-seq),” in Transcriptomics and Gene Regulation, Springer,

2016, pp. 141–160.

[71] T. H. Kim and B. Ren, “Genome-wide analysis of protein-dna interactions,”

Annu. Rev. Genomics Hum. Genet., vol. 7, pp. 81–102, 2006.

[72] E. Stamatatos, N. Fakotakis, and G. Kokkinakis, “Text genre detection using

common word frequencies,” in Proceedings of the 18th conference on Computa-

tional linguistics-Volume 2, Association for Computational Linguistics, 2000,

pp. 808–814.

[73] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, “Detecting spam web

pages through content analysis,” in Proceedings of the 15th international con-

ference on World Wide Web, ACM, 2006, pp. 83–92.

142

https://github.com/autonomio/talos

[74] F. Peng, D. Schuurmans, and S. Wang, “Augmenting naive bayes classifiers

with statistical language models,” Information Retrieval, vol. 7, no. 3-4, pp. 317–

345, 2004.

[75] P. Melsted and B. V. Halldórsson, “Kmerstream: Streaming algorithms for

k-mer abundance estimation,” Bioinformatics, vol. 30, no. 24, pp. 3541–3547,

2014.

[76] D. R. Zerbino and E. Birney, “Velvet: Algorithms for de novo short read

assembly using de bruijn graphs,” Genome research, vol. 18, no. 5, pp. 821–

829, 2008.

[77] D. E. Wood and S. L. Salzberg, “Kraken: Ultrafast metagenomic sequence

classification using exact alignments,” Genome Biol, vol. 15, no. 3, R46, 2014.

[78] G. E. Sims, S.-R. Jun, G. A. Wu, and S.-H. Kim, “Alignment-free genome

comparison with feature frequency profiles (ffp) and optimal resolutions,” Pro-

ceedings of the National Academy of Sciences, vol. 106, no. 8, pp. 2677–2682,

2009.

[79] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic

local alignment search tool,” Journal of molecular biology, vol. 215, no. 3,

pp. 403–410, 1990.

[80] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

Cluster computing with working sets,” in Proceedings of the 2nd USENIX

conference on Hot topics in cloud computing, vol. 10, 2010, p. 10.

143

[81] G. Marçais and C. Kingsford, “A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers,” Bioinformatics, vol. 27, no. 6, pp. 764–770,

2011.

[82] C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake, C. Heiner, A.

Clum, A. Copeland, J. Huddleston, E. E. Eichler, et al., “Nonhybrid, finished

microbial genome assemblies from long-read smrt sequencing data,” Nature

methods, vol. 10, no. 6, pp. 563–569, 2013.

[83] M. Massie, F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A. D. Joseph,

and D. A. Patterson, “Adam: Genomics formats and processing patterns for

cloud scale computing,” EECS Department, University of California, Berkeley,

Tech. Rep. UCB/EECS-2013-207, 2013.

[84] Kraken accuracy data, https : / / ccb . jhu . edu / software / kraken / dl /

accuracy.tgz, Accessed: 2015-10-18.

[85] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molec-

ular Biology of the Cell, 4th ed. New York: Garland Science, 2002, isbn:

0815332181.

[86] R. Hand, “Eucaryotic dna: Organization of the genome for replication,” Cell,

vol. 15, no. 2, pp. 317–325, 1978.

[87] N. Rhind and D. M. Gilbert, “Dna replication timing,” Cold Spring Harbor

perspectives in biology, vol. 5, no. 8, a010132, 2013.

[88] R. S. Hansen, T. K. Canfield, M. M. Lamb, S. M. Gartler, and C. D. Laird,

“Association of fragile x syndrome with delayed replication of the fmr1 gene,”

Cell, vol. 73, no. 7, pp. 1403–1409, 1993.

144

https://ccb.jhu.edu/software/kraken/dl/accuracy.tgz
https://ccb.jhu.edu/software/kraken/dl/accuracy.tgz

[89] K. Woodfine, H. Fiegler, D. M. Beare, J. E. Collins, O. T. McCann, B. D.

Young, S. Debernardi, R. Mott, I. Dunham, and N. P. Carter, “Replication tim-

ing of the human genome,” Human molecular genetics, vol. 13, no. 2, pp. 191–

202, 2004.

[90] K. Woodfine, D. M. Beare, K. Ichimura, S. Debernardi, A. J. Mungall, H.

