54 research outputs found

    Adaptive load balancing routing algorithms for the next generation wireless telecommunications networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel UniversityWith the rapid development of wireless networks, mesh networks are evolving as a new important technology, presenting a high research and commercial interest. Additionally, wireless mesh networks have a wide variety of applications, offering the ability to provide network access in both rural and urban areas with low cost of maintenance. One of the main functionalities of a wireless mesh network is load balancing routing, which is the procedure of finding the best, according to some criteria, routes that data need to follow to transfer from one node to another. Routing is one of the state-of-the-art areas of research because the current algorithms and protocols are not efficient and effective due to the diversity of the characteristics of these networks. In this thesis, two new routing algorithms have been developed for No Intra-Cell Interference (NICI) and Limited Intra-Cell Interference (LICI) networks based on WiMAX, the most advanced wireless technology ready for deployment. The algorithms created are based on the classical Dijkstra and Ford-Fulkerson algorithms and can be implemented in the cases of unicast and multicast transmission respectively.State scholarships foundation of Greece

    Mitigating hidden node problem in an IEEE 802.16 failure resilient multi-hop wireless backhaul

    Get PDF
    Backhaul networks are used to interconnect access points and further connect them to gateway nodes which are located in regional or metropolitan centres. Conventionally, these backhaul networks are established using metallic cables, optical fibres, microwave or satellite links. With the proliferation of wireless technologies, multi-hop wireless backhaul networks emerge as a potential cost effective and flexible solution to provide extended coverage to areas where the deployment of wired backhaul is difficult or cost-prohibitive, such as the difficult to access and sparsely populated remote areas, which have little or no existing wired infrastructure.Nevertheless, wireless backhaul networks are vulnerable to node or link failures. In order to ensure undisrupted traffic transmission even in the presence of failures, additional nodes and links are introduced to create alternative paths between each source and destination pair. Moreover, the deployment of such extra links and nodes requires careful planning to ensure that available network resources can be fully utilised, while still achieving the specified failure resilience with minimum infrastructure establishment cost.The majority of the current research efforts focus on improving the failure resilience of wired backhaul networks but little is carried out on the wireless counterparts. Most of the existing studies on improving the failure resilience of wireless backhaul networks concern energy-constrained networks such as the wireless sensor and ad hoc networks. Moreover, they tend to focus on maintaining the connectivity of the networks during failure, but neglecting the network performance. As such, it calls for a better approach to design a wireless backhaul network, which can meet the specified failure resilience requirement with minimum network cost, while achieving the specified quality of service (QoS).In this study, a failure resilient wireless backhaul topology, taking the form of a ladder network, is proposed to connect a remote community to a gateway node located in a regional or metropolitan centre. This topology is designed with the use of a minimum number of nodes. Also, it provides at least one backup path between each node pair. With the exception of a few failure scenarios, the proposed ladder network can sustain multiple simultaneous link or node failures. Furthermore, it allows traffic to traverse a minimum number of additional hops to arrive at the destination during failure conditions.WiMax wireless technology, based on the IEEE 802.16 standard, is applied to the proposed ladder network of different hop counts. This wireless technology can operate in either point-to-multipoint single-hop mode or multi-hop mesh mode. For the latter, coordinated distributed scheduling involving a three-way handshake procedure is used for resource allocation. Computer simulations are used to extensively evaluate the performance of the ladder network. It is shown that the three-way handshake suffers from severe hidden node problem, which restrains nodes from data transmission for long period of time. As a result, data packets accumulate in the buffer queue of the affected nodes and these packets will be dropped when the buffer overflows. This in turn results in the degradation of the network throughput and increase of average transmission delay.A new scheme called reverse notification (RN) is proposed to overcome the hidden node problem. With this new scheme, all the nodes will be informed of the minislots requested by their neighbours. This will prevent the nodes from making the same request and increase the chance for the nodes to obtain all their requested resources, and start transmitting data as soon as the handshake is completed. Computer simulations have verified that the use of this RN can significantly reduce the hidden terminal problem and thus increase network throughput, as well as reduce transmission delay.In addition, two new schemes, namely request-resend and dynamic minislot allocation, are proposed to further mitigate the hidden node problem as it deteriorates during failure. The request-resend scheme is proposed to solve the hidden node problem when the RN message failed to arrive in time at the destined node to prevent it from sending a conflicting request. On the other hand, the dynamic minislot allocation scheme is proposed to allocate minislots to a given node according to the amount of traffic that it is currently servicing. It is shown that these two schemes can greatly enhance the network performance under both normal and failure conditions.The performance of the ladder network can be further improved by equipping each node with two transceivers to allow them to transmit concurrently on two different frequency channels. Moreover, a two-channel two-transceiver channel assignment (TTDCA) algorithm is proposed to allocate minislots to the nodes. When operating with this algorithm, a node uses only one of its two transceivers to transmit control messages during control subframe and both transceivers to transmit data packets during data subframe. Also, the frequency channels of the nodes are pre-assigned to more effectively overcome the hidden node problem. It is shown that the use of the TTDCA algorithm, in conjunction with the request-resend and RN schemes, is able to double the maximum achievable throughput of the ladder network, when compared to the single channel case. Also, the throughput remains constant regardless of the hop counts.The TTDCA algorithm is further modified to make use of the second transceiver at each node to transmit control messages during control subframe. Such an approach is referred to as enhanced TTDCA (ETTDCA) algorithm. This algorithm is effective in reducing the duration needed to complete the three-way handshake without sacrificing network throughput. It is shown that the application of the ETTDCA algorithm in ladder networks of different hop counts has greatly reduced the transmission delay to a value which allows the proposed network to not only relay a large amount of data traffic but also delay-sensitive traffics. This suggests that the proposed ladder network is a cost effective solution, which can provide the necessary failure resilience and specified QoS, for delivering broadband multimedia services to the remote rural communities