Fiegler, V. P. Collins, N. P. Carter, and I. Dunham, “Replication timing of

human chromosome 6,” Cell Cycle, vol. 4, no. 1, pp. 172–176, 2005.

[91] D. Schübeler, D. Scalzo, C. Kooperberg, B. van Steensel, J. Delrow, and M.

Groudine, “Genome-wide dna replication profile for drosophila melanogaster:

A link between transcription and replication timing,” Nature genetics, vol. 32,

no. 3, pp. 438–442, 2002.

[92] Y. Watanabe, A. Fujiyama, Y. Ichiba, M. Hattori, T. Yada, Y. Sakaki, and

T. Ikemura, “Chromosome-wide assessment of replication timing for human

chromosomes 11q and 21q: Disease-related genes in timing-switch regions,”

Human Molecular Genetics, vol. 11, no. 1, pp. 13–21, 2002.

[93] M. Hayashi, Y. Katou, T. Itoh, M. Tazumi, Y. Yamada, T. Takahashi, T.

Nakagawa, K. Shirahige, and H. Masukata, “Genome-wide localization of pre-

rc sites and identification of replication origins in fission yeast,” The EMBO

journal, vol. 26, no. 5, pp. 1327–1339, 2007.

[94] E. J. White, O. Emanuelsson, D. Scalzo, T. Royce, S. Kosak, E. J. Oakeley,

S. Weissman, M. Gerstein, M. Groudine, M. Snyder, et al., “Dna replication-

timing analysis of human chromosome 22 at high resolution and different de-

velopmental states,” Proceedings of the National Academy of Sciences of the

United States of America, vol. 101, no. 51, pp. 17 771–17 776, 2004.

145

[95] D. M. MacAlpine, H. K. Rodŕıguez, and S. P. Bell, “Coordination of replica-

tion and transcription along a drosophila chromosome,” Genes & development,

vol. 18, no. 24, pp. 3094–3105, 2004.

[96] R. S. Hansen, S. Thomas, R. Sandstrom, T. K. Canfield, R. E. Thurman,

M. Weaver, M. O. Dorschner, S. M. Gartler, and J. A. Stamatoyannopou-

los, “Sequencing newly replicated dna reveals widespread plasticity in human

replication timing,” Proceedings of the National Academy of Sciences, vol. 107,

no. 1, pp. 139–144, 2010.

[97] S. Farkash-Amar, D. Lipson, A. Polten, A. Goren, C. Helmstetter, Z. Yakhini,

and I. Simon, “Global organization of replication time zones of the mouse

genome,” Genome research, vol. 18, no. 10, pp. 1562–1570, 2008.

[98] I. Hiratani, T. Ryba, M. Itoh, T. Yokochi, M. Schwaiger, C.-W. Chang, Y.

Lyou, T. M. Townes, D. Schübeler, and D. M. Gilbert, “Global reorganization

of replication domains during embryonic stem cell differentiation,” PLoS Biol,

vol. 6, no. 10, e245, 2008.

[99] T.-J. Lee, P. E. Pascuzzi, S. B. Settlage, R. W. Shultz, M. Tanurdzic, P. D.

Rabinowicz, M. Menges, P. Zheng, D. Main, J. A. Murray, et al., “Arabidopsis

thaliana chromosome 4 replicates in two phases that correlate with chromatin

state,” PLoS Genet, vol. 6, no. 6, e1000982, 2010.

[100] H. W. Bass, E. E. Wear, T.-J. Lee, G. G. Hoffman, H. K. Gumber, G. C. Allen,

W. F. Thompson, and L. Hanley-Bowdoin, “A maize root tip system to study

dna replication programmes in somatic and endocycling nuclei during plant

development,” Journal of experimental botany, vol. 65, no. 10, pp. 2747–2756,

2014.

146

[101] H. W. Bass, G. G. Hoffman, T.-J. Lee, E. E. Wear, S. R. Joseph, G. C. Allen,

L. Hanley-Bowdoin, and W. F. Thompson, “Defining multiple, distinct, and

shared spatiotemporal patterns of dna replication and endoreduplication from

3d image analysis of developing maize (zea mays l.) root tip nuclei,” Plant

molecular biology, vol. 89, no. 4-5, pp. 339–351, 2015.

[102] E. E. Wear, L. Concia, A. M. Brooks, E. A. Markham, T.-J. Lee, G. C. Allen,

W. F. Thompson, and L. Hanley-Bowdoin, “Isolation of plant nuclei at defined

cell cycle stages using edu labeling and flow cytometry,” Plant Cell Division:

Methods in Molecular Biology, vol. 1370, pp. 69–86, 2016.

[103] F. Krueger, Trim Galore! [Online; accessed 2016-11], 2012–. [Online]. Avail-

able: https://www.bioinformatics.babraham.ac.uk/projects/trim\

_galore.

[104] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with

bwa-mem,” arXiv preprint arXiv:1303.3997, 2013.

[105] D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold, “Genome-wide map-

ping of in vivo protein-dna interactions,” Science, vol. 316, no. 5830, pp. 1497–

1502, 2007.

[106] A. R. Quinlan and I. M. Hall, “Bedtools: A flexible suite of utilities for com-

paring genomic features,” Bioinformatics, vol. 26, no. 6, pp. 841–842, 2010.

[107] A. Diaz, K. Park, D. A. Lim, J. S. Song, et al., “Normalization, bias correction,

and peak calling for chip-seq,” Stat Appl Genet Mol Biol, vol. 11, no. 3, p. 9,

2012.

147

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore

[108] J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad, “Rna-seq:

An assessment of technical reproducibility and comparison with gene expres-

sion arrays,” Genome research, vol. 18, no. 9, pp. 1509–1517, 2008.

[109] B. Ding, L. Zheng, Y. Zhu, N. Li, H. Jia, R. Ai, A. Wildberg, and W. Wang,

“Normalization and noise reduction for single cell rna-seq experiments,” Bioin-

formatics, vol. 31, no. 13, pp. 2225–2227, 2015.

[110] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools

for Python, [Online; accessed 2016-11-28], 2001–. [Online]. Available: http:

//www.scipy.org/.

[111] D. B. Percival and A. T. Walden, Wavelet methods for time series analysis.

The Edinburgh Building, Cambridge CB2 2RU, UK: Cambridge university

press, 2006, vol. 4.

[112] K. Nagaki, P. B. Talbert, C. X. Zhong, R. K. Dawe, S. Henikoff, and J. Jiang,

“Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is

the key functional dna element of arabidopsis thaliana centromeres,” Genetics,

vol. 163, no. 3, pp. 1221–1225, 2003.

[113] H. Zhao, X. Zhu, K. Wang, J. I. Gent, W. Zhang, R. K. Dawe, and J. Jiang,

“Gene expression and chromatin modifications associated with maize cen-

tromeres,” G3: Genes— Genomes— Genetics, vol. 6, no. 1, pp. 183–192, 2016.

[114] P. S. Schnable, D. Ware, R. S. Fulton, J. C. Stein, F. Wei, S. Pasternak, C.

Liang, J. Zhang, L. Fulton, T. A. Graves, et al., “The b73 maize genome:

Complexity, diversity, and dynamics,” science, vol. 326, no. 5956, pp. 1112–

1115, 2009.

148

http://www.scipy.org/
http://www.scipy.org/

[115] Y. Lubelsky, J. A. Prinz, L. DeNapoli, Y. Li, J. A. Belsky, and D. M. MacAlpine,

“Dna replication and transcription programs respond to the same chromatin

cues,” Genome research, vol. 24, no. 7, pp. 1102–1114, 2014.

[116] S. N. Anderson, G. Zynda, J. Song, Z. Han, M. Vaughn, Q. Li, and N. M.

Springer, “Subtle perturbations of the maize methylome reveal genes and

transposons silenced by chromomethylase or rna-directed dna methylation

pathways,” G3: Genes, Genomes, Genetics, 2018. doi: 10.1534/g3.118.

200284. eprint: http://www.g3journal.org/content/early/2018/04/04/

g3.118.200284.full.pdf. [Online]. Available: http://www.g3journal.org/

content/early/2018/04/04/g3.118.200284.