    WiMAX-WiFi techniques for baseband convergence and routing protocols

    Get PDF
    The focus of this study was to investigate solutions that, when implemented in any heterogeneous wireless network, shall enhance the existing standard and routing protocol connectivity without impacting the standard or changing the wireless transceiver’s functions. Thus achieving efficient interoperability at much reduced overheads. The techniques proposed in this research are centred on the lower layers. This because of the facts that WiMax and WiFi standards have not addressed the backward compatibility of the two technologies at the MAC and PHY layers, for both the baseband functions as well as the routing IP addresses. This thesis describes two innovate techniques submitted for a PhD degree. The first technique is to combine WiMax and WiFi signals so to utilise the same "baseband implementation chain" to handle both of these technologies, thus insuring ubiquitous data communication. WiMax-WiFi Baseband Convergence (W2BC) implementation is proposed to offer an optimum configurable solution targeted at combining the 802.16d WiMax and the 802.11a WiFi technologies. This approach provides a fertile ground for future work into combining more OFDM based wireless technologies. Based on analysis and simulation, the W2BC can achieve saving in device cost, size, power consumption and implementation complexity when compared to current side-by-side implementations for these two technologies. The second technique, called "Prime-IP", can be implemented with, and enhance, any routing protocol. During the route discovery process, Prime-IP enables any node on a wireless mesh network (WMN) to dynamically select the best available route on the network. Prime-IP proposes a novel recursive process, based on prime numbers addressing, to accumulate knowledge for nodes beyond the “neighbouring nodes”, and to determine the sequence of all the “intermediate nodes” used to form the rout

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    A MAC protocol for IP-based CDMA wireless networks.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2005.The evolution of the intemet protocol (IP) to offer quality of service (QoS) makes it a suitable core network protocol for next generation networks (NGN). The QoS features incorporated to IP will enable future lP-based wireless networks to meet QoS requirements of various multimedia traffic. The Differentiated Service (Diffserv) Architecture is a promising QoS technology due to its scalability which arises from traffic flow aggregates. For this reason, in this dissertation a network infrastructure based on DiffServ is assumed. This architecture provides assured service (AS) and premium service (PrS) classes in addition to best-effort service (BE). The medium access control (MAC) protocol is one of the important design issues in wireless networks. In a wireless network carrying multimedia traffic, the MAC protocol is required to provide simultaneous support for a wide variety of traffic types, support traffic with delay and jitter bounds, and assign bandwidth in an efficient and fair manner among traffic classes. Several MAC protocols capable of supporting multimedia services have been proposed in the literature, the majority of which were designed for wireless A1M (Asynchronous Transfer Mode). The focus of this dissertation is on time division multiple access and code division multiple access (TDMAlCDMA) based MAC protocols that support QoS in lP-based wireless networks. This dissertation begins by giving a survey of wireless MAC protocols. The survey considers MAC protocols for centralised wireless networks and classifies them according to their multiple access technology and as well as their method of resource sharing. A novel TDMAlCDMA based MAC protocol incorporating techniques from existing protocols is then proposed. To provide the above-mentioned services, the bandwidth is partitioned amongst AS and PrS classes. The BE class utilizes the remaining bandwidth from the two classes because it does not have QoS requirements. The protocol employs a demand assignment (DA) scheme to support traffic from PrS and AS classes. BE traffic is supported by a random reservation access scheme with dual multiple access interference (MAl) admission thresholds. The performance of the protocol, i.e. the AS or PrS call blocking probability, and BE throughput are evaluated through Markov analytical models and Monte-Carlo simulations. Furthermore, the protocol is modified and incorporated into IEEE 802.16 broadband wireless access (BWA) network