[117] L. Concia, A. M. Brooks, E. Wheeler, G. J. Zynda, E. E. Wear, C. LeBlanc,

J. Song, T.-J. Lee, P. E. Pascuzzi, R. A. Martienssen, M. W. Vaughn, W. F.

Thompson, and L. Hanley-Bowdoin, “Genome-wide analysis of the arabidopsis

replication timing program,” Plant Physiology, vol. 176, no. 3, pp. 2166–2185,

2018, issn: 0032-0889. doi: 10.1104/pp.17.01537. eprint: http://www.

plantphysiol.org/content/176/3/2166.full.pdf. [Online]. Available:

http://www.plantphysiol.org/content/176/3/2166.

[118] E. E. Wear, J. Song, G. Zynda, C. LeBlanc, T.-J. Lee, L. Mickelson-Young,

L. Concia, P. Mulvaney, E. S. Szymanski, G. C. Allen, R. Martienssen, M. W.

Vaughn, L. Hanley-Bowdoin, and W. Thompson, “Genomic analysis of the dna

replication timing program during mitotic s phase in maize (zea mays l.) root

tips,” The Plant Cell, 2017, issn: 1040-4651. doi: 10.1105/tpc.17.00037.

eprint: http://www.plantcell.org/content/early/2017/08/25/tpc.17.

149

https://doi.org/10.1534/g3.118.200284
https://doi.org/10.1534/g3.118.200284
http://www.g3journal.org/content/early/2018/04/04/g3.118.200284.full.pdf
http://www.g3journal.org/content/early/2018/04/04/g3.118.200284.full.pdf
http://www.g3journal.org/content/early/2018/04/04/g3.118.200284
http://www.g3journal.org/content/early/2018/04/04/g3.118.200284
https://doi.org/10.1104/pp.17.01537
http://www.plantphysiol.org/content/176/3/2166.full.pdf
http://www.plantphysiol.org/content/176/3/2166.full.pdf
http://www.plantphysiol.org/content/176/3/2166
https://doi.org/10.1105/tpc.17.00037
http://www.plantcell.org/content/early/2017/08/25/tpc.17.00037.full.pdf
http://www.plantcell.org/content/early/2017/08/25/tpc.17.00037.full.pdf

00037.full.pdf. [Online]. Available: http://www.plantcell.org/content/

early/2017/08/25/tpc.17.00037.

[119] G. J. Zynda, J. Song, L. Concia, E. E. Wear, L. Hanley-Bowdoin, W. F.

Thompson, and M. W. Vaughn, “Repliscan: A tool for classifying replica-

tion timing regions,” BMC Bioinformatics, vol. 18, no. 1, p. 362, 2017, issn:

1471-2105. doi: 10.1186/s12859-017-1774-x. [Online]. Available: https:

//doi.org/10.1186/s12859-017-1774-x.

[120] C. Klijn, S. Durinck, E. W. Stawiski, P. M. Haverty, Z. Jiang, H. Liu, J. Degen-

hardt, O. Mayba, F. Gnad, J. Liu, G. Pau, J. Reeder, Y. Cao, K. Mukhyala,

S. K. Selvaraj, M. Yu, G. J. Zynda, M. J. Brauer, T. D. Wu, R. C. Gentleman,

G. Manning, R. L. Yauch, R. Bourgon, D. Stokoe, Z. Modrusan, R. M. Neve,

F. J. de Sauvage, J. Settleman, S. Seshagiri, and Z. Zhang, “A comprehen-

sive transcriptional portrait of human cancer cell lines,” Nature Biotechnology,

vol. 33, no. 3, pp. 306–312, 2015, issn: 1087-0156. [Online]. Available: http:

//dx.doi.org/10.1038/nbt.308010.1038/nbt.3080http://www.nature.

com / nbt / journal / v33 / n3 / abs / nbt . 3080 . html{\ # }supplementary -

information.

[121] Q. Li, J. I. Gent, G. Zynda, J. Song, I. Makarevitch, C. D. Hirsch, C. N.

Hirsch, R. K. Dawe, T. F. Madzima, K. M. McGinnis, D. Lisch, R. J. Schmitz,

M. W. Vaughn, and N. M. Springer, “Rna-directed dna methylation enforces

boundaries between heterochromatin and euchromatin in the maize genome,”

Proceedings of the National Academy of Sciences, vol. 112, no. 47, pp. 14 728–

14 733, 2015. doi: 10.1073/pnas.1514680112. eprint: http://www.pnas.

150

http://www.plantcell.org/content/early/2017/08/25/tpc.17.00037.full.pdf
http://www.plantcell.org/content/early/2017/08/25/tpc.17.00037.full.pdf
http://www.plantcell.org/content/early/2017/08/25/tpc.17.00037
http://www.plantcell.org/content/early/2017/08/25/tpc.17.00037
https://doi.org/10.1186/s12859-017-1774-x
https://doi.org/10.1186/s12859-017-1774-x
https://doi.org/10.1186/s12859-017-1774-x
http://dx.doi.org/10.1038/nbt.3080 10.1038/nbt.3080 http://www.nature.com/nbt/journal/v33/n3/abs/nbt.3080.html{\#}supplementary-information
http://dx.doi.org/10.1038/nbt.3080 10.1038/nbt.3080 http://www.nature.com/nbt/journal/v33/n3/abs/nbt.3080.html{\#}supplementary-information
http://dx.doi.org/10.1038/nbt.3080 10.1038/nbt.3080 http://www.nature.com/nbt/journal/v33/n3/abs/nbt.3080.html{\#}supplementary-information
http://dx.doi.org/10.1038/nbt.3080 10.1038/nbt.3080 http://www.nature.com/nbt/journal/v33/n3/abs/nbt.3080.html{\#}supplementary-information
https://doi.org/10.1073/pnas.1514680112
http://www.pnas.org/content/112/47/14728.full.pdf
http://www.pnas.org/content/112/47/14728.full.pdf

org/content/112/47/14728.full.pdf. [Online]. Available: http://www.

pnas.org/content/112/47/14728.abstract.

[122] A. Kilaru, X. Cao, P. B. Dabbs, H.-J. Sung, M. M. Rahman, N. Thrower,

G. Zynda, R. Podicheti, E. Ibarra-Laclette, L. Herrera-Estrella, K. Mockaitis,

and J. B. Ohlrogge, “Oil biosynthesis in a basal angiosperm: Transcriptome

analysis of persea americana mesocarp,” BMC Plant Biology, vol. 15, no. 1,

p. 203, 2015, issn: 1471-2229. doi: 10.1186/s12870-015-0586-2. [Online].

Available: https://doi.org/10.1186/s12870-015-0586-2.

[123] Q. Li, J. Song, P. T. West, G. Zynda, S. R. Eichten, M. W. Vaughn, and

N. M. Springer, “Examining the causes and consequences of context-specific

differential dna methylation in maize,” Plant Physiology, 2015, issn: 0032-

0889. doi: 10.1104/pp.15.00052. eprint: http://www.plantphysiol.org/

content/early/2015/04/13/pp.15.00052.full.pdf. [Online]. Available:

http://www.plantphysiol.org/content/early/2015/04/13/pp.15.

00052.

[124] G. Zynda, N. Gaffney, M. Dalkilic, and M. Vaughn, “Feature frequency profiles

for automatic sample identification using pyspark,” in Proceedings of the 5th

Workshop on Python for High-Performance and Scientific Computing, ACM,

2015, p. 5.

151

http://www.pnas.org/content/112/47/14728.full.pdf
http://www.pnas.org/content/112/47/14728.full.pdf
http://www.pnas.org/content/112/47/14728.abstract
http://www.pnas.org/content/112/47/14728.abstract
https://doi.org/10.1186/s12870-015-0586-2
https://doi.org/10.1186/s12870-015-0586-2
https://doi.org/10.1104/pp.15.00052
http://www.plantphysiol.org/content/early/2015/04/13/pp.15.00052.full.pdf
http://www.plantphysiol.org/content/early/2015/04/13/pp.15.00052.full.pdf
http://www.plantphysiol.org/content/early/2015/04/13/pp.15.00052
http://www.plantphysiol.org/content/early/2015/04/13/pp.15.00052

CURRICULUM VITAE

Gregory J. Zynda

Personal Data

E-Mail: gjzynda@iu.edu

Website: gregoryzynda.com

GitHub: https://github.com/zyndagj/

Education

April 2020 Ph.D. in Informatics
Indiana University
Concentration: Bioinformatics
Minor: Computer Science

May 2010 B.S. in Mathematics & Computer Science
Rose-Hulman Institute of Technology
Minors in Computational Science and Japanese

Professional Experience

2014-present Texas Advanced Computing Center - Scientist
Supervisor: Matthew W. Vaughn
Direct research on DNA replication and epigenetics. Development
and support for SD2E, CyVerse, TACC, and XSEDE.