    Mathematical optimization techniques for demand management in smart grids

    Get PDF
    The electricity supply industry has been facing significant challenges in terms of meeting the projected demand for energy, environmental issues, security, reliability and integration of renewable energy. Currently, most of the power grids are based on many decades old vertical hierarchical infrastructures where the electric power flows in one direction from the power generators to the consumer side and the grid monitoring information is handled only at the operation side. It is generally believed that a fundamental evolution in electric power generation and supply system is required to make the grids more reliable, secure and efficient. This is generally recognised as the development of smart grids. Demand management is the key to the operational efficiency and reliability of smart grids. Facilitated by the two-way information flow and various optimization mechanisms, operators benefit from real time dynamic load monitoring and control while consumers benefit from optimised use of energy. In this thesis, various mathematical optimization techniques and game theoretic frameworks have been proposed for demand management in order to achieve efficient home energy consumption scheduling and optimal electric vehicle (EV) charging. A consumption scheduling technique is proposed to minimise the peak consumption load. The proposed technique is able to schedule the optimal operation time for appliances according to the power consumption patterns of the individual appliances. A game theoretic consumption optimization framework is proposed to manage the scheduling of appliances of multiple residential consumers in a decentralised manner, with the aim of achieving minimum cost of energy for consumers. The optimization incorporates integration of locally generated and stored renewable energy in order to minimise dependency on conventional energy. In addition to the appliance scheduling, a mean field game theoretic optimization framework is proposed for electric vehicles to manage their charging. In particular, the optimization considers a charging station where a large number of EVs are charged simultaneously during a flexible period of time. The proposed technique provides the EVs an optimal charging strategy in order to minimise the cost of charging. The performances of all these new proposed techniques have been demonstrated using Matlab based simulation studies

    Mathematical modelling of end-to-end packet delay in multi-hop wireless networks and their applications to qos provisioning

    Get PDF
    This thesis addresses the mathematical modelling of end-to-end packet delay for Quality of Service (QoS) provisioning in multi-hop wireless networks. The multi-hop wireless technology increases capacity and coverage in a cost-effective way and it has been standardised in the Fourth-Generation (4G) standards. The effective capacity model approximates end-to-end delay performances, including Complementary Cumulative Density Function (CCDF) of delay, average delay and jitter. This model is first tested using Internet traffic trace from a real gigabit Ethernet gateway. The effective capacity model is developed based on single-hop and continuous-time communication systems but a multi-hop wireless system is better described to be multi-hop and time-slotted. The thesis extends the effective capacity model by taking multi-hop and time-slotted concepts into account, resulting in two new mathematical models: the multi-hop effective capacity model for multi-hop networks and the mixed continuous/discrete-time effective capacity model for time-slotted networks. Two scenarios are considered to validate these two effective capacity-based models based on ideal wireless communications (the physical-layer instantaneous transmission rate is the Shannon channel capacity): 1) packets traverse multiple wireless network devices and 2) packets are transmitted to or received from a wireless network device every Transmission Time Interval (TTI). The results from these two scenarios consistently show that the new mathematical models developed in the thesis characterise end-to-end delay performances accurately. Accurate and efficient estimators for end-to-end packet delay play a key role in QoS provisioning in modern communication systems. The estimators from the new effective capacity-based models are directly tested in two systems, faithfully created using realistic simulation techniques: 1) the IEEE 802.16-2004 networks and 2) wireless tele-ultrasonography medical systems. The results show that the estimation and simulation results are in good agreement in terms of end-to-end delay performances
    • 

    corecore