2010-2013 The Center for Genomics and Bioinformatics - Analyst
Supervisors: Dr. Haixu Tang and Dr. Doug Rusch
Served as a sequencing analyst for genome, transcriptome, epigenetic,
and genome assembly projects at IU.

Summer 2012 Genentech - Bioinformatics Intern
Supervisor: Dr. Zhaoshi Jiang
Built and curated a comprehensive and dynamic pathogen database
from public sources. Designed and implemented a parallel pipeline
for detecting pathogen interactions in sequencing data.

Summer 2009 Interdisciplinary Research Collaborative
Rose-Hulman Institute of Technology
Supervisor: Dr. Allen Holder
Used linear programming to simulate a stable cell state and calculate
the importance of metabolic processes in E. coli.

2009 INFORMS - Web Developer
Supervisor: Dr. Allen Holder
Built a redesigned version of the INFORMS Mathematical Program-
ming Glossary as a customized MediaWiki to allow for easy editing,
math fonts, and bulk browsing.

Activities

2015-2018 CODE@TACC
Instructed programming, electronics, robotics, and linux at TACC’s
summer camp for high school students.

2015-2018 Shadow a Scientist
Teach middle school students about computing and bioinformatics
with hands-on activities.

Presentations

Zynda, G.* 2019. Singularity and RGC. TACCSTER 2019. Austin, TX.

Zynda, G.* 2018. Container ecosystem at TACC. SD2E. Seattle, WA.

Zynda, G.* , Springer, N., Vaughn, MW. 2017. Utilizing DNA Methylation for
Genome Annotation Through Deep Learning. Rocky 2017. Aspen, CO.

Zynda, G.* , Springer, N., Vaughn, MW. 2016. Genome annotation through DNA
methylation and a semi-supervised profile-HMM. Genome Informatics, Cam-
bridge, UK.

Zynda, G.* , Walling, D. 2016. Zika Microbiome Hub. Hackathon. Austin, TX.

Zynda, G.* , Song, J., Proctor, WC, Vaughn, MW. 2016. Supporting complicated
PacBio workflows with Agave. Workshop at PAG-XXV:CyVerse, San Diego,
CA.

Zynda, G.* , Gaffney, N., Dalkilic, M., Vaughn, MW. 2015. Feature frequency
profiles for automatic sample identification using pyspark. 5th Workshop on
Python for High-Performance and Scientific Computing, Austin, TX.

Zynda, G.* , Song, J., Markham, E., Hanley-Bowdoin, L., Vaughn, MW. 2015. Sep-
arating DIP-Seq Signals Through Independent Component Analysis. Poster at
PAG-XXIV, San Diego, CA.

Zynda, G.* 2014. De Novo TE annotation with TEAM: TE Annotation from Methy-
lation. Lightning talk at ISMB:HiTSeq 2014, Boston, MA.

Zynda, G.* 2014. TEAM: TE Annotation from Methylation. Poster presented at
RECOMB 2014, Pittsburgh, PA.

Zynda, G.* , Tang, H. 2013. Methods to Detect Changes in Regions of Methylation.
Presentation at The University of Toronto.

Zynda, G.* , Jiang, Z. 2012. Pathogen Detection in Transcriptome of Cancer Sam-
ples. Poster at 2012 Genentech Intern Research Poster Session.

Zynda, G.* , Lutz, K., Holder, A. 2009. The Mathematical E. coli. Poster at the
2009 Rose-Hulman Interdisciplinary Research Collaborative.

Zynda, G.* , Krisenko M.*, Moseng M.*, Paine, D.*, Williamson R.* 2009. Tracing
the Journey of Each Footstep. Poster at the 2009 Rose-Hulman Interdisciplinary
Research Collaborative.

Zynda, G. , Williamson R.*, Campbell, B.*, Chappell, R. 2008. Schedule Planning
System Using a Database. Presentation at the 2008 IN/IL American Society
for Engineering Education conference.

* Denotes primary presenter(s).

Publications

S. N. Anderson, G. Zynda, J. Song, et al., “Subtle perturbations of the maize
methylome reveal genes and transposons silenced by chromomethylase or rna-directed
dna methylation pathways,” G3: Genes, Genomes, Genetics, 2018. doi: 10.1534/

g3.118.200284. eprint: http://www.g3journal.org/content/early/2018/04/

https://doi.org/10.1534/g3.118.200284
https://doi.org/10.1534/g3.118.200284
http://www.g3journal.org/content/early/2018/04/04/g3.118.200284.full.pdf
http://www.g3journal.org/content/early/2018/04/04/g3.118.200284.full.pdf

04/g3.118.200284.full.pdf. [Online]. Available: http://www.g3journal.org/

content/early/2018/04/04/g3.118.200284

L. Concia, A. M. Brooks, E. Wheeler, et al., “Genome-wide analysis of the ara-
bidopsis replication timing program,” Plant Physiology, vol. 176, no. 3, pp. 2166–
2185, 2018, issn: 0032-0889. doi: 10.1104/pp.17.01537. eprint: http://www.

plantphysiol.org/content/176/3/2166.full.pdf. [Online]. Available: http:

//www.plantphysiol.org/content/176/3/2166

E. E. Wear, J. Song, G. Zynda, et al., “Genomic analysis of the dna replication
timing program during mitotic s phase in maize (zea mays l.) root tips,” The Plant
Cell, 2017, issn: 1040-4651. doi: 10.1105/tpc.17.00037. eprint: http://www.

plantcell.org/content/early/2017/08/25/tpc.17.00037.full.pdf. [Online].
Available: http://www.plantcell.org/content/early/2017/08/25/tpc.17.

00037

G. J. Zynda, J. Song, L. Concia, et al., “Repliscan: A tool for classifying replica-
tion timing regions,” BMC Bioinformatics, vol. 18, no. 1, p. 362, 2017, issn: 1471-
2105. doi: 10.1186/s12859-017-1774-x. [Online]. Available: https://doi.org/

10.1186/s12859-017-1774-x

J. Song, G. Zynda, S. Beck, et al., “Bisulfite sequence analyses using cyverse
discovery environment: From mapping to dmrs,” Current protocols in plant biology,
vol. 1, no. 3, pp. 510–529, 2016

C. Klijn, S. Durinck, E. W. Stawiski, et al., “A comprehensive transcriptional
portrait of human cancer cell lines,” Nature Biotechnology, vol. 33, no. 3, pp. 306–
312, 2015, issn: 1087-0156. [Online]. Available: http://dx.doi.org/10.1038/nbt.

308010.1038/nbt.3080http://www.nature.com/nbt/journal/v33/n3/abs/nbt.

3080.html{\#}supplementary-information

Q. Li, J. I. Gent, G. Zynda, et al., “Rna-directed dna methylation enforces bound-
aries between heterochromatin and euchromatin in the maize genome,” Proceedings
of the National Academy of Sciences, vol. 112, no. 47, pp. 14 728–14 733, 2015. doi:
10.1073/pnas.1514680112. eprint: http://www.pnas.org/content/112/47/

14728.full.pdf. [Online]. Available: http://www.pnas.org/content/112/47/

14728.abstract

A. Kilaru, X. Cao, P. B. Dabbs, et al., “Oil biosynthesis in a basal angiosperm:
Transcriptome analysis of persea americana mesocarp,” BMC Plant Biology, vol. 15,
no. 1, p. 203, 2015, issn: 1471-2229. doi: 10.1186/s12870-015-0586-2. [Online].
Available: https://doi.org/10.1186/s12870-015-0586-2

Q. Li, J. Song, P. T. West, et al., “Examining the causes and consequences of
context-specific differential dna methylation in maize,” Plant Physiology, 2015, issn:

http://www.g3journal.org/content/early/2018/04/04/g3.118.200284.full.pdf
http://www.g3journal.org/content/early/2018/04/04/g3.118.200284.full.pdf
http://www.g3journal.org/content/early/2018/04/04/g3.118.200284
http://www.g3journal.org/content/early/2018/04/04/g3.118.200284
https://doi.org/10.1104/pp.17.01537
http://www.plantphysiol.org/content/176/3/2166.full.pdf
http://www.plantphysiol.org/content/176/3/2166.full.pdf
http://www.plantphysiol.org/content/176/3/2166
http://www.plantphysiol.org/content/176/3/2166
https://doi.org/10.1105/tpc.17.00037
http://www.plantcell.org/content/early/2017/08/25/tpc.17.00037.full.pdf
http://www.plantcell.org/content/early/2017/08/25/tpc.17.00037.full.pdf
http://www.plantcell.org/content/early/2017/08/25/tpc.17.00037
http://www.plantcell.org/content/early/2017/08/25/tpc.17.00037
https://doi.org/10.1186/s12859-017-1774-x
https://doi.org/10.1186/s12859-017-1774-x
https://doi.org/10.1186/s12859-017-1774-x
http://dx.doi.org/10.1038/nbt.3080 10.1038/nbt.3080 http://www.nature.com/nbt/journal/v33/n3/abs/nbt.3080.html{\#}supplementary-information
http://dx.doi.org/10.1038/nbt.3080 10.1038/nbt.3080 http://www.nature.com/nbt/journal/v33/n3/abs/nbt.3080.html{\#}supplementary-information
http://dx.doi.org/10.1038/nbt.3080 10.1038/nbt.3080 http://www.nature.com/nbt/journal/v33/n3/abs/nbt.3080.html{\#}supplementary-information
https://doi.org/10.1073/pnas.1514680112
http://www.pnas.org/content/112/47/14728.full.pdf
http://www.pnas.org/content/112/47/14728.full.pdf
http://www.pnas.org/content/112/47/14728.abstract
http://www.pnas.org/content/112/47/14728.abstract
https://doi.org/10.1186/s12870-015-0586-2
https://doi.org/10.1186/s12870-015-0586-2

0032-0889. doi: 10.1104/pp.15.00052. eprint: http://www.plantphysiol.

org/content/early/2015/04/13/pp.15.00052.full.pdf. [Online]. Available:
http://www.plantphysiol.org/content/early/2015/04/13/pp.15.00052

G. Zynda, N. Gaffney, M. Dalkilic, et al., “Feature frequency profiles for automatic
sample identification using pyspark,” in Proceedings of the 5th Workshop on Python
for High-Performance and Scientific Computing, ACM, 2015, p. 5

https://doi.org/10.1104/pp.15.00052
http://www.plantphysiol.org/content/early/2015/04/13/pp.15.00052.full.pdf
http://www.plantphysiol.org/content/early/2015/04/13/pp.15.00052.full.pdf
http://www.plantphysiol.org/content/early/2015/04/13/pp.15.00052

	Acknowledgements
	Abstract
	Abbreviations
	Contribution
	Introduction
	Genome annotation
	Computational annotation
	Annotation of repetitive elements
	Annotation of genes
	Ensemble methods for annotation

	Sequence tagging with machine learning

	Methodology
	Collecting requirements and building a specification
	Input Specification - Unclassified
	Output Specification - Training and Predictions
	Data Shape - Input and Output

	Developing data access interfaces
	FASTA access
	Methylation alignment and access
	Annotation access

	Developing a flexible model
	Convolutional section
	Recurrent section
	Hidden section
	Loss functions

	Data traversal methods
	Independent traversal
	Stateful traversal
	Stranded traversal

	Aggregation and decoding of output
	Data sources
	Determining optimal model architecture
	Collecting local error metrics
	Hyperparameter sweep of model

	Final training
	Evaluation metrics

	Results and Discussion
	Initial results
	Hyperparameter sweep
	Long training
	Base level evaluation of transcripts
	Base level performance of exon and gene predictions
	Base level performance of mRNA predictions
	Base level performance of CDS predictions
	Overall base level performance

	Base level evaluation of transposable elements
	Region level evaluation of transcripts
	Characteristics of transcription regions

	Region level evaluation of transposable elements
	Impact of DNA methylation on prediction
	Investigating model performance
	Regional exon methylation
	Regional mRNA methylation
	Regional CDS methylation
	Regional gene methylation
	Performance conclusions from methylation

	Runtime performance
	Issues limiting portability

	Future Work
	Removing strand specific categories from output
	Improving data variety
	Optimizing hyperparameter search
	K-mers to improve the prediction of coding features
	Incorporating additional data dimensions

	Conclusions
	Appendix
	Software
	Data

	Additional Work
	Feature Frequency Profiles for Automatic Sample Identification using PySpark
	Abstract
	Introduction
	Related work
	Spark For Genomics
	Approach
	Classifying Reads
	Methodology
	Results
	Conclusion
	Availability

	Repliscan: a tool for classifying replication timing regions
	Abstract
	Background
	Implementation
	Results and Discussion
	Conclusions
	Availability

	Bibliography
	Curriculum Vitae

